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1 Introduction

The unit ball in C? has a natural metric of constant negative holomorphic sectional curva-
ture (which we normalise to be —1), called the Bergman metric. As such it forms a model
for complex hyperbolic 2-space H(% analogous to the ball model of (real) hyperbolic space
HE. The main difference is that the (real) sectional curvature is no longer constant, but is
pinched between —1 and —1/4. Another standard model for complex hyperbolic space is
a paraboloid in C? called the Siegel domain. This is analogous to the the half space model
of HZ. As complex hyperbolic 1-space is just the unit disc in C with the Poincaré metric,
H(2C is a natural generalisation of plane hyperbolic geometry which is different from the
more familiar generalisation of higher dimensional real hyperbolic space.

An alternative description of H(% is given by the projective model. Here we take a
Hermitian form of signature (2,1) on C3. Projectivising the set of complex lines on which
this form is negative gives another model for complex hyperbolic space. By taking a
suitable form and making a choice of section we can recover the ball model and the
Siegel domain model. The Bergman metric is given by a simple distance formula in
terms of the Hermitian form which is closely related to the Cauchy-Schwarz inequality.
From this description we can show that all holomorphic isometries of complex hyperbolic
space are given by the projectivisation of unitary matrices preserving the Hermitian form.
All antiholomorphic isometries are given applying such a matrix followed by complex
conjugation. This means that we can use complex linear algebra to study the geometry
of complex hyperbolic space.

As well as studying isometries, we want to consider certain special classes of subman-
ifolds of complex hyperbolic space. We will see that the totally geodesic submanifolds
have dimension at most 2. (In fact, for n dimensional complex hyperbolic space, totally
geodesic subspaces are are either embedded copies of H or Hy' for 1 < m < n. Thus, the
real dimension of a totally geodesic submanifold is either at most n, for embedded copies
of HY, or else is even, for embedded copies of H{¥.) In particular, there are no totally
geodesic real hypersurfaces in H%. This increases the difficulty of constructing polyhedra
(for example fundamental polyhedra for discrete groups of complex hyperbolic isometries).
In a later chapter we will describe some classes of real hypersurfaces that can be used to
build polyhedra.

The boundary of complex hyperbolic 2-space is the one point compactification of the
Heisenberg group in the same way that the boundary of real hyperbolic space is the one
point compactification of Euclidean space of one dimension lower. Just as the internal ge-
ometry of real hyperbolic space may be studied using conformal geometry on the boundary,
so the internal geometry of complex hyperbolic space may be studied using CR-geometry
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on the Heisenberg group. Moreover, the Heisenberg group is 3 dimensional and so it is
easy to illustrate geometrical objects.

In order to make things as concrete as possible, we have chosen restrict our attention
to H%. Many of the results we develop will hold for complex hyperbolic space in all
dimensions. There will often be analogues for other rank 1 symmetric spaces of non-
compact type, quaternionic hyperbolic space Hyj and the octonionic hyperbolic plane H(%).
We will not discuss these here.

2 Complex hyperbolic 2-space

2.1 Hermitian forms on C>!

Let A = (a;5) be a k x | complex matrix. The Hermitian transpose of A is the [ x k
complex matrix A* = (@j;) formed by complex conjugating each entry of A and then
taking the transpose. As with ordinary transpose, the Hermitian transpose of a product
is the product of the Hermitian transposes in the reverse order. That is (AB)* = B*A*.
Clearly ((A*)*) = A. A k x k complex matrix A is said to be Hermitian if it equals its
own Hermitian transpose A = A*. Let A be a Hermitian matrix and 4 an eigenvalue of A
with eigenvector x. We claim that p is real. In order to see this, observe that

px*x = x"(ux) = x"Ax = x"A'x = (Ax)"x = (ux)*x = px*x.

Since x*x is real and non-zero we see that p is real.

To each k x k Hermitian matrix A we can naturally associate an Hermitian form
(-,-) : Ck x Ck — C given by (z,w) = w*Az (note that we change the order) where
w and z are column vectors in C*. Hermitian forms are sesquilinear, that is they are
linear in the first factor and conjugate linear in the second factor. In other words, for z,
21, Zo, W column vectors in C*¥ and A a complex scalar, we have

(z1 + 22, W) = W'A(z1 + 22) = W Az + w'Azy = (71, W) + (22, W),
(Az,w) = w'A(Az) =W Az = \(z,w),
(w,z) = z"Aw =z"A"w = (w'Az)" = (z, w).

From these we see that

(z,z) € R,
(z,\W) = X(z,w),
Az, dw) = A2 (z,w).

Let C*! be the complex vector space of (complex) dimension 3 equipped with a non-
degenerate, indefinite Hermitian form (-, -) of signature (2, 1). This means that (-, -) is given
by a non-singular 3 x 3 Hermitian matrix J with 2 positive eigenvalues and 1 negative
eigenvalue. There are two standard matrices J which give different Hermitian forms on
C?1. Following Epstein [6] we call these the first and second Hermitian forms. Let z, w be
the column vectors (z1, 22, 23)" and (w1, wa, w3)! respectively. The first Hermitian form
is defined to be:

<Z, W>1 = z1W1 + 22W2 — 23W3.
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It is given by the Hermitian matrix Ji:
10 0
Ji=10 1 0
0 0 —1

The second Hermitian form is defined to be:
(Z, W)y = 21W3 + 22W2 + 23W1.

It is given by the Hermitian matrix Js:
0 01
Jo=10 1 0
1 00

Sometimes we want to specify which of these two Hermitian forms to use. When there
is no subscript then you can use either of these (or your favourite Hermitian form on C?
of signature (2,1)).

There are other Hermitian forms which are widely used in the literature. In particular,
Chen and Greenberg (page 67 of [3])give a close relative of the second Hermitian form.
We will refer to this as the third Hermitian form. It is given by

<Z, W>3 = —Z21W39 — 2oW1 + 23W3.
It is given by the Hermitian matrix Jo:

0 -1
Jy= | -1

0
0
0 1

0
0
The third Hermitian form has been used extensively by Kamiya, Hersonsky and Paulin.

2.2 Three models of complex hyperbolic space

If z € C%! then we know that (z,z) is real. Thus we may define subsets V_, Vy and V. of
C>! by

V. = {z € C?Y (z,2) < O},

o = {zeC —{0}](z2) =0},

Vi = {zeC*|(zz) >0}.

We say that z € C>! is negative, null or positive if z is in V_, Vj or Vi respectively.
Motivated by special relativity, these are sometimes called time-like, light-like and space-
like. Because (\z, \z) = |\|? (z,z) we see that for any non-zero complex scalar A the point
Az is negative, null or positive if and only if z is. Therefore we define a projection map P
on those points of C*! with z3 # 0. This projection map is defined by

Z1 /
P: |z — (Zl 23> e 2

o 29/ 23
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In fact this projection map is the restriction to one chart of the usual projection map
P:C>! — CP?.

The projective model of complex hyperbolic space is defined to be the collection of
negative lines in C*>! and its boundary is defined to be the collection of null lines. In other
words H% is PV_ and 8H(2C is PV,

We define the other two standard models of complex hyperbolic space by taking the
section defined by z3 = 1 for the first and second Hermitian forms. In other words, if we
take column vectors z = (21, 29, 1)! in C?! then consider what it means for (z,z) to be
negative.

For the first Hermitian form we obtain z € H% provided:

<Z,Z>1 = 2121+ 2029 — 1 < 0.

In other words
’21‘2 + |Z’2‘2 < 1.

Thus z = (z1, 22) is in the unit ball in C2. This forms the unit ball model of complex
hyperbolic space. The boundary of the unit ball model is the sphere S? given by

212 + |22 = 1.

We say that the standard lift of a point z = (21, 22) in the unit ball (or its boundary) to
C?! is the column vector z = (21, 29, 1)! of C*! whose first 2 coordinates are those of z
and whose last coordinate is 1. Thus if z and w are the standard lifts of points z and w
we have (z, w); = w2z — 1 = 2101 + zws — 1.

For the second Hermitian form we obtain z € H% provided:

<Z,Z>2 =214+ 2029 + 21 < 0.
In other words
2§R(Z1) + ’22‘2 < 0.

Thus z = (21, 22) is in a domain in C? whose boundary is the paraboloid defined by
2%(21) + |22‘2 =0.

This domain is called the Siegel domain and forms the Siegel domain model of H(%. We
again say that the standard lift of a point z in the Siegel domain to C?*! is the column
vector z = (21, 29, 1)t of C*!. We usually compactify the Siegel domain by adding a point
at infinity, denoted co. The standard lift of oo is the column vector (1, 0, 0)* € C>!,

For the projective model the metric on HZ, called the Bergman metric is given by the
distance function p(-,-) defined by the formula

ot (200 _ ) (.2

2 (z,2) (W, w)

For the ball model and Siegel domain model one can find the distance between points z
and w by plugging their standard lifts z and w into the above formula. However, as may
easily be seen, this formula is independent of which lifts z and w in C*>! of z and w we
choose.
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Alternatively, the Bergman metric is given by

—4 (z,z) (dz,z)
ds® = o) det <<z,dz> <dz,dz>) . (1)

Proposition 2.1 In the ball model of H(2C the volume form is given by

16
dVol = dvol
(1 =]z = [22]*)?

where dvol is the volume element
(1/2i)%dz1 AdZy Adzg AdZy = dxidyidaedys.

Proof: Substituting for the first Hermitian form in (1) we have

ds®> =

—4 det |2’1‘2+‘Z2|2—1 Z1d z1 + Zod 29

(‘Zl|2 + |,22|2 — 1)2 z21dZ1 + 20d Zo |d2’1|2 + ’dZQ‘Q

41— |21 )2 = |22 (|d 21 |2 + |d 20]2) + 4[71d 21 + Zad 22|
(J21]2 + |22 — 1)2 '

Converting to real coordinates, 1 + iy1 = 21, T3 + iy2 = 29, and denoting

r? =1ty a2yt = g+ P < 1,

we have
d:L‘l
d
2 _ Y1
ds —(d:zl dyy dxo dyz)gR d:1s
dyo
where
1— 35% - y% 0 T1T2 +Y1Y2  T1Y2 — Y122
gp = 4 0 l—23—y3 —mye+yize T122 4 iy
(1—72)2 | m1m2+y1y2 —T1y2 +y1m2 1 —af —y? 0
T1y2 +yiT2  T1xT2 + Y1y 0 1—af—yi
Now 056
det =
€ (gR) (1 — 7“2)6

Thus the volume form is

16
dVol = vV det(gR)dxldyldmdyg = mdl‘ldyldxgdyg

as claimed. O
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Proposition 2.2 In the Siegel domain model of H the volume form is given by

1
dVol = 76 3 3alvol
(=21 — 71 — [22]?)

where dvol is the volume element
(1/2i)2dZ1 ANdzZy Ndzo NdZe = dxrdyrdxadys.

Proof: Substituting for the second Hermitian form in (1) we have

(Zl—|—|22|2+§1 dZ1 + z2d 72 ‘d22|2

—4(2’1 + ‘2’2’2 + 51)‘d2’2’2 + 4‘d2’1 + §2d22|2
(21 + |22]? +Z1)? '

ds®? = —4 ot z1+ |22‘2 +7Z1 dz + Zod 29
)2

Converting to real coordinates, 1 + iy1 = 21, T2 + iy2 = 22, we have

dxl
d
d82=(d1‘1 dy1 dzy dyz)gr di;
dy2
where
10 ) Yo
B 4 0 1 —Y2 T2
Sk (2x1 + 22?2 +y22)? | w2 —y2 —211 0
Y2 T2 0 —211
Now 956
det(gr) =

(221 + 292 + y22)6"
Thus the volume form is

16

dVol = y/det dxidyidzedys =
Vo et(gr)dz1dy1d xad ys (—221 — 292 — 12?)

sdzidyrdzadys

as claimed (since 271 + 292 + y22 < 0 we take the negative sign in the square root). O

2.3 Cayley transforms

Given two Hermitian forms of signature (2,1) we can can pass between them using a
Cayley transform. This is not unique for we may precompose and postcompose by any
unitary matrix preserving the relevant Hermitian form. The following Cayley transform
interchanges the first and second Hermitian forms

0 1
V2 0 |. (2)
0 -1

1

1
c=—1o
V2 {4
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Observe that C~' = C. In order to see that C is a Cayley transform, we calculate

1
V2

1 0 1 10 0 1 1 0 1 0 01
0v2 o]Jfo1 o]—=(0+v2 0]=1]010
1 0 -1 00—1\/510—1 1 00

When we are dealing with groups of matrices whose entries lie in a ring O (for example
the Picard modular groups) it will be necessary to choose a Cayley transform C' so that the
entries of C' and C~! are all integers. This will show that group of matrices in GL(3, O)

preserving the Hermitian forms (-, -); and (-, -)2 are conjugate in GL(3, ). In this case
we may choose the Cayley transform sending the ball model to the Siegel domain to be:

-1 0 1
Co=1[-1 1 1
0 -1 -1
which has inverse:
0 -1 -1
Col=[-1 1 o0
1 -1 -1
In order to see this, we calculate that
-1 0 1 1 0 O 0o -1 -1
-1 1 1 01 0 -1 1 0
0o -1 -1 00 -1 1 -1 -1
-1 2 2
= -2 3 2
2 -2 -1
1 -1 _ -1
5L )00 1\ (V2 V2 Z
= 0 1 —v2 010 0 1 1
1
0 0 V2 1 00 0 0 7
The result follows since . .
vilo»
0 1 —V2
0 0 V2
is unitary with respect to the second Hermitian form with inverse
-1
Vv v =
0 1 1
1
0 0 7
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3 Isometries

3.1 The unitary groups of the first Hermitian form

Let A be a matrix which preserves the first Hermitian form, that is a unitary matrix. In
other words for all v and w in C*! we have

w AT LAV = (Av, Aw); = (v, w); = w"J1v.
By letting v and w run through a basis of of C*! we see that this means A*J;1 A = J;. In
other words, J; 'A*J;A =T and so A~! = J; 71 A*J;. Writing A in terms of its entries

gives

d -3

a b c a
A=1d e f|, Al'=n'AN=|b e —h|. (3)
g h j —< —f

We now use this expression to find relationships between the entries of A. The resulting
identities will be used many times in later sections.

From elementary linear algebra, we know that A~! = adj(A4)/det(A) where adj(A) is
the adjugate matrix:

» 1 ej—fh ch—bj bf—ce

= fg—dj aj—cg cd—af
det(4) dh —eg bg—ah ae—bd

Writing A = det(A) and comparing these two expressions for A~! gives

aA = ej— fh (4)
BA = fg—dj (5)
cA = eg—dh (6)
dA = ch—bj (7)
eA = aj—cg (8)
fA = ah—bg 9)
gA = ce—bf (10)
hA = af —cd (11)
JA = ae—bd (12)

As A is unitary we have
|A]? = det(A*) det(A) = det(J, tA*J1A) = det(A71A) = 1.

