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Abstract. In this paper we introduce a class of polygonal com-
plexes for which we can define a notion of sectional combinato-
rial curvature. These complexes can be viewed as generalizations
of 2-dimensional Euclidean and hyperbolic buildings. We focus
on the case of non-positive and negative combinatorial curvature.
As geometric results we obtain a Hadamard-Cartan type theorem,
thinness of bigons, Gromov hyperbolicity and estimates for the
Cheeger constant. We employ the latter to get spectral estimates,
show discreteness of spectrum in the sense of a Donnelly-Li type
theorem and corresponding eigenvalue asymptotics. Moreover, we
prove a unique continuation theorem for eigenfunctions and the
solvability of the Dirichlet problem at infinity.
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1. Introduction

Since recent years there is an increasing interest in studying cur-
vature notions on discrete spaces. First of all there are various ap-
proaches to Ricci curvature based on L1-optimal transport on metric
measure spaces starting with the work of Ollivier, [O1, O2]. These
ideas were employed for graphs by various authors [BJL, JL, LLY, LY]
to study geometric and spectral questions. A related and very effective
definition using L2-optimal transport was introduced in [EM]. Sec-
ondly, in [JL, LY] there is the approach of defining curvature bounds
via curvature-dimension-inequalities using a calculus of Bakry-Emery
based on Bochner’s formula for Riemannian manifolds. Similar ideas
were used [BHLLMY] to prove a Li-Yau inequality for graphs. Finally
let us mention the work on so called Ricci-flat graphs [CY]. All these
approaches have in common that they model some kind of Ricci cur-
vature and that they are very useful to study lower curvature bounds.

Classically there is a curvature notion for planar tessellating graphs
defined by an angular defect. These ides go back as far as to works
of Descartes [F] and became mathematical folklore since then. Often
there is no obvious relation of this curvature to the recent notions of
Ricci curvature above. Despite the rather restrictive setting of pla-
nar graphs this curvature notion has proven to very effective to derive
very strong spectral and geometric consequences of upper curvature
bounds [BP1, BP2, Hi, K1, K2, KLPS, Woe] which often relate to re-
sults to upper bounds on sectional curvature of Riemannian manifolds.
(For consequences on lower bounds see e.g. [DM, JHL, NS, S, Z] as
well.) Thus, it seems desirable to identify a class of ’higher dimen-
sional’ graphs where on can define and introduce sectional curvature.
This is the aim of this work.

The objects under investigation in this article are polygonal com-
plexes with planar substructures. They are 2-dimensional CW-complexes
equipped with a family of subcomplexes homeomorphic to the Eu-
clidean plane, which we call apartments, since they have certain prop-
erties similar to the ones required for apartments in Euclidean and
hyperbolic buildings. The 2-cells of a polygonal complex with pla-
nar substructurescan be viewed as polygons and they are called faces
and their closures are called chambers. The geometry is based on this
set of faces and their neighboring structures. In particular, there is
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a combinatorial distance function on the set of faces. Let us discuss
the properties of apartments in more detail. First of all, we require
that there are enough apartments, that is any two faces have to lie
in at least one apartment (condition (PCPS1) in Definition 2.3 be-
low). Sometimes, we require the stronger condition (PSPS1∗) that
every infinite geodesic ray of faces is contained in an apartment. The
second crucial property is that all apartments are convex (see condi-
tion (PCPS2)). These properties are also similar to the ones satisfied
by flats in symmetric spaces. The definition of polygonal complexes
with planar substructurescomprises both planar tessellations and all
Euclidean and hyperbolic buildings.

We use the apartments of a polygonal complex with planar substruc-
turesto define combinatorial curvatures on them. Since these apart-
ments could be seen in a vague sense as tangent planes of the polygonal
complex with planar substructures, we call these curvatures sectional
curvatures. We introduce sectional curvatures on the faces and on the
corners of an apartment (see Definition 2.7), and they are invariants
measuring the local geometry of the polygonal complex with planar
substructures.

The definition of polygonal complexes with planar substructuresand
basic notions are introduced in Section 2. The results in this article are
then given in Sections 3 and 4. While most of these results are known
for planar tessellations, it seems to us that several of these results were
not known for Euclidean and hyperbolic buildings. Next, we explain
our results in more detail.

In Section 3 we discuss implications of negative and non-positive cur-
vature to the global and asymptotic geometry of a polygonal complex
with planar substructures. Many of the presented results have well-
known counterparts in the smooth setting of Riemannian manifolds.
Amongst our results, we present a combinatorial Cartan-Hadamard
theorem for non-positively curved polygonal complexes with planar
substructures(see Theorem 3.1) and we conclude Gromov hyperbol-
icity and positivity of the Cheeger isoperimetric constant for nega-
tively curved polygonal complexes with planar substructureswith cer-
tain bounds on the vertex and face degree (see Theorems 3.6 and 3.8).
These results are based on negativity or non-positivity of the sectional
corner curvature. We also state an analogue of Myers theorem in the
case of strictly positive sectional face curvature (see Theorem 3.13).

Section 4 is devoted to spectral considerations of the Laplacian.
We discuss combinatorial/geometric criteria to guarantee emptiness of
the essential spectrum and to derive certain eigenvalue asymptotics
on polygonal complexes with planar substructures(see Theorem 4.1).
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We also show that non-positive sectional corner curvature on polygo-
nal complexes with planar substructuresimplies absence of finitely sup-
ported eigenfunctions (see Theorem 4.3). Finally, we derive solvability
of the Dirichlet problem at infinity for polygonal complexes with pla-
nar substructuresin the case of negative sectional corner curvature (see
Theorem 4.6).

As mentioned before, Euclidean and hyperbolic buildings provide
large classes of examples of polygonal complexes with planar substruc-
tures. While all these spaces have non-positive sectional face curvature,
their corner curvature is not always necessarily non-positively curved.
The main purpose of the final Section 5 is to provide a self-contained
short survey over these important classes.

Acknowledgements: We like to thank Oliver Baues, Alex Lubotzky,
Shahar Mozes, Dirk Schütz and Alina Vdovina for many useful discus-
sions. This research was partially supported by the EPSRC Grant
EP/K016687/1 and by the DFG.

2. Basic definitions

In this section we introduce polygonal complexes with planar sub-
structures and define a notion of sectional curvature on theses spaces.
In order to do so we introduce polygonal complexes and planar tessella-
tions first. In the second subsection we explore some basic consequences
of the convexity assumption we impose. In the third subsection we in-
troduce a combinatorial sectional curvature notions for these spaces.

2.1. Polygonal complexes with planar substructures. The fol-
lowing definition of polygonal complexes is found in [BB1].

Definition 2.1 (Polygonal complex). A polygonal complex is a 2-
dimensional CW-complex X with the following properties:

(PC1) The attaching maps of X are homeomorphisms.
(PC2) The intersection of any two closed cells of X is either empty or

exactly one closed cell.

For a polygonal complex X we denote the 0-cells by V and call
them vertices, we denote the 1-cells by E and call them the edges
and we denote the 2-cells by F and call them the faces. We write
X = (V,E, F ). Note that the closures of all edges and faces in X
are necessarily compact (since they are images of compact sets under
the continuous characteristic maps, see [Hat, Appendix]). We call two
vertices v and w adjacent or neighbors if they are connected by an
edge in which case we write v ∼ w. We call two different faces f and g
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adjacent or neighbors if their closures intersect in an edge and we write
f ∼ g. It is convenient to call the closure of a face a chamber.

The degree |v| ∈ N0∪{∞} of a vertex v ∈ V is the number of vertices
that are adjacent to v. The degree |e| ∈ N0 ∪ {∞} of an edge e ∈ E
is the number of chambers containing e. The boundary ∂f of a face
f ∈ F is the set of all 1-cells e ∈ E being contained in the closure f .
Since in CW-complexes every compact set can meet only finitely many
cells (see [Hat, Prop. A.1]), we have |∂f | = #∂f <∞. The degree |f |
of a face f ∈ F is the number of faces that are adjacent to f and, in
contrast to |∂f |, the face degree |f | can be infinite.

We call a (finite, infinite or bi-infinite) sequence . . . , fi−1, fi, fi+1, . . .
of pairwise distinct faces a path if successive faces are adjacent. The
length of the path is one less than the number of components of the
sequence. The (combinatorial) distance between two faces f and g is
the length of the shortest path connecting f and g and the distance is
denoted by d(f, g). We call a (finite, infinite or bi-infinite) path (fk) of
faces a geodesic or a gallery, if we have for any two faces fm and fn in
the path d(fm, fn) = |m − n|, i.e., the distance between fm and fn is
realized by the path.

We say a polygonal complex X is planar if X is homeomorphic to
R2. We also say that a polygonal complex X is spherical if X is home-
omorphic to the two-sphere S2.

Next we introduce the notion of a planar tessellation following [BP1,
BP2].

Definition 2.2 (Planar tessellation). A polygonal complex Σ = (V,E, F )
is called a (planar/spherical) tessellation if Σ is planar/spherical and
satisfies the following properties:

(T1) Any edge is contained in precisely two different chambers.
(T2) Any two different chambers are disjoint or have precisely either

a vertex or a side in common.
(T3) For any chamber the edges contained in it form a closed path

without repeated vertices.
(T4) Every vertex has finitely many neighbors.

Note that property (T3) is already implied by (PC1) and (PC2). The
tessellations form the substructures which we will later need to define
sectional curvature. Now, we are in a position to introduce polygonal
complexes with planar substructures.
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Definition 2.3. A polygonal complex with planar substructures is a
polygonal complex X = (V,E, F ), together with a set A of subcom-
plexes whose elements Σ = (VΣ, EΣ, FΣ) are called apartments, with
the following properties:

(PCPS1) For any two faces there is an apartment containing both of
them.

