Analysis III/IV (Math 3011, Math 4201)

Exercise Sheet 1

The Web-Page of the course can be found at

http://www.maths.dur.ac.uk/~dma0np/analysis1112/analysis.html

There you find the exercises, solutions, short summaries of forthcoming lectures, as well as other information.

My contact information:

Norbert Peyerimhoff, CM320, norbert.peyerimhoffdurham.ac.uk

Do **Exercise 2** as **homework for this week**. The cumulative homework over the coming weeks will be collected and marked in a few weeks time.

You should definitively be able to do Exercise 3. Exercise 1 is a bit more demanding, but very rewarding.

1. (p-adic numbers) Let $p \in \mathbb{N}$ be a prime number. Any rational number $x = \frac{a}{b}$ can be written as $x = p^r \frac{a_0}{b_0}$, where a_0 and b_0 are not divisible by p. Define

$$\nu_p(p^r \frac{a_0}{b_0}) = p^{-r} \text{ and } \nu_p(0) = 0.$$

(a) Show that $d_p(x, y) = \nu_p(x - y)$ defines a metric on \mathbb{Q} . For the triangle inequality, show first the following property of ν_p :

$$\nu_p(x+y) \le \max\{\nu_p(x), \nu_p(y)\} \le \nu_p(x) + \nu_p(y),$$

and conclude that the following strong version of the triangle inequality holds, namely,

$$d_p(x,z) \le \max\{d_p(x,y), d_p(y,z)\} \le d_p(x,y) + d_p(y,z).$$

Remark: Note that two rationals are close in the metric d_p , if their difference is divisible by a high enough power of p. Moreover, the above inequality generalises to

$$\nu_p(\sum_{j=1}^n x_j) \le \max\{\nu_p(x_j) \mid 1 \le j \le n\}.$$

(b) Show that the sequence $x_n = p^n \in \mathbb{Q}$ is a null sequence, i.e., converges to zero.

(c) Let $2 \le a \le p-2$. Show that the sequence $x_n = a^{p^n}$ is a Cauchy sequence. **Hint:** Use Euler's Theorem

$$a^{\varphi(n)} \equiv 1 \mod n$$

for a, n co-prime, where φ is Euler's φ -function. Write x_n as the telescope sum $x_n = a + \sum_{j=0}^{n-1} (a^{p^{j+1}} - a^{p^j})$.

- (d) Let x_n be the sequence in (c). Show that $x_n \not\rightarrow \pm 1$ and $x_n^{p-1} \rightarrow 1$. **Remark:** The Cauchy sequence x_n can be used to show that (\mathbb{Q}, d_p) is not complete. If x_n were convergent in \mathbb{Q} , then it would converge to a (p-1)-th root of unity in \mathbb{Q} . But the only rational roots of unity are ± 1 , which we ruled out as potential limits. The completion of (\mathbb{Q}, d_p) yields the field \mathbb{Q}_p of *p*-adic numbers. (Recall that the elements of \mathbb{Q}_p are d_p -Cauchy sequences modulo zero sequences.)
- 2. Let $V = C[0,2] = \{f : [0,2] \to \mathbb{R} \mid f \text{ continuous}\}$ and we have an inner product on V given by

$$\langle f,g\rangle = \int_0^2 f(x)g(x)\,dx$$

for $f, g \in V$.

Define a sequence $(f_n)_{n \in \mathbb{N}}$ by

$$f_n(x) = \begin{cases} 0 & \text{for } x \in [0, 1 - 1/n] \\ \frac{n}{2}x - \frac{n-1}{2} & \text{for } x \in (1 - 1/n, 1 + 1/n) \\ 1 & \text{for } x \in [1 + 1/n, 2] \end{cases}$$

- (a) Show that $(f_n)_{n \in \mathbb{N}}$ is a sequence in V, i.e., show that each f_n is continuous.
- (b) Show that (f_n)_{n∈ℕ} is a Cauchy sequence, where V has the metric induced from the inner product ⟨·, ·⟩.
 Remark: The Cauchy sequence f_n does not converge, so V is not complete. You should try to convince yourself that this is the case.
 - complete. You should try to convince yourself that this is the case, but this is not part of the question.
- 3. (a) Let (X, d) be a metric space. Show that every Cauchy sequence $(x_n)_{n \in \mathbb{N}}$ is a bounded set, i.e., there exists a constant R > 0 and a point $x \in X$ such that

$$d(x_n, x) \le R$$
 for all $n \in \mathbb{N}$,

i.e., all elements x_n lie in the closed ball $B_R(x)$ of radius R about x.

(b) Let $(x_n)_{n \in \mathbb{N}}$ and $(y_n)_{n \in \mathbb{N}}$ be two Cauchy sequences in the metric space $(\mathbb{Q}, d(x, y) = |x - y|)$. Show that the product $(x_n y_n)_{n \in \mathbb{N}}$ of the two Cauchy sequences is, again, a Cauchy sequence.