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Abstract. Let p, q, r be positive integers. Complex hyperbolic (p, q, r) tri-

angle groups are representations of the hyperbolic (p, q, r) reflection triangle
group to the holomorphic isometry group of complex hyperbolic space H2

C,

where the generators fix complex lines. In this paper, we obtain all the dis-

crete and faithful complex hyperbolic (3, 3, n) triangle groups for n ≥ 4. Our
result solves a conjecture of Schwartz in the case when p = q = 3.

1. Introduction

An abstract (p, q, r) reflection triangle group for positive integers p, q, r is the group

∆p,q,r =
〈
σ1, σ2, σ3

∣∣∣ σ2
1 = σ2

2 = σ2
3 = (σ2σ3)p = (σ3σ1)q = (σ1σ2)r = id

〉
.

We sometimes take (at least) one of p, q, r to be∞, in which case the corresponding
relation does not appear.

It is interesting to seek geometrical representations of ∆p,q,r. An extremely well
known fact is that ∆p,q,r may be realised geometrically as the reflections in the side
of a geodesic triangle with internal angles π/p, π/q, π/r. Furthermore, if 1/p +
1/q + 1/r > 1, = 1 or < 1 then this triangle is spherical, Euclidean or hyperbolic
respectively. Moreover, up to isometries (or similarities in the Euclidean case) there
is a unique such triangle and the representation is rigid. In the case where (at least)
one of p, q, r is ∞ then we omit the relevant term from 1/p + 1/q + 1/r and we
insist that the sides of the triangle are asymptotic. Thus the (∞,∞,∞) triangle is
a triangle in the hyperbolic plane with all three vertices on the boundary.

In contrast, if we choose a geometrical representation of ∆p,q,r in a space of non-
constant curvature then more interesting things can happen; see for example Brehm
[1]. In this paper, we consider representations of ∆p,q,r to SU(2, 1) which is (a triple
cover of) the group of holomorphic isometries of complex hyperbolic space H2

C. A
convenient model of H2

C is the unit ball in C2 with the Bergman metric, having
constant holomorphic sectional curvature and 1/4-pinched real sectional curvatures.

A complex hyperbolic triangle group will be a representation of ∆p,q,r to SU(2, 1)
where the generators fix complex lines. Note we could have made other choices. For
example, we could choose the generators to be anti-holomorphic isometries, or we
could choose reflections in three complex lines but with higher order. These choices
lead to interesting results, but we will not consider them here. A crucial observation
is that when min{p, q, r} ≥ 3 there is a one (real) dimensional representation space
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of complex hyperbolic triangle groups with 1/p+1/q+1/r < 1 (either make a simple
dimension count or see Brehm [1] for example). This means that the representation
is determined up to conjugacy by p, q, r and one extra variable. This variable is
determined by certain traces; see for example Pratoussevitch [13].

In order to state our main results we need a little terminology. Elements of
SU(2, 1) act on complex hyperbolic space H2

C and its boundary (see below). An
element A ∈ SU(2, 1) is called loxodromic if it fixes two points, both of which lie
on ∂H2

C; parabolic if it fixes exactly one point, and this point lies on ∂H2
C; elliptic

if it fixes at least one point of H2
C. Discrete groups cannot contain elliptic elements

of infinite order. Therefore in a representation of an abstract group to SU(2, 1), if
an element of infinite order in the abstract group is represented by an elliptic map
then the representation is not discrete or not faithful (or both), compare [7].

Complex hyperbolic triangle groups have a rich history; see Schwartz’s ICM
survey [16] for an overview. In particular, he presented the following conjectural
picture:

Conjecture 1.1 (Schwartz [16]). Let ∆p,q,r be a triangle group with p ≤ q ≤ r.
Then any complex hyperbolic representation Γ of ∆p,q,r is discrete and faithful if
and only if WA = I1I3I2I3 and WB = I1I2I3 are not elliptic. Furthermore:

(i) If p < 10 then Γ is discrete and faithful if and only if WA = I1I3I2I3 is
non-elliptic.

(ii) If p > 13 then Γ is discrete and faithful if and only if WB = I1I2I3 is
non-elliptic.

The initial step towards solving this conjecture is the following result of Grossi.

Proposition 1.2 (Grossi [8]). Let ∆p,q,r be a triangle group with p ≤ q ≤ r. Define
WA = I1I3I2I3 and WB = I1I2I3. Then for complex hyperbolic representations of
∆p,q,r:

(i) If p < 10 and WA = I1I3I2I3 is non-elliptic then WB is non-elliptic.
(ii) If p > 13 and WB = I1I2I3 is non-elliptic then WA is non-elliptic.

A motivating example, initially considered by Goldman and Parker [7] and com-
pleted by Schwartz [14, 17], concerns complex hyperbolic ideal triangle groups, that
is representations of ∆∞,∞,∞. This result may be summarised as follows:

Theorem 1.3 (Goldman, Parker [7], Schwartz [14, 17]). Let Γ = 〈I1, I2, I3〉 be
a complex hyperbolic (∞,∞,∞) triangle group. Then Γ is a discrete and faithful
representation of ∆∞,∞,∞ if and only if I1I2I3 is non-elliptic.

Note that this gives a complete solution to Schwartz’s conjecture in the case
p = q = r = ∞. Furthermore, Schwartz [15] gives an elegant description of the
group where I1I2I3 is parabolic.

Theorem 1.4 (Schwartz [15]). Let Γ = 〈I1, I2, I3〉 be the (∞,∞,∞) complex hyper-
bolic triangle group for which I1I2I3 is parabolic. Let Γ2 = 〈I1I2, I1I3〉 be the index
2 subgroup of Γ with no complex reflections. Then H2

C/Γ2 is a complex hyperbolic
orbifold whose boundary is a triple cover of the Whitehead link complement.

In his book [18], Schwartz proves his conjecture for min{p, q, r} sufficiently large
(but unfortunately with no effective bound on this minimum).
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Theorem 1.5 (Schwartz [18]). Let Γ = 〈I1, I2, I3〉 be a complex hyperbolic (p, q, r)
triangle group with p ≤ q ≤ r. If p is sufficiently large, then Γ is a discrete and
faithful representation of ∆p,q,r if and only if I1I2I3 is non-elliptic.

Our main result solves Schwartz’s conjecture in the case when p = q = 3.

