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Chapter 1

Preface

My starting point in these notes is the use of techniques from linear algebra to
describe the geometry of the hyperbolic plane H2. Specifically, we consider geometric
objects contained in H2, such as geodesics, circles and horocycles. We also use linear
algebra to analyse the action of hyperbolic isometries, including classifying them
and finding their fixed points. This viewpoint differs somewhat from traditional
treatments, but follows along very similar lines.

The reason to use this technique is that the methods generalise naturally to higher
dimensions and to different algebraic settings. My principal aim is to reach the
description of high dimensional hyperbolic isometries using Möbius transformations
whose entries lie in a Clifford algebra. Although this idea has a long history, current
interest is due to work done by Ahlfors to popularise this field. I feel it is particularly
appropriate to include this material in lectures given in Finland in the hundredth
year since his birth in Helsinki. Some of the formulae that appear in Ahlfors’s work
make more sense when viewed in terms of Hermitian forms, and the use of linear
algebra streamlines some of the calculations. In the final two sections I indicate
further directions in which the main material may be generalised.

These notes are based on material I distributed to those attending the lecture
course Hyperbolic Spaces which I gave as part of the 17th Jyväskylä Summer School
between 13th and 17th August 2007. I have made some changes to the notes I
distributed then. Many of these changes have been made at the suggestion of those
taking the course and I am very grateful to all those who have pointed out errors to
me. It became clear that some of the exercises were not appropriate and I have taken
this opportunity to make them clearer. My main thanks go to Jouni Parkkonen who
was the main organiser of the mathematics courses in the summer school. I would
like to thank him for his invitation and also his support and encouragement. I would
also like to thank Henna Koivusalo for her assistance.
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Chapter 2

Hermitian linear algebra

2.1 Hermitian forms

Let A = (aij) be a k × l complex matrix. The Hermitian transpose of A is the
l×k complex matrix A∗ = (aji) formed by complex conjugating each entry of A and
then taking the transpose. As with ordinary transpose, the Hermitian transpose of
a product is the product of the Hermitian transposes in the reverse order. That is
(AB)∗ = B∗A∗. Clearly

(
(A∗)∗

)
= A. If x is a column vector in Ck then x∗x = |x|2.

A k × k complex matrix H is said to be Hermitian if it equals its own Hermitian
transpose H = H∗. Let H be a Hermitian matrix and µ an eigenvalue of H with
eigenvector x. We claim that µ is real. In order to see this, observe that

µx∗x = x∗(µx) = x∗Hx = x∗H∗x = (Hx)∗x = (µx)∗x = µx∗x.

Since x∗x = |x|2 is real and non-zero we see that µ is real.
To each k× k Hermitian matrix H we can naturally associate an Hermitian form

〈·, ·〉 : Ck × Ck −→ C given by 〈z,w〉 = w∗Hz (note that we change the order)
where w and z are column vectors in Ck. Hermitian forms are sesquilinear, that is
they are linear in the first factor and conjugate linear in the second factor. In other
words, for z, z1, z2, w column vectors in Ck and λ a complex scalar, we have

〈z1 + z2,w〉 = w∗H(z1 + z2) = w∗Hz1 + w∗Hz2 = 〈z1,w〉+ 〈z2,w〉 ,
〈λz,w〉 = w∗H(λz) = λw∗Hz = λ 〈z,w〉 ,
〈w, z〉 = z∗Hw = z∗H∗w = (w∗Hz)∗ = 〈z,w〉.

Exercise 2.1.1 For all z, w ∈ Ck and λ ∈ C show that

1. 〈z, z〉 ∈ R,

2. 〈z, λw〉 = λ 〈z,w〉,

3. 〈λz, λw〉 = |λ|2 〈z,w〉.

7
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Let 〈·, ·〉 be a Hermitian form associated to the Hermitian matrix H . We know
that the eigenvalues of H are real. We say that

(i) 〈·, ·〉 is non-degenerate if all the eigenvalues of H are non-zero;

(ii) 〈·, ·〉 is positive definite if all the eigenvalues of H are positive;

(iii) 〈·, ·〉 is negative definite if all the eigenvalues of H are negative;

(iv) 〈·, ·〉 is indefinite if some eigenvalues of H are positive and some are negative.

Suppose that 〈·, ·〉 is a non-degenerate Hermitian form associated to the k × k
Hermitian matrix H . We say that 〈·, ·〉 has signature (p, q) where p + q = k if
H has p positive eigenvalues and q negative eigenvalues. Thus positive definite
Hermitian forms have signature (k, 0) and negative definite forms have signature
(0, k). We often write Cp,q for Cp+q equipped with a non-degenerate Hermitian form
of signature (p, q). This generalises the idea of Cp with the implied Hermitian form
of signature (p, 0).

For real matrices the Hermitian transpose coincides with the ordinary transpose.
A real matrix that equals its own transpose is called symmetric. Symmetric matrices
define bilinear forms on real vector spaces, usually called quadratic forms.

Exercise 2.1.2 Show that all the above definitions (non-degenerate, positive definite
and so on) may be carried through for quadratic forms on real vector spaces. Hence
make sense of the signature of a quadratic form and the real vector space Rp,q.

Theorem 2.1.1 (Sylvester’s principle of inertia) The signature of a Hermitian
matrix is independent of the means of finding it. In particular, if H1 and H2 are two
k × k Hermitian matrices with the same signature then there exists a k × k matrix
C so that H2 = C∗H1C.

2.2 Unitary matrices

Let 〈·, ·〉 be a Hermitian form associated to the k× k Hermitian matrix H . A k× k
matrix A is called unitary if for all z and w in Ck we have

〈Az, Aw〉 = 〈z,w〉.

If the Hermitian form is non-degenerate then unitary matrices form a group. The
group of matrices preserving this Hermitian form will be denoted U(H). Sometimes
it is only necessary to determine the signature. If 〈·, ·〉 has signature (p, q) then we
write U(p, q).

Since A preserves the form we have

w∗A∗HAz = (Aw)∗H(Az) = 〈Az, Aw〉 = 〈z,w〉 = w∗Hz.
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Therefore letting z and w run through a basis for Ck we have A∗HA = H . If H is
non-degenerate then it is invertible and this translates to an easy formula for the
inverse of A:

A−1 = H−1A∗H.

Most of the Hermitian forms we consider will have eigenvalues ±1 and so will be
their own inverse.

One consequence of this formula is that

det(H) = det(A∗HA) = det(A∗) det(H) det(A).

If det(H) 6= 0 (so the form is non-degenerate) then

1 = det(A∗) det(A) = det(A) det(A) =
∣∣det(A)

)
|2.

Thus unitary matrices have unit modulus determinant. The group of those unitary
matrices whose determinant is +1 is denoted SU(H).

Exercise 2.2.1 Let H1 and H2 be two k × k Hermitian matrices with the same
signature. Show that U(H1) is conjugate to U(H2). [Use Sylvester’s principle of
inertia.]

2.3 Eigenvalues and eigenvectors

Lemma 2.3.1 Let A ∈ SU(H) and let λ be an eigenvalue of A. Then λ
−1

is an
eigenvalue of A.

Proof: We know that A preserves the Hermitian form defined by H . Hence,
A∗HA = H and so A = H−1(A∗)−1H . Thus A has the same set of eigenvalues as
(A∗)−1 (they are conjugate). Since the characteristic polynomial of A∗ is the complex
conjugate of the characteristic polynomial of A, we see that if λ is an eigenvalue of

A then λ is an eigenvalue of A∗. Therefore λ
−1

is an eigenvalue of (A∗)−1 and hence
of A. �

Corollary 2.3.2 If λ is an eigenvalue of A ∈ SU(H) with |λ| 6= 1 then λ
−1

is a
distinct eigenvalue.

Next we show that any eigenvalue not of unit modulus corresponds to a null
eigenvector (that is a non-zero vector v with 〈v,v〉 = 0). Likewise, we show that any

eigenvectors that are not (Hermitian) orthogonal have eigenvalues λ and µ = λ
−1

.

Lemma 2.3.3 Let λ, µ be eigenvalues of A ∈ SU(H) and let v, w be any eigenvec-
tors with eigenvalues λ, µ respectively.
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(i) Either |λ| = 1 or 〈v,v〉 = 0.

(ii) Either λµ = 1 or 〈v,w〉 = 0.

Proof: (i)
〈v,v〉 = 〈Av, Av〉 = 〈λv, λv〉 = |λ|2 〈v,v〉 .