From the equations AA™! = I and (3) we have the following identities relating the entries
of A:

o= o +[b* = |e?, (13)
o= [dP + el = [fP, (14)
1= —|g|*—|nf+ %, (15)
0 = ad+be—cf, (16)
0 = ag+bj—cj, (17)
0 = dg+eh— fj. (18)
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Similarly from the relation A~'A = I we have

1= Ja*+d* - g%, (19)
L= [+ e]* = [n]?, (20)
o=~ = [f1>+ 1% (21)
0 = ab+de—gh, (22)
0 = ac+df —gj, (23)
0 = bc+ef — hyj. (24)

3.2 The unitary groups of the second Hermitian form

Let A be a matrix which preserves the second Hermitian form, that is a unitary matrix.
In other words for all v and w in C*! we have

WA o Av = (Av, Aw)y = (v, W)y = w" Jav.

As before, letting v and w run through a basis of of C>!, we see that this means
A*JyA = Jo. In other words, A~! = Jo,~1A* J,.

a b ¢ j f ¢
A=1|d e f|, Al=p'AL=|h e b (25)

g h j g d a

Again, we use this expression to find useful identities between the entries of A.
Using the expression of A~! in terms of the adjugate matrix we obtain

aA = ae—bd (26)
bA = cd—af (27)
cA = bf —ce (28)
dA = bg—ah (29)
eA = aj—cg (30)
fA = ch—bj (31)
gA = dh—eg (32)
RA = fg—dj (33)
JA = ej—fh (34)

From the equations AA™! = I and (25) we have the following identities relating the
entries of A:

1 = aj+bh+cg, (35)
1 = df+|el*+ fd, (36)
0 = af +be+cd, (37)
0 = ac+ b+ ca, (38)
0 = dj+eh+ fg, (39)
0 = gj+|hl*+j7. (40)
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Similarly from the relation A~'A = I we have

1 = ja+ fd+eg, (41)
1 = hb+le|* +bf, (42)
0 = jb+ fe+ch, (43)
0 = je+|f*+7j, (44)
0 = ha-+ed+bg, (45)
0 = ga+|d?+ag. (46)

3.3 PU(2,1) and its action on complex hyperbolic space

We now show unitary matrices act on complex hyperbolic space. Any matrix in U(2,1)
which is a (non-zero) complex scalar multiple of the identity maps each line in C>! to
itself and so acts trivially on complex hyperbolic space. Since this matrix is unitary
with respect to (-,-) then the scalar must have unit norm. Because of this, we define the
projective unitary group PU(2,1) = U(2,1)/U(1) where U(1) is canonically identified with
{e®I|0 < 6 < 27}, where [ is the identity matrix in U(2,1). Sometimes it will be useful
to consider SU(2,1), the group of matrices with determinant 1 which are unitary with
respect to (-,-). The group SU(2,1) is a 3-fold covering of PU(2,1):

PU(2,1) = SU(2,1)/{I, wI, W*I}

where w = (=1 +4v/3)/2 is a cube root of unity. This is completely analogous to the
fact that SL(2,C) is a double cover of PSL(2,C). Cube roots of unity are used because
SU(2,1) comprises 3 x 3 matrices.

We now use Hermitian linear algebra to show that PU(2, 1) acts transitively on H<2c and
doubly transitively on 8H(%.

We will begin by working with the first Hermitian form. Let z € C*! be any negative
vector. That is (z,z), < 0. Then z = z/\/— (z,2), is a negative vector with (z,2), = —1.
We can now construct a matrix A in U(2,1) whose third column is z. In order to do this,
we take any basis for C*>! containing z. We can then use a version of the Gram-Schmidt
process in signature (2,1) to produce vectors e; and ey so that (ej,e;); = (ez,e2); =1
and (er,e2); = (ej,2), = (e;,z), = 0. The vectors e; now form the first two columns of
A. By construction A*J1A = J; and so A € U(2,1). Moreover, the image of the column
vector (0, 0, 1)!, that is the canonical lift of the origin o, under A is just z. This process
leads to the following result which shows that PU(2, 1) acts transitively on HZ.

Proposition 3.1 For any point z in H(QC (using the ball model) there is an element of
PU(2,1) sending the origin o to z.

Proof: We work with the unit ball model. Let z be the canonical lift of z to C*!. As
above we can scale z to form z = z/,/— (z,2z), and find a matrix A in U(2,1) sending
the canonical lift of the origin, o, to z. Projectivising, we can view A as an element of
PU(2,1) sending o to z as required. O
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If we know a vector e; Hermitian orthogonal to z, then instead of using the Gram-
Schmidt process, we could find es using the Hermitian cross product. That is, if

b1 q1
P=(P2|, 4= |q2
b3 q3
then define n by
D2q3 — D392
n = |ps3q —P193| - (47)
Doq1 — D192

Then n is orthogonal to p and q with respect to the first Hermitian form and

(n,n); = (p,q)1(q, P)1 — (P, P)1(q; Q)1

Corollary 3.2 The stabiliser of a point in HZ under PU(2,1) is P(U(2) x U(1)) which
is conjugate to U(2). Moreover, the stabiliser of the origin o in the ball model acts on B>
with the usual action of U(2) on C2.

Proof: We work in the unit ball model. By the above proposition we can conjugate so
that the point in question is the origin. Now any matrix in PU(2,1) fixing the origin is
the projectivisation of a block diagonal matrix in U(2) x U(1) in U(2,1). In other words,

it has the form
A 0
0 ei@

where A € U(2) and ¢ € U(1). Projectivising we may assume that ¢’ = 1. Clearly all
matrices of this form stabilise the origin. This gives the result. g

We now consider the action of PU(2,1) on the boundary. We choose to work with the
second Hermitian form. We first show how to find a vector n that is Hermitian orthogonal
to p and q. If

4! q1
P=|p2|, 4= |q
b3 q3
then
D192 — P24y
n= (p3q; —P1qGs3| - (48)
D243 — P3q2

A short computation shows that we again have

(n,n)2 = (p,q)2(q, p)2 — (P, P)2(q; Q)2

We now show that PU(2,1) acts doubly transitively on 8H(2C. For this we use the Siegel
domain and the group preserving the second Hermitian form.

Proposition 3.3 For any pair of points p and q in 8H(2C (using the Siegel domain model)
there is an element of PU(2,1) sending the origin o to p and oo to q.
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Proof: Choose any lifts p and q of p and ¢ to C*!. Consider p = p/(p, q)2. So
(P, P)2 = (q, )2 = 0 and (P, q)2 = 1. Let n be the Hermitian orthogonal to p and q
given by (48). Then (n,n)s = 1 and (n, p)2 = (n, q)2 = 0. Let A be the matrix whose
columns are q, n, p respectively. Then A*J, A = Jo, that is A is unitary with respect to
the second Hermitian form. Moreover, projectivising to a matrix in PU(2,1), we see A
and sends o to p and oo to ¢ as required. O

Lemma 3.4 Let p and q be null vectors with (p,q) = —1. Let n be normal to p and q
with (n,n) = 1. Then for any z € C>!
2
<Z7 p> <q7 Z> + <Za q> <p7 Z) = ’<Za Il> ’ - <Z7 Z)‘

Proof: Write z in terms of p, q and n. Then

z=—(z,q)p — (z,p)q + (z,n)n.

Then
(z,2z) = —(z,p)(q,2) — (z,q)(P, 2z) + (z,n)(n, z).

3.4 Complex hyperbolic isometries

Since the Bergman metric is given in terms of the Hermitian form (-, -) it is clear that if A is
unitary with respect to (-, ) then A acts isometrically on the projective model of complex
hyperbolic space. Thus PU(2,1) is a subgroup of the complex hyperbolic isometry group.

There are isometries of h?c not in PU(2,1). For example, consider coordinate-wise
complex conjugation z —— Zz. Then

Cosh2<p(2@)) _(zw) (w,z)  (w,2)(z,w) COShz(p(mv))
2 (2,2) (W, w)  (2,2) (W, W) 2/
Therefore complex conjugation is also an isometry of complex hyperbolic space.

We now show that the holomorphic isometry group of H% is PU(2,1) and that the full
isometry group is generated by PU(2,1) and complex conjugation.

Theorem 3.5 FEvery isometry of H(% 1s either holomorphic or else anti-holomorphic.
Moreover, each holomorphic isometry of H% is given by a matriz in PU(2,1) and each anti-
holomorphic isometry is given by complex conjugation followed by a matriz in PU(2,1).

Proof: We use the ball model B? of H(% and the first Hermitian form. Let ® be any
isometry of H(zC By applying an element of PU(n,1) and using Proposition 3.1, we may
assume that ® fixes the origin. Also, using Corollary 3.2, we may assume that & maps
(1/2,0) C B? to some point (z,0) C B2 with 0 <z < 1.
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Let (z1,22) be any point in B? and let (w1, ws) = ®(21, 22). Then

1 = cosh? (p((zl, 22), (0, 0))>

1 —|z1]? = |22/? 2

= cosh? (p((wl,w2), (O’O))>

2

1
1 — |wi|? — |wa|?

Thus |21|? + |22]? = |w1]? + |w2|*.
Using this identity applied to ®(1/2,0) = (z,0) we can see that x = 1/2 and so ® fixes
(1/2,0) € B2.
Now consider ®(r,0) = (a + ib, ¢ + id) for any 0 < r < 1. From the above remark we
see that
4R

1—a/2)%. Also

(20,072 o>>)

In particular, a <r < 1 and so (1 — 7"/2)

(1—1r/2)?
(1—r2)(1—1/4)

= cosh?

1 a/2 (b/2)
— 21— 1/4)

(

— eost? (p ((a + ib, C—‘rld) (1/2,0)))
(
2 _

(I1—-a
Thus we have (1 —r/2)? = (1 —a/2)? + b*. In other words
(1—a/2)*>(1—7/2%=(1—-a/2)*>+b*> (1 —a/2)*

Thus a = r and b = ¢ = d = 0. Hence ® fixes (r,0) for all 0 < r < 1.
Now consider ®(0,1/2) = (a + ib, c + id). As before 1/4 = a® + b? 4 % + d>. Moreover,
for all 0 < r < 1 we have:

| o <p(<o,1/2>, (r, o>)>

(1—-1/4)(1—r2) 2
C cos? (p((a—}—ib,c—!—id),(r,())))

2

(1 —ar)? + (br)?
(1—a?2—-b2—-c2—d*)(1—-r?)

In other words (a? + b?)r?2 — 2ar +1 = 1 for all 0 < r < 1. Therefore a = b = 0 and
®(0,1/2) = (0,¢ + id). We may apply an element of PU(2,1) fixing (r,0) and sending
(0,c+1id) to (0,s) for 0 < s < 1. It is then clear that s = 1/2 and, reasoning as above, we
can show ®(0,7) = (0,7) for all 0 <r < 1.



3 ISOMETRIES 15

Finally consider ®(z1,22) = (wy,ws) for any (z1,22) € B2. Then, arguing as above,
|21]% + |22]? = |w1]? + |we|? and, for all r with 0 < r < 1, we have

(L-rz)(l—rzm) oo (p((zl,ZQ), (r, 0)))

(1 —=[z1]* = |22[*)(1 = 72) 2

= cosh? (p((UJ1,'U)2>, (r, 0)))

2

(1 —rwy)(1 — rwy)
(1= Jwf? = Jwo|?) (1 = r2)”

Thus |1 — 721|> = |1 — rwy|? and equating coefficients of r we see |21 = |wy|? and
R(z1) = R(wy). In other words z; = w; or z; = wi. Also

(1 —7r22)(1 —1r7Z) — cosh? <p((21, 22), (077”))>

(1= [z1[* = |22[*)(1 = 72) 2

- o A 0)

2

(1 —rwe)(1 — rws)
(1 — |w1]? = Jwa|?)(1 —2)’

A similar argument gives that zo = wy or z5 = ws.

It is easy to check that (z1,22) — (z1,%2) and (21, 22) — (Z1, 22) are not isometries.
Thus @ is either the identity, or complex conjugation.

Therefore any isometry of H(QC is either in PU(2,1), which means it is holomorphic,
or it is an element of PU(2,1) followed by complex conjugation, which means it is anti-
holomorphic. O

3.5 Classification of isometries

In this section we will classify holomorphic isometries. The familiar trichotomy from real
hyperbolic geometry applies in the complex hyperbolic setting as well: A holomorphic
complex hyperbolic isometry A is said to be:

(i) loxodromic if it fixes exactly two points of 8H%;
(ii) parabolic if it fixes exactly one point of OHZ;
(iii) elliptic if it fixes at least one point of HZ.

We will analyse each of these types in more detail. As we do so, this coarse classification
will be refined. We will give three different approaches to classifying isometries. First, we
will discuss an algebraic approach by considering eigenvectors and eigenvalues of matrices
in SU(2,1). Secondly, we will discuss a dynamical approach by looking at fixed points and
subsets that are preserved. Finally, (in Section 5.6) we will discuss a geometrical approach
by considering products of involutions in totally real Lagrangian planes.
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First we explain the classification in terms of the corresponding matrices in SU(2,1).
It is clear that a fixed point of an isometry A lying in H(% or its boundary corresponds
to an eigenvector of the corresponding matrix lying in V_ or Vj respectively. The goal
of the first part of this section is to prove the following theorem, which verifies that the
trichotomy above exhausts all possibilities:

Theorem 3.6 Let A be a matriz in SU(2,1). Then one of the following possibilities
occurs:

(i) A has two null eigenvectors with eigenvalues A and N where |A| # 1, in which case
A is loxodromic;

(i) A has a repeated eigenvalue of unit modulus whose eigenspace is spanned by a null
vector, in which case A is parabolic;

(i) A has a negative eigenvector, in which case A is elliptic.

We will prove Theorem 3.6 by way of a series of lemmas. First we investigate some
general properties of eigenvalues of matrices in SU(2,1).

Lemma 3.7 Let A € SU(2,1) and let X be an eigenvalue of A. Then Y s an eigenvalue
of A.

Proof: We know that A preserves the Hermitian form defined by J. Hence, A*JA = J
and so A = J71(A*)71J. Thus A has the same set of eigenvalues as (A*)~! (they are
conjugate). Since the characteristic polynomial of A* is the complex conjugate of the
characteristic polynomial of A, we see that if X is an eigenvalue of A then ) is an eigenvalue
of A*. Therefore A " is an eigenvalue of (A*)~! and hence of A. O

Corollary 3.8 If A is an eigenvalue of A € SU(2,1) with |A| # 1 then Y is a distinct
eigenvalue. In particular, either A has all three eigenvalues of absolute value 1 or else A

has a pair of eigenvalues A and N with IA| # 1 and the third eigenvalue A\™1 of absolute
value 1.

Next we show that any eigenvalue not of unit modulus corresponds to a null eigenvector
and that any eigenvectors that are not (Hermitian) orthogonal have eigenvalues A and

p=A

Lemma 3.9 Let \, p be eigenvalues of A € SU(2,1) and let v, w be any eigenvectors
with eigenvalues X\, u respectively.