Theorem 1.6. Let n be an integer at least 4. Let Γ = 〈I1, I2, I3〉 be a complex
hyperbolic (3, 3, n) triangle group. Then Γ is a discrete and faithful representation
of ∆3,3,n if and only if I1I3I2I3 is non-elliptic.

Note that the ‘only if’ part is a consequence of our observation about elliptic
elements above. The ‘if’ part will follow from Corollary 4.4 below.

For the representation where I1I3I2I3 is parabolic, when n = 4 and 5 we have
the following description of the quotient orbifold from the census of Falbel, Koseleff
and Rouillier [5]. The case n = 4 combines work of Deraux, Falbel and Wang [3, 6].
The cleanest statement may be found in Theorem 4.2 of Deraux [2], which also
treats the case n = 5.

Theorem 1.7 (Theorem 4.2 of Deraux [2]).

(i) Let Γ = 〈I1, I2, I3〉 be the complex hyperbolic (3, 3, 4) triangle group for
which I1I3I2I3 is parabolic. Let Γ2 = 〈I1I2, I1I3〉 be the index 2 subgroup of
Γ with no complex reflections. Then Γ2 is conjugate to both ρ1−1(π1(M4))
and ρ4−1(π1(M4)) from [5]. In particular, H2

C/Γ2 is a complex hyperbolic
orbifold whose boundary is the figure eight knot complement.

(ii) Let Γ = 〈I1, I2, I3〉 be the complex hyperbolic (3, 3, 5) triangle group for
which I1I3I2I3 is parabolic. Let Γ2 = 〈I1I2, I1I3〉 be the index 2 subgroup of
Γ with no complex reflections. Then Γ2 is conjugate to both ρ4−3(π1(M9))
and ρ3−3(π1(M15)) from [5].

It should be possible to give a similar description of the other complex hyperbolic
(3, 3, n) triangle groups for which I1I3I2I3 is parabolic.

Note that Theorem 1.6 holds in the case n =∞. This follows from recent work
of Parker and Will [11] (see also [10]). Furthermore, if as above Γ2 = 〈I1I2, I1I3〉 is
the index two subgroup of representation of the (3, 3,∞) triangle group for which
I1I3I2I3 is parabolic, then H2

C/Γ2 is a complex hyperbolic orbifold whose boundary
is the Whitehead link complement. This is one of the representations in the census
of Falbel, Koseleff and Rouillier [5].

Finally, we note some further interesting groups in this family.

Theorem 1.8 (Thompson [19]). The complex hyperbolic (3, 3, 4) triangle group
with I1I3I2I3 of order 7 and the complex hyperbolic (3, 3, 5) triangle group with
I1I3I2I3 of order 5 are both lattices.

Our method of proof will be to construct a Dirichlet domain based at the fixed
point of the order n elliptic map I1I2. Since this point has non-trivial stabiliser,
this domain is not a fundamental domain for Γ, but it is a fundamental domain
for the coset space of the stabiliser of this point in Γ. Of course, in order to
prove directly that this is a Dirichlet domain we would have to check infinitely
many inequalities. Instead, we construct a candidate Dirichlet domain and then
use the Poincaré polyhedron theorem for coset decompositions (see Theorem 6.3.2
of Mostow [9] or Theorem 3.2 of Deraux, Parker, Paupert [4] for example).
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In the case of a Fuchsian (3, 3, n) triangle group acting on the hyperbolic plane,
a fundamental domain is a hyperbolic triangle with internal angles π/3, π/3 and
π/n. The Dirichlet domain with centre the fixed point of an order n elliptic map is
a regular hyperbolic 2n-gon with internal angles 2π/3. This 2n-gon is made up of
2n copies of the triangular fundamental domain for the (3, 3, n) group; see Figure 1.
The stabiliser of the order n fixed point, which is a dihedral group of order 2n, fixes
the 2n-gon and permutes the triangles.

For the complex hyperbolic (3, 3, n) triangle groups we will see that the combi-
natorial structure of the Dirichlet domain D is the same as that in the Fuchsian
case. Namely, D has 2n sides, each of which is contained in a bisector. Each side
meets exactly two other sides (in the case where I1I3I2I3 is parabolic, there are
some additional tangencies between sides on the ideal boundary). The sides are
permuted by the dihedral group 〈I1, I2〉.

In Section 2 we give the necessary background on complex hyperbolic geometry
and the Poincaré polyhedron theorem. In Section 3 we normalise the generators
of Γ and discus the parameters this involves. Finally, in Section 4 we consider the
bisectors and their intersection properties. This is the heart of the paper.

2. Background

2.1. Complex hyperbolic space. Let C2,1 be the three dimensional complex
vector space equipped with a Hermitian form H of signature (2, 1). In this paper we
consider the diagonal Hermitian form H = diag(1, 1,−1). Thus if u = (u1, u2, u3)t

and v = (v1, v2, v3)t then the Hermitian form is given by

〈u,v〉 = v∗Hu = u1v̄1 + u2v̄2 − u3v̄3.

Define

V− =
{

v ∈ C2,1 : 〈v,v〉 < 0
}
, V0 =

{
v ∈ C2,1 − {0} : 〈v,v〉 = 0

}
.

There is a natural projection map P from C2,1 − {0} to CP2 that identifies all
non-zero (complex) scalar multiples of a vector in C2,1. Complex hyperbolic space
is defined to be H2

C = PV− and its boundary is ∂H2
C = PV0. Clearly, if v lies in

V− or V0 then v3 6= 0 and so H2
C ∪ ∂H2

C is contained in the affine chart of CP2

with v3 6= 0. We canonically identify this chart with C2 by setting z = v1/v3 and
w = v2/v3. Thus a vector (z, w) ∈ C2 corresponds to [z : w : 1]t in CP2. Evaluating
the Hermitian form at this point gives |z|2 + |w|2 − 1 = (|v1|2 + |v2|2 − |v3|2)/|v3|2.
Therefore

H2
C =

{
(z, w) ∈ C2 : |z|2 + |w|2 < 1

}
, ∂H2

C =
{

(z, w) ∈ C2 : |z|2 + |w|2 = 1
}
.

In other words, H2
C is the unit ball in C2 and its boundary is the unit sphere S3.

The Bergman metric on H2
C is given in terms of the Hermitian form. Let u and

v be points in H2
C and let u and v be vectors in V− so that Pu = u and Pv = v.