Thus either |λ| = 1 or 〈v,v〉 = 0.
(ii)

〈v,w〉 = 〈Av, Aw〉 = 〈λv, µw〉 = λµ 〈v,w〉 .
Thus either λµ = 1 or 〈v,w〉 = 0. �



Chapter 3

The Poincaré models of the
hyperbolic plane

3.1 Hermitian forms of signature (1, 1)

Let C1,1 be the complex vector space of (complex) dimension 2 equipped with a
non-degenerate, indefinite Hermitian form 〈·, ·〉 of signature (1, 1). This means that
〈·, ·〉 is given by a non-singular 2× 2 Hermitian matrix H with 1 positive eigenvalue
and 1 negative eigenvalue. There are two standard matrices H which give different
Hermitian forms on C1,1. We call these the first and second Hermitian forms. Let
z, w be the column vectors (z1, z2)

t and (w1, w2)
t respectively. The first Hermitian

form is defined to be:

〈z,w〉1 = z1w1 − z2w2. (3.1)

It is given by the Hermitian matrix H1:

H1 =

(
1 0
0 −1

)
. (3.2)

The second Hermitian form is defined to be:

〈z,w〉2 = iz1w2 − iz2w1. (3.3)

It is given by the Hermitian matrix H2:

H2 =

(
0 −i
i 0

)
. (3.4)

We can pass between these Hermitian forms via a Cayley transform C. For ex-
ample, writing

C =
1√
2

(
1 −i
−i 1

)
(3.5)

11
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then

H2 = C∗H1C.

Sometimes we want to specify which of these two Hermitian forms to use. When
there is no subscript then you can use either of these (or your favourite Hermitian
form on C2 of signature (1, 1)).

If z ∈ C1,1 then we know that 〈z, z〉 is real. Thus we may define subsets V−, V0

and V+ of C1,1 − {0} by

V− =
{
z ∈ C1,1| 〈z, z〉 < 0

}
,

V0 =
{
z ∈ C1,1 − {0}| 〈z, z〉 = 0

}
,

V+ =
{
z ∈ C1,1| 〈z, z〉 > 0

}
.

We say that z ∈ C1,1 is negative, null or positive if z is in V−, V0 or V+ respectively.
Motivated by special relativity, these are sometimes called time-like, light-like and
space-like. Because 〈λz, λz〉 = |λ|2 〈z, z〉 we see that for any non-zero complex scalar
λ the point λz is negative, null or positive if and only if z is. Therefore we define a
projection map P on those points of C1,1−{0} to CP1 = Ĉ = C∪{∞}, the Riemann
sphere. This map is given by

P :

(
z1

z2

)
7−→

{
z1/z2 ∈ C if z2 6= 0,

∞ if z2 = 0.

The complex projective model of the hyperbolic plane H2 is defined to be the col-
lection of negative lines in C1,1 and its ideal boundary is defined to be the collection
of null lines. In other words H2 is PV− and ∂H2 is PV0.

We define the other two standard models of complex hyperbolic space by taking
the section defined by z2 = 1 for the first and second Hermitian forms. In other
words, if we take column vectors z = (z, 1)t in C1,1 then consider what it means for

〈z, z〉 to be negative. Conversely, we can pass from points of Ĉ to C1,1 be taking the
standard lift. This is defined by

z 7−→ z =

(
z
1

)
, for z ∈ C; ∞ 7−→

(
1
0

)
.

For the first Hermitian form we obtain that if z and w are the standard lifts of
points z and w we have 〈z,w〉1 = zw − 1. Thus a point z ∈ Ĉ is in H2 = PV−

provided its standard lift z satisfies:

〈z, z〉1 = zz − 1 = |z|2 − 1 < 0.

In other words |z| < 1, the unit disc in C. This is called the Poincaré disc model

of the hyperbolic plane. The ideal boundary of the Poincaré disc is PV0. A similar
argument shows that ∂H2 is the unit circle given by |z| = 1.
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For the second Hermitian form we obtain that 〈z,w〉2 = iz − iw. Therefore a

point z ∈ Ĉ lies in in H2 provided:

〈z, z〉2 = iz − iz = −2Im(z) < 0.

In other words Im(z) > 0 and we obtain the upper half plane model of the hyperbolic

plane. The ideal boundary PV0 is the extended real line R̂ = R ∪ {∞}.
The Poincaré metric on either Poincaré disc or the upper half plane H2 is given

by

ds2 =
−4

〈z, z〉2
det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
(3.6)

where z is any lift of z ∈ H2 and dz is its differential. Alternatively, the Poincaré
metric is given by the distance function ρ(·, ·) defined by the formula

cosh2
(ρ(z, w)

2

)
=
〈z,w〉 〈w, z〉
〈z, z〉 〈w,w〉 (3.7)

where z and w are lifts of z and w to C1,1. However, as may easily be seen, this
formula is independent of which lifts z and w in C1,1 of z and w we choose.

Exercise 3.1.1 1. For the Poincaré disc, use the first Hermitian form to show
that

ds2 =
4dz dz

(
1− |z|2

)2 , cosh2
(ρ(z, w)

2

)
=

|zw − 1|2(
1− |z|2

)(
1− |w|2

) . (3.8)

2. For the upper half plane, use the second Hermitian form to show that

ds2 =
dz dz

Im(z)2
, cosh2

(ρ(z, w)

2

)
=

|z − w|2
4Im(z)Im(w)

. (3.9)

After applying the projection map P, the Cayley transform C given by (3.5)
becomes a Möbius transformation C(z) sending the upper half plane to the Poincaré
disc. Using composition of functions, we can pass between the different expressions
for the metric.

3.2 Isometries

We let U(1, 1) denote the collection of all unitary matrices preserving a given
Hermitian form of signature (1, 1). When the form is H1 or H2 this group will
be denoted U(H1) or U(H2) respectively. Sometimes it is convenient to assume that
det(A) = 1. The collection of all unitary matrices with determinant 1 will be written
as SU(1, 1).
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For any Hermitian form of signature (1, 1), the corresponding unitary matrices
in SU(1, 1) naturally act on C1,1. Since they preserve the Hermitian form they

also preserve V+, V0 and V−. Let z be the standard lift of z ∈ Ĉ = CP1 and let
A ∈ SU(1, 1). What does P(Az) look like as a function of z?

PAz = P

(
a b
c d

) (
z
1

)

= P

(
az + b
cz + d

)

=

{
(az + b)/(cz + d) if z 6= −d/c

∞ if z = −d/c.
.

Therefore, the answer is that A acts on CP1 = Ĉ via the Möbius transformation
A(z) = (az + b)/(cz + d). We will frequently pass between matrices and Möbius
transformations without comment. (We abuse notation by using the same letter for
the matrix and the Möbius transformation.) The collection of Möbius transforma-
tions preserving the unit disc will be denoted PSU(1, 1) and those preserving the
upper half plane by PSL(2, R).

We now examine what unitary matrices look like in terms of the first Hermitian
form. Let

A =

(
a b
c d

)
.

Then
1

ad− bc

(
d −b
−c a

)
= A−1 = H−1

1 A∗H1 =

(
a −c

−b a

)
.

In particular, if A ∈ SU(H1) then b = c and d = a. Hence 1 = |a|2 − |c|2. Thus

SU(H1) =

{(
a c
c a

)
: a, c ∈ C; |a|2 − |c|2 = 1

}
. (3.10)

We now repeat the above construction for the second Hermitian form. Writing A
as above, we have

1

ad− bc

(
d −b
−c a

)
= A−1 = H−1

2 A∗H2 =

(
d −b
−c a

)
.

Thus, if det(A) = 1 we see that its entries are all real. Hence the special unitary
group preserving the second Hermitian form is

SU(H2) =

{(
a b
c d

)
: a, b, c, d ∈ R; ad− bc = 1

}
. (3.11)

This group is more commonly denoted SL(2, R) and we will call it this from now
on. It is also usual to write SU(H1) simply as SU(1, 1).
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The Cayley transform C defined by (3.5) acts on Ĉ by the Möbius transformation

C(z) = (z − i)/(−iz + 1). (3.12)

Exercise 3.2.1 Show that the Cayley transformation C(z) given by (3.12) maps
the extended real line R ∪ {∞} to the unit circle and sends the point i to 0. Deduce
that it maps the upper half plane to the unit disc.

Lemma 3.2.1 The group SU(H1) is generated by matrices of the form

D =

(
cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

)
, S =

(
eiθ 0
0 e−iθ

)

where λ ∈ R+ and θ ∈ [0, 2π).

Proof: Suppose that

A =

(
a c
c a

)

where a and c are complex numbers with |a|2 − |c|2 = 1. Let λ ∈ R+ be defined by
sinh(λ) = |c|. Then we have |a|2 = 1+|c|2 = 1+sinh2(λ) = cosh2(λ) so cosh(λ) = |a|.
Define θ1 and θ2 mod 2π by 2θ1 = arg(a)− arg(c) and 2θ2 = arg(a) + arg(c). Then
we have

(
eiθ1 0
0 e−iθ1

) (
cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

) (
eiθ2 0
0 e−iθ2

)
=

(
a c
c a

)
.

�

Lemma 3.2.2 The group SL(2, R) is generated by matrices of the form

D =

(
eλ 0
0 e−λ

)
, T =

(
1 t
0 1

)
, R =

(
0 −1
1 0

)

where t, λ ∈ R.

Proof: If c 6= 0 and ad− bc = 1 then
(

1 a/c
0 1

) (
0 −1
1 0

) (
c 0
0 1/c

) (
1 d/c
0 1

)
=

(
a b
c d

)
.

