1. \(x_n \) is a Cauchy sequence: Note that \(\sum_{n=1}^{\infty} \frac{1}{n^2} = \frac{\pi^2}{6} < \infty \). For every \(\epsilon > 0 \) there is an \(n_0 \) such that \(\sum_{n=n_0}^{\infty} \frac{1}{n^2} < \epsilon \), and therefore, for \(n, m \geq n_0, m \geq n \) :

\[
d(x_n, x_m) \leq d(x_n, x_{n+1}) + \cdots + d(x_{m-1}, x_m) \leq \sum_{i=n}^{m} \frac{1}{i^2} < \epsilon.
\]

2. Assume that \(f : M \rightarrow M' \) is continuous and \(U \subset M' \) is open. Let \(x \in f^{-1}(U) \). Since \(U \) is open, there exists an \(\epsilon > 0 \) such that \(B(f(x), \epsilon) \subset U \). Since \(f \) is continuous, there exists a \(\delta > 0 \) such that \(f(z) \in B(f(x), \epsilon) \) for all \(z \in M \) with \(d(z, x) < \delta \). But this means that \(B(x, \delta) \subset f^{-1}(U) \). Therefore, \(f^{-1}(U) \) is open.

Assume \(f : M \rightarrow M' \) satisfies \(f^{-1}(U) \) open in \(M \) for all open \(u \subset M' \). Let \(x \in M \). We want to prove continuity of \(f \) at \(x \). Given an \(\epsilon > 0 \), \(B := B(f(x), \epsilon) \subset M' \) is open. Then \(f^{-1}(B) \) is open in \(M \) and contains \(x \). Therefore, there exists a \(\delta > 0 \) such that \(B(x, \delta) \subset f^{-1}(B) \). But this means that \(d'(f(y), f(x)) < \epsilon \) for all \(y \in M \) with \(d(y, x) < \delta \).

3. (a) Look at \(g(x) = f(x) - x \). Then \(g(a) \geq 0 \) and \(g(b) \leq 0 \), so there must be a \(x \in [a, b] \) with \(g(x) = 0 \). This implies \(f(x) = x \).

(b) Since \(f'(x) < 1 \) for all \(x \in [a, b] \) and \(|f'(x)| \) is continuous on \([a, b] \), it attains its maximum \(M \) on \([a, b] \), which must satisfy \(M < 1 \). Using the Mean Value Theorem, we obtain

\[
|f(x) - f(y)| \leq |f'(\xi)| \cdot |x - y| \leq M \cdot |x - y|,
\]

for some \(\xi \) between \(x \) and \(y \). This means that \(f : [a, b] \rightarrow [a, b] \) is a contraction on the metric space \((M, d) = ([a, b], d(x, y) = |x - y|) \). The statement of the exercise is then just an application of the Contraction Mapping Principle.

(c) Choose \(f(x) = a + b - x \). Then \(f'(x) = -1 \). Choose, e.g. \(x_0 = a \), then we have \(x_n = b \) for all odd \(n \) and \(x_n = a \) for all even \(n \).

4. We have \(F(x, t) = 2tx \) and

\[
|F(x, t) - F(y, t)| = 2|t| \cdot |x - y|,
\]

and if we restrict \(t \) to a finite interval \((-C, C) \), we have Lipschitz continuity of \(F \) in the \(x \) variable with constant \(L = 2C \). Let \(\delta_0 \equiv c \). We
obtain

\[
\begin{align*}
\beta_1(t) &= c + \int_0^t 2scds = c + t^2c, \\
\beta_2(t) &= c + \int_0^t 2s(c + s^2c)ds = c + t^2c + \frac{t^4}{2}c, \\
\beta_3(t) &= c + t^2c + \frac{t^4}{2}c + \frac{t^6}{3!}c.
\end{align*}
\]

This suggests that the (unique) solution might be \(x(t) = ce^{t^2} \). A check shows: \(\dot{x}(t) = 2tce^{t^2} = 2tx(t) \) and \(x(0) = c \).