The Bergman metric is given as a Riemannian metric ds2 or a distance function
ρ(u, v) by the formulae:

ds2 =
−4

〈u,v〉2
det

(
〈u,v〉 〈du,v〉
〈u, dv〉 〈du, dv〉

)
, cosh2

(
ρ(u, v)

2

)
=
〈u,v〉〈v,u〉
〈u,u〉〈v,v〉

.

The formulae for the Bergman metric are homogeneous and so the ambiguity in
the choice of u and v does not matter.
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Let SU(2, 1) be the group of unimodular matrices preserving the Hermitian form
H. An element A of SU(2, 1) acts on H2

C as A(u) = P(Au) where u is any vector
in V− with Pu = u. It is clear that scalar multiples of the identity act trivially.
Since the determinant of A is 1, such a scalar multiple must be a cube root of unity.
Therefore, we define PU(2, 1) = SU(2, 1)/{ωI : ω3 = 1}. Since the Bergman metric
is given in terms of the Hermitian form, it is clear that elements of SU(2, 1) or
PU(2, 1), act as isometries of H2

C. Indeed, PU(2, 1) is the full group of holomorphic
isometries of H2

C. In what follows we choose to work with matrices in SU(2, 1).
There are two kinds of totally geodesic 2-dimensional submanifolds in H2

C: com-
plex lines and totally real totally geodesic subspaces. Let c ∈ C2,1 be a vector with
〈c, c〉 > 0. Then a complex line is the projection of the set {z ∈ C2,1 : 〈z, c〉 = 0}.
The vector c is then called a polar vector of the complex line. The complex reflec-
tion with polar vector c is defined to be

Ic(z) = −z +
2〈z, c〉
〈c, c〉

c.

2.2. Bisectors and Dirichlet domains. We will consider subgroups of SU(2, 1)
acting on H2

C and we want to show they are discrete. We will do this by constructing
a fundamental polyhedron and using the Poincaré polyhedron theorem. There are
no totally geodesic real hypersurfaces in H2

C and so we must choose hypersurfaces
for the sides of our polyhedra. We choose to work with bisectors. A bisector in
H2

C is the locus of points equidistant (with respect to the Bergman metric) from
a given pair of points in H2

C. Suppose that these points are u and v. Choose lifts
u = (u1, u2, u3)t and v = (v1, v2, v3)t to V− so that 〈u,u〉 = 〈v,v〉. Then the
bisector equidistant from u and v is

B = B(u, v) =
{

(z, w) ∈ H2
C : ρ

(
(z, w), u

)
= ρ
(
(z, w), v

)}
=

{
(z, w) ∈ H2

C : |zū1 + wū2 − ū3| = |zv̄1 + wv̄2 − v̄3|
}
.

Suppose that we are given three points u, v1 and v2 in H2
C. If the three corre-

sponding vectors u, v1 and v2 in V− form a basis for C2,1 then the intersection
B(u, v1)∩B(u, v2) is called a Giraud disc. This is a particularly nice type of bisector
intersection (see Section 2.5 of [4]).

Suppose that Γ is a discrete subgroup of PU(2, 1). Let u be a point of H2
C

and write Γu for the stabiliser of u in Γ (that is the subgroup of Γ comprising all
elements fixing u). Then the Dirichlet domain Du(Γ) for Γ with centre u is defined
to be

Du(Γ) =
{
v ∈ H2

C : ρ(v, u) < ρ(v,A(u)) for all A ∈ Γ− Γu

}
.

Dirichlet domains for certain cyclic groups are particularly simple.

Proposition 2.1. Let A be a regular elliptic element of PU(2, 1) of order 3. Then
for any point u not fixed by A the Dirichlet domain Du(〈A〉) for the cyclic group
〈A〉 with centre u has exactly two sides.

Proof. Since there are only two non-trivial elements in 〈A〉, neither of which fix u,
the Dirichlet domain Du(〈A〉) is

Du(〈A〉) =
{
v ∈ H2

C : ρ(v, u) < ρ(v,A(u)), ρ(v, u) < ρ(v,A−1(u))
}
.
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Its images under A and A−1 are:

A
(
Du(〈A〉)

)
=

{
v : ρ(v,A(u)) < ρ(v, u), ρ(v,A(u)) < ρ(v,A−1(u))

}
,

A−1
(
Du(〈A〉)

)
=

{
v : ρ(v,A−1(u)) < ρ(v, u), ρ(v,A−1(u)) < ρ(v,A(u))

}
.

By considering the minimum of ρ(v, u), ρ(v,A(u)), ρ(v,A−1(u)) as v varies over
H2

C, it is clear these three domains are disjoint and their closures cover H2
C. �

Proposition 2.2 (Phillips [12]). Let A ∈ SU(2, 1) have real trace which is at least
3. Then for any u ∈ H2

C the bisectors B(u,A(u)) and B(u,A−1(u)) are disjoint.
Thus, the Dirichlet domain Du(〈A〉) has exactly two sides.

2.3. The Poincaré polyhedron theorem. Our goal is to construct the Dirichlet
domain for a complex hyperbolic representation Γ of the (3, 3, n) triangle group
with centre the fixed point of an order n elliptic map. If we use the definition of
Dirichlet domain, then we need to check infinitely many inequalities. Thus, we need
to use another method. This method is to construct a candidate Dirichlet domain
and then use the Poincaré polyhedron theorem.

The main tool we use to show discreteness is the Poincaré polyhedron theorem.
The version of this theorem that we use is for polyhedra D with a finite stabiliser;
see Theorem 6.3.2 of Mostow [9] or Theorem 3.2 of Deraux, Parker, Paupert [4].
Rather than give a general statement of this theorem we will state it in the particular
case we are interested in, namely Dirichlet polyhedra for reflection groups.

Let u be a point in H2
C and let Υ be a finite subgroup of PU(2, 1) fixing u. Let

A1, . . . , An be a finite collection of involutions in PU(2, 1) (so A2
i is the identity

for each i). Suppose that no Ai fixes u. Suppose that the group Υ preserves this
collection of involutions under conjugation. That is, for each Ai with 1 ≤ i ≤
n and each P ∈ Υ we suppose that PAiP

−1 = Aj for some 1 ≤ j ≤ n. Let
Bi = B(u,Ai(u)) be the bisector equidistant from u and Ai(u). If P ∈ Υ satisfies
PAiP

−1 = Aj then PAi(u) = Aj(u) (since P (u) = u) and so P maps Bi to Bj . We
define D to be the component of H2

C −
⋃n
i=1 Bi containing u and we suppose that

there are points from each of the Bi on the boundary of D (that is, the Bi are not
nested). This construction makes D open. Note that, by construction, Υ maps D
to itself.