If c = 0 and ad = 1 (so a 6= 0) then
(

a 0
0 1/a

) (
1 b/a
0 1

)
=

(
a b
0 d

)
.

�
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Lemma 3.2.3 Let A(z) be the Möbius transformation in PSU(1, 1) corresponding
to the matrix A ∈ SU(1, 1). Let v ∈ CP1 be a fixed point of A(z) and let v be the
standard lift of v to C1,1. Then v is an eigenvector of A with eigenvalue cv + a.

Proof: We have A(v) = (av + c)/(cv + a) = v and so av + c = cv2 + av. Hence

Av =

(
a c
c a

)(
v
1

)
=

(
av + c
cv + a

)
=

(
cv2 + av
cv + a

)
= (cv + a)

(
v
1

)
.

�

Proposition 3.2.4 Let A ∈ SU(1, 1) or SL(2, R) and let τ = tr(A). Then the
characteristic polynomial of A is

chA(t) = t2 − τt + 1

and the eigenvalues of A are

t =
τ ±

√
(τ − 2)(τ + 2)

2
.

In particular,

(i) if |τ | > 2 the eigenvalues of A are both real and reciprocals of one another;

(ii) if |τ | = 2 then A has a repeated eigenvalue ±1;

(iii) if |τ | < 2 then the eigenvalues of A are complex conjugate complex numbers of
modulus 1.

Exercise 3.2.2 Prove Proposition 3.2.4.

Corollary 3.2.5 (i) In case (i) of Proposition 3.2.4 A(z) has two distinct fixed
points which both lie on ∂H2.

(ii) In case (ii) either A(z) = z or A(z) has a unique fixed point which lies on
∂H2.

(iii) In case (iii) A(z) has a unique fixed point in H2 (and also one in the exterior).

Proof: In (i) both eigenvalues are not equal to 1. By Lemma 2.3.3 (i) the
eigenvectors must lie in V0. Hence their image under P correspond to points of ∂H2.

In (ii) either A = ±I or else A has Jordan normal form

A =

(
±1 1
0 ±1

)
.
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Then A has an eigenvector v and there is a non-zero vector u so that Au = ±u+v.
Therefore

〈u,v〉 = 〈Au, Av〉 = 〈±u + v,±v〉 = 〈u,v〉 ± 〈v,v〉.
Hence 〈v,v〉 = 0 and so the fixed point lies on ∂H2 as before.

Finally, in (iii) the eigenvalues are a pair of complex conjugate complex numbers of
unit modulus, say t = e±iθ for some θ ∈ (0, π). Suppose that they have eigenvectors
v and w respectively. Since eiθe−iθ = e2iθ 6= 1, by using Lemma 2.3.3 (ii) we see
that 〈v,w〉 = 0. From the signature of the form we see that one must be in V− and
the other in V+. Thus the eigenvector in V− corresponds to a unique fixed point of
A in H2. �

This leads to an important classification result for isometries. Let A(z) be a non-
trivial Möbius transformation in either PSU(1, 1) or PSL(2, R) and we think of its
action on the hyperbolic plane H2 and its ideal boundary ∂H2.

(i) A(z) is loxodromic (or hyperbolic) if it has exactly two fixed points, each of
which lies on ∂H2.

(ii) A(z) is parabolic if it has a unique fixed point on ∂H2.

(iii) A(z) is elliptic if it fixes a point of H2 (and so exactly one such point).

Combining the previous results, we have a classification of elements of SU(1, 1) or
SL(2, R) by trace.

Proposition 3.2.6 Let A ∈ SU(1, 1) or SL(2, R) and let A(z) be the corresponding
Möbius transformation in PSU(1, 1) or PSL(2, R). Then

(i) A(z) is loxodromic if tr(A) > 2 or tr(A) < −2;

(ii) A(z) is parabolic or the identity if tr(A) = ±2;

(iii) A(z) is elliptic if −2 < tr(A) < 2.

Exercise 3.2.3 Use theorems about diagonalisation of matrices and the Jordan nor-
mal form to show that two loxodromic or parabolic elements of SU(1, 1) or SL(2, R)
are conjugate (within this group) if and only if their traces are equal, but that there
are two conjugacy classes of elliptic map with the same trace (and these are inverses
of each other).

The Möbius transformations in PSU(1, 1) or PSL(2, R) are orientation preserving
isometries of the hyperbolic plane. The map z −→ −z is also a hyperbolic isometry
and preserves both the Poincaré disc and the upper halfplane. In order to see this,
observe that

〈(
−z
1

)
,

(
−w
1

)〉
=

〈(
z
1

)
,

(
w
1

)〉
=

〈(
w
1

)
,

(
z
1

)〉
.
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We can then use the formula for the hyperbolic cosine of the hyperbolic distance
function to show that this map is an isometry. We now show that these are the only
isometries of the hyperbolic plane.

Proposition 3.2.7 Any hyperbolic isometry of the Poincaré disc or the upper half
plane has the form A(z) or A(−z) where A(z) is a Möbius transformation in PSU(1, 1)
or PSL(2, R) respectively.

Proof: We work with the upper half plane. Let φ : H2 −→ H2 be any isometry of
the upper half plane. By applying A(z) ∈ PSL(2, R) we may suppose that φ(i) = i
and φ(2i) = it for some t > 1. Using the formula (3.9) and the fact that φ is an
isometry, we see that

9

8
= cosh2

(
ρ(2i, i)

2

)
= cosh2

(
ρ(φ(2i), φ(i))

2

)
= cosh2

(
ρ(it, i)

2

)
=

(t + 1)2

4t
.

Simplifying, we see that 2t2− 5t+2 = 0 so t = 2 or t = 1/2. Since we assumed that
t > 1 we see that φ fixes 2i.

We now claim that φ fixes it for all t > 0. Suppose that φ(it) = x+ iy with y > 0.
Then

(t + 1)2

4t
= cosh2

(
ρ(it, i)

2

)
= cosh2

(
ρ(x + iy, i)

2

)
=

x2 + (y + 1)2

4y
,

(t + 2)2

8t
= cosh2

(
ρ(it, 2i)

2

)
= cosh2

(
ρ(x + iy, 2i)

2

)
=

x2 + (y + 2)2

8y
.

Solving these equations we obtain x = 0 and y = t.

Finally, suppose that φ(z) = w then for all y > 0 we have

|z + iy|2
4yIm(z)

= cosh2

(
ρ(z, iy)

2

)
= cosh2

(
ρ(w, iy)

2

)
=
|w + iy|2
4yIm(w)

.

Expanding and comparing coefficients of y we see that Im(w) = Im(z). Using

this and comparing the coefficients of y−1 leads to
(
Re(z)

)2
=

(
Re(w)

)2
and so

Re(w) = ±Re(z). Therefore either φ(z) = z or φ(z) = −z. The result follows. �

Proposition 3.2.8 Let A(z) ∈ PSL(2, R). Then

(i) if a = d then A(−z) fixes a semicircle centred on the real axis or a line or-
thogonal to the real axis;

(ii) if a 6= d then A(−z) has two fixed points on R ∪ {∞}.
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Figure 3.1: Geodesics in the Poincaré disc and upper half plane.

Proof: Suppose that v is a fixed point of A(−z). Then v = (−av + b)/(−cv + d).
That is

c|v|2 − av − dv + b = 0.

If a = d and c 6= 0 this is c|v−2a/c|2 = 4a2/c−b = (3a2 +1)/c. This is the equation
of a circle centred on the real axis. If a = d and c = 0 then 2aRe(v) = b which is a
line orthogonal to the real axis.

If a 6= d then, since a, b, c, d are all real, the imaginary part of this equation is
(a− d)Im(v) = 0 and so v is real. It is easy to see that when c 6= 0

v =
a + d±

√
(a− d)2 + 4

2c

and when c = 0 then v =∞ or v = b/(a + d). �

Let A(z) be a Möbius transformation in either PSU(1, 1) or PSL(2, R) and we
think of the action of A(−z) on the hyperbolic plane H2 and its ideal boundary
∂H2.

(i) A(−z) is a glide reflection if it has exactly two fixed points lying on ∂H2.

(ii) A(−z) is a reflection if it fixes a line or semicircle in H2.

3.3 The geometry of the hyperbolic plane

A curve is called a geodesic if its length is the distance between its endpoints.

Proposition 3.3.1 Geodesics in the Poincaré disc and upper half plane are arcs of
circles orthogonal to the ideal boundary; see Figure 3.1.

Proof: We show that the imaginary axis in the upper half plane is a geodesic.
The result for the upper half plane will then follow by applying isometries and using
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that, since they are Möbius transformations, they preserve circles (or lines) and
angles.

Let iy0 and iy1 be two points on the imaginary axis and let γ : [0, 1] −→ H2 be a
path between them. That is γ(0) = iy0 and γ(1) = iy1. We write γ(t) = x(t)+ iy(t).
On γ(t) we have

ds2 =
dz dz

Im(z)2
=

∣∣γ′(t)
∣∣2

y(t)2
dt2 =

x′(t)2 + y′(t)2

y(t)2
dt2.