(i) Either |\| =1 or (v,v) =0.

(i1) Either X\ =1 or (v,w) = 0.
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Proof: (i)
(v,v) = (Av, Av) = v, \v) = [\? (v, V).
Thus either |A| =1 or (v,v) = 0.
(i)
(v,w) = (Av, Aw) = (Av, uw) = AL (v, W) .
Thus either A\t =1 or (v,w) = 0. O

The following lemma is an easy consequence of the signature of C>!.

Lemma 3.10 If v,w € C>! — {0} with (v,v) < 0 and (w,w) < 0 then either w = \v
for some A € C or (v,w) # 0.

Proof: Let e, ey, e3 be the standard basis vectors for C?>! with the first Hermitian
form. That is

= (eq,e1); = (ez,e2); = —(e3,€3),,

0 = (e1,e2), = (e, e3), = (e3,e1); .

Write
v =v1e; + ve2 +vse3, W = wie; + waez + wses.

Because (v,v); <0 and (w,w); <0 we have
01> + Joa* < Josf?, P+ wal* < fws?.
Therefore v and ws are both non-zero. Suppose that (v, w); = 0. This is equivalent to
V1W1 + VW2 = V3W3.
Hence, for all A € C we have

lvg — )\w3|2 = \vg|2 — \wsT3 — \vsWs + |>\|2|u;3|2

v

\v1|2 — \wiT] — AW + |>\|2|w1|2
+|v2]? — AMwaTa — Avats + | A2 wo|?

= |v — /\wl\Q + |vg — )\w2|2.

Choose A = —v3/ws. The left hand side of this inequality is then zero. Since the right hand
side is non-negative, it too must be zero. This means that v —wjvs/ws = ve—waov3 /w3 = 0.
In other words, vy /w1 = vy/we = v3/w3 = A and so v = Aw. O

Using these lemmas we can analyse the eigenvectors of any A in SU(2,1) with an
eigenvalue not of unit modulus. This will prove Theorem 3.6 (i).

Lemma 3.11 Suppose that the eigenvalues of A € SU(2,1) are re, r=1e, e=29 where

r # 1 and they have eigenvectors u, v and w respectively then

(w,u) = (v,v) = (u,w) =(v,w) =0, (w,w)>0, (u,v)#0.
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Proof: We know that (u,u) = (v,v) = 0 by Lemma 3.9 (i) as  # 1. We also know
that (u,w) = (v,w) = 0 by part Lemma 3.9 (ii) as 7e3 # 1 and r~1e3* # 1. Using the
Lemma 3.10 we see that (u,v) # 0. If (w,w) < 0 then, by Lemma 3.10 we would have
(u, w) # 0 which is a contradiction. l

From now on we may assume that all the eigenvalues of A have unit modulus. We
begin with the case where they are all distinct. We show that such a matrix satisfies the
condition of Theorem 3.6 (iii).

Lemma 3.12 Suppose that the eigenvalues of A € SU(2,1) are distinct with absolute
value 1, and suppose they have eigenvectors u, v and w respectively then

(u,v) =(v,w) =(w,u) =0
and two of (v,v), (v,v), (w,w) are positive while the other is negative.

Proof: Since the eigenvalues are distinct we have (u,v) = (v,w) = (w,u) = 0, from
Lemma 3.9 (ii) Now using Lemma 3.10, this implies that at most one of (v,v), (v,v),
(w,w) is non-positive. Since (-,-) is non-degenerate and indefinite none of (v,v), (v, v),
(w,w) are zero and at least one of them is negative. O

We need to consider the case of repeated eigenvalues. We begin by supposing the
eigenvalues are €, e and e2 where % # =2,

Lemma 3.13 Suppose that A € SU(2,1) has a repeated eigenvalue €. Suppose that the
e -eigenspace is spanned by v, then (v,v) = 0.
Proof: Since €% is a repeated eigenvalue, there exists a vector u that is not a multiple
of v and which satisfies Au = e”u+ \v. Since u is not in the e*’-eigenspace we must have
A # 0. Then

(u,v) = (Au, Av) = (u,v) + de (v, v).

This implies that (v,v) = 0 as claimed. O

Lemma 3.14 Suppose that A € SU(2,1) has eigenvalues €, € and e=2%. Let v be an
eigenvector corresponding to e and w be the eigenvector corresponding to e~ . Suppose
that (w,w) < 0. Then in fact (w,w) < 0, (v,w) =0, (v,v) > 0 and the e"-eigenspace
1s two dimensional.

Proof: As v and w correspond to distinct eigenvalues of unit modulus then, by part
Lemma 3.9 (i) (v,w) = 0. If (v,v) <0 then by Lemma 3.10 (v, w) # 0, a contradiction.
Using Lemma 3.13, this means that the e?-eigenspace cannot be spanned by v. Therefore
there are orthogonal e?-eigenvectors v and u with (v,v) > 0 and (u,u) > 0. Since (-, -)
is indefinite and non-degenerate we have (w,w) < 0. O

Lemma 3.15 Suppose that A € SU(2,1) has eigenvalues ¢, € and 2. Let v be an
eigenvector corresponding to €’ and w be the eigenvector corresponding to e~ . Suppose
that (w,w) > 0. Then either
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(i) the € -eigenspace is spanned by v and (v,v) =0, or

(ii) the e-eigenspace is two dimensional and indefinite.

Proof: If the e'?-eigenspace is one dimensional, say it is spanned by v then, by Lemma,
3.13 we have (v, v) = 0.

On the other hand, suppose that there exist linearly independent e*’-eigenvectors v and
u. Without loss of generality we assume (u,v) = 0. We know that (u,w) = (v,w) =0
as efe=2i0 = ¢319 £ 1 Therefore u, v and w are linearly independent and hence form a
basis for C>!. Suppose that z is a negative vector in C*>! and write z = au + v + yw.
Then

0> (2,2) = af? (u,w) + B2 (v, v) + ]2 (w, w).

As (w,w) > 0, at least one of (u,u) or (v,v) is negative. As C>! has signature (2,1) one
of them is negative and the other positive. This gives the result. O

Combining these lemmas we see that if A has two distinct eigenvalues, one of which is
repeated, then A either satisfies the condition of Theorem 3.6 (ii) or Theorem 3.6 (iii).

Finally we need to consider the case where all three eigenvalues are the same, necessarily
a cube root of unity. We will show that A satisfies the conditions of Theorem 3.6 (ii). So
this will complete the proof of Theorem 3.6.

Lemma 3.16 Suppose that A € SU(2,1) has exactly one eigenvalue. Then either A is a
multiple of the identity or else the eigenspace is spanned by a null vector.

Proof: The eigenspace of A has dimension 1, 2 or 3. If it has dimension 3 then,
necessarily, A is a multiple of the identity. If it has dimension 1 then, by Lemma 3.13,
this eigenspace is spanned by a null vector.

Thus we only have to rule out the case where the eigenspace has dimension 2. Thus
we suppose that there exist non-trivial, linearly independent vectors v, w € C*! so that
Av = €v and Aw = e"’w. Taking linear combinations of v and w if necessary and using
Lemma 3.10, we may suppose that (v,v) # 0, (w,w) # 0 and (v,w) = 0. Let n be the
common (Hermitian) orthogonal of v and w, as found in (47) or (48). As v and w are
linearly independent we see that n % 0. Also, since neither v nor w is null, n # v, w.
Then v, w and n form a basis for C*>!. Therefore

(An,v) v (An, w) w (An,n)
(v,v) (w, w) (n,n)

An =

Now we have

(An,v) = €(An, Av) = ¢(n,v) = 0

and so (An,v) = 0. Similarly, (An,w) = 0. Thus An is a multiple of n. Hence n is an
eigenvector of A. Since A only has one eigenvalue, namely ¢, then n is in the span of v
and w. This is a contradiction. O

We now show that we can use the trace of A € SU(2,1) to decide the class of A. From
Corollary 3.8 we see that, if A1, Ao and A3 are eigenvalues of A, then Xl_l, Xg_l and Xg_l
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form some permutation of A1, A2 and A3. Let ya(z) be the characteristic polynomial of

A. Suppose that

3

XA(ZU) =T — azac2 + a1x — ag.

Then ay = A\ + A2 + A3 = tr(A) and ag = A\ A2A\3 = det(A) = 1. The other coefficient is

ar = AA2+ A3+ A3\
— )\3—1 +)\1—1 +>\2—1
= M +Xa+ A3
= tr(A).

We denote the trace of A by tr(A) = 7. Thus we have

xa(z) = 23— 12 + 7 — 1.

We want to find out when A € SU(2,1) has repeated eigenvalues. In other words, we
want to find conditions on 7 for which ya(x) = 0 has repeated solutions. This is true if
and only if x 4(z) and its derivative x’;(x) have a common root. Two polynomials have a
common root if and only if their resultant vanishes (see Kirwan [17]). Now

Xa(z) = 32% — 270 + 7.

Therefore a brief calculation shows that the resultant of y 4(z) and x/4(x) is given by:

1 - 7 -1 0
0 1 -7 T -1
R(xa,X4) =13 —2r 7 0 0|=|r*—8R(> + 18|72 — 27.
0 3 —-2r 7 0
0 0 3 -2r 7

Theorem 3.17 Let f(7) = |7|* — 8R(73) + 18|7|? — 27. Let A € SU(2,1) then:
(i) A has an eigenvalue X with |A| # 1 if and only if f(tr(A)) >0,
(i) A has a repeated eigenvalue if and only if f(tr(A)) =0,

(iii) A has distinct eigenvalues of unit modulus if and only if f(tr(A)) < 0.

Proof: Part (ii) follows from the reasoning given above. In part (i) we know that the
eigenvalues of A have the form re?, r—1e? ¢=2% with r # 1 by the corollary. A brief
calculation (exercise) shows that

flre? +r7e? 4 e720) = (r — )2 (r 4t = 2 cos(?ﬂ))2 > 0.

In part (iii) write the eigenvalues as e e, e where 6, ¢ and ¢ are distinct and sum to

zero mod 27. Then another brief calculation (exercise) shows that
f(eie + € + ew) = —4(sin(0 — ¢) + sin(¢ — ¥) + sin(¢ — 2/)))2 < 0.

This proves the theorem. O



3 ISOMETRIES 21

The curve f(7) = 0 is a classical curve called a deltoid, see Chapter 8 of Lockwood [20]
or page 26 of Kirwan [17] where it is written in terms of x = R(7) and y = (7). The
points outside correspond to case (i) in the theorem. This may be seen by considering A
with eigenvalues r, 7=! and 1 which lie in the interval (3,00) and those with eigenvalues
¢, € and 1 which lie in (—1,3). The rest follows by continuity.

Lemma 3.18 Suppose that A is an elliptic element of SU(2,1) with real trace, that is
tr(A) € [~1,3). Then the eigenvalues of A are 1, € and e~ where 2 cos(f) = tr(A) — 1.

Proof: If the eigenvalues of A are €, ¢’® and e=~® then
0= S(tr(A)) = sin(0) + sin(¢) — sin(f + ¢) = 4sin(0/2) sin(¢/2) sin(6/2 + ¢/2)

and so at least one of 0, ¢ or 6 + ¢ is an integer multiple of 2w. Hence A has eigenvalue
+1. The rest of the lemma follows easily. O

We now sum up the previous results about eigenvectors and eigenvalues and interpret
them in terms of information about fixed points.

First, consider a loxodromic map A. We know that A corresponds to a matrix with
eigenvectors re?, r=1e? ¢=29 where r > 1, with eigenvectors p,q € Vp and n € V.
respectively. These correspond to an attractive fixed point p and a repulsive fixed point ¢
on 8H(2C. The complex line L spanned by p and q is preserved by A. This line has polar
vector n.

Next, consider a parabolic map A. Such a map corresponds to a matrix with a repeated
eigenvalue of unit modulus whose eigenspace is spanned by a null eigenvector p. This
vector corresponds to a neutral fixed point p on OH%. There are two cases to consider,
namely when A has a single eigenvalue of multiplicity 3 and when A has two distinct
eigenvalues, one of which is repeated. In the first case we say that A is pure parabolic.
Later we shall see that pure parabolic maps correspond to Heisenberg translations. A pure
parabolic map has trace 3 or (—3 & 3i/3)/2, that is it corresponds to one of the three
corners of the deltoid. In the second case we say that A is screw parabolic. In this case
the non-repeated eigenvalue has an eigenvector n in V. The complex line polar to n is
preserved by A, and A acts as a translation there. Moreover, A rotates H(2C around this
complex line. Screw parabolic maps correspond to smooth points of the deltoid.

Finally, consider an elliptic map A. There are now three cases. First, suppose that A
has a repeated eigenvalue with a two dimensional eigenspace containing both positive and
negative vectors. This eigenspace corresponds to a complex line L on which A acts as the
identity. In particular, there are points of 8H% fixed by A and so A is called boundary
elliptic. As A fixes L and rotates H(QC around L, it is complex reflection in the line L. If A
is not boundary elliptic then it has an eigenspace spanned by a negative vector w. This
corresponds to a fixed point w € H(% In this case A is called regular elliptic. There are
two possibilities. Either A has a repeated eigenvalue with an eigenspace spanned by two
positive vectors. In this case A is complex reflection in the point w. Otherwise, A has
three distinct eigenvalues. Complex reflections again correspond to smooth points of the
deltoid while other elliptic maps correspond to points of the deltoid’s interior.
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4 The boundary

4.1 Relation to the Heisenberg group

We recall that one model of real hyperbolic n-space Hp is the upper half space in R", that
is {(wl, e Tp)|T, T € Ry 2y > 0}. The boundary of this model is the one point
compactification of R®~! thought of as the subspace of R” given by x, = 0. This model
of real hyperbolic n space is foliated by horospheres H,, for u > 0. The horosphere H,, is
a copy of R"~! given by points with z,, = u. We want to form the analogous construction
for complex hyperbolic space.

In this section we work in the Siegel domain model and we consider PU(2, 1) preserving
the second Hermitian form. First we study the boundary a little more carefully. A finite
point z is in the boundary of the Siegel domain if its standard lift to C*! is z where

zZ= |2 where 21 +7Z1 + ]22\2 = 0.

We write ( = 22/v/2 € C and this condition becomes 2R(z1) = —2|¢|?>. Hence we may
write 27 = —|¢|? 4+ iv for v € R. That is for ( € C and v € R:

—[¢)? +iv
2= | VX
1

Therefore we may identify the boundary of the Siegel domain with the one point compact-
ification of C x R.

We now investigate the effect of isometries in PU(2,1) on these finite boundary points.
We will show that the collection of these points has a group law giving it the structure of
the Heisenberg group. Thus the boundary of the Siegel domain is the one point compact-
ification of the Heisenberg group.