(PCPS2) The apartments are convex (i.e., for any Σ ∈ A any finite gallery
f1, . . . , fn with end-faces f1, fn in Σ stays completely in Σ).

(PCPS3) The apartments are planar tessellations.

Similarly, we introduce polygonal complexes with spherical substruc-
tures by replacing property (PCPS3) in Definition 2.3 by

(PCSS3) The apartments are spherical tessellations.

Prominent examples of polygonal complexes with planar substruc-
turesare Euclidean and hyperbolic buildings (see Section 5 for the defi-
nition of a building as well as several examples). Moreover, every planar
tessellation is trivially a polygonal complex with planar substructures.
For reasons of illustration, we like to introduce the following example
of a Euclidean building.

Example 1. Let X0 be the finite simplicial complex constructed from
the seven equilateral Euclidean triangles illustrated in Figure 1 by iden-
tifying sides with the same labels xi.

x0x1

x3

x2 x3

x5

x4

x0 x1 x2

x0 x1 x3 x4 x5

x4

x2

x6

x5 x6 x6

Figure 1. Labeling scheme for the simplicial complex X0

Then X0 has a single vertex which we denote by p0, seven edges and
seven faces. Its fundamental group Γ = π1(Π0, p0) has the following
presentation

Γ = 〈x0, . . . , x6 | xixi+1xi+3 = id for i = 0, 1, . . . , 6〉
(where i is taken modulo 7). Let X = (V,E, F ) be the universal
covering of X0 together with the lifted triangulation. Then it follows

from [BB2, Thm 6.5] that X is a thick Euclidean building of type Ã2

and every edge of X belongs to precisely 3 triangles. Therefore, X is
a polygonal complex with planar substructures. The group of covering
transformations is isomorphic to Γ and acts transitively on the vertices
of this building (see [CMS]).
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For some of our results we need the following slightly stronger as-
sumption than (PCPS1):

(PCPS1∗) Every (one-sided) infinite geodesic is contained in an apartment.

Condition (PCPS1∗) is satisfied for all Euclidean and hyperbolic
buildings with a maximal apartment system (see Theorem 5.5 below).

Finally, let us mention the following important fact. To a polygonal
complex X = (V,E, F ) we can naturally associate a graph GX by
letting F be the vertex set ofGX and by defining the edges of that graph
via the adjacency relation of the corresponding faces. This ’duality’
becomes important when we use results for graphs in our context.

2.2. Consequences of convexity. The convexity assumption (PCPS2)
is very important in our considerations. In this subsection we collect
some of the immediate consequences.

Lemma 2.4. Let X be a polygonal complex with planar substructures,
Σ an apartment and let dΣ the combinatorial distance within the apart-
ment. Then, for any two faces f, g ∈ FΣ

d(f, g) = dΣ(f, g).

Proof. The inequality ’≤’ is clear. For the other direction ’≥’ let γ =
(f0, . . . , fn) be a path connecting f and g minimizing d(f, g). As γ
is a geodesic with end-faces in Σ it is completely contained in Σ by
(PCPS2). Hence, the statement follows. �

We say a subset F0 of F is connected if any two faces in F0 can be
joined by a path in F0.

Lemma 2.5. Let X be a polygonal complex with planar substructures.
Let Σ1 and Σ2 be two apartments of X. Then the set FΣ1 ∩ FΣ2 is
connected.

Proof. Let f and g be two faces in FΣ1 ∩ FΣ2 . Then, by (PCPS2),
every geodesic connecting f and g is completely contained in Σ1 and
Σ2. Thus, FΣ1 ∩ FΣ2 is connected. �

For a fixed face o ∈ F (called root), we define the (combinatorial)
spheres and balls about o by

Sn = Sn(o) = {f ∈ F | d(f, o) = n} and

Bn = Bn(o) =
n⋃
k=0

Sk,
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for n ≥ 0. For f ∈ F , we let the forward and backward degree be given
by

|f |± = |{g ∈ F | g ∼ f, d(g, o) = d(f, o)± 1}|,
and we call g ∈ F with g ∼ f and d(g, o) = d(f, o) + 1 (respectively
d(g, o) = d(f, o)− 1) a forward (respectively backward) neighbor of f .
The next lemma shows that the convexity condition (PCPS2) imposes
a lot of structure of the distance spheres.

Lemma 2.6. Let X be a polygonal complex with planar substructure-
sand o ∈ F be a root. Let f ∈ F with f ∈ Sn for some n ≥ 0 and
f+ ∈ Sn+1, f0 ∈ Sn, f− ∈ Sn−1 be neighbors of f . Then,

(a) Every face sharing the same edge with f and f+ is in Sn+1.
(b) Every face sharing the same edge with f and f0 is in Sn∪Sn−1.
(c) Every face sharing the same edge with f and f− is in Sn.

Proof. (a) Let g ∈ F be such that ∂g ∩ ∂f ∩ ∂f+ 6= ∅. Since g is a
neighbor of f+, we have d(o, f) ≥ n. Since g is a neighbor of f , we have
d(o, f) ≤ n+ 1. Therefore, we have g ∈ Sn ∪Sn+1. If g was in Sn, then
there are geodesics from the root o over g to f+ and from o over f to
f+. By (PCPS2) both of these geodesics lie together in one apartment.
Hence, g lies in one apartment together with f , f+ and o. Then, there
is an edge contained in three faces f, f+ and g within one apartment
Σ. This contradicts (T1) in the definition of a planar tessellation. But
Σ is a planar tessellation, by (PCPS3). Thus, g ∈ Sn+1.
(b) Let g ∈ F be such that ∂g ∩ ∂f ∩ ∂f0 6= ∅. If g was in Sn+1 then
there were two geodesics from o to g, one via f and the other one via
f0. By a similar argument as in (a), the faces g, f , f0 and o lie in the
same apartment. Again this is impossible by (T1) and (PCPS3).
(c) Let g ∈ F be such that ∂g∩∂f ∩∂f− 6= ∅. Clearly, g is in Sn∪Sn−1.
If g was in Sn then, by similar arguments as in (a) and (b), the faces
g, f , f− and o lie in the same apartment which is again impossible by
(T1) and (PCPS3). �

2.3. Sectional curvature. For an apartment Σ = (VΣ, EΣ, FΣ), let
|v|Σ be the degree of v in Σ which is the number of neighboring ver-
tices in VΣ. We notice that the degree of an edge in Σ, i.e., the number
of faces in FΣ bounded by the edge, is always equal to 2 by (T1).
Moreover, the degree |f |Σ of a face f in Σ is equal to |∂f |. Therefore,
|f |Σ1 = |f |Σ2 for any two apartments Σ1, Σ2 that contain f . Further-
more, for a polygonal complex with planar substructuresX and Σ ∈ A
we let the set of corners of X and of Σ be given by

C = {(v, f) ∈ V × F | v ∈ f}, CΣ = {(v, f) ∈ VΣ × FΣ | v ∈ f}.
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Definition 2.7 (Curvature). Let Σ be an apartment of a polygonal
complex with planar substructures X. The sectional corner curvature

κ
(Σ)
c : CΣ → R with respect to Σ is given by

κ(Σ)
c (v, f) =

1

|v|Σ
− 1

2
+

1

|f |Σ
,

and the sectional face curvature κ(Σ) : FΣ → R with respect to Σ is
given as

κ(Σ)(f) =
∑

(v,f)∈CΣ

κ(Σ)
c (v, f) = 1− |f |Σ

2
+

∑
v∈VΣ,v∈f

1

|v|Σ
.

The above combinatorial curvature notions are motivated by a com-
binatorial version of the Gauss-Bonnet Theorem for closed surfaces.
We have for polygonal tessellations Σ = (V,E, F ) of a closed surface S
(see [BP1, Thm 1.4])

(1) χ(S) =
∑
f∈F

κ(Σ)(f) =
∑

(v,f)∈CΣ

κ(Σ)(v, f),

where χ(S) is the Euler characteristic of S. The sectional curvatures
in Definition 2.7 are then the intrinsic curvatures in the apartments
Σ, and the apartments Σ can be understood as discrete analogues of
specific tangent planes. Note that curvature is a local concept and,
for a given corner or face, only information of the nearest neighboring
faces in the apartment are needed for its calculation.

Example 2. Let us return to Example 1 and consider its sectional
curvatures. Each apartment Σ of X0 is isomorphic to a tessellation of
a Euclidean plane by equilateral triangles. This means that we have
for every corner (v, f) ∈ CΣ:

κ(Σ)
c (v, f) =

1

|v|Σ
− 1

2
+

1

|f |Σ
=

1

6
− 1

2
+

1

3
= 0,

i.e., X0 has vanishing sectional corner curvature. Consequently, its
sectional face curvature is also zero.

3. Geometry

In this section we discuss implications of the curvature sign to the
global geometry of polygonal complexes with planar substructures-
like emptiness of cut-locus, Gromov hyperbolicity or positivity of the
Cheeger constant. Before we enter into these topics, we first introduce
some more useful combinatorial notions.



10 M. KELLER, N. PEYERIMHOFF, AND F. POGORZELSKI

We say X is locally finite if for all v ∈ V and e ∈ E
|v| <∞ and |e| <∞.

Since |f | =
∑

e∈∂f |e|, we also have |f | <∞ for locally finite polygonal
complexes. We define for a face f ∈ F

mE(f) = min
e∈∂f

(|e| − 1), ME(f) = max
e∈∂f

(|e| − 1)

the minimal and maximal number of neighbors over one edge of f . The
minimal and maximal thickness of X is then given by

mE = min
f∈F

mE(f), ME = max
f∈F

ME(f).