Then the length of γ is

ℓ(γ) =

∫ 1

t=0

√
x′(t)2 + y′(t)2

y(t)
dt

≥
∫ 1

t=0

∣∣∣∣
y′(t)

y(t)

∣∣∣∣ dt

=

∣∣∣∣
[
log

(
y(t)

)]1

t=0

∣∣∣∣

=
∣∣log(y1/y0)

∣∣

with equality if and only if x′(t) = 0 for all t, which implies that γ sends [0, 1] to
the imaginary axis. Thus the imaginary axis is a geodesic in the upper half plane
model, as claimed. �

We remark that we have shown that the length of the geodesic arc from iy0 to iy1

is ρ(iy0, iy1) =
∣∣log(y1/y0)

∣∣. Thus

cosh2

(
ρ(iy0, iy1)

2

)
=

(
(y1/y0)

1/2 + (y0/y1)
1/2

)2

/4

=
(y0 + y1)

2

4y0y1
.

This is the second formula of Exercise 3.1.1(1) in the case where z = iy0 and w = iy1.

Lemma 3.3.2 Hyperbolic circles in the Poincaré disc or the upper half plane are
Euclidean circles, but the centre is not necessarily the Euclidean centre. In particu-
lar, the hyperbolic circle in the Poincaré disc with centre 0 and hyperbolic radius r
is the Euclidean circle with centre 0 and radius tanh(r/2).

Proof: Suppose that z lies in the Poincaré disc and is a distance ρ from the
origin. From (3.8) we have

cosh2(r/2) = cosh2

(
ρ(0, z)

2

)
=

1

1− |z|2 .

Rearranging, we find that |z| = tanh(r/2). Therefore the locus of such points is a
Euclidean circle of radius tanh(r/2).
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Since Möbius transformations map circles to circles we find that all other hyper-
bolic circles are also Euclidean circles. However, when a Möbius transformation
maps one circle to another, it does not map the centre to the centre unless it fixes
∞. �

Cartesian coordinates on the upper half plane have the following interpretation in
terms of hyperbolic geometry. The vertical lines where x is constant are geodesics.
The horizontal lines where y is constant are horocycles. We define the horocycle Ht

based at ∞ of height t and the horodisc Bt based at ∞ of height t by

Ht =
{

z = x + iy ∈ H2 : y = t
}
, Bt =

{
z = x + iy ∈ H2 : y > t

}
.

Horocycles naturally carry the Euclidean metric, but this is not intrinsically defined.
We can use Möbius transformations to define horocycles and horodiscs based at

any point of either the upper half plane or the Poincaré disc. These are Euclidean
circles tangent to the boundary. Their height is not intrinsically defined.

Möbius transformations in PSL(2, R) map R̂ = R ∪ {∞} to itself. Möbius trans-
formations fixing ∞ are either Euclidean isometries (necessarily translations) or
dilations fixing a finite point of the ideal boundary. In either case, these maps
preserve the Cartesian grid comprising geodesics with one endpoint at∞ and horo-
cycles based at ∞. Furthermore, if A(x) ∈ Isom(R) then A(x) = ±x + t for some
t ∈ R and if A(x) ∈ Isom+(R) then A(x) = x + t for some t ∈ R. Such maps clearly
satisfy

∣∣A(x)− A(y)
∣∣ = |x− y|. Moreover, they preserve each horocycle.

Likewise the (loxodromic) dilation D(x) = d2x where d ∈ R − {0,±1} satisfies∣∣D(x) − D(y)
∣∣ = d2|x − y|. Any loxodromic map fixing ∞ is the conjugate of this

one by a translation. That is D(x) = d2x + t for t ∈ R. Once again we have∣∣D(x)−D(y)
∣∣ = d2|x− y|. Moreover, D(x) maps the horocycle Ht of height t > 0

based at ∞ to the horocycle Hd2t of height d2t based at ∞.
Finally we have R(x) = −1/x which satisfies

∣∣R(x)− R(y)
∣∣ =

∣∣∣∣
−1

x
− −1

y

∣∣∣∣ =
|x− y|
|x| |y| .

This enables us to give the dynamical action of hyperbolic isometries.

Proposition 3.3.3 Let A(z) ∈ PSU(1, 1) or PSL(2, R).

(i) If A(z) is loxodromic then it preserves the geodesic whose endpoints are the
fixed points. Moreover, it translates points of this geodesic by a constant hy-
perbolic distance. Thus one fixed point is attractive and the other is repulsive.

(ii) If A(z) is parabolic then it preserves each horocycle based at the fixed point. It
translates points of this horocycle by a constant Euclidean distance.

(iii) If A(z) is elliptic then it preserves hyperbolic circles centred at the fixed point
and rotates them by a constant angle.
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Chapter 4

The Klein model of the hyperbolic
plane

4.1 Quadratic forms of signature (2, 1)

Let R2,1 be the real vector space R3 equipped with a non-degenerate quadratic form
of signature (2, 1). We consider the following symmetric matrices of signature (2, 1).

H1 =




1 0 0
0 1 0
0 0 −1



 , H2 =




0 0 1
0 1 0
1 0 0



 . (4.1)

We define quadratic forms by

(x,y)1 = ytH1x = x1y1 + x2y2 − x3y3, (4.2)

(x,y)2 = ytH2x = x1y3 + x2y2 + x3y1. (4.3)

In what follows we think of R2,1 to be R3 equipped with one of these two forms. In
fact, we mainly work with H1. It is an interesting (non-assessed) exercise to work
out the details for H2. As before, we define

V− =
{
x ∈ R2,1 : (x,x) < 0

}
,

V0 =
{
x ∈ R2,1 − {0} : (x,x) = 0

}
,

V+ =
{
x ∈ R2,1 : (x,x) > 0

}
.

Again x ∈ R2,1 is said to be negative, null or positive according to whether it is in
V−, V0 or V+ respectively.

We define a projection map P : R2,1 − {0} −→ RP2 in the usual way. If x3 6= 0
then

P :




x1

x2

x3



 7−→
(

x1/x3

x2/x3

)
∈ R2 ⊂ RP2.

23
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Figure 4.1: The light cone in R2,1. Points of V− lie inside the cone. The Klein disc,

as shown, is the intersection of V− with the plane with x3 = 1.

We define a partial inverse to this map called the standard lift by choosing the
section where x3 = 1. That is, given x ∈ R2 we define a point x in R2,1 by setting
the first two entries of x to be the entries of x and the third to be 1.

We define the Klein disc model of the hyperbolic plane to be PV− for the first
quadratic form. It is easy to see that if x ∈ R2 and has standard lift x, then x is in
the Klein disc H2 if and only if

(x,x)1 = |x|2 − 1 < 0.

In other words |x|2 = x2
1 + x2

2 < 1, see Figure 4.1.
Then the metric is given by

ds2 =
−1

(x,x)2
1

det

(
(x,x)1 (dx,x)1

(x, dx)1 (dx, dx)1

)
=

dx2
1 + dx2

2 − (x1 dx2 − x2 dx1)
2

(1− x2
1 − x2

2)
2

. (4.4)

Note that we omit the constant 4 that appears in (3.6). This ensures that the
curvature is the same as for the Poincaré models of the hyperbolic plane. Also

cosh2
(
ρ
(
(x1, x2), (y1, y2)

))
=

(x,y)1(y,x)

(x,x)1(y,y)
=

(x1y1 + x2y2 − 1)2

(1− x2
1 − x2

2)(1− y2
1 − y2

2)
.

For the second quadratic form, we obtain a region bounded by a parabola:

(x,x)2 = 2x1 + x2
2 < 0.

In order to discuss the boundary of this parabola we must extend the definition of
P so that

P : x 7−→ ∞
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Figure 4.2: Stereographic projection from the Poincaré disc to the upper hemisphere

and vertical projection from the hemisphere to the Klein disc.

when x2 = x3 = 0.
The map from the Poincaré disc to the Klein disc is given by first stereographically

projecting to the unit sphere in R3 and then orthogonally projecting onto the first
two coordinates, see Figure 4.2. Stereographic projection of the Poincaré disc onto
the upper hemisphere is given by:

z = x + iy 7−→
(

2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
.

Vertical projection from the upper hemisphere to the Klein disc is given by:
(

2x

1 + x2 + y2
,

2y

1 + x2 + y2
,
1− x2 − y2

1 + x2 + y2

)
7−→

(
2x

1 + x2 + y2
,

2y

1 + x2 + y2

)

The composition of these maps is:

z = x + iy 7−→
(

2x

1 + x2 + y2
,

2y

1 + x2 + y2

)
. (4.5)

We remark that under both of these maps the points on the unit circle are fixed.
The map from the Klein disc to the Poincaré disc is given by

(x1, x2) 7−→
x1 + ix2

1 +
√

1− x2
1 − x2

2

. (4.6)

Lemma 4.1.1 The maps (4.5) and (4.6) are inverses of each other.