For each 1 ≤ i ≤ n let si = Bi ∩D. We call si a side of D. Such a side can be
given a cell structure based on how it intersects other sides. We suppose that the
involutions Ai for 1 ≤ i ≤ n satisfy the following conditions, and so form a side
pairing of D:

(1) For each 1 ≤ i ≤ n the involution Ai sends si to itself, preserving the cell
structure. The relation A2

i = id is a called reflection relation.
(2) For each 1 ≤ i ≤ n we have D ∩Ai(D) = si and D ∩A(D) = ∅.
(3) If v is a point in si and in no other side (that is v lies in the relative interior

of si) then there is an open neighbourhood Uv of v lying in D ∪Ai(D).

Note that, unlike the case of reflection groups in constant curvature, Ai does not
fix si pointwise. Therefore, we could have subdivided si into two sets (each of
dimension 3) that are interchanged by Ai. In practice this would cause unnecessary
complication.
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Suppose that si and sj are two sides with non-empty intersection. Their inter-
section r = si ∩ sj is called a ridge of D. Since Ai preserves the cell structure of si,
we see that Ai(r) = si ∩ sk is another ridge of D. Applying Ak gives another ridge
in sk. Continuing in this way gives a ridge cycle:

(r1, si0 , si1)
Ai1−→ (r2, si1 , si2)

Ai2−→ (r3, si2 , si3) · · · .
Here (rj , sij−1

, sij ) is an ordered triple with rj = sij−1
∩ sij . Since there are finitely

many Υ orbits of r1, eventually we find a ridge rm+1 = sim ∩ sim+1 so that the
corresponding ordered triple satisfies

(rm+1, sim , sim+1)
P−→ (r1, si0 , si1)

for some P ∈ Υ. We call T1 = PAim · · ·Ai1 the cycle transformation associated
to r1. It means that the ridge cycle starts at (r1, si0 , si1) and ends to itself by T1.
Clearly T1 maps r1 to itself. Of course, T1 may not act as the identity on r1 and
even if it does, then it may not act as the identity on H2

C. Nevertheless, we suppose
T1 has finite order `. The relation T `i = id is called at cycle relation.

In the example we are interested in, the ridge cycle is

(r1, si0 , si1)
Ai1−→ (r2, si1 , si2)

P−→ (r1, si0 , si1)

and, in fact, si2 = si0 and so r2 = r1. Moreover, P is an involution with P (r1) = r1
and P (si1) = si0 . Hence the cycle transformation is T1 = PAi1 , which happens to
have order 3. Thus, the cycle relation is T 3

1 = (PAi1)3 = id.
We suppose that D satisfies the cycle condition which means that copies of D

tessellate a neighbourhood for each ridge r. Furthermore, the relevant copies of
D are its preimages under suffix subwords of T `. The full statement is explained
in Deraux, Parker, Paupert [4]. For brevity, we state this condition only in the
special case we are interested in. Let r be a ridge and let T = PAi be its cycle
transformation with cycle relation (PAi)

3 = id. Let C = {id, PAi, (PAi)
2}. Then

the cycle condition states that:

(1)

r =
⋂
C∈C

C−1(D).

(2) If C1, C2 ∈ C with C1 6= C2 then C−11 (D) ∩ C−12 (D) = ∅.
(3) If v is a point in r and in no other ridge (that is v lies in the relative interior

of r) then there is an open neighbourhood Uv of v with

Uv ⊂
⋃
C∈C

C−1(D).

It means that there are exactly 3 copies of D along each ridge r, which are D, T (D)
and T 2(D). Observe that the stabiliser of r is generated by Ai and P . Hence it is
a dihedral group of order 6. Since Ai, P and PAiP

−1 preserves one of the 3 copies
and interchanges the other two, the stabiliser preserves the 3 copies of D.

Finally, if two sides of D are asymptotic at a point v of ∂H2
C then there is a

horoball Hv so that Hv intersects D only in facets of D containing v and Hv is
preserved by the stabiliser of v in Γ. We say that Hv is a consistent horoball at v.
In particular, if v is a fixed point of a parabolic element of Γ then there exists a
consistent horoball at v.

The the Poincaré polyhedron theorem states that:
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Figure 1. The 2n-gon in the hyperbolic plane made up of 2n
copies of a (3, 3, n) triangle.

Theorem 2.3 (Theorem 6.3.2 of [9], Theorem 3.2 of [4]). Suppose that D is a
polyhedron on H2

C with sides contained in bisectors together with a side pairing.
Let Υ < PU(2, 1) be a discrete group of automorphisms of D. Let Γ be the group
generated by Υ and the side pairing maps. Suppose that the cycle condition holds
at all ridges of D and that there is a consistent horoball at all points (if any) where
sides of D are asymptotic. Then:

(1) Γ is discrete.
(2) The images of D under the cosets of Υ in Γ tessellate H2

C.
(3) A fundamental domain for Γ may be obtained by intersecting D with a

fundamental domain for Υ.
(4) A presentation for Γ is given as follows. The generators are a generating

set for Υ together with all side pairing maps. The relations are generated
by all relations in Υ, all reflection relations and all cycle relations.

3. The generators

Consider complex reflections I1 and I2 in SU(2, 1) so that I1I2 has order n and
fixes the origin o. Writing c = cos(π/n) and s = sin(π/n), we may choose I1 and
I2 to be:

(3.1) I1 =

−c s 0
s c 0
0 0 −1

 , I2 =

−c −s 0
−s c 0
0 0 −1

 .
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Note that polar vectors of I1 and I2 are

n1 =

 s
1 + c

0

 , n2 =

 −s1 + c
0

 .
We want to find I3 so that I1I3 and I2I3 both have order 3. Conjugating by

a diagonal map diag(eiψ, eiψ, e−2iψ) if necessary, we may suppose that the polar
vector of I3 is

n3 =

 a
beiθ

d− 1


a, b, d are non-negative real numbers satisfying a2 + b2− (d−1)2 = 2(d−1), that is
a2 + b2 − d2 = −1. Furthermore, complex conjugating if necessary, we may always
assume θ ∈ [0, π]. Then

(3.2) I3 =

−1 + a2/(d− 1) abe−iθ/(d− 1) −a
abeiθ/(d− 1) −1 + b2/(d− 1) −beiθ

a be−iθ −d

 .
It is easy to check that I3 lies in SU(2, 1), has order 2 and polar vector n3.