The maximal vertex and face degree are defined by

MV = sup
v∈V
|v|, MF = sup

f∈F
|f |.

Note that we always have ME ≤MF .

3.1. Absence of cut-locus. We first present a theorem which is an
analogue of the Hadamard-Cartan theorem from Riemannian mani-
folds. It is a rather immediate consequence of convexity and [BP2,
Thm. 1] for plane tessellating graphs.

For a face f ∈ F in a polygonal complex X = (V,E, F ) the cut locus
of f is defined as

Cut(f) = {g ∈ F | d(f, ·) attains a local maximum in g}.
Absence of cut locus means that Cut(f) = ∅ for all f ∈ F which means
that every finite geodesic starting in f can be continued to a infinite
geodesic.

Theorem 3.1. Let X = (V,E, F ) be a polygonal complex with pla-

nar substructuressuch that κ
(Σ)
c ≤ 0 for all apartments Σ ∈ A. Then,

Cut(f) = ∅ for all f ∈ F . Moreover, every geodesic within an apart-
ment Σ can be continued to an infinite geodesic within Σ.

We conclude from Theorem 3.1 that emptiness of of cut-locus holds,
e.g., for our Example 1 and Examples 8-11. Note also that the condition
of non-positive sectional corner curvature in Theorem 3.1 cannot be
weakened to non-positive sectional face curvature as Figure 2 in [BP2]
shows.

Proof. Let f ∈ F . Choose g ∈ F and let Σ be an apartment which
contains both f and g (which exists by (PCPS1)). By [BP2, Thm. 1]
the cut locus of f within Σ is empty that is there a face h ∈ FΣ with
g ∼ h such that dΣ(f, h) = dΣ(f, g) + 1. (Note that [BP2, Thm. 1]
is formulated in the dual setting which, however, can be carried over
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directly.) As d = dΣ, by Lemma 2.4, we conclude g 6∈ Cut(f). Since
this holds for all g ∈ F , we have Cut(f) = ∅. The second statement is
an immediate consequence of [BP2, Thm. 1] and Lemma 2.4. �

Corollary 3.2. Let X = (V,E, F ) be a polygonal complex with planar

substructuressuch that κ
(Σ)
c ≤ 0 for all Σ ∈ A. Then, every face has at

least one forward neighbor.

3.2. Thinness of bigons. In this subsection we show a useful hyper-
bolicity criterion.

Let X = (V,E, F ) be a polygonal complex. A bigon is a pair of
geodesics (f0, . . . , fn) and (g0, . . . , gn) such that f0 = g0 and fn = gn.
We say a bigon is δ-thin for δ ≥ 0, if d(fk, gk) ≤ δ for all k = 0, . . . , n.

Theorem 3.3. Let X = (V,E, F ) be a polygonal complex with planar

substructuressuch that κ
(Σ)
c < 0 for all apartments Σ ∈ A. Then, every

bigon is 1-thin.

Proof. Let γ1 = (f0, . . . , fn) and γ2 = (g0, . . . , gn) be a bigon and Σ ∈ A
be an apartment that contains f0 = g0 and fn = gn. By the convexity
assumption (PCPS2) the apartment Σ contains both geodesics γ1 and
γ2 and, therefore, the pair (γ1, γ2) is a bigon within Σ. By [BP2, Thm.
2] it follows that dΣ(fk, gk) ≤ 1 for k = 0, . . . , n, and by Lemma 2.4 we
conclude that d(fk, gk) ≤ 1 for k = 0, . . . , n. �

We have an immediate consequence.

Corollary 3.4. Let X = (V,E, F ) be a polygonal complex with planar

substructuressuch that κ
(Σ)
c < 0 for all Σ ∈ A. Let f1, f2 ∈ F with

d(f1, f2) = n. Then we have for all 0 ≤ k ≤ n:

|Bk(f1) ∩Bn−k(f2)| ≤ 2.

In particular, if f1 is considered as a root, f2 has at most two backward
neighbors.

Proof. By convexity we can restrict our considerations on any apart-
ment Σ ∈ A containing f1 and f2. Every f ∈ Bk(f1)∩Bn−k)(f2) must
obviously satisfy d(f1, f) = k and d(f, f2) = n−k. If there were 3 faces
in the intersection Bk(f1) ∩Bn−k(f2) ⊂ FΣ, then there are 3 geodesics
from f1 to f2 in Σ. Then, one of the three geodesics is enclosed by the
other two in Σ and the other two geodesics form a bigon. Then this
bigon in not 1-thin which contradicts the previous theorem. �

In fact, the last statement of Corollary 3.4 holds even for non-positive
sectional corner curvature.
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Proposition 3.5. Let X = (V,E, F ) be a polygonal complex with pla-

nar substructuressuch that κ
(Σ)
c ≤ 0 for all Σ ∈ A and o ∈ F be a root.

Then every face has at most two backward neighbors.

Proof. This is a consequence of the results in [BP2]. Let f ∈ F . Let
Σ ∈ A be an apartment containing o and f . Then the ball Bn ∩ Σ
is an admissible polygon in Σ in the sense of [BP2, Def. 2.2] and ∂f
and ∂Bn is a connected path of length ≤ 2, by [BP2, Prop. 2.5]. This
shows that f can have at most two backward neighbors. �

3.3. Gromov hyperbolicity. Recall from the end of Subsection 2.1
that every polygonal complex X = (V,E, F ) can also be viewed as a
metric space via the associated graph GX and its natural combinatorial
distance function. Geodesics (fi)i ⊂ F in X correspond then to (ver-
tex) geodesics in GX . With this understanding, we call the polygonal
complex (X, d) Gromov hyperbolic if there exists δ > 0 such that any
side of any geodesic triangle in GX lies in the δ-neighborhood of the
union of the two other sides of the triangle. We show Gromov hyper-
bolicity of a polygonal complex with planar substructures(X, d) with
negative sectional corner curvature as well as properties of the Gromov
boundary X(∞) under the additional boundedness assumption of the
vertex and face degree. For details on the Gromov boundary (and the
Gromov product used to define it) we refer to [BH, Chpt. III.H].

Theorem 3.6. Let X be a polygonal complex with planar substruc-

tureswith MV ,MF < ∞ and κ
(Σ)
c < 0 for all Σ ∈ A. Then, (X, d)

and all its apartments are Gromov hyperbolic spaces. If additionally
(PCPS1∗) is satisfied then every connected component of the Gromov
boundary X(∞) contains the Gromov boundary of an apartment which
is homeomorphic to S1.

It is easy to see that the Euclidean buildings in Example 1 and 8
are not Gromov hyperbolic. Theorem 3.6 is not applicable since these
examples have vanishing sectional corner curvature.

The main ingredient in the first part of the proof of Theorem 3.6 is
the fact that all bigons in (X, d) are 1-thin (Theorem 3.3). The same
holds true within all apartments. [Pa, Theorem 1.4] tells us that the
statement of the theorem would then be true in the case of Cayley
graphs. For general GX , we need the following generalization given in
the unpublished Masters dissertation of Pomroy (a proof of it can be
found in [ChN, Appendix]):

Theorem 3.7 (Pomroy). If for a geodesic metric space there are ε, ρ >
0 such that ρ-bigons are uniformly ε-thin, then the space is Gromov
hyperbolic.
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For GX to satisfy the requirement of a geodesic metric space, we
must view it as a metric graph with all its edge lengths equal to one.
Let us clarify the other notions in Pomroy’s theorem: A ρ-bigon is a
pair of (1, ρ) quasi-geodesics γ1, γ2 with the same end points, i.e.,

|t− t′| − ρ ≤ d(γi(t), γi(t
′)) ≤ |t− t′|+ ρ ∀ t, t′.

Choosing δ < 1/2, we can then conclude from Theorems 3.3 and 3.7
that (X, d) and all its apartments are Gromov hyperbolic.

Next we prove the rest of the theorem assuming (PCPS1∗). From
MF < ∞ we conclude that GX is a proper hyperbolic geodesic space
and, therefore, the geodesic boundary (defined via equivalence classes
of geodesic rays, where rays are equivalent iff they stay in bounded
distance to each other) and the Gromov boundary coincide (see, e.g.,
[BH, Lm. III.H.3.1]) and we can think of any boundary point ξ ∈ X(∞)
as being represented by a geodesic ray (fi)i ⊂ F . Using (PCPS1∗),
there is an apartment Σ ∈ A such that (fi)i ⊂ FΣ and ξ ∈ Σ(∞) ⊂
X(∞). We also know from [BP2, Cor. 5] that Σ(∞) is homeomorphic
to S1, finishing the proof. �

3.4. Cheeger isoperimetric constants. In this subsection we prove
how negative curvature and other geometric quantities effect positivity
of the Cheeger isoperimetric constant.

Let X = (V,E, F ) be a locally finite polygonal complex. We con-
sider the following Cheeger constant as it is very for useful for spectral
estimates. For G ⊆ F we define

αG = inf
H⊆G

|∂H|
vol(H)

with

∂H = {(f, g) ∈ F × F | where f ∈ H, g ∈ F \H with f ∼ g},

and

vol(H) =
∑
f∈H

|f |.