Proof: If

x1 =
2x

1 + x2 + y2
, x2 =

2y

1 + x2 + y2



26 CHAPTER 4. THE KLEIN MODEL OF THE HYPERBOLIC PLANE

then √
1− x2

1 − x2
2 =

1− x2 − y2

1 + x2 + y2
.

Thus
x1 + ix2

1 +
√

1− x2
1 − x2

2

=

2x
1+x2+y2 + i 2y

1+x2+y2

1 + 1−x2−y2

1+x2+y2

= x + iy.

�

Proposition 4.1.2 The map (4.5) induces an isometry from the Poincaré disc to
the Klein disc, that is between the metrics (3.8) and (4.4).

Proof: If

z =
x1 + ix2

1 +
√

1− x2
1 − x2

2

then

dz =

√
1− x2

1 − x2
2

(
1 +

√
1− x2

1 − x2
2

)
(dx1 + idx2) + (x1 + ix2)(x1dx1 + x2dx2)√

1− x2
2 − x2

2

(
1 +

√
1− x2

1 − x2
2

)2

Therefore

dzdz =
(1− x2

1 − x2
2)(dx2

1 + dx2
2) + (x1dx1 + x2dx2)

2

(1− x2
1 − x2

2)
(
1 +

√
1− x2

1 − x2
2

)2 .

Also

1− |z|2 =
2
√

1− x2
1 − x2

2

1 +
√

1− x2
1 − x2

2

.

Substituting these expressions in (3.8) gives (4.4). �

Exercise 4.1.1 Using the map (4.5) show that geodesics in the Klein disc are
Euclidean line segments. Similarly, show that hyperbolic circles and horocycles in
the Klein disc are ellipses. [Do not calculate: argue using geometry. Note that
stereographic projection maps arcs of circles to arcs of circles and also preserves
angles.]

4.2 Isometries

Matrices preserving a quadratic form are called orthogonal. In particular if H is a
real Hermitian form then unitary matrices preserving H that have real entries are
orthogonal. The inverse of an orthogonal matrix A is H−1AtH .

We let O(2, 1) be the group of orthogonal matrices preserving a quadratic form
of signature (2, 1). Let SO(2, 1) be the subgroup with determinant +1. If this form
is H1 or H2 then we write SO(H1) or SO(H2) respectively.
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A matrix A in SO(H1) acts on the Klein disc as follows. First take the standard
lift x of x ∈ H2. Then A acts on x by left multiplication. Finally we projectivise.
That is

A(x) = PAx

= P




a b c
d e f
g h j








x1

x2

1





= P




ax1 + bx2 + c
dx1 + ex2 + f
gx1 + hx2 + j





=

(
(ax1 + bx2 + c)/(gx1 + hx2 + j)
(dx1 + ex2 + f)/(gx1 + hx2 + j)

)
.

This is a generalisation of a Möbius transformation.
This map A −→ A(x) is a surjective homomorphism. Its kernel is the group of

non-zero real multiples of the identity with unit determinant. Since there is a unique
real cube root of unity, this means that this map is an isomorphism.

One advantage of the Klein disc model is that SO(2, 1), unlike PSL(2, R), contains
both orientation preserving and orientation reversing isometries.

Lemma 4.2.1 The isometry of the Poincaré disc given by z 7−→ −z corresponds to
the following map in SO(2, 1):




1 0 0
0 −1 0
0 0 −1



 .

Proof: Since −(x + iy) = −x + iy we see using (4.5) and (4.6) that the map
z 7−→ −z corresponds to the map (x1, x2) 7−→ (−x1, x2) of the Klein disc. The
action of the above matrix is

P




1 0 0
0 −1 0
0 0 −1








x1

x2

1



 = P




x1

−x2

−1



 =




−x1

x2

1



 .

�

Exercise 4.2.1 Show that the map (4.5) induces the following homomorphism from
SU(1, 1) to SO(2, 1)

(
cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

)
7−→




cosh(2λ) 0 sinh(2λ)

0 1 0
sinh(2λ) 0 cosh(2λ)



 ,

(
eiθ 0
0 e−iθ

)
7−→




cos(2θ) − sin(2θ) 0
sin(2θ) cos(2θ) 0

0 0 1



 ,
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In other words, if Φ : z 7−→ (x1, x2) is the map (4.5) and A ∈ SL(2, R) is the matrix
on the left, show that BΦ(z) = Φ

(
A(z)

)
where B ∈ SO(2, 1) is the map on the right.

Using the proof of Lemma 3.2.1, deduce that if A ∈ SU(1, 1) is mapped to B ∈ SO(2, 1)
by the homomorphism you have just constructed, then tr(B) = tr2(A)− 1.

Proposition 4.2.2 Let A ∈ SO(2, 1) and let τ = tr(A). Then the characteristic
polynomial of A is

chA(t) = t3 − τt2 + τt− 1

and the eigenvalues of A are t = 1 and

t =
τ − 1±

√
(τ − 3)(τ + 1)

2
.

Proof: Suppose that A has eigenvalues t1, t2 and t3. Since det(A) = 1 we have

t1t2t3 = 1. Also, by Lemma 2.3.1, t
−1
j is an eigenvalue of A and so t

−1
1 , t

−1
2 , t

−1
3 is a

permutation of t1, t2, t3. Hence

t1t2 + t2t3 + t3t1 = t−1
3 + t−1

1 + t−1
2 = t1 + t2 + t3 = τ = τ.

We have used the fact that τ is real in the last step. Hence the characteristic
polynomial of A is

chA(t) = (t− t1)(t− t2)(t− t3)

= t3 − (t1 + t2 + t3)t
2 + (t1t2 + t2t3 + t3t1)t− t1t2t3

= t3 − τt2 + τt− 1

= (t− 1)
(
t2 − (τ − 1)t + 1

)
.

Notice that t = 1 is always a root of this polynomial. The rest of the result follows
simply. �

The following result is the analogue of Proposition 3.2.6 but there are now more
categories since SO(2, 1) contains the orientation reversing isometries of H2.

Proposition 4.2.3 Let A ∈ SO(2, 1) and write τ = tr(A). Then

(i) A(z) is loxodromic if τ > 3;

(ii) A(z) is parabolic or the identity if τ = 3;

(iii) A(z) is elliptic if −1 < τ < 3;

(iv) A(z) is elliptic or a reflection if τ = −1;

(v) A(z) is a glide reflection if τ < −1.
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Hyperbolic 3-space

5.1 Isometries

We begin by discussing the matrix group SL(2, C) and the corresponding group of
Möbius transformations PSL(2, C). The group SL(2, C) is defined by

SL(2, C) =

{(
a b
c d

)
: a, b, c, d ∈ C, ad− bc = 1

}
.

Such matrices naturally act by left multiplication on vectors in C2. Arguing as in
Section 3.2 the matrix A ∈ SL(2, C) acts on Ĉ = CP1 via the Möbius transformation
A(z) = (az + b)/(cz + d). The collection of such Möbius transformations will be
denoted PSL(2, C). These Möbius transformations act naturally on the Riemann
sphere. The group PSL(2, C) contains PSU(1, 1) and PSL(2, R) as subgroups.

Proposition 5.1.1 Let A ∈ SL(2, C) have real trace. Then A is conjugate to an
element of SL(2, R).

Proof: Suppose first that A has distinct eigenvalues. Then we can conjugate A
to diagonal form and the eigenvalues are the diagonal entries. There are two cases.
If tr(A) > 2 or tr(A) < −2 then A has eigenvalues t and 1/t for some real number
with t > 1 or t < −1 respectively. This is clearly in SL(2, R).

If −2 < tr(A) < 2 then A has eigenvalues eiθ and e−iθ for some θ ∈ (0, π). Hence
A lies in SU(1, 1). In fact we can conjugate A to SL(2, R) as follows:

1√
2

(
1 −i
−i 1

) (
eiθ 0
0 e−iθ

)
1√
2

(
1 i
i 1

)
=

(
cos θ − sin θ
sin θ cos θ

)
.

Finally suppose that A has a repeated eigenvalue, necessarily ±1. If A is diago-
nalisable it is necessarily ±I. Otherwise, we can conjugate A to its Jordan normal
form (

±1 1
0 ±1

)

29
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which clearly lies in SL(2, R). �

Clearly elements of SL(2, C) with non-real trace cannot be conjugated to elements
of SL(2, R). However, we can write them as a product of two such maps.

Proposition 5.1.2 Let A ∈ SL(2, C) have non-real trace. Then A can be be written
as a product of two maps each of which is conjugate to an element of SL(2, R).

Proof: Let t be an eigenvalue of A. Then 1/t is necessarily the other eigenvalue.
Since t + 1/t is not real, we can write t as t = reiθ where r > 1 and θ ∈ (0, π).
Clearly A has distinct eigenvalues. Therefore A can be diagonalised. Thus A is
conjugate to

(
t 0
0 t−1

)
=

(
reiθ 0
0 r−1e−iθ

)
=

(
r 0
0 r−1

) (
eiθ 0
0 e−iθ

)
.