Lemma 3.1. Let I1, I2 and I3 be given by (3.1) and (3.2). If I1I3 and I2I3 have
order 3 then θ = π/2 and

(3.3) c(a2 − b2) = d(d− 1),

Proof. The condition that I1I3 and I2I3 have order 3 is equivalent to tr(I1I3) =
tr(I2I3) = 0. That is

−c(a2 − b2) + 2sab cos(θ)

d− 1
+ d =

−c(a2 − b2)− 2sab cos(θ)

d− 1
+ d = 0.

The result follows directly. �

From now on, we write θ = π/2 in (3.2). Since we know a2 + b2 = d2 − 1 and
a2 − b2 = d(d− 1)/c, we immediately have:

(3.4) a2 = (d− 1)(1 + d+ d/c)/2, b2 = (d− 1)(1 + d− d/c)/2,

Corollary 3.2. Let

ι :

z1z2
z3

 7−→
 z̄1
−z̄2
z̄3

 .
Then ι has order 2 and

ιI1ι = I2, ιI2ι = I1, ιI3ι = I3.

Proof. It is easy to see that ι2 is the identity. A simple calculation shows ι(n1) = n2

and ι(n3) = n3, using eiθ = i. �

Lemma 3.3. The group 〈I1, I2, I3〉 is determined up to conjugacy by the variable
d, which lies in the interval 1 < d ≤ c/(1−c). Moreover, 〈I1, I2, I3〉 lies in SO(2, 1)
when d = c/(1− c).
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Proof. We have conjugated so that I1 and I2 have the form (3.1), and I3 has the
form (3.2) with θ = π/2. After this conjugation, the only remaining parameters
are the non-negative real numbers a, b and d. Using (3.4) these are completely
determined by d. Moreover, again using (3.4) we see that a2 and b2 are non-
negative if and only if d ≥ 1 and d ≤ c/(1− c). We cannot have d = 1 or else n3 is
the zero vector. Thus 1 < d ≤ c/(1− c). Finally, when d = c/(1− c) we have b = 0
and the entries of I3 are all real. �

Lemma 3.4. Let I1, I2 and I3 be given by (3.1) and (3.2). Suppose I1I3 and I2I3
have order 3. Then I1I3I2I3 is elliptic if and only if d < 3/(4s2).

Proof. Calculating directly, we see that

tr(I1I3I2I3) =
c2(a2 − b2)2

(d− 1)2
+

2(c2 − s2)(d− 1− a2 − b2)

d− 1
− 2c(a2 − b2) + d2

= 4s2d.

(We could have derived this using the formulae in Pratoussevitch [13].) The condi-
tion that I1I3I2I3 is elliptic is that 3 > tr(I1I3I2I3) = 4s2d. �

Thus, our parameter space for 〈I1, I2, I3〉 with I1I3I2I3 non-elliptic is given by

(3.5)
3

4s2
≤ d ≤ c

1− c
.

Note that the condition n > 3 implies both 3/(4s2) > 1 and c/(1 − c) > 1. For

example, when n = 4 we have c = s = 1/
√

2 and our range becomes

3/2 ≤ d ≤
√

2 + 1.

4. The bisectors

We define a polyhedron D bounded by sides contained in 2n bisectors.

Definition 4.1. For k ∈ Z, define the involution Ak ∈ 〈I1, I2, I3〉 as follows:

(1) If k = 2m is an even integer then Ak = (I2I1)k/2I3(I1I2)k/2.
(2) If k = 2m+ 1 is an odd integer then Ak = (I2I1)(k−1)/2I2I3I2(I1I2)(k−1)/2.

Let o be the fixed point of I1I2 in H2
C. For all integers k, the bisector Bk is defined to

be the bisector equidistant from o and Ak(o). Note that in both cases Ak+2n = Ak
and so Bk+2n = Bk. This gives 2n bisectors B−n+1 to Bn and we may take the
index k mod 2n.

The following lemma follows immediately from the definition.

Lemma 4.2. Let B−n+1 to Bn be as defined in Definition 4.1. Then for each k
mod 2n and each m mod n:

(1) The map (I2I1)m sends Bk to B2m+k.
(2) The map (I2I1)mI2 sends Bk to B2m+1−k. In particular, (I2I1)kI2 sends
Bk to Bk+1.

(3) The antiholomorphic involution ι defined in Corollary 3.2 sends Bk to B−k.
In particular (I2I1)mI2ι sends Bk to B2m+1+k.

The main result of this section is that the combinatorial configuration of the
bisectors does not change as d decreases from c/(1− c) to 3/(4s2). More precisely:
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Theorem 4.3. Let B−n+1 to Bn be as defined in Definition 4.1. Suppose that
3/(4s2) ≤ d ≤ c/(1− c). Then, taking the indices mod 2n, for each k:

(1) The bisector Bk intersects Bk±1 in a Giraud disc. This Giraud disc is
preserved by AkAk±1, which has order 3.

(2) The intersection of Bk with Bk±2 is contained in the halfspace bounded by
Bk±1 not containing o.

(3) The bisector Bk does not intersect Bk±` for 3 ≤ ` ≤ n. Moreover, the
boundaries of these bisectors are disjoint except for when ` = 3 and d =
3/(4s2) in which case the boundaries intersect in a single point, which is a
parabolic fixed point.

As a corollary to this theorem, we can use the Poincaré polyhedron theorem to
prove the ‘if’ part of Theorem 1.6.

Corollary 4.4. Let A−n+1 to An and B−n+1 to Bn be as in Theorem 4.3. Suppose
that 3/(4s2) ≤ d ≤ c/(1 − c). Let D be the polyhedron in H2

C containing o and
bounded by B−n+1 to Bn. Then the maps A−n+1 to An form a side paring for D
that satisfies the conditions of the Poincaré polyhedron theorem, Theorem 2.3. In
particular, 〈I1, I2, I3〉 is a discrete and faithful representation of ∆3,3,n.