Lemma 4.1 Suppose that A € PU(2,1) has the standard form (25). Then the following
are equivalent:

(i) A fizes oo,
(ii) A is upper triangular,
(iii) g = 0.

Proof: Using the notation of (25), we see that A fixes oo, if and only if d = g = 0.
Moreover, A fixes oo if and only if A~! also fixes co. Using the expression for A~ given
in (25) we see that A~! fixes oo if and only if h = g = 0. Thus A fixes oo if and only if it
is upper triangular.

Clearly if A is upper triangular then g = 0. Conversely, assume g = 0. Using (40) and
(46) we see that this implies |d|> = |h|?> = 0. This proves the result. O
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Consider the map 7" from C x R to GL(3,C) given by

1 —v2¢ —[¢P+iv
T(Cv)=10 1 V2¢
0 0 1

It is easy to check that this fixes infinity and sends the origin to the point (¢, v). It is also
easy to check that 7'(¢,v) is in PU(2,1) since

. C [ vRC kP
(T(Cv 7))) =J2 (T(C7 U)) Ja = |0 1 _\@C = T(_Ca _U)'
0 O 1

In order to find the group law we multiply two such matrices

1 —v2¢ —[¢P+iv] [1 —V2& —[¢P+it

0o 0 1 0 0 1

[1 —V2(C+8&) —|¢+EP+iv+it+£¢— (¢
= |0 1 V2(¢+€)

0 0 1

= T(C+&v+t+23(€0)).

This means that 7' is a group homomorphism to PU(2,1) from C x R with the group law

(C,0) * (&) = (C+ & v+t +23(£Q)).

This group law gives C x R the structure of the 3 dimensional Heisenberg group N. We
also remark that $(£¢) = w((, &) where w is the standard symplectic form on C.

The Heisenberg group is not Abelian but is 2-step nilpotent. In order to see this observe

that

(C? U) * (57 t) * (_<7 _U) * (_67 _t) = (07 4%@-())
Therefore any point in N of the form (0,¢) is central and the commutator of any two
elements lies in the centre.

Geometrically, we think of the C factor of AV as being horizontal and the R factor as
being vertical. We refer to T((,v) as Heisenberg translation by ({,v). A Heisenberg
translation by (0,¢) is called vertical translation by t. It is easy to see the Heisenberg
translations are ordinary translations in the horizontal direction and shears in the vertical
direction. The fact that A is nilpotent means that translating around a horizontal square
gives a vertical translation, rather like going up a spiral staircase. We define vertical
projection I1 : N — C to be the map II(¢,v) = (.

4.2 Horospherical coordinates

Fix v € Ry and consider all those points z € H% for which the standard lift z has
(z,z) = —2u. This is equivalent to saying

zZ= |2 where 21 +7Z; + ‘2’2’2 = —2u.
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In other words, 2R(z1) = —|z2|> — 2u. We again write zp = +/2¢ which means that
21 = —[¢|? — u + iv. Thus z corresponds to a point (¢,v,u) € C x R x R, via
—[¢)? —u+iv

z= v
1

Let H, denote the set of points in H(% with (z,z)2 = —2u. This is called the horosphere
of height u. It carries the structure of the Heisenberg group. Thus, for example (left)
Heisenberg translation by (7,t) is given by

T(r,t) : (¢ v,u) — (C+ 70+t +23(CT), u).

In this way we canonically identify a point z in the Siegel domain with (¢, v,u) € N x Ry
and we call ({,v,u) the horospherical coordinates of z. Sometimes it is useful to identify
the finite boundary points with the horosphere of height zero, that is Hy = O0HZ — {oo}.
This means that (¢,v) = ((,v,0) € 9HZ — {o0}.

Likewise, we define the horoball B; of height ¢t to be the union of all horospheres of
height « > ¢. This is an open (topological) ball of dimension 4. Thus HZ is itself the
horoball of height 0.

With respect to horospherical coordinates the second Hermitian form is given by

<(C7Uau)’ (53t¢ 5))2 = _|C - £|2 —u—=:s +Z(U —t+ 2%(g<))

With respect to horospherical coordinates (z + iy, v, u) the Bergman metric is given by

s —4 o (z,z) (dz,z)
ds™ = <Z7z>2dt<<z,dz> <dz,dz)>

= = (duda® + dudy® + du® + (dv + 2z dy — 2y dz)?)
) 0 S fde
—4 4(uta? 2
= (da: dy du dv) ume u? 0 %z dy
0 0 L 0 du
—2 22 g 1) \dv
u? u? u2

Hence, as a Riemannian metric, the Bergman metric is given by the inner product on the
(real) tangent space to the Siegel domain defined, with respect to the basis (dz, dy, du, dv),
by the matrix g, where

du+y?)/u?  —dxy/u? 0 —2y/u?
B —dxy/u?  Au+2?)/u? 0 27 /u?
&= 0 0 1/u> 0
—2y/u? 2z /u? 0 1/u?

(49)

Therefore the volume form on the Siegel domain is given by

4
dVol = y/det(g) dz dy du dv = — dz dy du dv. (50)
u
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Alternatively, we could have used —z1 —Z1 — |zg\2 = 2u to derive this from Proposition
2.2 and the Jacobian relating horospherical coordinates and Siegel domain coordinates:

dx dy du dv = 2 dz1 dyi dzro dyo.
We now investigate the how the Cayley transform from Section 2.3 changes between

horospherical and ball coordinates. Consider (x1 + 4y;,#2 + iy2) in the unit ball in C2.
Taking the canonical lift to C*! and then applying the Cayley transform gives

1 1 0 1 T+ 1y1 ($1+1+iyl)/\/§
7 0 V2 0] |za+iy| = T2 + 1Y2 :
1 0 -1 1 (x1 — 1 +1iy1)/V2

Projectivising so that the third coordinate is 1 this becomes

(x1+1+iy1)/(z1 — 1 +iy1)
V2(xo +iye)/(x1 — 1 +iy1)
1
(12 + 1% — 1= 2iy1)/ ((z1 — 1)* + 11?)
= |V2(zim2 + y1y2 — 22 + imiys — iyiwe — iy2) /(w1 — 1)% + 11?)
1

Thus the horospherical coordinates become ((, vu) where

T1T2 + Y1Y2 — T2 + 1T1Y2 — 1Y1T2 — 132

¢ = (r1 — 1) + 912 ’
—2y1
U - )
(x1 —1)2 + 912
1— 212 — 1% — 292 — yo?
u =

(r1 — 1) + 912

A straightforward, though lengthy, computation shows that the Jacobian of this transfor-
mation is

4
((a}l —1)2+ y12)3.

Hence horospherical coordinates and ball coordinates are related by

4
dx dy dudv = 3 dxq dyy dzxo dys.

((z1 = 1) +31?)

Using Proposition 2.1, we can see again how the volume form transforms between dif-
ferent sets of coordinates:
16

4
dVol = Ao =2 — a2 = y22)3d$1 dyy dxo dyo. = $dl’ dy du dv.

We may also define horospherical coordinates based at a point other than infinity. Later
we will want to do this for horospherical coordinates based at the origin o = (0,0) € N.
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Because horospherical coordinates are not defined intrinsically but require some normali-
sation we need to be careful about what the horosphere centred at o of height u means.

We define horospheres and horoballs based at o as the image of those based at co under
the inversion ¢ given by the matrix

v=|0 -1 0. (51)

We now investigate the effect of ¢ on horospherical coordinates

22 —u—i
0 0 —1] [—lzP—u+iv -1 o
0 -1 0 V22 = 2z | _ov2e
2 . [2]2+u—iv

-1 0 0 1 || +u — v 1

Thus the map ¢ carries the point of H(QC with horospherical coordinates ({,v,u) to the
point with coordinates

_C —0 u
s Uy - 3 y . 52
"6 v ) <|C|2+u—iv (|C]2+u)2+z;2 (|C|2+u)2+v2> (52)

Using this we define horospherical coordinates about o as the image under ¢ of horospherical
coordinates about oo.

Similarly elements of PU(2,1) fixing o may be obtained from those fixing oo by con-
jugating by ¢. Thus we may speak of Heisenberg translation by (7,t) fixing o. This is
just the conjugate by ¢ of the Heisenberg translation by (7,t) fixing co. As a matrix in
PU(2,1) it is given by

1 0 0
V2r 1 0
—]7\2 +it —/27 1

4.3 The Cygan metric

In this section we define a metric on the Heisenberg group, the Cygan metric. We extend
the Cygan metric to an incomplete metric on H(2C which agrees with the Cygan metric on
each horosphere. This metric should be thought of as the counterpart to the Euclidean
metric on the upper half space model of real hyperbolic space.

The Heisenberg norm is given by

‘1/2

(o) = |Ie? = v
This gives rise to a metric, the Cygan metric, on N by

po((C1,01), (Coyv2)) = [ (Cryv1) ™" (Coy 02)]-
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In other words
Y
po((C1v1), (G2, v2)) = ‘|C1 — Gof* — iy + vy — 21’3((1(2)}1 g

If we take the standard lift of points on 9HZ — {co} to C*! we can write the Cygan metric
in terms of the second Hermitian form:

. . 1/2
—G[? + ivy @2+wQ>/

po((C1yv1), (Goy02)) = < V2¢ , V2(
1 1

We remark that the Cygan metric is not a path metric. That is, there exist pairs of
points such that the Cygan distance between them is strictly shorter than the Cygan length
of any path joining them (see section 3.1 of [7] for more details of the connection between
metrics and path metrics). In order to demonstrate this fact it suffices to give a pair of

points (¢1,v1) and (2, v2) so that for all points ({3, v3) with ({3,v3) # ((1,v1), (¢2,v2) the
triangle inequality is strict. That is

po((C1,v1), (G2, v2)) < po((Cryv1), (G35 v3)) + po((C3,v3), (G2, v2)).

By the triangle inequality, the Cygan length of any path joining (¢1,v1) and ({2,v2) is at
least as big as the right hand side of this inequality. It is easiest to demonstrate this when
(¢1,v1) = (0,0) and ({2,v2) = (0,1). Then we have

p0((0,0), (C3,v3)) + po((¢35v3), (0,1))
— |16 +iws| 7+ |G + (s — 1)

’,03‘1/2 + "1)3 _ 1‘1/2

1

p0((0,0),(0,1)).

In the first inequality we have have equality if and only if (3 = 0 and in the second
inequality we have equality if and only if v3 = 0 or v3 = 1. Thus we have strict inequality
whenever ((3,v3) # (0,0), (0,1). .

We can extend the Cygan metric to an incomplete metric on HZ — {co} as follows

1/2

A\VARLYS

p0((C 1), (G2 02)) = [[G1 = G s — ] — iy iy~ 209G 8| (53)

>|1/2

We remark that this agrees with ’(zl, Zo if and only if one (or both) of z; or zy is null,

that is it corresponds to a point of 9HZ. We now show that the extended Cygan metric

on HZ — {oo} is indeed a metric. By restricting to points on OHZ — {oo}, this will also
show that the original Cygan metric on N is a metric.

Proposition 4.2 The function Hi(% — {00} given by equation (53) is a metric.

Proof: It is completely obvious that that both po((¢1,v1,w1), (2, v2,u2)) = 0 if and
only if (¢1,v1,u1) = ((2,v2,u2) and that

po((C1,v1,w), (C2yv2,u2)) = po((Co, v2,u2), (Cryv1,u1))
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for all points in Hi(% — {oo}. Therefore, it suffices to show that

po((C1,v1,u1), (G2, va,u2))
< po((¢1,v1,u1), (G3,03,u3)) + po((¢3,v3,u3), (G2, v2,u2)).

Now we have

¢ — Gol* — 2iS(C1C)
= |G =26 + |Gl
= ¢ — GI* = 2(¢ = ¢3)(Co — C3) + 12 — Cal* — 2iS(¢1C3) — 2iS(CsCy).

Therefore

5 (¢ v, u), (C2,va,u2))
11— Gf* + |ur — ug| —dvy + ivg — 22‘%(@“122)‘

< (16— Gl un = s+ s — ol — v+ g — g + iy — 2G|
<[l = Gl + fur — sl — oy + oy — 2S(GTy)|

+2|¢1 — G3f 163 — Ga| + ‘\43 = Gl + Jug — uz| — dvs +iva — 21’3((:%22)‘
< (PO((ClaUIaul)a (¢3,v3,u3)) + po((C3, 3, u3), (C2,122>u2)))2'

g

We now discuss Cygan spheres. The Cygan sphere of radius » € Ry and centre
20 = (€0, v0) = (Co,v0,0) € OHZ is defined by

Sr(z0) ={z=((,v,u) : po(z,20) =7}.

In terms of coordinates, S, (zp) is given by
Sy (z0) = {z — (o) ¢ ||C = o +u+ iv — i — 2@%(@0)) _ Tz} '

Suppose that (o = 0. Cygan spheres centred at zgp = (0,v) are ovoids with the property
that along the locus ¢ = 0 they have fourth order contact with their tangent plane. The
diameter of their equator, that is the points (¢,0,0) with |¢| = r, grows linearly with
r. On the other hand, the diameter of their meridians, that is the points (0,v,u) with
|u + iv — ivg| = 72, grows quadratically with r. Thus, as r tends to zero, Cygan spheres
become very short and fat, like a pancake, and, as r tends to infinity, Cygan spheres of
radius r become very long and thin, like a cigar.

When (y # 0, Cygan spheres are sheared ovoids, the magnitude of the shear being pro-
portional to [(p|. Otherwise they enjoy the same properties outlined above. In particular,
Cygan spheres are always convex.

We conclude this section by considering the subgroup of PU(2,1) stabilising the point
at infinity. Such maps will be called Heisenberg similarities. We have already seen the
group of Heisenberg translations. This is a normal subgroup of the group of Heisenberg
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similarities. Using this subgroup, it is sufficient to classify those elements of PU(2,1)
fixing both oo and the origin o = (0,0). For example, we have Heisenberg rotations.
These are given by (¢,v) — (e?¢,v) and are boundary elliptic. Also we have (real)
dilations (¢,v) — (r¢,7?v) where r € R;. A product of a Heisenberg rotation and a real
dilation is a complex dilation

A (C?U) — (T6i0C7r20) - ()‘Ca ‘)“20)

Here A = re is the multiplier or complex dilation factor of A. Complex dilations are
isomorphic to R x U(1). The group of Heisenberg similarities is the semi-direct product
of the complex dilations and the Heisenberg translations, isomorphic to (R+ X U(l)) x N

Lemma 4.3 As a matriz in PU(2,1) (with respect to the second Hermitian form) the
complex dilation A : (¢, v,u) — (A, |A|?v, |M|?u) is given by the lozodromic matriz, also
denoted A:

A0 0
A=10 1 0
0 0 At
Proof: We may write
A0 0
A=10 1 0
00 !