This proves the result. �

We say that A ∈ SL(2, C) is simple if it is conjugate to an element of SL(2, R).
Also A ∈ SL(2, C) is said to be k-simple if it can be written as a product of k simple
matrices and no fewer.

Theorem 5.1.3 Two non-trivial maps A and B in SL(2, C) are conjugate if and
only if their traces are equal. Moreover, given A ∈ SL(2, C) not ±I then write
τ = tr(A). We have

(a) if τ is real then A is 1–simple, and

(i) if −2 < τ < 2 then A is elliptic;

(ii) if τ = ±2 then A is parabolic;

(iii) if τ > 2 or τ < −2 then A is loxodromic.

(b) If τ is not real then A is 2–simple and loxodromic.

5.2 The Poincaré extension

We want to describe the action of complex Möbius transformations on upper half
3-space. In order to do so we introduce the imaginary unit j, satisfying ij = −ji
and j2 = −1. (This is the first hint about how we will use quaternions and, later,
Clifford algebras. We will say more about this in later sections.) Points in the upper
half space will be written z + tj where z ∈ C and t ∈ R+:

H3 =
{
z + tj : z ∈ C, t ∈ R+

}
.
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In fact, these are horospherical coordinates: we have foliated H3 by horospheres Ht

centred at ∞:
Ht =

{
z + tj : z ∈ C

}
. (5.1)

Each of these horospheres is parametrised by z ∈ C, and the parameter t indexes
the height above Ĉ = ∂H3 of each horosphere.

We are now interested in how a Möbius transformation acts on z + tj. Because
ij 6= ji we have to be careful in which order we multiply numbers involving both i
and j. Therefore we choose to write our Möbius transformation as

A(z + tj) =
(
a(z + tj) + b

)(
c(z + tj) + d

)−1

where a, b, c and d are all complex numbers satisfying ad − bc = 1. We now have

to interpret what
(
c(z + tj) + d

)−1
means. It should be that number which, when

multiplied by
(
c(z+tj)+d

)
gives 1. We claim that it is a real multiple of (z−tj)c+d.

In order to see this, observe first that, if z = x + iy then

jz = j(x− yi) = xj − yji = xj + yij = (x + yi)j = zj.

Therefore
(
c(z + tj) + d

)(
(z − tj)c + d

)

= c(z + tj)(z − tj)c + c(z + tj)d + d(z − tj)c + dd

= c(|z|2 − ztj + ztj + t2)c + czd + cdtj + dzc− dctj + |d|2

= |cz + d|2 + |c|2t2.
Therefore

(
c(z + tj) + d

)−1
=

(z − tj)c + d

|cz + d|2 + |c|2t2 .

(We are allowed to divide by non-zero real numbers since they commute with i and
j and hence the left inverse and right inverse of a real number are the same.)

Proposition 5.2.1 The group PSL(2, C) maps H3 = {z + tj : z ∈ C, t ∈ R+} to
itself.

Proof: We have

A(z + tj) =
(
a(z + tj) + b

)(
c(z + tj) + d

)−1

=

(
a(z + tj) + b

)(
(z − tj)c + d

)

|cz + d|2 + |c|2t2

=
a(z + tj)(z − tj)c + a(z + tj)d + b(z − tj)c + bd

|cz + d|2 + |c|2t2

=
a(|z|2 − ztj + ztj + t2)c + azd + adtj + bzc− bctj + bd

|cz + d|2 + |c|2t2

=
(az + b)(cz + d) + act2 + tj

|cz + d|2 + |c|2t2
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which has the required form. �

Consider the matrix

H2 =

(
0 −j
j 0

)
. (5.2)

It is clear that H2
2 is the identity so H2 is its own inverse. If we were to extend

the definition of complex conjugation so that z + tj = z − tj (so j = −j) we could
then extend the definition of the Hermitian conjugate of a matrix whose entries lie
in C⊕ jR accordingly. By this definition, H2 is a Hermitian matrix.

Proposition 5.2.2 Let H2 be given by (5.2). For any A ∈ SL(2, C) we have
A∗H2A = H2.

Proof: Using zj = jz we have

A∗H2A =

(
a c

b d

) (
0 −j
j 0

) (
a b
c d

)

=

(
cj −aj

dj −bj

) (
a b
c d

)

=

(
jc −ja
jd −jb

) (
a b
c d

)

=

(
0 −j
j 0

)
= H2.

as required. �

If we allow the definition of unitary in Section 2.2 to be extended to Hermitian
forms involving z + tj then we have:

Corollary 5.2.3 Each A ∈ SL(2, C) is unitary with respect to H2.

The Hermitian matrix H2 given by (5.2) defines a Hermitian form 〈·, ·〉2. This
is done in an analogous manner to the construction for complex Hermitian forms,
as explained in Section 2.1. We give more details in the next section. Using this
form the definition of the hyperbolic metric on H3 is given by the formulae (3.6)
and (3.7).

Exercise 5.2.1 Let

z + tj =

(
z + tj

1

)

be the standard lift of z + tj ∈ H3. Let 〈·, ·〉 be the Hermitian form defined by H2.
Show that

〈z + tj,w + sj〉 = j(z − w)− t− s.
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Use this form to show that on H3 we have

ds2 =
dz dz + dt2

t2

and

cosh2
(ρ(z + tj, w + sj)

2

)
=
|z + tj − w + sj|2

4ts
=
|z − w|2 + (t + s)2

4ts
.

5.3 The geometry of hyperbolic 3-space

In this section we consider geometric objects in H3 analogous to those we found in
the hyperbolic plane. The properties of these objects and their construction will
generalise directly from H2 to H3.

Proposition 5.3.1 Geodesics in H3 are lines or semicircles orthogonal to the ideal
boundary Ĉ.

Proof: We can show that the j-axis is a geodesic as in Proposition 3.3.1. This
is a line orthogonal to Ĉ, as is its image under any A(z) ∈ PSL(2, C) with c = 0.
Likewise, if A(z) ∈ PSL(2, C) has d = 0 then A(0) = ∞ and so A(z) sends the

imaginary axis to a line orthogonal to Ĉ.
Thus we assume that A(z) has c, d 6= 0 and we want to show that

{
A(tj) : t ∈ R

}

is a semicircle orthogonal to Ĉ. Now A(0) = bd−1 and A(∞) = ac−1. These

points will be where our semicircle intersects Ĉ. So if our hypothesis is correct, the
semicircle will have centre (ac−1 + bd−1)/2 and radius |ac−1 − bd−1|/2 = 1/2|cd|.
Thus

A(tj)− (ac−1 + bd−1)/2 =
bd + act2 + tj

|d|2 + |c|2t2 −
ac−1 + bd−1

2

=
2bd + 2act2 + 2tj − ac−1|d|2 − act2 − bd− bd−1|c|2t2

2
(
|d|2 + |c|2t2

)

=
(−ac−1 + bd−1)

(
|d|2 − 2cdtj − |c|2t2

)

2
(
|d|2 + |c|2t2

)

=
−ac−1 + bd−1

2
· (d− ctj)(d− tjc)

(d + ctj)(d− tjc)
.

Therefore ∣∣A(tj)− (ac−1 + bd−1)/2
∣∣ = |ac−1 − bd−1|/2

as claimed. �

Lemma 5.3.2 The hyperbolic sphere centred at (z0 + t0j) with hyperbolic radius r0

is a Euclidean sphere with centre z0 + t0 cosh(r0)j and radius t0 sinh(r0).
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Proof: A point z + tj lies on this sphere if and only if

cosh2(r0/2) =
|z − z0|2 + (t + t0)

2

4tt0
.

Rearranging, we obtain

0 = |z − z0|2 + t2 − 2
(
2 cosh2(r0/2)− 1

)
tt0 + t20

= |z − z0|2 + t2 − 2 cosh(r0)tt0 + t20

= |z − z0|2 +
(
t− t0 cosh(r0)

)2 − t20 sinh2(r0).

�

We can generalise horocycles and horodiscs to the Poincaré extension as in (5.1).
These are called horospheres and horoballs respectively. The horosphere Hu based
at ∞ of height u and the horoball Bu based at ∞ of height u are defined by

Hu =
{
z + tj ∈ H3 : t = u

}
, Bu =

{
z + tj ∈ H3 : t > u

}
.

As before, horospheres naturally carry the Euclidean metric. Horospheres and
horoballs based at other points of ∂H3 = Ĉ are defined as the images of these
ones under Möbius transformations.

Exercise 5.3.1 Show that elliptic and parabolic elements of PSL(2, C) that fix ∞
map each horosphere Hu for u ≥ 0 to itself and act there as Euclidean isometries.
Show that loxodromic maps fixing∞ map horocycles based at∞ to distinct horocycles
based at ∞.

5.4 The Klein model of hyperbolic 3-space.

Let R3,1 be the real vector space R4 equipped with a non-degenerate quadratic form
of signature (3, 1). The forms we choose to work with are given by the following
symmetric matrices:

H1 =





1 0 0 0
0 1 0 0
0 0 1 0
0 0 0 −1



 , H2 =





0 0 0 1
0 1 0 0
0 0 1 0
1 0 0 0



 .