Proof. Since Ak is an involution, it is clear that the {Ak} form a side pairing for D.
Now consider the ridge rk = Bk ∩ Bk+1. Applying either of the side pairing maps
Ak or Ak+1 sends this ridge to itself. We then apply Pk = (I2I1)kI2 to obtain the
cycle transformation PkAk. When k is even:

PkAk = (I2I1)kI2(I2I1)k/2I3(I1I2)k/2 = (I2I1)k/2I2I3(I1I2)k/2;

and when k is odd:

PkAk = (I2I1)kI2(I2I1)(k−1)/2I2I3I2(I1I2)(k−1)/2

= (I2I1)(k+1)/2I3I1(I1I2)(k+1)/2.

In both cases, PkAk = AkAk+1 which has order 3. There is a neighbourhood Uk of
the ridge rk for which the intersection of Uk with D is the same as its intersection
with the Dirichlet domain for 〈PkAk〉. Therefore, we have local tessellation around
all the ridges of D using the argument of Proposition 2.1.

All the other sides of D are disjoint, apart from when d = 3/(4s2), in which case
Bk and Bk±3 are asymptotic at a point of ∂H2

C. This point is a parabolic fixed
point, as required.

Finally, each side yields the reflection relation A2
k, which is conjugate to I23 . The

cycle relations give (PkAk)3, which are conjugate to (I2I3)3 when k is even and
(I3I1)3 when k is odd. In addition we have the relations from Υ = 〈I1, I2〉, which
are I21 , I22 and (I1I2)n. From the Poincaré theorem, all other relations may be
deduced from these. Thus 〈I1, I2, I3〉 is a faithful representation of ∆3,3,n. �

Write ck = cos(kπ/n) and sk = sin(kπ/n). Then

(I2I1)m =

c2m −s2m 0
s2m c2m 0

0 0 1

 , (I2I1)mI2

−c2m+1 −s2m+1 0
−s2m+1 c2m+1 0

0 0 −1

 .
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We have

(I2I1)mI3(o) =

−c2ma+ s2mbi
−s2ma− c2mbi

−d

 , (I1I2)mI3(o) =

−c2ma− s2mbis2ma− c2mbi
−d

 .
Also

(I2I1)mI2I3(o) =

c2m+1a+ s2m+1bi
s2m+1a− c2m+1bi

d

 , (I1I2)mI1I3(o) =

 c2m+1a− s2m+1bi
−s2m+1a− c2m+1bi

d

 .
We begin by proving Theorem 4.3 (1).

Proposition 4.5. For each −n+1 ≤ k ≤ n the bisectors Bk and Bk±1 (with indices
taken mod 2n) intersect in H2

C in a Giraud disc. This Giraud disc is preserved by

(I2I1)k/2(I2I3)(I1I2)k/2 when k is even and (I2I1)(k+1)/2(I3I1)(I1I2)(k+1)/2 when
k is odd.

Proof. Using Lemma 4.2 we need only consider k = 0 and k = 1. The bisectors
B0 and B1 are equidistant from o and from I3(o) = I3I2(o) and from I2I3(o) re-
spectively. Observe that I2I3 does not fix o. Since the map I2I3 has order 3, the
Dirichlet domain with centre o for the cyclic group 〈I2I3〉 only contains faces con-
tained in these two bisectors. The intersection is a Giraud disc invariant under
powers of I2I3 by construction. �

Next we prove Theorem 4.3 (3) in the case where ` = 2m+ 1 is odd.

Proposition 4.6. Suppose that 3/(4s2) ≤ d ≤ c/(1− c). For each −n+ 1 ≤ k ≤ n
and 1 ≤ m ≤ (n−1)/2 the bisectors Bk and Bk±(2m+1) (with indices taken mod 2n)

do not intersect in H2
C. Moreover, their closures intersect on ∂H2

C if and only if
d = 3/(4s2) and m = 1. In the latter case, the closures intersect in a unique point,
which is a parabolic fixed point.

Proof. Using Lemma 4.2 we need only consider B0 and B2m+1. These bisectors are
equidistant from o and I3(o) = I3I2(I1I2)m(o) and from (I2I1)mI2I3(o) respectively.
Consider the Dirichlet domain with centre o for the cyclic group 〈(I2I1)mI2I3〉. We
claim that this Dirichlet domain has exactly two sides and these sides are disjoint.
To do so, we use Phillips’s theorem, Proposition 2.2.

A brief calculation shows that

tr
(
(I2I1)mI2I3

)
= −c2m+1

a2 − b2

d− 1
+ d =

d(c− c2m+1)

c
=

2dsm+1sm
c

.

When 1 ≤ m ≤ (n− 1)/2 we have

smsm+1 ≥ ss2 = 2s2c

with equality if and only if m = 1. Therefore

tr
(
(I2I1)mI2I3

)
= 2dsm+1sm/c ≥ 4ds2

with equality if and only if m = 1. Hence when 4ds2 ≥ 3 we have (I2I1)mI2I3 is
non-elliptic with real trace, and is loxodromic unless m = 1 and d = 3/(4s2). By
Phillips’s theorem be see that any Dirichlet domain for 〈(I2I1)mI2I3〉 has two faces
and these faces do not intersect in H2

C.
In fact, when d = 3/(4s2) and m = 1 the bisectors B0 and B3 are asymptotic on

the boundary of H2
C at the (parabolic) fixed point of I2I1I2I3. �
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Proposition 4.7. (i) Suppose p = [z, w, 1]t lies on B2`∩B−2`. Then for some
angles θ, φ we have

z =
s2`a(cos(θ)eiφ + d)− c2`b sin(θ)eiφ

c2`s2`(a2 − b2)
,

w =
−s2`bi(cos(θ)eiφ + d) + c2`ai sin(θ)eiφ

c2`s2`(a2 − b2)

(ii) Suppose p = [z, w, 1]t lies on B2`+1 ∩ B−2`−1. Then for some angles θ, φ
we have

z =
s2`+1a(cos(θ)eiφ + d)− c2`+1b sin(θ)eiφ

c2`+1s2`+1(a2 − b2)
,

w =
s2`+1bi(cos(θ)eiφ + d)− c2`+1ai sin(θ)eiφ

c2`+1s2`+1(a2 − b2)
.

Proof. First consider the bisector intersection from (i). Then z and w satisfy

1 =
∣∣∣z(−c2`a+ s2`bi) + w(s2`a+ c2`bi) + d

∣∣∣,
1 =

∣∣∣z(−c2`a− s2`bi) + w(−s2`a+ c2`bi) + d
∣∣∣.