Choose any if z = ({,v,u) € H%. Then taking the canonical lift z of z to C*!, we see that
A(C,v,u) is

A0 0 —[¢)? —u+iv A(=[¢]? — u+iv)
01 0 V2 = V¢
0 0 X! 1 A1
AP (=I¢1* = u + iv)
= X V2XC
1

Thus the canonical lift A(z) of A(¢,v,u) to C*! is

AP (=IC17 = u+ iv)
A(z) V2XC
1

0

The following lemma shows how complex dilations distort the Cygan metric and also
how their Cygan translation lengths vary. These will be very useful to us when considering
the action of complex dilations on GH(ZC.

Lemma 4.4 Suppose that A € PU(n,1) fizes o and oo and has complex multiplier \.
Writing M = |\ — 1| + |A~1 — 1|, we have

(i) po(A(z), A(w)) = [Npo(z,w) for all z, w € HE,
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(ii) po(A(z),z) < INY2MY2po(2,0) for all z € OHZ — {0}

Proof: Let z = ((,v,u) and w = (&,t,s). The canonical lifts A(z) of A(¢,v,u) and
A(w) of A(€,t,5) to C>! are

AP (=[¢” = u +iv) AP (1€ = s +it)
A(z) = V2XC and A(w)= V2AE .
1 1

From this we see that

S oy |12
po(A(z2), A(w)) = ‘\AP(\C — &P 4 Ju— 8| —iv + it — 21%((5))’
) _ /2
= I = €2+ fu— ] — v + it — 20S(CE)|
— polz ).
This proves (i). For part (ii) we argue similarly with z = ({,v,0):
— . /2
po(A(2),2) = [IARICI2 = 20000 + [C[2 = ilAPo + v
_ - N1V
= PR= DR = iv) = (A= D (¢P + )|
1/2 /2
< (W+) =12 — o
IA[Y2M2 po (2, 0).
This completes the proof of (ii). O

The next lemma shows how a map in PU(2,1) not fixing oo distorts the Cygan metric
on the boundary.

Lemma 4.5 Let B be any element of PU(2,1) that does not fix oco. Then there exists a
positive real number rg depending only on B so that for all z, w € 9HZ — {co, B™1(c0)}
we have

(i)
r52po(z,w)

po(B(2), B(w)) = po(z, B~1(00)) po(w, B~} (00))

(i) 2
B

po(z, B=1(o0))

Proof: As above let z = ((,v,0) and w = (§,¢,0) have canonical lifts

—[¢]? + v —[&[* + it
zZ = V2¢ and w= V2¢ .
1 1

po(B(2), B(ox)) =
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Let
a b c

B=|d e f
g hoj
Define 75 = 1/|g|"/2. Since B(co) # oo we know g # 0 as so rg is well defined. Clearly

rp only depends on B.
The canonical lifts of B~!(c0) and B(oc) are

i/g a/d
h/g and d/g
1 1
Hence
ol B oe)) = [-Iel + v vVach/g+ife]
polw, B oc)) = |-le? e+ Vaen/g+ g

Moreover, the canonical lifts B(z) and B(w) of Bz and Bw are

[(a(—|¢[* + iv) + bvV2¢ + ¢) /(9(—[¢[* + iv) + hvV2( + §)
B(z) = |(d(=[¢*+iv)+ev2(+ f)/(g(—[¢|* +iv) + hWV2( +5) |,
1
(a(=]& +it) + bV2¢ + ) / (g(—[¢]* + it) + hv/2€ + j)
B(w) = [(d(—[¢]* +it) + evV26+ )/ (9(— [ +it) + hV/2E + §)
1

Hence

po(B(z), B(w))
|—[¢[2 + v + 2¢E — |¢J2 — it|*?
|g(—1¢I2 + iv) + hv2¢ + 42| g(— €2 + it) + hy/2E + j|
1"32[)0(2,’(0)
po(z, B~1(00))po(w, B~*(c0))

This proves (i). Similarly

1/2

1
. (1/2
lg(=I¢I2 + iv) + hv/2C + | |12
rp2
pO(szil(Oo)).
This proves (ii). O

po(B(2), B()) =

An important consequence of this proposition is that B sends the Cygan sphere of radius
rp with centre B~ (c0) to the Cygan sphere of radius rg with centre B(cco). Motivated by
the analogous Euclidean spheres in real hyperbolic space, we define the isometric sphere
of B to be the Cygan sphere of radius 75 and centre B~1(oc0).



4 THE BOUNDARY 32

Lemma 4.6 Let B be a loxodromic map with multiplier X\ € C, attractive fized point p
and repulsive fixed point q¢ and isometric sphere of radius rg. Suppose that p, ¢ # oo, and
let M = |\—1|+ A" —1|. Then

(Z) pﬂ(po_l(oo)) - |)\‘1/27"B and pO(p;B(OO)) = ’)\|_1/27=B}
(i) po(q, B1(00)) = |A|"Y2rp and po(q, B(c0)) = |A[V2rp,

(iii) po(p,q) < MY ?rp.

Proof: Let C be any element of PU(2,1) with C(0) = p and C(c0) = ¢ as found in
Proposition 3.3. Let rc be the radius of its isometric sphere. Then A = C~'BC is a
complex dilation with multiplier A\. Using Lemma 4.5 (ii) with z = B(z) = ¢ we have

rg’ = 00 (q, B(oo))po (q, B_l(oo)).

Also, substituting for B = CAC™!, ¢ = C(c0) and using Lemma 4.5 (ii) again, but this
time with C, we have

po(g, B(00)) = po(C(o0), CAC™!(c0))
'I"C‘2
po(AC (), C1(x))

T02

[Alpo(C~1(00), A71C1(00))
= |AI7"po(C(00), CAC™H(c0))
= A" po(g, B ().

Part (ii) follows immediately. Part (i) follows by applying part (ii) to B~!.
For part (iii) we begin with

rg® = po(q, B(oo ))po(q, !(o0))
—  po(C(00), CAC™}(0)) po(C(0), CA™1C ™ (00))

4

_ rc
= () ACT(50)) oo ATCT())

Now using Lemma 4.4 (ii) we have

po(C1(00), AC™Y(0)) INY2MY2pg (0,0 (00))
00 (C_l(oo), A_lC_l(oo)) < ATY2MY2p, (o, C_l(oo)).

IN

Therefore

7"04

Mpo (o, C'_l(oo))2
2

[N}
Y

B
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where we have used Lemma 4.5 (ii) again. Substituting p = C'(0) and ¢ = C(o0) gives the
result. g

We now discuss parabolic maps. As a matrix in PU(2,1) (left) Heisenberg translation
by (7,t) is given by
1 V27 —|7)2+it
A=10 1 Vor . (54)
0 0 1

At a point z = ((,v) € N the Cygan translation length of A is given by

12
ta(z) = po(A(2),2) = ‘|T!2 + it + 43(7¢)| .

We now estimate how this translation length changes with z.

Lemma 4.7 Let A be Heisenberg translation by (7,t) and let ta(z), ta(w) denote the
Cygan translation length of A at the points z = (¢,v) and w = (§,s) in N'. Then

ta(w)? <ta(z)? + 47 ¢ - ¢|.
Proof: We have
ta()? = |I7[? + it + 4iS(79)|
= “T|2 + it + 4iS(1¢) + 4iS (T (€ — Z))‘
< ‘\TF + it + 41'%(72)‘ + 47| € = ¢|.

g

Let A be the screw parabolic map with fixed point oo, multiplier ? and axis the complex
line Ly = {(C,v,u) (¢ =( € C}. Suppose that A acts as Heisenberg translation by
(0,t) on Ly4. In horospherical coordinates A is given by

A (Gou) (e + G — ), v+t +23((¢ — G)Go(1 =€) u).  (55)
As a matrix in PU(2,1) the map A is given by
1 VAG(1 - ei®) —20G2(1 - ) + it
i0

A= 0 e V26 (1 — ')
0 0 1

At a point z = ({,v) € N the Cygan translation length of A is
1/2

t(2) = po(A(2),2) = [2IC = GoP(e = 1) + it

Lemma 4.8 Let A be the screw parabolic map given by (55). Suppose that tsin(6) > 0.
Let ta(z), ta(w) denote the Cygan translation length of A at the points z = ({,v) and
w=(&s) in N. Then

taw) < ta(z) + |2l — 2 — 1)
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Proof: Since tsin(f) > 0 it is easy to see that

2¢ = GF(e 1) < ta()*

Using this fact and the triangle inequality we have
ta(w? = |206 =GP — 1) +it
< [26 - Gl 1) +it| + [2(1¢ - Gl ~ € = o) (e — 1)
= |2¢ = Gl — 1) +it

+2{I¢ = ol = I = Gol| (1¢ = Gol + 1€ = ol ) ¥ = 1

< [21¢— G’ — 1) +it
216 = ¢I(20¢ = Gol + € = ¢1) e — 1

< a2 +2J2c - P - 1) J2le - e - )|~
|2l — (e - 1)

< 12+ 20a(2) 206 — e 1)+ [ele - (e - 1)

_ (m@y+Pm—cF@”—wF”)?

5 Subspaces of complex hyperbolic space

5.1 Geodesics

Consider a pair distinct null vectors p, q € V. Without loss of generality normalise so
that (p,q) = —1. These vectors correspond to a pair of points p and ¢ in OH%. We want
to describe the geodesic v with endpoints p and q.

Proposition 5.1 Let p, q € Vy be null vectors with (p,q) = —1. For all real t let y(t) be
the point in H2 corresponding to the vector e!Pp+et2q in C*'. Then~ = {'y(t) |t e R}
1s the geodesic in H(% with endpoints p and q parametrised by arc length t.

Proof: First observe that v(¢) is in HZ. This is because

2ptet2q) = elp,p)+ (p,a) + (a,p) +e H{q,q)

= -2

(et/Qp + e_t/Qq, e
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It suffices to show that p(v(t), ¥(s)) = |t — s for all real s and ¢.

p(v(t), 7(8)))
2

<€t/2p+€7t/2q, es/2p+efs/2q><es/2p_‘_€fs/2q’ et/2p+67t/2q>

<€t/2p+ e—t/Qq, et/2p+ e—t/2q><€s/2p+ e‘S/Zq, es/2p+ e—s/2q>

2
B (_e(ts)/Q _ e(t+s)/2>
B —2

This proves the result. O

cosh? (

Any pair of points z, w € H(% lie on a unique geodesic. We now use the description of
geodesics given above to find an expression for this geodesic.

Proposition 5.2 Let y(t) be a geodesic in H(ZC parametrised by arc length t. Suppose that
(1) and y(s) correspond to the points z and w in V_ where (z,z) = (w,w) = —2. Then
~(t) is given by the vector

sinh((t — s)/2) .t sinh((r —t)/2)
sinh((r — 5)/2) sinh((r — 5)/2)

Proof: Suppose that the endpoints of v correspond to the null vectors p and q with
(p,q) = —1. Then

w.

7 — er/2p+ 677“/2(17 - es/2p+ 873/2(1.
Then we see that
2sinh((r —s)/2)p = e g — e Pw, 2 sinh((r — 5)/2)q = —e*?z 4 ¢ Pw.
The point 7(¢) then corresponds to

o2 ot2g — Sinh((t — s)/2) , sinh((r — t)/2) w
P d sinh((r — 5)/2) * sinh((r — s)/2)

We now find the height of a point on a geodesic neither of whose endpoints is co.

Proposition 5.3 Let p and q be points of GH?C neither of which is 0o. Let up, be the
mazimal height of a point on the geodesic with endpoints p and q. Then uy,q < po(p, q)%/2.

Proof: Suppose that the points p and ¢ correspond to the vectors p and q with
(p,q) = —1. Let n denote their cross product, as defined in (48). As given above an
arbitrary point ~y(¢) of the geodesic with endpoints p and ¢ corresponds to the vector
e!/?p + e7t/2q. Let e; be the column vector (1,0,0)! corresponding to oo. Thus using
Lemma 3.4 we have

0 = (e1,e1)2 = (n,er)2(e1, )2 — (p,er)2(e1, q)2 — (q,er)2(e1, p)2.
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Now p3 = (p,e1)2 and g3 = (q,e1)2 and so

_ __ 2
P33 + q3P3 = |(e1,n)2|” > 0.

In order to calculate Cygan distances using the Hermitian form we must re-normalise
the vectors, in this case p, q and e!/?p + e~%/2q, so that their third coordinate is 1. This
means that the Cygan distance from p to ¢ is given by

1/2
p1/p3 a1/93 / 1
po\pP,q) = p2/P3| [92/43 = T e e
( ) { { ]p3|1/2\Q3|1/2
Similarly, the height u; of the point () is given by
1 1

Ut = = — — — .
let/2ps + e~t/2q3|2  et|p3|? + p3gs + qsps + e t|gs|?

Using elementary calculus we see that the right hand side is maximised when e’ = |g3|/|ps|.
Thus

1

2|p3||q3| + p3qs + q3p3
1

2|p3| |gs3]
= po(p.q)?/2.

Upq

5.2 Complex lines

Consider a complex line L in C? that intersects the unit ball (which we think of as H%).
Let z be any point in LHH?C. We can apply an element of PU(2,1) to L so that it becomes
the last coordinate axis {(O, 29)|z2 € C}. The intersection of this with the unit ball is
the disc |z2| < 1. We claim that the restriction of the Bergman metric to this disc is the
Poincaré metric of constant curvature —1.

In order to see this, let z = (0, 22) and w = (0, ws) have lifts to C*! given by

0 0
z = |29 and w = |ws
1 1

The distance between these points is given by

cosh? plz, w) _ (z, W), (w,z);
h < 2 ) (z,2), (W, W),
20w — 1|

(I22? = D(fwa* = 1)

This is just the Poincaré metric (see page 132 of [2]).



5 SUBSPACES OF COMPLEX HYPERBOLIC SPACE 37

In other words any complex line L is an embedded copy of H(lc. This subgroup of
PU(2,1) preserving this disc is the projectivisation of the block diagonal matrices

e 0

o 4
where ¢? € U(1) acts on Lt rotating H2 around L and A € U(1,1) is an isometry of the
Poincaré metric on L acting by Mobius transformations. The group of such transforma-
tions is then P(U(1) x U(1,1)) < PU(2,1). Clearly this group is isomorphic to U(1,1).
Any other complex line intersecting H% is the image of V under an element B of PU(2,1).
The stabiliser of this complex line is the conjugate of P(U(1) x U(1,1)) by B.

Taking the second Hermitian form and z lying in the subset given by {z = (21,0)|z € C}

we see that z lies in HZ if and only if (z,z), = 2R(21) < 0. This is a half-plane, in fact the
left half plane. In order to get the more familiar upper half plane we write z = (iz1,0).

This point corresponds to a negative vector if and only if (z1) > 0. Lifting the points z
and w to

121 1w
z= |0 and w= |0
1 1
we find that the distance function is given by The metric is given by the distance function
ot (A1) () (w2,
2 <Z,Z>2 <W,W>2
_ |a-w

23(21)2S(wy )

This is just the Poincaré metric on the upper half plane (see Theorem 7.2.1(iv) of [2]).