We define quadratic forms by

(x,y)1 = ytH1x = x1y1 + x2y2 + x3y3 − x4y4, (5.3)

(x,y)2 = ytH2x = x1y4 + x2y2 + x3y3 + x4y1. (5.4)
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Then defining V+, V0, V− and P as before, we define the Klein ball model of the
hyperbolic plane to be PV− for the first quadratic form. Then the metric is given
by

ds2 =
−1

(x,x)2
1

det

(
(x,x)1 (dx,x)1

(x, dx)1 (dx, dx)1

)

=
(1− x2

1 − x2
2 − x2

3)(dx2
1 + dx2

2 + dx3
3) + (x1 dx1 + x2 dx2 + x3 dx3)

2

(1− x2
1 − x2

2 − x2
3)

2
.

We can then mimic the calculations we did in two dimensions to obtain an isom-
etry between the upper half space and the Klein ball. We can define the special
orthogonal group

SO(3, 1) =
{

A ∈ SL(4, R) : (Ax, Ay) = (x,y) for all x, y ∈ R3,1
}

.

We can then show that isometries of the Klein ball lie in

PSO(3, 1) = SO(3, 1)/{±I}.

The details are left as a exercise.
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Chapter 6

Quaternionic Möbius
transformations

6.1 The quaternions

Let H denote the division ring of real quaternions. Elements of H have the form
z = z0 + z1i + z2j + z3k where zi ∈ R and

i2 = j2 = k2 = ijk = −1.

Let z = z0 − z1i− z2j − z3k be the conjugate of z, and define the modulus of z to
be:

|z| =
√

zz =
√

z2
0 + z2

1 + z2
2 + z2

3 .

We define the real part of z to be Re(z) = (z + z)/2 = z0 and the imaginary part

of z to be Im(z) = (z − z)/2 = z1i + z2j + z3k. Note that the imaginary part of a
quaternion is not a real number (unlike with complex numbers). Also z−1 = z|z|−2

is the inverse of z.

Exercise 6.1.1 Let z and w be quaternions. Show that (zw) = w z. Deduce that
|zw| = |w| |z| and that (zw)−1 = w−1z−1.

Lemma 6.1.1 For z ∈ H, we let R(z) be the smallest sub-ring of H containing R

and z. Then we have:

(i) If Im(z) = 0 then R(z) = R.

(ii) If Im(z) 6= 0 then R(z) = R⊕Rz.

Moreover, in either case R(z) is a field (that is every non-zero element has an inverse
in R(z) and R(z) is abelian).

37
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Proof: In the first case, it is clear that z ∈ R and so R is the smallest sub-ring
of H containing z. This is a field.

In the second case, it is clear that R(z) must contain

R⊕ Rz =
{
a + bz : a, b ∈ R

}
.

It is clear that R ⊕ Rz is an abelian group under addition. We must show that
R⊕Rz is closed under multiplication. The other ring axioms will then be inherited
from H. First observe that

z2 = −|z|2 + 2Re(z)z ∈ R⊕ Rz

and so

(a + bz)(c + dz) = ac + (ad + bc)z + bdz2 = ac− bd|z|2 +
(
ad + bc + 2bdRe(z)

)
z

which is in R⊕ Rz.
It is clear that this multiplication is commutative. Moreover, every non-zero

element has a multiplicative inverse:

(a + bz)−1 = (a + bz)
(
a2 + 2abRe(z) + b2|z|2

)−1 ∈ R⊕Rz.

Therefore again R(z) is a field. �

For each non-zero quaternion q we define a map Aq : H −→ H by Aq(z) = qzq−1.
It is clear that

∣∣Aq(z)
∣∣ = |q| |z| |q|−1 = |z|. Moreover,

Aq(z) = q−1 z q = qzq−1 = Aq(z).

Therefore Re
(
Aq(z)

)
= Re(z). If q ∈ R then Aq(z) = z for all z ∈ H. Otherwise,

Aq(z) = z if and only if z ∈ R(q), where R(q) is the field considered in Lemma 6.1.1.

Exercise 6.1.2 Consider the canonical identification between quaternions and col-
umn vectors in R4:

z = z0 + z1i + z2j + z3k ←→





z0

z1

z2

z3



 . (6.1)

We write q = a + bi + cj + dk and then consider the action of Aq(z) in coordinates.
If we write z = z0 + z1i + z2j + z3k and Aq(z) = w = w0 + w1i + w2j + w3k, then
we have

w0 + w1i + w2j + w3k

= (a + bi + cj + dk)(z0 + z1i + z2j + z3k)(a− bi− cj − dk)/(a2 + b2 + c2 + d2).
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Show that under the identification between H and R4 given in (6.1) the map Aq(z)
may be identified with the matrix Aq where

Aq =
1

|q|2





|q|2 0 0 0
0 a2 + b2 − c2 − d2 2(bc− ad) 2(bd + ac)
0 2(bc + ad) a2 − b2 + c2 − d2 2(cd− ab)
0 2(bd− ac) 2(cd + ab) a2 − b2 − c2 + d2



 .

Show that Aq ∈ SO(4) and that the 3× 3 matrix in the bottom right hand corner of
Aq is in SO(3). Deduce that the map q 7−→ Aq gives a homomorphism from H−{0}
to SO(3).

Two quaternions z and w are similar if there exists non-zero q ∈ H such that
z = qwq−1. The similarity class of z is the set

{
qzq−1 : q ∈ H− {0}

}
.

Lemma 6.1.2 The quaternions z and w are similar if and only if |z| = |w| and
Re(z) = Re(w).

Proof: If z and w are similar then there is a non-zero q ∈ H so that w = Aq(z).
We have already seen that |z| = |w| and Re(z) = Re(w).

Conversely, suppose that z ∈ H. Consider

w = Re(z) +
∣∣Im(z)

∣∣i = Re(z) +
√
|z|2 −Re(z)2 i.

It is clear that Re(w) = Re(z) and |w| = |z|. We claim that we can find a non-zero
q ∈ H so that Aq(w) = qwq−1 = z. The result for general quaternions similar to z
will follow by composition.

We take

q = Im(z) +
∣∣Im(z)

∣∣i.

That is, if we write z = z0 + z1i + z2j + z3k then let y = Im(z) = z1i + z2j + z3k.
This means that q = y + |y|i. We have

|q|2 =
(
y + |y|i

)(
−y − |y|i

)
= 2|y|2 + 2|y|z1.

Hence

q
(
|y|i

)
q−1 =

(
y + |y|i

)(
|y|i

)(
−y − |y|i

)
/
(
2|y|2 + 2|y|z1

)

=
(
−|y|yiy + 2|y|2y + |y|3i

)
/
(
2|y|2 + 2|y|z1

)

=
(
2|y|2y + 2|y|z1y

)
/
(
2|y|2 + 2|y|z1

)

= y.

Since qRe(z)q−1 = Re(z) we then have q
(
Re(z) +

∣∣Im(z)
∣∣i

)
q−1 = z as claimed. �
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6.2 Quaternionic matrices and Möbius transfor-

mations

We can define a quaternionic right vector space in an analogous way to the way we
define real and complex vector spaces. The main difference is that (quaternionic)
scalars act by right multiplication. Thus a quaternionic right vector space is a set
V with operations addition and right scalar multiplication so that for v, w ∈ V
and t ∈ H we have v + w and vt in V . Then V should be an abelian group under
addition, scalar multiplication is associative and distributive and finally v1 = v and
v0 = 0 (the additive identity) for all v ∈ V . The quaternionic right vector space
we have in mind will be H2 defined by

H2 =

{
z =

(
z1

z2

)
: z1, z2 ∈ H

}

with the operations

z + w =

(
z1

z2

)
+

(
w1

w2

)
=

(
z1 + w1

z2 + w2

)
, zt =

(
z1

z2

)
t =

(
z1t
z2t

)
.

The vector space axioms then follow from the fact that H is a division ring.
Linear maps act on H2 (with the standard basis) as left multiplication by 2 × 2

matrices with quaternion entries in the usual way:

Az =

(
a b
c d

) (
z1

z2

)
=

(
az1 + bz2

cz1 + dz2

)
.

To each 2× 2 matrix

A =

(
a b
c d

)

with quaternion entries we associate the quantities σ and τ as follows:

σ = σA =






cac−1d− cb when c 6= 0,

bdb−1a when c = 0, b 6= 0,

(d− a)a(d− a)−1d when b = c = 0, a 6= d,

aa when b = c = 0, a = d,

τ = τA =






cac−1 + d when c 6= 0,

bdb−1 + a when c = 0, b 6= 0,

(d− a)a(d− a)−1 + d when b = c = 0, a 6= d,

a + a when b = c = 0, a = d.

The quantities σ and τ take the role of the quaternionic determinant and quater-

nionic trace of a quaternionic 2 × 2 matrix. They are not conjugation invariant.
Below we will construct some real invariants which are conjugation invariant.
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When σ 6= 0 the matrix A is invertible. Furthermore, A−1 is given by:

A−1 =

(
c−1dσ−1c −a−1bσ−1cac−1

−σ−1c σ−1cac−1

)
, when c 6= 0,

A−1 =

(
a−1 −σ−1b
0 d−1

)
, when c = 0.