Expanding out, adding and subtracting yields

1 =
∣∣∣zc2`a− wc2`bi− d∣∣∣2 +

∣∣∣zs2`bi+ ws2`a
∣∣∣2,

0 = 2Re
((
zc2`a− wc2`bi− d

)(
−z̄s2`bi+ w̄s2`a

))
.

Thus we can write

zc2`a− wc2`bi− d = cos(θ)eiφ,

zs2`bi+ ws2`a = i sin(θ)eiφ.

Inverting these equations yields

z =
s2`a(cos(θ)eiφ + d)− c2`b sin(θ)eiφ

c2`s2`(a2 − b2)
,

w =
−s2`bi(cos(θ)eiφ + d) + c2`ai sin(θ)eiφ

c2`s2`(a2 − b2)
.

For the second bisector intersection, we have

1 =
∣∣∣z(c2`+1a+ s2`+1bi) + w(−s2`+1a+ c2`+1bi)− d

∣∣∣2,
1 =

∣∣∣z(c2`+1a− s2`+1bi) + w(s2`+1a+ c2`+1bi)− d
∣∣∣2.

Expanding out, adding and subtracting yields

1 =
∣∣∣zc2`+1a+ wc2`+1bi− d

∣∣∣2 +
∣∣∣−zs2`+1bi+ ws2`+1a

∣∣∣2,
0 = 2Re

((
zc2`+1a+ wc2`+1bi− d

)(
z̄s2`+1bi+ w̄s2`+1a

))
.

So once again we have

zc2`+1a+ wc2`+1bi− d = cos(θ)eiφ,

−zs2`+1bi+ ws2`+1a = −i sin(θ)eiφ.
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Thus

z =
s2`+1a(cos(θ)eiφ + d)− c2`+1b sin(θ)eiφ

c2`+1s2`+1(a2 − b2)
,

w =
s2`+1bi(cos(θ)eiφ + d)− c2`+1ai sin(θ)eiφ

c2`+1s2`+1(a2 − b2)
.

�

We can now prove Theorem 4.3 (3) in the case where ` = 2m is even.

Proposition 4.8. Suppose that 3/(4s2) ≤ d ≤ c/(1− c). For each −n+ 1 ≤ k ≤ n
and 2 ≤ m ≤ n/2 the bisectors Bk and Bk±2m (with indices taken mod 2n) do not
intersect in complex hyperbolic space.

Proof. Using Lemma 4.2 we need only consider Bm and B−m where 2 ≤ m ≤ n/2.
Using Proposition 4.7 we see that an intersection point p = [z, w, 1]t of Bm and

B−m must satisfy:

z =
sma(cos(θ)eiφ + d)− cmb sin(θ)eiφ

cmsm(a2 − b2)
,

w = ± −smbi(cos(θ)eiφ + d) + cmai sin(θ)eiφ

cmsm(a2 − b2)
.

We claim that |z|2 + |w|2 ≥ 1 and so such a point does not lie in H2
C. We have

c2ms
2
m(a2 − b2)2(|z|2 + |w|2 − 1)

=
∣∣∣sma(cos(θ)eiφ + d)− cmb sin(θ)eiφ

∣∣∣2
+
∣∣∣−smbi(cos(θ)eiφ + d) + cmai sin(θ)eiφ

∣∣∣2 − c2ms2m(a2 − b2)2

= s2m(a2 + b2)
(

cos2(θ) + 2d cos(θ) cos(φ) + d2
)

−2cmsmab
(
2 cos(θ) sin(θ) + 2d sin(θ) cos(φ)

)
+c2m(a2 + b2) sin2(θ)− c2ms2m

(
a2 + b2)2 + 4c2ms

2
ma

2b2

= s2m(d2 − 1)
(

cos2(θ) + 2d cos(θ) cos(φ) + d2
)

−4cmsmab
(
cos(θ) sin(θ) + d sin(θ) cos(φ)

)
+c2m(d2 − 1) sin2(θ)− c2ms2m

(
d2 − 1)2 + 4c2ms

2
ma

2b2

=
(

cos(θ) sin(θ) + d sin(θ) cos(φ)− 2cmsmab
)2

+ d2 sin2(θ) sin2(φ)

+
(
s2m(d2 − 1)− sin2(θ)

)(
cos2(θ) + 2d cos(θ) cos(φ) + d2 − c2m(d2 − 1)

)
≥

(
s2m(d2 − 1)− sin2(θ)

)(
cos2(θ) + 2d cos(θ) cos(φ) + d2 − c2m(d2 − 1)

)
.

Therefore it is sufficient to prove

0 < s2m(d2 − 1)− sin2(θ),(4.1)

0 < cos2(θ) + 2d cos(θ) cos(φ) + d2 − c2m(d2 − 1)..(4.2)

In order to prove these inequalities we need to use the lower bound on d. Using
m ≥ 2 and d ≥ 3/(4s2) we have

(4.3) (1− cm)d ≥ (1− c2)d = 2s2d ≥ 3/2.
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We also use s2m = 1− c2m = (1− cm)(1 + cm) and cm ≥ 0 (the latter uses m ≤ n/2).
First, we consider (4.1):

s2m(d2 − 1)− sin2(θ) =
1 + cm
1− cm

(
(1− cm)d

)2 − 2 + c2m + cos2(θ)

≥
(
(1− cm)d)

)2 − 2

≥ 1/4,

where the last inequality follows from (4.3). This proves (4.1).
Now consider (4.2):

cos2(θ) + 2d cos(θ) cos(φ) + d2 − c2m(d2 − 1)

=

(
d(1− cm) + cos(θ) cos(φ)

)2
+ cos2(θ) sin2(φ)

1− cm
+

cm
1− cm

((
d(1− cm)

)2 − cos2(θ)
)

+ c2m

≥ cm
1− cm

(
9/4− cos2(θ)

)
> 0.

Again we used (4.3). This proves (4.2) and so establishes the result. �

Propositions 4.6 and 4.8 complete the proof of Theorem 4.3 (3). It remains to
prove Theorem 4.3 (2). That is, we must consider the intersection of Bk and Bk±2.

Consider B1 ∩ B−1. We claim that the fixed point of I3I1I2I3 (that is I3(o))
lies on B1 ∩ B−1. The bisector B1 consists of all points equidistant from o and
A1(o) = I2I3I2(o) = I2I3(o). We have

ρ
(
I3(o), I2I3(o)

)
= ρ
(
o, I3I2I3(o)

)
= ρ
(
o, I2I3(o)

)
.