5.3 Totally real Lagrangian planes

Now consider a totally real Lagrangian plane R. This may be characterised by (v, w) € R
for all v, w € R.

Any totally real Lagrangian plane R is the image under an element of PU(2,1) of the
subspace comprising those points of H% with real coordinates, that is an embedded copy of
real hyperbolic space H2 = {(ml, x9)|x1, X2 € R}. This subspace intersects the unit ball
in the subset consisting of those points with 212 + 192 < 1. We claim that the Bergman
metric restricted to this disc is just the Klein-Beltrami metric on the unit ball in R? with
constant curvature —1/4. To see this, write z = (z1, 22) and y = (y1, y2) in H3. Lift =
and y to column vectors x and y in C>! as

1 (2
X = |2 and y= |y
1 1
The we have
Coshz(f)(ﬂfay)) _ yh (X
2 (x,%); (¥, ¥

(z191 + 22 — 1)?
(@12 + 222 = 1)(11® +92° — 1)
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This is the Klein-Beltrami metric on the unit ball in R? with constant curvature —1/4. It
is more usual to define the Klein-Beltrami metric with curvature —1. In order to do this,
replace p(x,y)/2 in this formula with p(z,y) (see Chapter 3 of [24]).

Thus we obtain an embedded copy of Hﬁ. The isometries preserving this space lie in the
projectivisation of the natural inclusion O(2,1) < U(2,1). It is also preserved by complex
conjugation. Any other totally real Lagrangian plane is the image of this one under B in
PU(2,1) and is stabilised by the conjugate by B of the projectivisation of O(2,1).

5.4 Totally geodesic subspaces

In this section we show that complex lines and totally real Lagrangian planes are totally
geodesic. Together with geodesics, these are the only totally geodesic proper subspaces of
H(2C. We will not show the latter fact.

Proposition 5.4 All complex lines L in H% are totally geodesic.

Proof: Let L be a complex line. We need to show that for all choices of z and w in
L the geodesic segment joining z to w lies in L. We may represent z and w by negative
vectors with (z,z) = (w,w) = —2. From Proposition 5.2 we see that a general point on
this geodesic segment is given by

sinh((t — 5)/2) ”t sinh((¢t —r)/2)
sinh((r — s)/2) sinh((s —r)/2)

As this is a linear combination of z and w it corresponds to a point of L. O

W.

Proposition 5.5 All totally real Lagrangian planes R in H(% are totally geodesic.

Proof: Let R be a totally real Lagrangian plane. We must show that for all choices
of z and w in R the geodesic segment joining z to w lies in R. Totally real Lagrangian
planes are characterised by (v, w) € R for all choices of v and w in R. Therefore we must
show that, every point on the geodesic segment joining z and w corresponds to a vector
whose Hermitian product with every point in R is real.

As before we may lift z and w in R to vectors with (z,z) = (w,w) = —2 and (z, w) € R.
Then a general point on the geodesic segment joining z and w is given by

sinh((t — 5)/2) . sinh((¢t —r)/2)
sinh((r — s)/2) sinh((s —r)/2)

W.

Let v be any vector corresponding to a point of R. Then (v,z) and (v, w) are both real.
Thus

<V sinh((t — 5)/2) - sinh ((t —r)/2) W>
"sinh((r — 5)/2) sinh((s — 7)/2)

sinh((¢ — 5)/2)
sinh((r — 5)/2)

(v,z) +

is real for all t. Hence the geodesic segment from z to w is in R. U
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Alternatively, we could have used the following lemma together with the fact that a
complex line is the fixed point set of a boundary elliptic isometry and that any totally
real Lagrangian plane is fixed by an anti-holomorphic isometry conjugate to complex
conjugation.

Lemma 5.6 Any subset S of H% that is precisely the fixed point set of an isometry is
totally geodesic.

Proof: Consider two points zp, 21 € S. By negative curvature there is a unique geodesic
a:[0,1] — H2 joining 20 = «(0) to 21 = «(1). The distance of z; = a(t) from 2 is a
monotone increasing function of .

We need to show that the geodesic « lies in S. Suppose it does not. Then there is a
point z; = a(t) for some ¢ € (0,1) on this geodesic not lying in S. By assumption, there
exists an A € PU(2,1) so that A(z) = z if and only if z € S. In particular A(zp) = zo,
A(z1) = z1 but A(z) # z. Therefore A(«) is a geodesic joining zp to z1. Now z; is the
unique point of a a distance p(zg, z;) from zp and A(z;) is the unique point of A(a) a
distance p(zp, z;) from zp. As these two points are different we see that A(«) # a. O

The following theorem follows using the general theory of symmetric spaces. Its proof
is beyond the scope of these notes A sketch proof is given in Section 3.1.11 of Goldman
[11].

Theorem 5.7 All totally geodesic subspaces of H% are either complex linear or totally
real.

Corollary 5.8 FEvery totally geodesic subspace of H(% has real dimension which is either
1 or 2. In particular, there are no totally geodesic real hypersurfaces.

This corollary means that there are no polyhedra in the standard meaning of the term.
We therefore have to generalise the notion of polyhedra by defining suitable classes of real
hypersurface for their boundaries.

We conclude this section by showing how totally real and complex linear subspaces fit
together. The real line {(0, x)|x € ]R} is a geodesic. It is contained in a unique complex
line, namely {(0, z)|z € C}. It is also contained in a one parameter family of totally real
subspaces, namely for each 6 € [0, 7) there is a totally real subspace {(re?, z)|r, z € R}.

5.5 Boundaries of totally geodesic subspaces

We now describe the intersection of complex lines and totally real planes with the boundary
of the Siegel domain.

First consider a complex line L passing through the point at infinity. By applying a
suitable Heisenberg translation, we may suppose that L also passes through the origin
o= (0,0) € N. In other words, L is the complex line spanned by

1 0
0 and 0
0 1
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This complex line L consists of points

—u 4+ v
0
1

These points have horospherical coordinates (0,v,u). Hence, L intersects the finite part
of the boundary in the vertical axis {(0,v)|v € R} of N. By applying a Heisenberg
translation, it is easy to see that any other complex line passing through infinity intersects
the finite part of the boundary in the vertical line {(CO, v)|v € R} for some fixed (g € C.
This is called an infinite chain or infinite C-circle.

Now consider a complex line not passing through the point at infinity. The simplest
example of such a line which intersects complex hyperbolic space is the line L spanned by

-1 0
0 and 1
1 0

This complex line L consists of points

1] [P - - 1)
vac = | v
1 1

These points have horospherical coordinates (C ,0,1 — |C \2) Hence, L intersects the
boundary of the Siegel domain in such points with || = 1. In other words, L is the
circle {(ei0,0)|«9 € [0,2%)}. By applying a Heisenberg dilation we see that the circle
{(roe®,0)|0 € [0,27)} for any fixed ry € Ry is also the boundary of a complex line. Now
applying Heisenberg translation by (zo+iyo, vo), we see that the most general complex line
not passing through infinity intersects the boundary of the Siegel domain in the following
ellipse whose vertical projection is a circle

{(roew + xo + Yo, vo + 2royo cos(f) — 2rozosin(9)) |6 € [0, 27r)}

for fixed ro € Ry and (zg + iyo,v0) € N. Observe that the eccentricity of the ellipse
increases with |xg + iyo|. This is called a finite chain or finite C-circle.

We do the same for totally real subspaces. First consider the totally real subspace R
passing through o and oo which is fixed by complex conjugation. Hence R consists of
vectors in C?! with real entries. Finite points in the Siegel domain with real entries have

the form

—.TQ—'U,

\@x
1
where x € R. These points have horospherical coordinates (x,0,u). Hence L intersects

the boundary at oo and in the points

2

—T
ﬂx
1
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where x € R. In other words OR is the x axis of the Heisenberg group, that is the subset
of the Heisenberg group given by {(x, 0)|xz € ]R}. By applying Heisenberg rotations we
see that for any fixed 6y € [0,27) the line {(2e,0)|z € R} is also the finite part of
the boundary of a totally real plane containing o and co. In particular, the y axis of the
Heisenberg group is such a line. By applying Heisenberg translation by (z¢ + iyo, vg) we
find the general form for the boundary of a totally real plane passing through oco. It is

{(xewo + xo + 1Yo, vo + 2xyo cos(by) — 2z sin(ﬂg)) |z € R}

for fixed 6y € [0,27) and (zo + iyo,v0) € N. Observe that the gradient of the line is
proportional to its distance from o. Such boundaries of totally real Lagrangian planes
containing oo are called infinite R-circles.

We now do the same for the boundaries of totally real subspaces not passing through
oo. This is more complicated. We begin with the boundary of the totally real subspace R
fixed by the following involution

21 Z3
z9 — §2
23 21

Points in the boundary of the Siegel domain fixed by this involution have the form

_p2i0

in/2 cos(20) e’ where 0 € [—7/4,7/4) U (3w /4,57 /4].
1

The values of § are chosen to make cos(20) non-negative. In other words the subset of the
Heisenberg group given by

{(i\/COS(ZG)ew, —sin(20))[0 € [—m/4,7/4) U (37/4, 57r/4]} .

This is an example of a finite R-circle, and is called the standard finite R-circle.
This R-circle R is a non-planar space curve and we now discuss it slightly more carefully.
In order to simplify notation, define

p(0) = (i\/COS(QQ)ew, —sin(26)).

Observe that R is connected in spite of the fact that the values of the parameter 6 are
contained in two disjoint intervals. To see this, observe that p(—m/4) = p(37/4) = (0,1)
and p(m/4) = p(5m/4) = (0,—1). Alternatively, we can see that R is homoeomorphic to a
circle using the following re-parametrisation of R:

—(1+icos@)/(1 —icosq) —(sin® ¢ — 2icos ¢) /(1 + cos? ¢)
V2ising/(1 — icos ¢) = |V2isin¢(1 +icosp)/(1 + cos? @)
1 1

where ¢ € [0, 27).
The vertical projection of R is a plane curve given by the parametric equation

iv/cos(20)e?’  where 0 € [—7w/4,7/4) U (31/4, 57 /4].
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In Cartesian coordinates x = —sin(6)/cos(20) and y = cos(6)+/cos(20) we have
2% 4+ y? = cos(26), 22—y = —cos?(26).
Thus the equation of this curve is
(22 + 922+ 22 -2 =0.

This is a lemniscate of Bernoulli, see Chapter 12 of Lockwood [20].
We rewrite v = —sin(26) as
sin(6)
cos(6)

v = —sin(20) = (cos?(0) —sin?(9) + 1) = f(:1:2 +y2+1).

(
Observe that as z and y tend to 0 they do so along the lines x = y and © = —y. Therefore
when x = y = 0 we have v = £1. Thus the R-circle is a space curve given points
(z + iy,v) € N satisfying the equations

X
(2?2 +y*)? + 2% —y? =0, U:§($2+y2+1) for y* > 2% > 0

together with the points (0, £1).
From our parametrisation we have

v? =1 —cos?(20), 2z = cos(26) (1 — cos(26)), 2% = cos(26) (1 + cos(26)).

Therefore the projection of this R-circle onto the (x,v) plane is given by all real solutions
to the equation
(v? — 22?)% = v? — 422,

Similarly the projection onto the (y,v) plane is given by all real solutions other than (0, 0)
to the equation
(v? 4+ 2y%)? = v? + 49°.
In order to obtain all finite R-circles we need to apply Heisenberg rotations, dilations
and translations to this one.

5.6 Classification of isometries revisited

Inversion in a totally real Lagrangian plane is an anti-holomorphic involution. A product
of two of these inversions is holomorphic and so is necessarily in PU(2,1). The theorem
below shows, first, that all elements of PU(2, 1) may be written as the product of inversions
in two R-circles and, secondly, they may be classified as loxodromic, parabolic, boundary
elliptic or regular elliptic by the intersection and linking properties of these R-circles.

Theorem 5.9 Any A € PU(2,1) may be decomposed as the product of a pair of inversions
wn totally real Lagrangian planes. Moreover, if these totally real Lagrangian planes have
boundary R-circles Ry and Ry then:

(i) if Ry and Ry are disjoint and unlinked then A is loxodromic,
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(ii) if Ry and Ry are disjoint and linked then A is regular elliptic,
(iii) if Ry and Ry intersect in exactly one point then A is parabolic,
(iv) if R1 and Ry intersect in two points then A is boundary elliptic.

Every complex hyperbolic isometry is either holomorphic, and so is given by a matrix
in PU(2,1), or anti-holomorphic, so is an inversion in a totally real Lagrangian subspace
followed by an element of PU(2,1). Thus we have the following corollary.

Corollary 5.10 Any complex hyperbolic isometry may be written as a product of at most
three inversions in totally real Lagrangian planes.

We prove Theorem 5.9 by conjugating A to a normalised form and then showing such
an A may be written as a product of inversions in totally real Lagrangian planes. We do
this case by case. It will follow from our reasoning that the R-circles have the required
properties. As the cases exhaust all possibilities (except for Ry = Ry which gives A = 1)
this proves the result. For simplicity we work on the boundary 9HZ = N U {oo}.

Lemma 5.11 Suppose that A : (¢,v) — (A(, [M*v) with |\ # 1 is a lozodromic map
fixing o and co. Then A may be written as A = 1at1 where ¢j is inversion in the R-circle
R;. Here Ry is the standard imaginary R-circle and Ry is the image of the standard
imaginary R-circle under B : (C,v) — (AY2¢, [\v). These two R-circles are disjoint and
unlinked.

Proof: Inversion in the standard imaginary R-circle R; and the loxodromic map B are
given by

_ —1/2
z1 z3 21 A / 21

n |zl =220, Blzn|= 29
23 Z1 23 A2,

Inversion in Ry = B(Ry) is given by

21 21 2 Nz, AZ3
Lo | 20| = BLle1 zo| = By 29 =B Z9 = Z2
23 23 A2 A1/27, Az
Therefore o
21 Z3 Az1 21
Lot | 22| =g |Z2| = 29 =A 2|,
z3 Z1 )\_12’3 z3

using Lemma 4.3. Thus A = 1911 as required. Observe R; is on the unit Cygan sphere
centred at 0o and Ry is on the Cygan sphere of radius |)\\1/ 2 £ 1 centred at o. These two
spheres are disjoint and nested. Hence the two R-circles are disjoint and unlinked. g

Lemma 5.12 Suppose that A : ((,v) — ((+7,v+t—23(72)) is Heisenberg translation
by (1,t) € N —{o} fizing co. Then A may be written as tat1 where v} is inversion in the
R-circle Rj. Here Ry is the infinite R-circle given by Ry = {(C,U) = (kiT,0) : k € R} and
Ry is the image of Ry under the map B : ({,v) — (C+7/2,v+t/2—S(7¢)). These two
R-circles only intersect in the point oco.
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Proof: Without loss of generality, assume that 7 € R. Inversion in R is given by
t1(¢,v) = (=C,—v). Then Ry = B(R;) is given by

Ry = {((ki+1/2)7,—k|7|* +/2) : k € R}.