Note that αG ≤ 1. We set α = αF .
Firstly, we present a result that shows positivity of the Cheeger

isoperimetric constant for negative sectional corner curvature under
the additional assumption of bounded geometry. This result is a con-
sequence of a general result of Cao [C], which also holds in the smooth
setting of Riemannian manifolds. Secondly, we give more explicit esti-
mates for the Cheeger constant.
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Theorem 3.8. Let X = (V,E, F ) be a polygonal complex with pla-

nar substructuressuch that κ
(Σ)
c < 0 for all Σ ∈ A. Assume that X

additionally satisfies (PCPS1 ∗) and MV ,MF <∞. Then, α > 0.

A straightforward consequence of Theorem 3.8 is

Corollary 3.9. Every locally finite hyperbolic building with regular hy-
perbolic polygons as faces has a positive Cheeger constant α > 0.

In particular, all buildings in Examples 9-11 have positive Cheeger
constant (we can assume without loss of generality that these buildings
are equipped with a maximal system of apartments).

Proof of Theorem 3.8. Note that by the comment at the end of Sub-
section 2.1 we can associate to every polygonal complex with planar
substructuresX = (V,E, F ) a graph GX by considering the faces of X
as vertices in GX and the edge relation given by the adjacency relation
of the faces. In this light [C, Thm. 1] tells us that a polygonal complex
(X, d) has positive Cheeger isoperimetric constant if the following four
assumptions are satisfied

(1) (X, d) has bounded face degree MF <∞,
(2) (X, d) admits a quasi-pole,
(3) (X, d) is Gromov hyperbolic,
(4) every connected component of the Gromov boundary X(∞) has

positive diameter (with respect to a fixed Gromov metric),

where (2) means that there is a finite set Ω ⊂ F of faces and a δ > 0
such that every face f ∈ F is found in a δ-neighborhood of a geodesic
ray emanating from this finite set. Moreover, for (4) we follow [C] and
define for two geodesic rays (fi), (f

′
i) ⊂ F with the same initial face

f0 = f ′0 representing the points ξ, η ∈ X(∞):

df0,ε(ξ, η) = lim inf
n→∞

exp(−ε(n− 1
2
d(fn, f

′
n)),

Then there is an ε > 0 such that df0,ε is a metric which is called a
Gromov metric. Note that the Cheeger constant considered in [C] is
defined as

h = inf
H⊆F

|∂FH|
|H|

,

where ∂FH = {f ∈ F | d(f,H) = 1}. As every face in ∂FH is
connected with H via at least one edge we have |∂H| ≥ |∂FH|. Also
vol(H) ≤MF |H| and, therefore,

α ≥ h

MF

.
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Hence, by the assumption MF <∞ the constant α is positive whenever
h is. Thus, it remains to check the conditions (1)-(4).

Let X = (V,E, F ) be a polygonal complex with planar substruc-
tureswhich satisfies the assumptions of the theorem. Then, (1) is obvi-
ously satisfied. Secondly, by absence of cut-locus, Theorem 3.1, condi-
tion (2) is satisfied and by Theorem 3.6 condition (3) is satisfied. Fi-
nally, let us turn to (4). By Theorem 3.6 and the assumption (PCPS1∗)
we know that every connected component of the Gromov boundary of
X contains the Gromov boundary of an apartment. Therefore, it suf-
fices to show (4) for the Gromov boundary of an apartment. We observe
that we find in every apartment a bi-infinite geodesic. This can be seen
as follows: Let (f−n, . . . , fn) be a geodesic in an apartment Σ ∈ A. By
[BP2, Thm. 1] the face fn is not in CutΣ(f−n) and, therefore, there
is fn+1 ∈ Σ such that (f−n, . . . , fn+1) is a geodesic. Simultaneously,
f−n is not in CutΣ(fn+1) and therefore there is f−(n+1) ∈ Σ such that
(f−(n+1), . . . , fn+1) is a geodesic in Σ. In this way , we construct a
bi-infinite geodesic (fn)n∈Z. Let ξ, η ∈ X(∞) be the end points of the
geodesics (fn)n≥0 ⊂ FΣ. Since (fn)n∈Z is a bi-infinite geodesic, we have
d(fn, f−n))) = 2n. So, we obtain for any ε > 0

df0,ε(ξ, η) = lim inf
n→∞

exp(−ε(n− 1
2
d(fn, f−n))) = 1.

Hence, (4) is satisfied and we finished the proof. �

Remark 3.10. The question whether a Gromov hyperbolic space has
positive Cheeger constant is very subtle. Note that every infinite tree
T is Gromov hyperbolic. But if we attach to one of its vertices the

ray [0,∞) with integer vertices then the new tree T̃1 is still Gromov
hyperbolic but it has vanishing Cheeger constant. This new ray adds an
isolated point to the Gromov boundary of T and therefore assumption

(4) is violated for T̃1. On the other hand, if we attach to a sequence
of vertices (vn)n∈N in T the segments [0, n] with integer vertices and

denote the new tree by T̃2, then this new tree has again vanishing

Cheeger constant. In this case both trees T and T̃2 even have the same

boundaries, but T̃2 cannot have a quasi-pole since the newly added
vertices do not lie in geodesic rays and, therefore, assumption (2) is
violated (see end of Subsection 1.1 in [C]).

The next result provides explicit lower bounds for the Cheeger con-
stant in terms of the face degrees and minimal and maximal thickness.
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Theorem 3.11. Let X be a locally finite polygonal complex with planar
substructures. Then,

α ≥ inf
f∈F

(mE(f)

ME(f)

(
1− 6

|∂f |

))
≥ mE

ME

(
1− 6

minf∈F |∂f |

)
.

In particular, α > 0 if |∂f | ≥ 7 and ME <∞. Secondly,

α ≥ inf
f∈F

mE(f)− 2

|f |
≥ mE − 2

MF

.

In particular, α > 0 if mE ≥ 3 and MF <∞.

The theorem implies in particular that all locally finite Euclidean
buildings with minimal thickness mE ≥ 3 (i.e., every edge is contained
in at least 4 chambers) have positive Cheeger constant. Since the
minimal thickness of Example 1 is mE = 2, we do not know whether
this Euclidean building has positive Cheeger constant. Moreover, we
see that all locally finite hyperbolic buildings with generating polygon
P at least a 7-gon have also a positive Cheeger constant.

Proof. Translating [DKa, Lemma 1.15] into the ’dual’ language (as the
comment at the end of Section 2.1 indicates) tells us that if there is a
root o ∈ V and C ≥ 0 such that

|f |+ − |f |− ≥ C|f |

for all f ∈ F , then α ≥ C. Thus, it suffices to estimate inff∈F (|f |+ −
|f |−)/|f | to get a lower bound on α. For f ∈ F , let n ≥ 0 be such that
f ∈ Sn and let Σ be an apartment that contains f . By Proposition 3.5
we immediately have |f |− ≤ 2. Moreover, by [BP1, Theorem 3.2]
(combined with Theorem 3.1) there are at most two neighbors of f in
FΣ ∩ Sn and, therefore, |f |+ ≥ mE(f)|f |Σ,+ ≥ mE(f)(|∂f | − 4). Here

|f |Σ,+ denotes the number of forward neighbors of f within Σ, which
is |∂f | minus the number (≤ 2) of backward neighbors of f minus the
number (≤ 2) of neighbors of f in FΣ∩Sn. Moreover, |f | ≤ME(f)|∂f |.
Hence,

|f |+ − |f |−
|f |

≥ mE(f)

ME(f)

(
1− 6

|∂f |

)
which yields the first inequality. On the other hand, we have by The-
orem 3.1 and Lemma 2.6 (a) |f |+ ≥ mE(f). Hence, by |f |− ≤ 2

|f |+ − |f |−
|f |

≥ mE(f)− 2

|f |
This finishes the proof. �
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From the proof we may easily extract the following statement which
turns out to be useful for studying the essential spectrum of the Lapla-
cian. Define for a locally finite polygonal complex X = (V,E, F ) the
Cheeger constant at infinity by

α∞ = sup
K⊆F finite

αF\K .

Corollary 3.12. Let X be a locally finite polygonal complex with planar
substructures. Then

α∞ ≥ sup
K⊆F finite

inf
f∈F\K

mE(f)

ME(f)

(
1− 6

|∂f |

)
3.5. Finiteness and infiniteness. In this subsection we show that
positivity or non-positivity of sectional face curvature determines whether
a locally finite polygonal complex with planar/spherical substructures
is finite or infinite. The statement that positive curvature implies finite-
ness is an analogue of a theorem of Myers for Riemannian manifolds
[M].

Theorem 3.13. Let X = (V,E, F ) be a locally finite polygonal complex
with planar/spherical substructureswith apartment system A.

(a) If we have κ(Σ)(f) > 0 for all Σ ∈ A and all f ∈ FΣ, then F is
finite and X is a polygonal complex with spherical substructures.

(b) If we have κ(Σ)(f) ≤ 0 for all Σ ∈ A and all f ∈ FΣ, then F is
infinite and X is a polygonal complex with planar substructures.

Proof. Note first that every planar tessellation has infinitely many faces
(since the closure of every face is compact) while every spherical tes-
sellation has finitely many faces. Therefore FΣ (Σ ∈ A) is infinite if
X is a polygonal complex with planar substructuresand finite if X is a
polygonal complex with spherical substructures.

We first assume that X is a polygonal complex with planar/spherical
substructureswith F a finite set. We will show that there a faces with
positive sectional face curvature. Choose an apartment Σ ∈ A. By the
Gauß-Bonnet theorem (see (1)), we have∑

f∈FΣ

κ(Σ)(f) = χ(S2) = 2,

where χ denotes the Euler characteristic. Hence, κ(Σ) must be positive
on some faces. This shows (b).