The first equality follows since I3 is an isometry and the second since I3I2I3 = I2I3I2
and I2(o) = o. Thus I3(o) lies on B1. A similar argument shows

ρ
(
I3(o), I1I3(o)

)
= ρ
(
o, I1I3(o)

)
.

and so I3(o) lies on B−1 as well. Thus B1 ∩ B−1 is non-empty, which can be seen
in Figure 1. By symmetry, this comment also applies to the intersection of Bk and
Bk±2. We must show that this intersection never contributes a ridge of D.

Proposition 4.9. Suppose that 3/(4s2) ≤ d ≤ c/(1− c). For each −n+ 1 ≤ k ≤ n
all points of Bk ∩ Bk±2 lie in the halfspace bounded by Bk±1 not containing o.

Proof. Using Lemma 4.2 as before, it suffices to consider B1 and B−1. We need to
show that all points of B1 ∩ B−1 lie in the halfspace closer to I3(o) than to o.

Suppose that p = [z, w, 1]t lies on B1 ∩ B−1. Using Proposition 4.7 (ii) with
m = 0, and using (3.3) to write c(a2 − b2) = d(d− 1), we find

z =
sa(cos(θ)eiφ + d)− cb sin(θ)eiφ

sd(d− 1)
,(4.4)

w =
sbi(cos(θ)eiφ + d)− cai sin(θ)eiφ

sd(d− 1)
.(4.5)

Note that we used equation (3.3) to simplify the denominator.
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The point p = [z, w, 1]t lies in the halfspace closer to I3(o) than to o if and only if
1 > |za−wbi− d|. We want to give this inequality in terms of θ, φ and d. Suppose
z and w satisfy (4.4) and (4.5) and consider za− wbi− d:

za− wbi− d =
sa2(cos(θ)eiφ + d)− cab sin(θ)eiφ

sd(d− 1)

+
sb2(cos(θ)eiφ + d)− cab sin(θ)eiφ

sd(d− 1)
− d

=
s(a2 + b2) cos(θ)eiφ

sd(d− 1)
− 2cab sin(θ)eiφ

sd(d− 1)
+
s(a2 + b2)d

sd(d− 1)
− d

=
s(d2 − 1) cos(θ)eiφ

sd(d− 1)
− 2cab sin(θ)eiφ

sd(d− 1)
+
s(d2 − 1)d

sd(d− 1)
− d

=
(d+ 1) cos(θ)eiφ

d
−
√
c2(d+ 1)2 − d2 sin(θ)eiφ

sd
+ 1.

Therefore

|za− wbi− d|2 − 1

=
(d+ 1)2 cos2(θ)

d2
+
c2(d+ 1)2 sin2(θ)

s2d2
− sin2(θ)

s2

−
2(d+ 1)

√
c2(d+ 1)2 − d2 cos(θ) sin(θ)

sd2

+
2(d+ 1) cos(θ) cos(φ)

d
−

2
√
c2(d+ 1)2 − d2 sin(θ) cos(φ)

sd
.

Arguing as in the proof of Proposition 4.8 we have

|z|2 + |w|2 − 1

=

∣∣∣∣sa(cos(θ)eiφ + d)− cb sin(θ)eiφ

sd(d− 1)

∣∣∣∣2 +

∣∣∣∣sbi(cos(θ)eiφ + d)− cai sin(θ)eiφ

sd(d− 1)

∣∣∣∣2 − 1

=
s2(a2 + b2)| cos(θ)eiφ + d|2

s2d2(d− 1)2
+
c2(a2 + b2) sin2(θ)

s2d2(d− 1)2
− 1

+
isc(2abi)

(
2 cos(θ) sin(θ) + 2d sin(θ) cos(φ)

)
s2d2(d− 1)2

=
(d+ 1) cos2(θ)

d2(d− 1)
+

2(d+ 1) cos(θ) cos(φ)

d(d− 1)
+
d+ 1

d− 1
+
c2(d+ 1) sin2(θ)

s2d2(d− 1)
− 1

−
2
√
c2(d+ 1)2 − d2 cos(θ) sin(θ)

sd2(d− 1)
−

2
√
c2(d+ 1)2 − d2 sin(θ) cos(φ)

sd(d− 1)

=
2

d− 1
+

(d+ 1) cos2(θ)

d2(d− 1)
+
c2(d+ 1) sin2(θ)

s2d2(d− 1)
−

2
√
c2(d+ 1)2 − d2 cos(θ) sin(θ)

sd2(d− 1)

+
2(d+ 1) cos(θ) cos(φ)

d(d− 1)
−

2
√
c2(d+ 1)2 − d2 sin(θ) cos(φ)

sd(d− 1)
.
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Now we eliminate cos(φ) using the equation for |za− wbi− d|2 derived above:

|z|2 + |w|2 − 1

=
1

d− 1

(
|za− wbi− d|2 − 1

)
+

2 cos2(θ)

d− 1
+

2 sin2(θ)

d− 1

+
(d+ 1) cos2(θ)

d2(d− 1)
+
c2(d+ 1) sin2(θ)

s2d2(d− 1)
−

2
√
c2(d+ 1)2 − d2 cos(θ) sin(θ)

sd2(d− 1)

− (d+ 1)2 cos2(θ)

d2(d− 1)
− c2(d+ 1)2 sin2(θ)

s2d2(d− 1)
+

sin2(θ)

s2(d− 1)

+
2(d+ 1)

√
c2(d+ 1)2 − d2 cos(θ) sin(θ)

sd2(d− 1)

=
1

d− 1

(
|za− wbi− d|2 − 1

)
+

1

d

(
cos(θ) +

√
c2(d+ 1)2 − d2 sin(θ)

s(d− 1)

)2

+
(4s2d− 3) sin2(θ)

s2(d− 1)2
.

Since the last two terms are non-negative, all points p = [z, w, 1]t with z and w given
by (4.4) and (4.5) and that satisfy |z|2+|w|2 < 1 must also satisfy |za−wbi−d| < 1.
Geometrically, this means that all points in H2

C that are on B1 ∩ B−1 are in the
halfspace closer to I3(o) than to o. This proves the result. �

This completes the proof of Theorem 4.3.
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