If 7 # 0 then the ¢ coordinates of Ry and Ry are distinct and if 7 = 0 the v coordinates
are distinct. Hence they only intersect at co. Inversion in Ry is given by

12(¢,v) = BuB (¢ w)
= Bbl(C—T/2,v—t/2+TS(C))
= B(—C+71/2,—v+t/2—73(0)
= (=C+1,—v+t—273()).

Thus tot1(¢,v) = ((+ 7,0+t — 273(¢)) = A((,v). Hence A = 1511 as claimed. O

Lemma 5.13 Suppose that A : (¢,v) — (e®C,v +t)) where § € (0,27) is screw
parabolic, for t # 0, and boundary elliptic, for t = 0. Then A may be written as taty
where vj is inversion in the R-circle R;. Here Ry is the x-axis in the Heisenberg group,
that is Ry = {(z,v) = (2,0) : @ € R}, and Ry is the image of Ry under the map
B: (¢, v) — (e972¢,v+1/2). Ift # 0 then these two R-circles only intersect in the point
o0o. If t =0 then the two R-circles intersect at o and oo.

Proof: This is very similar to the previous lemmas. We have seen earlier that inversion
in R; is complex conjugation. In horospherical coordinates this inversion is given by
11(¢,v,u) = (¢, —v,u). Hence

12(¢,v) = BuB (¢ w)
= Bu(e 2¢,0—1t/2)
= B2, —v+1/2)
= (", —v+1t).

As before it is easy to see that A = 1911 and to find the intersections of the two R-circles.
O

It remains to consider the case of regular elliptic maps. We begin by using the ball
model. We know that a regular elliptic map may be written in the form

e 0 0
A=10 €% 0
0 0 1

where 0, ¢ € (0,27). The map A can be decomposed as A = t9t; where
— 0=
21 Z1 21 e’z
b |zl — e 2|, 1 |2 — | Zo

z3 Z3 z3 Z3
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are inversions in the totally real planes whose boundaries are the R-circles

R, = {(2’1,2’2) = (cos(i/f),e*id)/2 sin(z/;)) RS [0,2%)},
Ry = {(21,22) = (€i6/2 cos(¢),sin(¥)) : ¢ € [0,277)}.

Since 6/2 and ¢/2 lie in the interval (0, 7), it is clear that these two R-circles are disjoint.

In order to be able to continue our analysis of the boundary using the Siegel domain
model we conjugate A, ¢1 and 1 be the Cayley transform (2), but still use the same names.
These maps become

21 Z1 21 COS(9/2)€i0/2§1 + isin(9/2)ew/2§3
11: |22 — €7i¢§2 , Lot |z Z9
23 Z3 23 isin(0/2)e?/?z; + cos(0/2)e?/?z5

and . .
cos(/2)e?/2 0 isin(/2)e"/?
A= 0 e’ 0 : (56)
isin(0/2)e/2 0 cos(6/2)e?/?

The R circles R; fixed by the involutions ¢; become
Ry = {(x +iy,v) : sin(¢/2)x + cos(¢/2)y =v =0} (57)

and
: 2 22 2 2 2 _

Ry = {(fc +1y,v) : sin(9/2)(( —Zg_z y—&g 4 yg—)k 1)220%8 (6/2)zy 0} (58)
It is clear that Rs intersects the plane defined by v = 0 in the points where y = 0 and
hence x = +1. The R-circle R; is a line through the origin and gradient — tan(¢/2) # 0
in this plane. Each of the halfplanes determined by this line contains one of the points
(+£1,0). Thus the two R-circles may easily be seen to be disjoint and linked. Thus we
have proved:

Lemma 5.14 Suppose that A be a regular elliptic map of the form (56). Then A may
be written as A = 1at1 where vj is inversion in the R-circles R; given in (57) and (58).
These two R-circles are disjoint and linked.

6 Distance formulae

6.1 Cross ratios

Cross-ratios were generalised to complex hyperbolic space by Koranyi and Reimann @
Following their notation, we suppose that z1, 22, w1, wy are four distinct points of HZ,
and we definite their complex cross-ratio to be

(W1,21) (W2, 22)
(wo,21)(W1,22)

[Zlv 22, 'I,U1,w2] =
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We will only use the absolute value Hzl, 2o, W1, ng which we call the cross-ratio. Observe
that if two of the entries are the same then the cross ratio is still defined and equals one
of 0, 1 or co. If 21, 29, w1 and wy all lie on GH% then we can express the cross ratio in
terms of the Cygan metric as follows:

2 2
w1, 21)°po(wa, 22

’[21,22,11)1,'11)2]‘ — pO( 1 1)2/) ( )2

po(wa, 21)?po (w1, 22)

provided none of the four points is co. If wq; = oo then

‘[2’1 29,00 w2]’ = pO(w%Lﬁ)Q.
B po(wse, z1)?

6.2 Distance between a point and a geodesic

Let p and ¢ be points of GH% and let z be any point of H%. We choose lifts p, q and z in
C%! of of p, ¢ and z.
Following Goldman, we define
(p,2)(z,q)
np,q,z) = \%4,0,2| = 777 -
#.g2) =] | (2,2)(p,q)
Then we have

Proposition 6.1 Let p and g be points of GH(QC and let z be any point of H(QC. Let v be
the geodesic with endpoints p and q. The distance p(v, z) from z to 7y is given by

cosh? (’)(722)) = |n(p, ¢, 2)| + R(n(p. ¢, 2)).

Proof: Without loss of generality, normalise so that (p,q) = —1. This means that a
general point on the lift of v to C! is given by e!/?p + e */2q. The corresponding point
in HZ will be denoted by 7(t). Therefore

w2 (P02 (/2 + !/, 2)|”
o < 2 > (et/?p + e~t/2q, et/?p + e7/2q) (2, z)
¢'|(p,2)|* + 2R((p. 2)(z, @) + ¢! (q, 2)
2(p. q) (2, 2)

Using elementary calculus we see that, as t varies over R, the minimum of the right hand
side is attained when

’ 2

Ct — ' <qa Z>
(p,2)
Substituting this in the above expression we see that

wost? (P22 _ [ 2) (2 )| + R((p, 2) (2, @)
h< 2 )_ (p, q)(z,2) ‘

As the denominator is real and positive this proves the result. U

We observe that if z is on 7, then z = ¢¥/?p 4+ ¢~%/2q and so 1(p, ¢, z) = 1/2.
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6.3 Distance between pairs of geodesics

For j =1, 2 let p; and ¢; be points of 8H% with lifts p; and q; in C%!. Normalise these
lifts so that (pj,q;) = —1. We want to investigate the distance between the geodesics v;
and 2 where 7; has endpoints p; and q;. These geodesics are given by

= {et/Qpl + e_t/qu 1t e R} , Yo = {es/ng + e_s/qu 1t e R} .

We want to find the distance between v and ~s.

First we show that it is possible to find pairs of geodesics so that, as a function of the
Hermitian products of p; and q;, the distance between them cannot be expressed using
radicals. This method and example is due to Hanna Sandler [25]. Suppose that ~;(¢) is
the point on ~; with lift et?py + e t/2q;. Using Proposition 6.1 we see that

cosh? (W) = ‘77(]?2,6]2,’71(15))‘ + %(77(102,%,71(?5)))'

We now express this as a function of ¢ and the inner products of the p; and q;.

(P2, e"?p1 + e 2qu) (e?py + e qu, qo)
(e'?p1 + e~t2qy, et/?p1 + e~ 1/2q1) (P2, q2)
1
= §<<P2,P1><P1,Q2>€t + <P27Q1>(P1,Q2))

1

t3 <<P2, P1){q1, qa2) + (P2,4q1){q1, Q2>€_t)

(aet +b+ ce_t>

n(p2. g2, (1)) =

1
2
where

(P2, P1)(P1,q2),
b = (p2,91)(P1,q2) + (P2, P1){q1, d2),
¢ = (p2,a1)(ai,q2)-

Suppose that z(¢) and y(t) are the real and imaginary parts of 1(p2, g2, v1(t)). Then we
need to find the minimum of the function

9(t) = Vo (t)® + y(t)? + x(t).

Differentiating and setting ¢'(¢) = 0, we need to solve

_ a0+ )
O= T s W

This is equivalent to

z()a'(t) + y()y'(t) = —2'(t)V/x(t)? + y(t).

Squaring both sides and simplifying we see that

0 = () (y(a' (1) — y(B)y (O = 2Oy DY (1) ).
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If y(t) = 0 then ¢'(¢t) = 22/(t). Thus a minimum occurs when y(t) = 2/(t) = 0 and we
have y(t)z'(t)2 — y(t)y' (t)? — 22(t)y(t)2' (¢)y'(t) = 0 as well. Thus it suffices to solve

0 = yt)a' ) —yt)y'(t)* — 2z(t)y()2'(t)y'(t)
= %(n(pz,qzm(t))n’(pz,qz,’n(t))2).

Since 77(]’2, QQ,’Yl(t)) = (aet +b+ C_t)/Z we have 77/(1727 q2, Vl(t)) = (aet - Ce_t)/2’ ThUS,

———2
8n(p2, a2, 71 (1)) (p2, g2, 1 (¢))
= (ae' +b+ce ") (ae® —2ac+c’e )
= alal’e® +a*be* + (a®c — 2|al*c)e’ — 2abe

+(ae® — 2a|c|?)e”" + bePe " +¢lc|Pe

Multiplying by €3 and taking the imaginary part, we see that finding the shortest distance
between ~y; and 77 is equivalent to solving a sixth order polynomial in e’. The coefficients
of this polynomial may be expressed in terms of the Hermitian products of p; and q;. The
following example shows that there exist geodesics for which this sixth order polynomial
is not solvable by radicals in terms of its coefficients.

Let
~1 —(1 + 4i) /4 —1/2 ~1/2
pi=|0|,ai=|—-(1+9)/2|, p2= |1/V2|, 2= |-1/V2
0 1 1/2 1/2
These have been normalised so that (p1,qi1) = (p2,q2) = —1. A short calculation shows
that
1 5—2iV/2 25 — 4iv/2
a=-, b=—— ¢=——.
4 8 64

From this, we see that the minimum distance occurs when ¢ satisfies

0 = 263750(77(1)2,Q2,’Y1(7f))77’(p2,Q2,71(75))2)
= %(a\a!zeﬁt +a@*be + (@’c — 2|al’e) e — 26b663t>
+§((a€2 - 2&]0|2) 24 be2e! +¢cl )
V20 s ty4 t\3 £\2 t
e ((4e )5+ 3(det)t — 30(4eh)? — 50(4et)? + 93(det) — 657).
Thus writing = 4e’ we need to find the roots of
g(x) = 25 + 32 — 3023 — 5022 4 93z — 657.

Evaluating g at = —6, —5, —4, 5, 6 we see that g(z) has three real roots =1, =2, x3
satisfying —6 < x1 < =5 < 29 < —4 and 5 < z3 < 6. We claim that g(z) has no more real
roots. In order to see this, consider

d(z) = 52t + 1223 — 9022 — 1002 + 93.
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Evaluating ¢ at x = —6, —5, 0, 1, 4 we see that ¢'(z) has roots x4, x5, zg, 7 with
—6b<xzy<-5H<uw5 <0<z <1< 27 < 4. Moreover, g must be a local maximum
of g(z). However, when 0 < x < 1 we have g(x) < 1+ 3+ 93 — 657 < —560. Therefore
g(x6) < 0 and so g(x) has a local maximum on which it takes a negative value. Hence, g
cannot have the maximum number of real zeros and so has a pair of conjugate complex
roots. Finally, we claim that g(z) is irreducible over the integers and hence over the
rationals. First we transform g(z) to

h(z) = g(2z —5)/32 = 2° — 11z + 402° — 502% — 2z + 4.

Evaluating h(x) at —4, —2, —1, 1, 2, 4 we see that h(x) has no linear factors. Now suppose
that

h(z) = (2% + az + b) (23 + ca® + dx + €)
for integers a, b, ¢, d, e. Then b must be one of £1, +2, +4. Expanding and equating
coefficients and simplifying in each case we arrive at a contradiction.

(i) Suppose b = 1 and so e = 4. Evaluating the coefficients of z and 2? we have
—2 =uae+bd =4a+d and —50 = e + ad + bc = 4 + a(—2 — 4a) + c¢. Moreover,
evaluating the coefficient of 23 and substituting for b, ¢ and d gives

40=d+ac+b=-2—-4a+a(—50 —4+2a(l +2a)) + 1.
The right hand side of this is odd but the left is even, a contradiction.

(ii) Suppose b = 2 and e = 2. Then —2 = 2a + 2d and —11 = a + ¢. Hence
d=—-1—aand c=—11—a. Also, =50 =e+ad+bc =2 —a —a’® — 22 — 2a and
40 = d4ac+b = —1—a—11la—a?+2. Combining these gives a®> = 30—3a = —39—12a
which means 23 = 3a, a contradiction.

(ii) Suppose that b =4 and e = 1. Then —2 = ae+bd = a+ 4d. Substituting for a gives
—50 = e+ ad + bc = 1 — 2d — 4d? + 4c. This is a contradiction.

Similar arguments work when b = —1, —2 and —4.

Putting this together, we see that g(x) is irreducible over Z, and hence over Q, and has
exactly three real roots. Thus, using the same argument as Lemma 14.7 of [26] we see that
g(z) is not soluble by radicals. This argument says that the Galois group of g(x) must
contain a 5-cycle and an involution (complex conjugation). Hence this Galois group is Ss.

We conclude this section by giving a lower bound on the distance between geodesics.
As at the start of this section, for j = 1, 2, let pj, ¢; be points on the boundary of H%
with lifts p; and q; to C?! satisfying (pj,q;) = —1. Let n; be the unit polar vector to
the complex line spanned by p; and q;. The following lemma follows from Lemma 3.4:

Lemma 6.2 With the definitions above we have

0 = (p1,pP1) = (P1,n2)(n2,P1) — (P1,92)(P2, P1) — (P1,P2){(d2, P1),
-1 = (p1,q1) = (P1,n2)(n2,q1) — (P1,d2)(P2,q1) — (P1, P2){d2, q1),
0 = (a1,q1) = (q1,n2){n2,q1) — (q1,92){P2, q1) — (91, P2){q2, A1),

0 = (p2,p2) = (P2, m1)(n1,P2) — (P2, a1)(P1, P2) — (P2, P1)(d1, P2),
-1 = (p2,92) = (P2, n1)(n1,q2) — (P2, d1)(P1,qa2) — (P2, P1)(d1,92),
0 = (a2,92) = (g2, n1){n1,q2) — (92, 91){P1,q2) — (q2, P1){q1, q2)-
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Lemma 6.3 For j = 1,2, let v; be a geodesic with endpoints p; and q; in OH(ZC. Let p;
and q; be lifts of p; and q; to C>! and let n; € C%! be the normal vector to p; and q;.