Now, we assume that κ(Σ)(f) > 0 for all Σ ∈ A and all f ∈ FΣ.
By DeVos-Mohar’s proof of Higuchi’s conjecture [DM, Theorem 1.7]
(which is again stated in the dual formulation) every apartment must
be finite. Moreover, the number of faces (in their case vertices) in
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an apartment is uniformly bounded by 34441 except for prisms and
antiprisms. A prism in our dual setting are two wheels of triangles
glued together along their boundaries and an antiprism are two wheels
of squares glued together along their boundaries (see Figure 2). We
can think of these two wheels as representing the lower and upper
hemisphere of S2 and the boundaries as agreeing with the equator of
the sphere S2.

Figure 2. A wheel of triangles and a wheel of squares

If F is infinite, then there exists a face f0 ∈ F and a sequence of faces
fn ∈ F with d(f0, fn) → ∞ because of the local finiteness. Then f0

must lie in a sequence Σk of spherical apartments S2 tessellated by pairs
of wheels with number of faces going to infinity, glued together along
the equator. Assuming that f0 lies always in the lower hemisphere of
Σk
∼= S2, then the south pole of all these apartments would be one and

the same vertex v0 ∈ f0. But this would imply that |v0| = ∞, which
contradicts to (T4). Therefore, F must be finite which implies that X
is a polygonal complex with spherical substructures. �

4. Spectral theory

In this section we turn to the spectral theory of the Laplacian on
polygonal complexes. As the geometric structure is determined by
assumptions on the faces it is only natural to consider the Laplacian

1Note that in the meantime the bound has been improved by Zhang [Z] to 580
vertices while the largest known graphs with positive curvature has 208 vertices
and was constructed by Nicholson and Sneddon [NS].
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for functions on the faces. The reader who prefers to think about the
Laplacian as an operator on functions on the vertices is referred to
comment at the end of Section 2.1. That is we can associate a graph
GX to each polygonal complex X = (V,E, F ) in a natural way.

Let X = (V,E, F ) be a locally finite polygonal complex and

`2(F ) = {ϕ : F → C |
∑
f∈F

|ϕ(f)|2 <∞}.

For functions ϕ, ψ ∈ `2(F ) the standard scalar product is given by

〈ϕ, ψ〉 =
∑
f∈F

ϕ(f)ψ(f),

and the norm is given by ‖ϕ‖ =
√
〈ϕ, ϕ〉. Define the Laplacian ∆ by

∆ϕ(f) =
∑

g∈F,g∼f

(ϕ(f)− ϕ(g))

for functions in the domain

D(∆) = {ψ ∈ `2(F ) | ∆ψ ∈ `2(F )}.

It can be checked directly that the operator is positive and, moreover,
it is selfadjoint by [Woj, Theorem 1.3.1].

By standard Cheeger estimates [K1] based on [DKe, Fu] we have

λ0(∆) ≥ mF (1−
√

1− α2),

where λ0(∆) denotes the bottom of the spectrum of ∆ and

mF = min
f∈F
|f |.

Applying Theorem 3.8 gives a criterion when the bottom of the spec-
trum is positive and Theorem 3.11 even gives explicit estimates.

4.1. Discreteness of spectrum and eigenvalue asymptotics. In
this subsection we address the question under which circumstances the
spectrum of ∆ is purely discrete. We prove an analogue of a theorem
of Donnelly-Li, [DL], for Riemannian manifolds that curvature tending
to −∞ outside increasing compacta implies emptiness of the essential
spectrum.

For a selfadjoint operator T we denote the eigenvalues below the es-
sential spectrum in increasing order counted with multiplicity by λn(T ),
n ≥ 0. For two sequences (an), (bn) we write an ∼ bn if there is c > 0
such that c−1an ≤ bn ≤ can. We denote the maximal operator of mul-
tiplication by the face degree by DF . That is DF is an operator from
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{ϕ ∈ `2(F ) | | · |ϕ ∈ `2(F )} to `2(F ) acting as

DFϕ(f) = |f |ϕ(f).

We call X balanced if there is C > 0 such that CmE(f) ≥ME(f) and
strongly balanced if

sup
K⊆F finite

inf
f∈F\K

mE(f)

ME(f)
= 1.

That means that C in the definition of balanced equals 1 asymptoti-
cally. An analogue of the Donnelly-Li result reads as follows.

Theorem 4.1. Let X = (V,E, F ) be a locally finite polygonal complex
with planar substructuresthat is balanced. If

κ∞ := inf
K⊆F finite

sup
f∈F\K,Σ∈A,f∈Σ

κ(Σ)(f) = −∞,

then the spectrum of ∆ is purely discrete and λn(∆) ∼ λn(DF ). If,
additionally, X is strongly balanced, then λn(∆)/λn(DF )→ 1, as n→
∞. Finally, under the additional assumption ME <∞, purely discrete
spectrum of ∆ implies κ∞ = −∞.

We like to mention that the result here holds for the generally un-
bounded discrete Laplacian. The first result on the essential spectrum
of graphs analogous to Donnelly-Li was proved by Fujiwara [Fu] and he
considered the geometric or normalized Laplacian. The very different
spectral behavior of these two operators is discussed in [K1].

The proof of Theorem 4.1 is based on the following proposition.

Proposition 4.2. Let X = (V,E, F ) be a locally finite polygonal com-
plex with planar substructures. If

a := sup
K⊆F finite

inf
f∈F\K

mE(f)

ME(f)

(
1− 6

|∂f |

)
> 0,

then the spectrum of ∆ is discrete if and only if

(2) sup
K⊆F finite

inf
f∈F\K

|f | =∞.

In this case,

(1−
√

1− a2) ≤ lim inf
n→∞

λn(∆)

λn(DF )
≤ lim sup

n→∞

λn(∆)

λn(DF )
≤ (1 +

√
1− a2).

Proof. The characterization of discreteness of spectrum follows from
Corollary 3.12 and [K1, Thm. 2]. The asymptotics of eigenvalues follow
combining Corollary 3.12 and [BGK, Thms. 2.2. and 5.3.]. �
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Proof of Theorem 4.1. We observe that for all Σ ∈ A and f ∈ FΣ

−|f |Σ
2
≤ κ(Σ)(f).

Hence, κ∞ = −∞ implies supK⊆F finite inff∈F\K |f | = ∞. Combining
this with the assumption that X is balanced with constant C implies
that a ≥ 1/C, where a is taken from Proposition 4.2. In the case of
X being strongly balanced we have a = 1. Thus, the first part of the
theorem follows from Proposition 4.2. Conversely, if κ∞ ≥ −c > −∞
then there is a sequence of faces fn with d(f, fn) → ∞ for any fixed
face f ∈ F and apartments Σn, n ≥ 0, such that

−c < κ(Σn)(fn) ≤ 1− |f |Σ
6
≤ 1− |f |

6ME

,

where we used |v|Σ ≥ 3 which holds by (T2). We conclude that |fn|
is uniformly bounded by some constant c′ > 0. Thus, the essential
spectrum of ∆ starts below c′ (confer [K1, Thm. 1]) and ∆ does not
have purely discrete spectrum. �

Example 3. The simplest example of a polygonal complex with pla-
nar substructuressatisfying the conditions of Theorem 4.1 is a planar
tessellation X = (V,E, F ) with one apartment Σ = X and root o ∈ F
such that limn→∞ inff∈Sn |∂f | =∞. In this case we have

κ(Σ)(f) ≤ 1− |∂f |
6
,

and we see that κ∞ = −∞. Moreover, X is strongly balanced since
we have mE(f) = ME(f) = 1. Therefore, the spectrum of ∆ is purely
discrete and λn(∆)/λn(DF )→ 1.

Note that purely discrete spectrum can also be established by in-
creasing mE(f) instead of |∂f | for all faces outside compact sets (by
keeping the polygonal complex balanced) and applying Proposition 4.2
directly. The condition (2) follows then directly from |f | ≥ mE(f).

4.2. Unique continuation of eigenfunctions. While unique contin-
uation results hold in great generality for continuum models with very
mild assumptions, there are very natural examples for graphs with
finitely supported eigenfunctions, see [DLMSY] and various other ref-
erences. In this subsection we prove that for non-positive curvature
there are no finitely supported eigenfunctions.

Theorem 4.3. Let X = (V,E, F ) be a locally finite polygonal complex

with planar substructuressuch that κ
(Σ)
c ≤ 0 for all Σ ∈ A. Then, ∆

admits no finitely supported eigenfunctions.
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Cases where we do not have finite supported eigenfunctions are there-
fore Example 1 and Examples 8-11.

In [KLPS, K2] results like Theorem 4.3 are found for the planar
case and more general operators. Indeed, we consider here also nearest
neighbor operators, where we even do not need local finiteness.

Definition 4.4. Let X = (V,E, F ) be a polygonal complex. We call
A a nearest neighbor operator on X if there is a : F × F → C

(NNO1) a(f, g) 6= 0 if f ∼ g.
(NNO2) a(f, g) = 0 if f 6∼ g.
(NNO3)

∑
g∈F |a(f, g)| <∞ for all f ∈ F .

and A acts as

Aϕ(f) =
∑
g∈F

a(f, g)ϕ(g),

on functions ϕ in

D̃(A) = {ϕ : F → C |
∑
g∈F

|a(f, g)ϕ(g)| <∞ ∀ f ∈ F}.

The summability assumption (NNO3) guarantees that the functions

of finite support are included in D̃(A). Clearly, the Laplacian intro-
duced at the beginning of this section is a nearest neighbor operator,
where we can also add an arbitrary potential to be in the general setting
of Schrödinger operators. Theorem 4.3 is an immediate consequence of
the following theorem.

