Exercise 9. This exercise is devoted to the derivation of the Weierstraß normal form of a cubic. Let $C \subset \mathbb{P}_C^2$ be a non-singular cubic defined by the polynomial $F \in \mathbb{C}[X, Y, Z]$. We start as in last term’s lectures (when we transformed C into C_F with $F(X, Y, Z) = Y^2Z - X(X-Z)(X-\lambda Z)$ with $\lambda \in \mathbb{C}\{0, 1\}$), and can assume that, after a suitable projective transformation, $P = [0, 1, 0] \in C_F$ is a flex and that $Z = 0$ is a tangent line to C_F at $[0, 1, 0]$. Analogously as in last term’s lectures, this implies that $F(X, Y, Z)$ has the form

$$F(X, Y, Z) = (\alpha X + \beta Y + \gamma Z)YZ + G(X, Z),$$

where $G(X, Z)$ is homogeneous of degree 3 and $\beta \neq 0$. Moreover, $G(X, Z)$ must contain a non-zero term aX^3 for, otherwise, Z would be factor of $F(X, Y, Z)$ and C_F would be reducible and, therefore, singular. You don’t need to prove this first step again. Therefore, we can start with the form

$$F(X, Y, Z) = aX^3 + bX^2Z + cXYZ + dXZ^2 + eY^2Z + fYZ^2 + gZ^3,$$

with $a \neq 0$ and $e \neq 0$.

(a) Show that the substitution of Y by $Y - \frac{e}{2}X - \frac{1}{2}Y^2Z$ implies vanishing of the coefficients of XYZ and YZ^2, and that no new non-zero terms are generated. So, another projective transformation yields

$$F(X, Y, Z) = a'X^3 + b'X^2Z + d'XZ^2 + e'Y^2Z + g'Z^3,$$

still with $a', e' \neq 0$.

(b) Show that substitution of X by $X - \frac{d'}{a'}Z$ yields the equation

$$F(X, Y, Z) = a''X^3 + d''XZ^2 + e''Y^2Z + g''Z^3,$$

still with $a'', e'' \neq 0$.

Algebraic Geometry III/IV

Problems, set 6. To be handed in on **Wednesday, 5 March 2014**, in the lecture.
(c) Argue, why we can, after another projective transformation, obtain the final equation

\[Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3, \]

(1)

for the cubic \(C \).

(d) Show that (1) defines a non-singular cubic if and only if \(g_2^3 - 27g_3^2 \neq 0 \).

Additional remarks to this exercise: The function \(j = \frac{g_3^3}{g_2^3 - 27g_3^2} \) turns out to be a projective invariant of the Weierstraß normal form. Two normal forms \(Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3 \) of non-singular cubics are projectively equivalent if and only if the corresponding values of \(j \) coincide. In particular, there are uncountably many projectively non-equivalent non-singular cubics. The final classification of all cubics (non-singular and singular) looks as follows:

(i) Every non-singular cubic is projectively equivalent to a curve of the type \(Y^2Z = 4X^3 - g_2XZ^2 - g_3Z^3 \).

(ii) Every irreducible singular cubic is projectively equivalent to the curve \(X^3 + Y^3 - XYZ = 0 \) (cubic with a nodal singularity) or to the curve \(X^3 - Y^2Z = 0 \) (cubic with a cuspidal singularity).

(iii) Every reducible cubic \(C \) is either a conic plus a chord, a conic plus a tangent line, or \(C \) consists of three lines \(L_1, L_2, L \) which meet in three different points (triangle), in one common point (triple point), or two or three of the lines \(L_j \) coincide.