Then
cosh? (p(%, 72))
2

} (P1, P2) (a2, a1)
- (‘ (P1.q1)(qz, p2)

‘(Pl,(h)(p%(lﬁ
(P1,d1)(P2,92)

‘(Pl,n2><n2,(h>
(P1,q1)(nz, ny)

+1).

2

Proof: We normalise so that (p;,q;) = —1 and (nj,n;) = 1. Then
cosh2 [P (0):72(s)
2
_ _ 2
(/%1 + e 2qq, e*/?py + e7/2qy))|
}et/2p1 Tet/2q ‘2‘65/21)2 + 6—5/2q2‘2

|e49)/2(py po) + /2 (1, qa) + /2 gy, po) + 92 (qy, o) |
4

(a1, a2)|” + 2R ((p1, p2><qz,q1>)>

1

— 1 (6t+s‘<p1,p2>‘2+67t78

1
+3 <+6H\<p1, a)|” + e | (an, po)|° + 2R ((p1, a2) (P2, q1>)>

1 () + el ma) 4 |, o) e, ) )

v

% (|(p1, P2) (a2, a1)| + |(P1, a2) (P2, a1)| + | (P1,m2) (2, q1)|)
(U [P m)| + R (00, p2) (a2, 1)

> %(’<P1,p2)<ql,qz>\+!<P1,q2><q1,p2>\+\(p1,n2><q17n2>’+1)‘

Equality in the penultimate line occurs if and only if all the following are true

(n1, q2)
(n1,p2)

S _
, =

(P1,P2)

) )

etts — l (a1, q2)

etfs _ ‘ <q17 p2>
(P1,92)

t_ ’ (q1,ny)
(p1,n2)

Equality in the last line happens if and only if (nj, p2)(qs,n;) is real and negative. O

Corollary 6.4 The geodesics v1 and -y intersect if and only if
[p2,q1.p1,q2]  and  [g2,q1,p1,Pp2]
are both real, non-negative and their sum is at most 1.

Proof: Again, we normalise so that (p;j,q;) = —1 and (nj,n;) = 1. Using this, our
hypotheses become that

(P1,P2)(a2,q1) and  (p1,q2)(P2,q1)

are both real, non-negative and their sum is at most 1.
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We see that

—(p1,m2)(n2,q1) = —(n1,p2)(d2,m)
= 1—(p1,a2)(P2,a1) — (P1,P2){d2,q1) > 0.

Define

el = _7<q1,n2) >0 and €% =-— (n1, d2) > 0. (59)
(P1,n2) (n1, p2)

Thus

(q1,n2)
(p1,n2)
(q1,n2)
( )

ng, p2

ng, qz

elto +so0

( )
( )
(n2,qr)
<P2, np)

where we have multiplied top and bottom by (ni,q2)(p2,n1) = (p1,n2)(n2,qi). Using
the identities from Lemma 6.2 to eliminate n; and ny we obtain:

(q1,92) (P2, q1) + (41, P2) (92, q1)
(P1,P2)(P2,q1) + (a1, P2) (P2, P1)
(q1,92) (P1,P2)(P2,41)
(p1,p2)  (P1,P2) (P2, 1) + (a1, P2) (P2, P1)

(92,q1) (a1, P2)(P2, P1)

(p2,pP1) (P1,P2)(P2,d1) + (41, P2) (P2, P1)
(q1,92) (P1,P2)(P2, 1) + (a1, P2) (P2, P1)
(p1,p2)  (P1,P2) (P2, 1) + (a1, P2) (P2, P1)
(a1,92)

(p1,p2)

eto +so

where we have used our hypothesis that

(a2, q1) _ (p1,P2){(q2,q1)
(pz,p1) ’<p1,p2>‘2

is real.
A similar argument shows that

6t0—80 — <q1’p2>
(P1,q2)

Therefore we have equality at each stage in Lemma 6.3 and so we have

cosh? (p(’n(to)é ’yg(so))>

(P1,92) (P2, A1) + (P1, P2)(q2, d1) — (P1,n2)(n2,q1)
= 1.

Hence the two points are the same.
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Conversely, if

—(p1,n2)(n2,q1), (P1,q2)(P2,a1), (P1,P2){(d2,q1)

do not all lie in the interval [0, 1], applying the triangle inequality to

—1 = (p1,n2)(n2,q1) — (P1,q2)(P2,q1) — (P1,P2)(d2, q1)

we have the strict inequality

[(p1, P2) (a1, az2)| + [(P1, az) (a1, p2)| + |{p1,n2) (a1, n2)| > 1.

Hence the lower bound in Lemma 6.3 becomes

and the two geodesics are disjoint. O

Proposition 6.5 For j = 1,2, let v; be a geodesic with endpoints p; and q; in 8H%.

ther (n(1),22(5)
(p 7 2,725 )

cosh?

Emin{‘[m,m,l?l,%”, [Q27Q1ap17p2]|}-

Proof: Again, using the triangle inequality on

—1 = (p1,n2)(n2,q1) — (P1,q2){P2,q1) — (P1,P2)(d2, d1)

we see that

1

5 (|(p1, P2) (a1, a2)| + |(P1, az){a1, p2)| + |(P1,m2) (q1, n2)| + 1)

is greater or equal to both

|(p1,p2){ar, q2)|, and |(p1,qz2){qi, p2)|-

Using (p1,d1) = (P2, q2) = —1 we see that these are

’<P17P2><Q2’q1> = |[lp2, @1, p1, @]

(a2, p2)(P1,q1)

and

'<p1,qz>(92a‘11> = |lg2, a1, p1, p2] |-

(P2, q2)(P1,q1)
This completes the proof. O
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6.4 Distance to complex lines

We begin by finding the distance from a point to a complex line. This should be compared
with Proposition 6.1.

Proposition 6.6 Let p and g be points of 8H% and let p and q be lifts of p and q. Let L
be the complex line spanned by p and q. Then for any point z in H(QC we have

cosh? <p(22,L)> = 2%n(p, q,2).

Proof: Without loss of generality suppose that (p,q) = —1. Let n be the unit polar
vector to L. Choose a lift z of z with (z,z) = —1. Let w = Ap + uq be a point on L with
(w,w) = =\t — pA = —1. Then

o (45)
= (z,w)

(w,2z)

(2, p)A + (2, q)7|

= [(z,p)| A + (2, p)(q,2) Au + (2, Q) (P, 2)EA + | (2, @) | ||

= |(z,p)| A — (2, p){(q, 2)7IA — (z,q)(p, 2) A\ + | (2, Q)] ||
+(z,p)(q,2) + (2, 9)(P, 2)

= |[(z.p)A— (z,a)u|” + (z.p)(a,2) + (z.9)(p.2)

> (z,p){(q,2) + (2, q)(P,2).

We obtain equality in the last line with the point

(2. q) (z,p)
p+ q
V(2 p)(a,2) + (z,9)(p,2)  /(2,p)(q,2) + (2,q)(p,2)
where we have used Lemma 3.4 to check that the denominator is well defined. (This

denominator is chosen to ensure (w,w) = —1.) Using (z,z) = (p,q) = —1, this gives the
result. O

W —=

. . . 2
Corollary 6.7 Let L be a complex line with polar vector n. Let z be any point of HE

with lift z. Then
cout (251 fonlinal

(z,2z)(n,n)

Proof: This follows from Proposition 6.6 using Lemma 3.4 and (z,z) = —1. O

Proposition 6.8 Let Ly and Lo be complex lines with polar vectors ni; and ny. Let

(n1,ng)(n2,ny)
(ny,n1)(nz,nz)

N(Ly, Ly) =
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(i) If N(L1, Lo) > 1 then L1 and Lo are ultraparallel and

L1, L
cosh? <p(12’2>> = N(Ly, La).

(ii) If N(Li,Ls) =1 then Ly and Lo are asymptotic or coincide.
(i4i) If N(Li,L2) <1 then L1 and Ly intersect.

Proof: First suppose that N(Lj, Ly) > 1. Let Ly be spanned by ps and q2. Suppose
that (pa,q2) = —1. Also suppose, without loss of generality, that (n;,n;) = (ng,ns) = 1.
Then a general point w on Lo has lift w = Aps + puqe in C>'. Without loss of generality,
we suppose that (w, w) = —Afi — uX = —1. From Corollary 6.7, we know that

= 1+ |(n;,p2)A + (ny, Q2>ﬁ‘2
= 1+‘(n1,p2))\—(n1,qg>u\2

+(n1, p2){(az, n1) + (n1,92) (P2, n1)
> 14 (ny,p2){qz,n1) + (n1,q2)(p2, n1)

with equality when A\/pu = (n1,q2)/(n1, p2). Thus we choose w to be the point
w = v(n1,q2)p2 + v(n1, p2)d2
where v is chosen so that
1= —(w,w) = [v( (01, po) (a2, 1) + (01, @) (P2 1))

Now writing
n; = —(ny, q2)p2 — (N1, p2)qe + (N1, n2)ny
we have
1= (n;,n;) = —(ny,p2)(dz,n1) — (01, q2) (P2, n1) + (N1, N2) (N2, 07).

Thus we see that

1
P = T
N(Ll, Lg) —1
and
L, w
cosh® <p(;)> = 1+ (n1,p2)(q2,n1) + (n1,p2)(qz, ng)

= <n1, n2)<n2, n1>.

Using (ni,n;) = (ng,ng) = 1 this gives part (i).

If L1 = Ly then ny = Anj and so N(Lj, Le) = 1. If L; and Lo are asymptotic, then we
can write L; as the span of null vectors p and q;. As usual, suppose that (p,q;) = —1.
Therefore

n; = —(ny,q2)p — (01, p)dz + (n1,n2)ny = —(ny,qz)p + (N, n2)ny
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since (n1, p) = 0. Hence
1 = (n;,n;) = (n1,nz)(ny, ny).

Therefore N(Ly, La) = 1.
Finally, suppose that L; and Lo intersect in a point w. Then, lift w to the vector
w = Ap1 + pqi. Since w is also on Ly we have

0= (w,n2) = X(p1,n2) + p1(q1, n2).
Therefore, using w € V_ we see

0 > (w,w)
= =i — pA
_ o ({P1,n2)  (n2,p1)
= W <(Q17n2>+<n27ql>>

2
= M((pl,nﬁ(m,m) + (q1,n2)(n2, p1))
1,12
by 2
= ’<ql’112>|2(<n1,n2><n2,n1> — 1)
Therefore N(L1, L) = (n1,n2)(ng,n;) < 1. O

Suppose that two complex lines L; and Lo intersect in the origin. This means their
polar vectors n; have the form

nii nay
n;p = |ni2|, N2= N2
0 0

Therefore, in C?, the two lines have normal vectors

<nn) <n21>

niz)’ \n22

Using the Cauchy-Schwarz inequality, we see that the angle between the two lines is
where

_ _ 2
’7121”11 + 7122”12‘
(|n11]? + [n12]?) (|na1]? + |n22|2)
(n1,n2)(nz,nq)

~ (nymp)(ny,my) N(L1, Ly).

cos?(6)

Motivated by this, we define the angle 6 € [0, /2] between any pair of intersecting complex

lines by
cos?(0) = N(Ly, Ly).

This is clearly invariant under complex hyperbolic isometries.



7 NOTES 56

7 Notes

2.1 The terms first and second Hermitian form were defined by Epstein [6]. The third
Hermitian form was defined (but not named) by Chen and Greenberg [3] and has been
used extensively by others.

2.2 The connection between Hermitian forms and models of complex hyperbolic space
given is completely standard. It is an example of the more general connection between
quadratic and Hermitian forms for symmetric spaces, see Chen and Greenberg [3] or
Chapter 19 of Mostow [22]. The formula (1) holds for other rank 1 symmetric spaces, see
page 135 of [22]. The formula for the Bergman distance using the cross ratio is contained
in Giraud [10].

2.3 For other Cayley transforms see Section 4.1.1 of [11] or page 574 of [15], for example.
3.1 Similar formulae to those given in this section were given in [14].
3.2 The formulae in this section are analogous to those in the previous section.

3.3 The Hermitian cross product is defined in Section 2.2.7 of Goldman [11]. The fact
that the isometry group of H(QC acts transitively and acts doubly transitively on the bound-
ary is a special case of similar results for other symmetric spaces.

3.4 Theorem 3.5 is a generalisation of Theorem 7.4.1 of [2].

3.5 The classification of complex hyperbolic isometries goes back to Giraud’s paper of
1921 [10], see also page 52 of Chen and Greenberg [3]. The use of trace to classify isometries
may be found in Theorem 6.2.4 of Goldman [11].

4.1 The Heisenberg group is widely studied by analysts, see [18] or [19]. Its relationship
to the boundary of complex hyperbolic space generalises to all rank 1 symmetric spaces
of compact type. See for example Section 4.2 of [11] for more about this.

4.2 Horospherical coordinates were introduced by Goldman and Parker [12].

4.3 The Cygan metric was constructed for the Heisenberg group by Cygan [4], Lemma
2. See also Cygan [5] and Kordnyi [18], page 227. This metric was extended to the Siegel
domain in [23]. The distortion result, Lemma 4.5, is due to Kamiya, Proposition 2.4 of
[16] and is related to Theorem 5.22 of [1].

5.1 The expression of points on a geodesic in terms of their endpoints may be found
in Theorem 3.3.3 of [11]. The treatment we give here follows Sandler, Section 3 of [25]
(compare this with page 242 of [11] for example).

5.2 See Section 3.1.4 of [11]. For the Poincaré metric on the hyperbolic plane see Section
7.2 of [2].

5.3 See Section 2.2.1 of [11]. For the Klein-Beltrami metric on the hyperbolic plane see
Section 3.3 of [24].

5.4 See Sections 3.1.4 and 3.1.9 of [11].
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5.5 There is an extensive treatment of the material in this section in Sections 4.3 and
4.4 of [11].

5.6 The classification of elements of PU(2,1) by means of products of pairs of real
reflections is due to Falbel and Zocca [8]. It may be thought of as a generalisation of the
classical idea that holomorphic (orientation preserving) isometries of the hyperbolic plane
may be written as products of pairs of reflections in geodesics. Similarly, it generalises
Fenchel’s idea that all orientation preserving isometries of real hyperbolic 3-space may be
decomposed as a product of half-turns (rotation through ) about a pair of geodesics [9].

6.1 Cross ratios for complex hyperbolic space we introduced by Koranyi and Reimann
[19].

6.2 The 7 invariant in Goldman [11], Sandler [25]. It is also related to the A invariant
of Kamiya, by A(p, ¢;2) = 1/|n(p, ¢, z)| of Kamiya [15].

6.3 The first part of this section is mostly taken from Sandler’s paper [25]. This includes
the example, which is the same as Sandler’s but using our conventions. The lower bound
for the distance in the last part of this section is taken from Markham and Parker [21].

6.4 See page 100 of [11] or else [25].
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