Theorem 4.5. Let X = (V,E, F ) be a polygonal complex with planar

substructuressuch that κ
(Σ)
c ≤ 0 for all Σ ∈ A and A be a nearest neigh-

bor operator on X. Then A does not admits eigenfunctions supported
within a distance ball Bn around a root o ∈ F .

Proof. Let ϕ ∈ D̃(A) be an eigenfunction of A to the eigenvalue λ.
Let k be t such that ϕ vanishes completely on all distance spheres at
levels larger or equal than k from a root o ∈ F . Let f0 ∈ F be a
face at distance k − 1. We want to show that then ϕ(f0) = 0. Let
Σ be an apartment containing o and f0. Since we do not have cut-
locus in any of the apartments due to non-positive sectional corner
curvature, Theorem 3.1, there exists a face g0 ∈ FΣ adjacent to f0 with
d(o, g0) = k. By assumption, we have ϕ(g0) = 0. Now, by convexity,
all faces f ∈ F with d(f, o) = k − 1 adjacent to g0 lie within Σ. By
Proposition 3.5 there can be at most two such faces, one of them equal
to f0. If there is only one such face, namely f0, we conclude from the
eigenfunction identity evaluated at g0 that we have ϕ(f0) = 0. If there
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are two such faces, say f0, f1, then we conclude from the eigenfunction
identity evaluated at g0 that a(g0, f0)ϕ(f0) = −a(g0, f1)ϕ(f1). With
the notation of [BP2, Section 2.2] the vertex v0 in the intersection
of f0, f1 and g0 has label b (with respect to the tessellation Σ). By
[BP2, Cor. 2.7.] v0 has two neighbors of label a+ such that one is in
intersection of f0 ∩ g0 and the other which we denote by v1 is in the
intersection of f1 ∩ g0. The label a+ of v1 implies that the face f1 has
another neighbor g1 in Sk. By assumption ϕ(g1) = 0 and applying
the same arguments to g1 we find f2 ∈ Sk−1 ∩ FΣ, f2 ∼ g1 such that
a(g1, f1)ϕ(f1) = −a(g1, f2)ϕ(f2). Proceeding inductively we find the
sequences (f0, . . . , fn), f0 = fn, and (g0, . . . , gn), g0 = gn of faces in Σ
that form a closed boundary walk and boundary vertices (v0, . . . , v2n),
v0 = v2n, with labels b, a+, b, a+, b, . . .. However, this is geometrically
impossible [KLPS, Prop. 13]. Hence, we conclude ϕ(f0) = 0. As
this argument applies for all faces in Sk−1 we deduce that ϕ vanishes
on Sk−1. Repeating this argument for Sk−j, j = 2, . . . , k yields that
ϕ vanishes on Bk and thus by assumption on F . We finished the
proof. �

We conclude this subsection by giving examples of tessellations with
negative sectional face curvature that admit finitely supported eigen-
functions. This shows the assumption in the theorem cannot be mod-
ified to negative sectional face curvature instead of non-positive sec-
tional corner curvature.

Example 4. Let Σn, n ≥ 3, be a bipartite tessellation of the plane
R2 with squares as follows. Specifically, there are two infinite sets of
vertices V1 and V2, where the vertices in V1 have degree 2n and the
vertices in V2 have degree 3. The tessellation Σn is now given such
that vertices in V1 are only connected to vertices in V2 and vice versa.
Hence, each face contains two vertices of V1 and two of V2. See Figure
3 for the tessellation Σ4, realized in the hyperbolic Poincaré unit disk.

The face curvature is then given by

κ(f) = 1− |f |
2

+
∑
v∈f

1

|v|
= 1− 2 +

2

3
+

2

2n
= −n− 3

3n
.

For n > 3 the face curvature is negative and in the interval (−1/3, 0).
On the other hand, we have for the corner curvatures

κc(v1, f) = −n− 2

4n
, κc(v2, f) =

1

12
> 0,

with v1 ∈ V1 and v2 ∈ V2 and v1, v2 ∈ f . Moreover, for a vertex with
degree 2n let F0 = {f1, . . . , f2n} be the faces around it in cyclic order.
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Figure 3. Part of the tessellation Σ4 with a finitely
supported eigenfunction. Faces with no entry are chosen
to take the value 0.

Let a function ϕ with support in F0 be given such that ϕ(f2j) = 1 and
ϕ(f2j−1) = −1 for j = 1, . . . , n. Then, ϕ is a finitely supported eigen-
function of ∆ to the eigenvalue 6. Looking at the dual regular graph
Σn
∗ with constant vertex degree 4, we see that the ∆-eigenfunction ϕ

of Σn corresponds to an eigenvector of the adjacency matrix of Σn
∗ to

the eigenvalue −2.

4.3. The Dirichlet problem at infinity. We assume that X =
(V,E, F ) is a polygonal complex with planar substructureswith strictly
negative sectional corner curvature and that (PCPS1∗) holds. More-
over, we assume MV ,MF <∞. Then we know from Theorem 3.6 that
(X, d) is Gromov hyperbolic and that the boundary X(∞) carries a
natural topological structure. Moreover, X = X ∪ X(∞) is compact
(see [BH, Prop. III.H.3.7(4)]). Given a function F ∈ C(X(∞)), the
Dirichlet problem at infinity asks whether there is a unique continuous
function f ∈ C(X) which agrees with F on X(∞) and such that the
restriction f0 = f |X is harmonic (i.e., ∆f = 0). The existence of such a
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function f is the main problem since uniqueness of the solution follows
from the maximum principle. Applying the general theory of [Anc] to
Theorem 3.8 answers this question positively.

Theorem 4.6. Let X = (V,E, F ) be a polygonal complex with planar

substructuressuch that κ
(Σ)
c < 0 for all Σ ∈ A. Assume that X addi-

tionally satisfies (PCPS1 ∗) and MV ,MF <∞. Then (X, d) is Gromov
hyperbolic and the Dirichlet problem at infinity is solvable on X. In
particular, there are infinitely many linearly independent bounded non-
constant harmonic functions on X.

Spaces where the theorem is applicable and the Dirichlet problem
at infinity can be solved are all locally finite hyperbolic buildings with
regular hyperbolic polygons as faces.

Proof. Gromov hyperbolicity of (X, d) follows from Theorem 3.6. Let P
denote the averaging operator Pϕ(f) = 1

|f |
∑

g∼f ϕ(g). It is easy to see

that P satisfies the properties of [Anc, Assumptions 1.1]. Note further
that a function ϕ of F satisfies ∆ϕ = 0 if and only if Pϕ = ϕ. We know
from Theorem 3.8 that the Cheeger constant α of X is positive. We
conclude from [Anc, Prop. 4.4] that the crucial condition (*) in [Anc]
is therefore satisfied. Moreover, we deduce from Gromov hyperbolicity
of (X, d) and [Anc, Cor. 6.10] that the assumptions (G.A) in [Anc,
Thm. 5.2] are satisfied and the Gromov compactification agrees with
the P -Martin compactification of X. Then the statement follows from
[Anc, Cor. 5.4]. �

Remark 4.7. We already mentioned in the proof of Theorem 4.6 that
Ancona’s theory also implies that the Gromov and the geodesic bound-
ary of (X, d) agrees with the P -Martin boundary boundary. The P -
Martin boundary is an analytically defined boundary based on asymp-
totic properties of Green’s functions G : F × F → [0,∞) (see [Anc,
Section V]).

5. Examples

In this section, we will mainly focus on non-positively curved polyg-
onal complexes with planar substructures. Rich classes of examples are
provided by 2-dimensional Euclidean and hyperbolic buildings. Before
we consider these classes more closely, let us start with particularly
simple examples.

5.1. Simple examples and basic notions. As mentioned earlier,
every planar tessellation Σ = (V,E, F ) is trivially a polygonal complex
with planar substructureswith just one apartment, i.e., A = {Σ}.
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Next, let us introduce morphisms between two complexes X1 and
X2: These are continuous maps from X1 to X2 mapping k-cells of
X1 homeomorphically to k-cells of X2, for all k. A homeomorphism
f : X1 → X2 is an isomorphism if both f and f−1 are morphisms. In
this case we call X1 and X2 isomorphic complexes.

Example 5 (“Book”). Let H = (V,E, F ) be the tessellation of the
upper half space {(x, y) ∈ R2 | y ≥ 0} where

V = {(x, y) ∈ Z2 | y ≥ 0},
E is the set of horizontal and vertical straight Euclidean line segments
of length 1 connecting two vertices of V , and F is the set of all Euclidean
unit squares with vertices in V . Let k be an integer ≥ 2 and Xk be the
polygonal complex obtained by taking k copies of H and identifying
them along their boundaries R×{0} ⊂ H. We can think ofXk as a book
with the copies of H as its pages. Note that the union of any two pages
can be understood as a tessellation of the plane by squares. Every such
choice represents an apartment of the polygonal complex with planar
substructuresXk. It is straightforward to see that Xk has non-positive
sectional corner curvature. Books can also be obtained by combining
pages with more general and different polygonal structures by using
isomorphisms between their boundaries (considered as 1-dimensional
cell complexes). Moreover, it is also possible to consider books with
infinitely many pages, they are obviously non-locally finite polygonal
complexes with planar substructures.

Example 6. Let us present a non-example of a polygonal complex
with planar substructures. Let X = (V,E, F ) be given by V = Z3, E
be the set of straight Euclidean line segments of length 1 connecting
two vertices of V , and F be the set of all unit squares with vertices
in V . X is obviously a polygonal complex, but there does not exist
a choice of apartments (planes tessellated by squares) satisfying both
conditions (PCPS1) and (PCPS2). The set of all planes parallel to
the coordinate planes does not satisfy (PCPS1). Thus we also need
to declare certain topological planes which are bent to be apartments.
But it is easy to see that the convexity property (PCPS2) is violated
for any such bent plane.

A useful notion for the local combinatorial description of a a polyg-
onal complexes is the link of a vertex, defined as follows:

Definition 5.1 (Link). Let X = (V,E, F ) be a polygonal complex.
The (edge) link L(v) of a vertex v ∈ V is a graph defined as follows:
Every edge adjacent to v is represented by a vertex in L(v), and two
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vertices w1, w2 in L(v) are connected by an edge in L(v) if the edges in
X corresponding to w1, w2 are edges of a face f in F .

Polygonal complexes are often described via the type of their faces
and the graphs appearing as links. It is known that for any k ≥ 6
and n ≥ 3 there is a continuum of non-isomorphic simply connected
polygonal complexes X = (V,E, F ) such that |∂f | = k for all f ∈ F
and that the links L(v) of all vertices v ∈ V are the 1-skeletons of an
n-simplex (see, e.g, [BB1, Thm. 1]). The link L(v) of every vertex v in
Example 1 is the classical Heawood graph which is a regular graph with
14 vertices of degree 3. The Heawood graph is a generalized 3-gon and
the flag-graph of a finite projective plane. Generalized m-gons appear
as links of Euclidean and hyperbolic buildings.

Definition 5.2 (Generalized m-gon). Let m ≥ 2 be an integer. A
generalized m-gon is a connected bipartite graph of diameter m and of
girth 2m such that each vertex has degree ≥ 2.

The adjacency matrices of regular generalized m-gons have interest-
ing spectral properties. In particular, they are Ramanujan graphs (see
[Lub, Section 8.3]). Spectral properties of the links L(v) of vertices
of 2-dimensional simplicial complexes were also very useful to obtain
Kazdhan property (T) for groups acting cocompactly in these com-
plexes (see [BaSw]). Closely related to the links are the chamber links:

Definition 5.3 (Chamber link). Let X = (V,E, F ) be a polygonal
complex. The chamber link LCh(v) of a vertex v ∈ V is a graph defined
as follows: Every chamber adjacent to v is represented by a vertex in
LCh(v) and two vertices w1, w2 in LCh(v) are connected by an edge in
LCh(v) if the faces in X corresponding to w1, w2 are adjacent to each
other via an edge in X adjacent to v.

The chamber links LCh(v) are the line graphs of the links L(v).
Therefore, if L(v) is a k-regular graph then the spectra of both graphs
are closely related via the identity χLch(v)(λ) = (λ + 2)rχL(v)(λ + 2 −
k) between the characteristic polynomials, where r is the difference
|E(L(v))| − |V (L(v))| (see, e..g, [Bi, Thm 3.8]).

Example 7. In the Euclidean building X = (V,E, F ) in Example 1,
there are 14 edges emanating from every vertex v ∈ V and 21 faces adja-
cent to v. Let us denote these 21 faces by ai, bi, ci, di, ei, fi, gi, i = 1, 2, 3,
where ai, . . . , gi are triangles with boundary labels {x0, x1, x3}, . . . ,
{x6, x0, x2}, respectively. Looking at one of the apartments containing
v, we encounter the configuration illustrated in Figure 4.

The chamber link LCh(v) is a graph with 21 vertices and can be
realized as a tessellation of a flat torus. It has the structure illustrated
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Figure 4. adjacent chambers around v within an apartment

in Figure 5 , where we identify the thick upper and lower side and thick
left and right hand side.
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Figure 5. The graph LCh(v)

This tessellation of the flat torus has interesting properties: The set
of faces consists of 14 triangles and 7 hexagons. For every apartment
Σ with v ∈ VΣ there exists precisely one of the hexagons such that Σ
contains also all six triangles represented by the vertex labels of this
hexagon. Moreover, each of these hexagons shares precisely one joint
vertex with every other hexagon. Moreover, LCh(v) is Ramanujan and
its adjacency matrix has the eigenvalues 4 (with multiplicity 1), 1±

√
2

(each with multiplicity 6), and −2 (with multiplicity 8). Each of the
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7 hexagons contributes an eigenvector of the eigenspace E−2 to the
eigenvalue −2: choose alternatively the values ±1 along the vertices of
this hexagon and the values 0 at all other vertices. These eigenvectors
span a 7-dimensional subspace of E−2.

5.2. Euclidean and hyperbolic buildings. Let us give a quick in-
troduction into 2-dimensional Euclidean and hyperbolic buildings, fol-
lowing essentially [GP]. In contrast to our Definition 2.1, the cells in the
polygonal complexes used for Coxeter complexes and buildings have an
additional metric structure, namely, the 1-cells are open Euclidean or
hyperbolic geodesic segments and the 2-cells interiors are Euclidean or
hyperbolic polygons (we restrict our considerations to compact ones),
and the attaching maps are isometries (see also [BH, Sct. I.7.37]). We
call an isometric isomorphism between two polygonal complexes an
isometry, for simplicity. The closures of the 2-cells are called chambers
of the polygonal complex.

Important planar polygonal complexes are Coxeter complexes, which
we introduce first. Let X stand for either the Euclidean plane R2 or
the hyperbolic plane H2. Let P ⊂ X be a compact polygon with k
vertices such that the interior angle at vertex i is of the form π/mi

with mi ≥ 2. We call such a polygon P a Coxeter polygon. Each side
of P is contained in a bi-infinite geodesic g ⊂ X and the corresponding
reflection sg along g is an element in the group if Euclidean/hyperbolic
isometries Iso(X). Let S = {s1, . . . , sk} be the set of reflections along
all sides of P and let W be the group generated by these isometries.
Then it is a well known fact due to H. Poincaré that W is a discrete
subgroup of Iso(X) and that (W,S) has the presentation

(3) W = 〈S | (sisj)mij = id〉,

where mii = 1 for all i, 2 ≤ mij < ∞ if the sides i 6= j meet in
a vertex v, and π

mij
is the interior angle of P at v, and mij = ∞ if

the sides i 6= j do not meet in a vertex (i.e., no relation between si
and sj). Note that mij = 2 for i 6= j means that the corresponding
reflections si and sj commute. A group with such a presentation (3) is
called a Coxeter group. Moreover, P is a fundamental domain of W ,
i.e., the translates {gP | g ∈ W} form an tessellation of X, which is a
planar polygonal complex in the above sense. We refer to it as C(W,S)
and call the polygon P the generating polygon of the Coxeter group.
Moreover, every edge e in C(W,S) carries a label i ∈ {1, 2, . . . , k},
defined as follows: Let g1P, g2P be the two translates of P such that
e ∈ g1P ∩ g2P (these translates are uniquely determined by property
(T1)). Then g2 = g1si. Another way of understanding the label i is
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that the reflection along the geodesic containing the edge e in X is
conjugate to si within the Coxeter group W .

Definition 5.4 (Building). Let X ∈ {R2,H2}, P ⊂ X be a Coxeter
polygon and (W,S) be the associated Coxeter group. A (2-dimensional)
building of type (W,S = {s1, . . . , sk}) is a polygonal complex X =
(V,E, F ), together with a labeling E → {1, . . . , k} and a set A of
subcomplexes whose elements Σ = (VΣ, EΣ, FΣ) are called apartments,
with the following properties:

(B1) For any two cells of X there is an apartment containing both
of them.

(B2) If Σ1 and Σ2 are two apartments containing two cells c1, c2 of
X, then there exists a label-preserving isometry f : Σ1 → Σ2

which fixes c1 and c2 pointwise.
(B3) Each apartment Σ is label-preserving isometry to the planar

tessellation C(W,S).

The building X is called Euclidean or hyperbolic if X = R2 or X = H2.
A building is called thick if every edge is contained in at least three
chambers. A building which is not thick is called a thin building.

Disregarding the additional Euclidean or hyperbolic structure of the
cells of a building, we can view it and its apartments as polygonal
complexes in the sense of Definitions 2.1 and 2.2. Since the apartments
of buildings are always convex (see [GP, p. 164(l. -5)] and also [Br,
Prop. on p. 88] or [Ga, Prop. on p. 59] for simplicial buildings), we see
that every buildings is a polygonal complex with planar substructures.

Let us first mention examples of Euclidean buildings. Example 1
in Subsection 2.1 was an example of a thick Euclidean building based
on an equilateral Euclidean triangle P ⊂ R2. Note that there are
only three choices of Euclidean Coxeter triangles with interior angles
{π

3
, π

3
, π

3
}, {π

2
, π

4
, π

4
} or {π

2
, π

3
, π

6
}. Each of these choices leads to a unique

Coxeter group and a class of Euclidean buildings, and the correspond-

ing Coxeter group and buildings are said to be of type Ã2, C̃2 and G̃2,

respectively. Example 1 is therefore a Euclidean building of type Ã2.
Even though there are only three types, a classification of all buildings
of one of these types is impossible because of their abundance (see [Ro,
p. 157]). Note that while Euclidean buildings of all three types have
vanishing sectional face curvature, only Euclidean buildings of type

Ã2 have non-positive sectional corner curvature amongst these three
types. Next, we consider a natural class of Euclidean buildings based
on a square.
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Example 8 (Product of trees). Let r, s ≥ 2 and Tr and Ts be infinite
regular metric trees of vertex degrees r and s, respectively. All edge
lengths are chosen to be 1. We can think of one of the trees, say Tr,
to be horizontal and the other one to be vertical. Then the product
Tr × Ts carries a natural structure of a thick Euclidean building X =
(V,E, F ) with P = [0, 1]2 ⊂ R2. The set V consists of all pairs (x, y)
where x and y are vertices in Tr and Ts respectively. Two vertices
(x1, y1), (x2, y2) ∈ V are connected by an edge in E, if either (x1 = x2

and y1 ∼Ts y2) or (y1 = y2 and x1 ∼Tr x2). In the first case we call
the edge in E horizontal and in the second case we call the edge in
E vertical. The chambers are the unit squares with boundary vertices
(x1, y1), (x1, y2), (x2, y1), (x2, y2) for any choice x1 ∼Tr x2 and y1 ∼Ts y2.
All vertices in Tr×Ts have degree r+s (with r emanating horizontal and
s emanating vertices edges). Moreover, a vertical edge is contained in
precisely r chambers while a horizontal edge is contained in precisely s
chambers. Two bi-infinite combinatorial geodesics g1 ⊂ Tr and g2 ⊂ Ts
can be viewed as infinite regular trees of vertex degrees 2 and the
corresponding subcomplex Σ = Σg1,g2 = g1 × g2 is isomorphic to a
regular tessellation of R2 by unit squares. We choose A to be the set
of all those subcomplexes. We then have for every corner (v, f) ∈ CΣ:

κ(Σ)
c (v, f) =

1

|v|Σ
− 1

2
+

1

|f |Σ
=

1

4
− 1

2
+

1

4
= 0,

i.e., X has vanishing sectional corner and face curvature.

Finally, let us consider some examples of hyperbolic buildings. Note
first that while all hyperbolic buildings have negative sectional face
curvature they do not always have also non-positive sectional corner
curvature: Consider a tessellation of the hyperbolic plane by triangles
with interior angles π

r
, π
s
, π
t

with r, s, t ≥ 2 and

1

r
+

1

s
+

1

t
< 1.

This tessellation is a thin hyperbolic building and it has non-positive
corner curvature if and only if r, s, t ≥ 3. Henceforth, we only consider
hyperbolic buildings with regular polygons as faces. These hyperbolic
buildings have always negative sectional corner curvature. We start
with hyperbolic buildings whose faces are right-angled polygons.

Example 9 (“Bourdon buildings”). Let p ≥ 5 and q ≥ 3. Then
there is a unique hyperbolic building Xp,q with the following properties
(see [Bou]): All chambers are regular right-angled hyperbolic p-gons
and the link L(v) of every vertex is the complete bipartite graph Kq,q.
Since every edge of Xp,q lies in q chambers, Xp,q is a thick building.
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This polygonal complex with planar substructureshas constant nega-
tive sectional corner curvature:

κ(Σ)
c (v, f) =

1

|v|Σ
− 1

2
+

1

|f |Σ
=

1

p
− 1

4
< 0.

A way to obtain compact polygonal complexes is to label the oriented
edges of finitely many Euclidean or hyperbolic polygons and to iden-
tify edges with the same labels (these edges must obviously have the
same length). We call such a compact polygonal complex a polyhedron.
Its universal covering is then a polygonal complex with a cocompact
group action. The links of its vertices provide useful information in
the decision whether its universal covering is a Euclidean or hyperbolic
building. Example 1 is based on this approach.

Generalized m-gons coincide exactly with spherical buildings of rank
2 (see [GP, Section 3.1.1]). Combining this fact with [GP, Cor. 2.4 and
Thme. 2.5] shows the following fact: Let k ≥ 3 and m ≥ 2 satisfying
mp > 2m + p. Assume that X0 is obtained by identifying the sides
of several regular hyperbolic k-gons with angles π

m
such that the links

of all vertices agree and are a generalized m-gon. Then the universal
covering X = (V,E, F ) of X0 is a hyperbolic building. Moreover, the
sectional corner curvature at every corner (v, f) ∈ V × F , v ∈ F , is
given by

κ(Σ)
c (v, f) =

1

|v|Σ
− 1

2
+

1

|f |Σ
=

1

2m
− 1

2
+

1

p
=

2m+ p−mp
2mp

< 0.

Example 10 (see [Vd, VdK]). Let K be a polygonal presentation as-
sociated to the disjoint connected bipartite graphs G1, . . . , Gn in the
sense of [VdK, Def. 1.2]. Assume that all Gi are copies of the same
generalized m-gon. Every cyclic k-tuple (x1, . . . , xk) ∈ K provides a
clockwise labeling of the oriented edges of a regular hyperbolic k-gon
with angles π

m
. If mp > 2m+p then the universal covering of the poly-

hedron corresponding to K is a hyperbolic building. This approach
provides examples of hyperbolic buildings with k-sided chambers for
arbitrary k ≥ 3 with a cocompact group action. The triangle presenta-
tions given in [VdK] lead to explicit hyperbolic buildings with regular
triangles as faces.

Techniques of Haglund [Hag] provide us with the following result.

Example 11 (see [GP, Thme. 3.6]). Let P ⊂ H2 be a regular hyper-
bolic polygon with angles π

m
, m ≥ 3 and an even number of sides. Let
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(W,S) be the associated Coxeter group. Let L be an algebraic gener-
alized m-gon over a field with large enough cardinality2. Then there
are uncountable many hyperbolic buildings of type (W,S) with faces
isometric to P such that all links are isomorphic to L.

5.3. Buildings with maximal apartment systems. Every building
comes with a choice of apartment system. This choice is not unique as
the following one-dimensional example shows which has easy analogues
in higher dimensions.

Example 12. Let Tr = (V,E) be a regular metric tree of edge length
1 and vertex degree r ≥ 3, and let φ : E → {1, 2, . . . , r} be a labeling
of the edges such that the r edges emanating from every vertex carry
pairwise different labels. Let A be the set of all bi-infinite paths (fk)k
such that the bi-infinite sequence xk = φ(fk) has no doublings (i.e.,
xk = xk+1 for some k ∈ Z) and is periodic (i.e., there exists t ≥ 1 such
that xk+t = xk for all k ∈ Z). Then it is easy to see that Tr together
with A as its system of apartments forms a one-dimensional Euclidean
building. Another choice A′ of an apartment system is the set of all
bi-infinite paths (fk)k such that the bi-infinite sequence xk = φ(fk) has
no doublings and becomes eventually periodic (i.e., there is a t ∈ N
such that xk+t = xk for all k ≥ t). It is obvious that A′ is a strictly
bigger apartment system than A.

Since any union of apartment systems of a building X = (V,E, F )
forms again an apartment system, there exists a unique maximal sys-
tem of apartments (this maximal apartment system is always chosen
in [GP, Dfn. 1.4]). In order to have examples of polygonal complexes
with planar substructuressatisfying the stronger axiom (PCPS1∗), we
need to choose buildings with maximal apartment systems. Then we
have the following fact.

Theorem 5.5. Every Euclidean or hyperbolic building with a maximal
apartment system satisfies the axioms (PCPS1 ∗), (PCPS2), (PCPS3).

Let X = (V,E, F ) be a Euclidean or hyperbolic building with a
maximal apartment system A and associated Coxeter group (W,S).
For the proof of Theorem 5.5 we introduce the following W -valued
(non-symmetric) distance function δ : F × F → W : Let f, f ′ ∈ F and
Σ ∈ A an apartment such that f, f ′ ∈ FΣ. We can then identify Σ
with the Coxeter complex C(W,S) via a label-preserving isometry ψ
and can then think of the group (W,S) acting on the faces of Σ. Let

2The term “algebraic” refers to the fact that the m-gon is based on a Chevalley
quadruple, see [GP, Dfn. 3.3]
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f0 ∈ FΣ be the polygon corresponding to the generating polygon of
the Coxeter group via the identification ψ. Then there exist g, g′ ∈ W
such that f = gf0 and f ′ = g′f0 and we set δ(f, f ′) = g−1g′. It can be
checked that this definition is independent of the choice of apartment
and the choice of ψ (for the arguments see, e.g., [Ga, Lemma on p.
243]). Writing g−1g′ ∈ G as a product of reflections si1 · · · sik with

sij ∈ S of minimal word length k yields a geodesic f̃j = (gsi1 · · · sij)f0

in Σ such that f = f̃0 and f ′ = f̃k. Given two subsets F1, F2 ⊂ F ,
a strong isometry from F1 to F2 is a map α : F1 → F2 satisfying
δ(α(f), α(f ′)) = δ(f, f ′) for all f, f ′ ∈ F1. To finish the proof, we need
the following result (see [Ga, Thm. on p. 247], the proof given there
is for simplicial buildings but the result carries over verbatim to the
polygonal case).

Theorem 5.6. Let X = (V,E, F ) be a Euclidean or hyperbolic building
and F0 ⊂ F . If F0 is strongly isometric to a subset of an apartment,
then F0 is contained in an apartment in the maximal apartment system
of X.

To finish the proof we consider a one-sided infinite geodesic F0 =
(fk)k≥0 ⊂ F and choose a generating polyon f ′0 ∈ FΣ of the Coxeter
group of an apartment Σ ∈ A via a fixed isometric isomorphism. Then
we find a one-sided infinite sequence (sik)k≥0 such that

(4) δ(f0, fk) = si0si1 · · · sik ∈ W,
since f0, fk lie in a joint apartment and the description (4) is indepen-
dent of the choice of apartment. It is then easy to check that the map
α : F0 → FΣ,

α(fk) = si0si1 · · · sikf ′0
is a strong isometry onto its image. Applying Theorem 5.6 finishes
then the proof of Theorem 5.5. �
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Études Sci. Publ. Math. 82 (1995), 169–209.
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