(Note that when c = 0 the hypothesis σ 6= 0 implies that a 6= 0 and d 6= 0.) If σ = 0
then either one column of A is the zero vector or else one column is a left (or right)
scalar multiple of the other. In either case A is not invertible.

Note that a−1bσ−1cac−1 = c−1dσ−1cbd−1 when a, c, d and σ are all non-zero. In
order to see this, observe that

b−1c−1σ = b−1ac−1d− 1.

Therefore b−1c−1σ ∈ R(b−1ac−1d) and so they commute. Therefore

a−1bσ−1cac−1 = c−1d(d−1ca−1b)(σ−1cb)b−1ac−1

= c−1d(σ−1cb)(d−1ca−1b)b−1ac−1

= c−1dσ−1cbd−1.

We define the real determinant (or Dieudonné determinant) to be
√

α where:

α = αA = |a|2|d|2 + |b|2|c|2 − 2Re[ac̄db̄]. (6.2)

Observe that in each case α = |σ|2. This enables us to define the group SL(2, H):

SL(2, H) =

{(
a b
c d

)
: a, b, c, d ∈ H, α = 1

}
.

Exercise 6.2.1 Show that the group SL(2, H) is generated by matrices of the form

D =

(
λ 0
0 µ

)
, T =

(
1 1
0 1

)
, R =

(
0 −1
1 0

)
,

where |λ||µ| = 1. [This is similar to Lemma 3.2.2.]

An element

A =

(
a b
c d

)
∈ SL(2, H)

acts on H2 by left matrix multiplication.
Define a right projection map P : H2 7−→ Ĥ = H ∪ {∞} by

P :

(
z1

z2

)
7−→

{
z1z

−1
2 if z2 6= 0

∞ if z2 = 0.
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We define the standard lift of z ∈ Ĥ to H2 by

z 7−→ z =

(
z
1

)
for z ∈ H, ∞ 7−→

(
1
0

)
.

Matrices in SL(2, H) act of Ĥ by left multiplication on the standard lift followed
by right projection. For points z ∈ H this is

A(z) = PAz

= P

(
a b
c d

) (
z
1

)

= P

(
az + b
cz + d

)

= (az + b)(cz + d)−1.

A(∞) = P

(
a b
c d

) (
1
0

)

= ac−1.

This is a quaternionic Möbius transformation. Note that az+b
cz+d

does not make sense
for the quaternions. The map

A =

(
a b
c d

)
7−→ A(z) = (az + b)(cz + d)−1

from SL(2, H) to the group of quaternionic Möbius transformations is a surjective ho-
momorphism and its kernel is the group of non-zero real scalar multiples of the iden-
tity matrix. In particular, when α = 1 the kernel is {±I}. Therefore we can identify
the group of quaternionic Möbius transformations with PSL(2, H) = SL(2, H)/{±I}.
In future, whenever we refer to A, A(z) or a ‘quaternionic Möbius transformation’,
we refer to the quantities described above with coefficients a, b, c and d such that α
takes the value 1.

For a 2× 2 quaternionic matrix A we define the following three quantities:

β = βA = Re[(ad− bc)ā + (da− cb)d̄],

γ = γA = |a + d|2 + 2Re[ad− bc],

δ = δA = Re[a + d].

Since both A and−A are associated to the same quaternionic Möbius transformation
A(z), it is ambiguous to speak of β and δ for a Möbius transformation. We can,
however, refer to α, β2, βδ and so forth, without ambiguity.

Exercise 6.2.2 Show that

α = |σ|2,
β = Re

(
στ

)
,

γ = |τ |2 + 2Re(σ),

δ = Re(τ)



6.2. QUATERNIONIC MATRICES AND MÖBIUS TRANSFORMATIONS 43

A real Möbius transformation in PSL(2, H) is a member of PSL(2, H) with real co-
efficients. For such transformations, σ coincides with the usual determinant ad− bc.
Therefore the group of real Möbius transformations consists of the disjoint union
of the subgroup of real Möbius transformations with σ = 1, namely PSL(2, R), and
the coset of transformations with σ = −1. A member f of PSL(2, H) is simple if it
is conjugate in PSL(2, H) to an element of PSL(2, R). The map f is k–simple if it
may be expressed as the composite of k simple transformations but no fewer.

Theorem 6.2.1 A quaternionic Möbius transformation is conjugate to a real Möbius
transformation if and only if σ and τ are both real.

We prove in Proposition 6.2.4 that if σ and τ are real then they are preserved
under conjugation in SL(2, H). It follows from Theorem 6.2.1 that, as usual, the
quantity τ 2/σ can be used to distinguish conjugacy and dynamics amongst those
maps conjugate to real Möbius transformations. In contrast to Theorem 6.2.1, all
quaternionic Möbius transformations are conjugate to Möbius transformations with
complex coefficients.

Lemma 6.2.2 Let A be in SL(2, H) and suppose that b 6= 0 and c 6= 0. If τ = cac−1+d
and σ = cac−1d− cb are both real then bdb−1 + a = τ and bdb−1a− bc = σ.

Proof: Suppose that σ and τ are both real. If d = 0 then σ = −cb and τ = cac−1.
Then −bc = c−1σc = σ and a = c−1τc = τ since σ and τ are real and so commute
with c.

Suppose d 6= 0. Notice that

cb = cac−1d− σ = τd− d2 − σ ∈ R(d).

Therefore cb commutes with d. Then bdb−1 = c−1(cb)d(cb)−1c = c−1dc. Hence

bdb−1 + a = c−1dc + a = c−1τc = τ,

bdb−1a− bc = c−1dca− c−1(cb)c = c−1dσd−1c = σ.

�

Lemma 6.2.3 Let A be in SL(2, H) and suppose that either b = 0 or c = 0. Then
σ and τ are both real if and only if either a and d are both real or else a and d are
similar and σ = |a|2 and τ = 2Re[a].

Proof: If a and d are both real then clearly σ and τ are both real.
Suppose that σ and τ are both real, but a and d are not both real. We claim that

each of the following statements holds:

(i) if b = 0 and c 6= 0 then cac−1 = d;

(ii) if b 6= 0 and c = 0 then bdb−1 = a;
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(iii) if b = c = 0 and a 6= d then (d− a)a(d − a)−1 = d.

In each case, and in the remaining case in which b = c = 0 and a = d, a is similar
to d and hence to d, and also σ = |a|2 and τ = 2Re[a].

For case (i), first observe that d is not real; for if d were real then a would also
be real. Since σ = cac−1d we have τ = cac−1 + d = σd̄|d|−2 + d. Equating the
non-real parts of this equation we see that |σ| = |d|2. Hence cac−1 = σd−1 = d̄.
Cases (ii) and (iii) can be handled similarly. The proof of the converse implication
in the lemma is straightforward. �

Proposition 6.2.4 Given A ∈ SL(2, H), if σ = σA and τ = τA are real then they
are preserved under conjugation in SL(2, H).

Proof: The group SL(2, H) is generated by matrices of the form
(

λ 0
0 µ

)
,

(
1 1
0 1

)
,

(
0 −1
1 0

)
,

where |λ||µ| = 1. Denote one of these matrices by P . Let B = PAP−1. It suffices
to show that for each choice of P , we have σB = σA and τB = τA. Denote the
coefficients of B by a′, b′, c′ and d′.

In the first case we have
(

λ 0
0 µ

)(
a b
c d

) (
λ−1 0
0 µ−1

)
=

(
λaλ−1 λbµ−1

µcλ−1 µdµ−1

)
.

If c 6= 0 then

σB = µ(cac−1d− cb)µ−1 = σA,

τB = µ(cac−1 + d)µ−1 = τA.

Suppose that c = 0. We apply Lemma 6.2.3. If a and d are both real then a′ = a
and d′ = d. Otherwise, σB = |a′|2 = |a|2 = σA and τB = 2Re[d] = 2Re[a] = τA.

In the second case we have
(

1 1
0 1

) (
a b
c d

) (
1 −1
0 1

)
=

(
a + c b− a + d− c

c d− c

)
.

If c 6= 0 then

σB = c(a + c)c−1(d− c)− c(b− a + d− c) = σA,

τB = c(a + c)c−1 + d− c = τA.

If c = 0 then a′ = a and d′ = d and the result follows from Lemma 6.2.3.
In the third case we have

(
0 −1
1 0

)(
a b
c d

) (
0 1
−1 0

)
=

(
d −c
−b a

)
.
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If b 6= 0 and c 6= 0 then, using Lemma 6.2.2, we have

σB = bdb−1a− bc = σA,

τB = bdb−1 + a = τA.

Suppose that b = 0 or c = 0. If a and d are both real then σB = da = σA and
τB = d + a = τA. Otherwise, σB = |a|2 = |d|2 = σA and τB = 2Re[d] = 2Re[a] = τA.
�

Lemma 6.2.5 Let f(z) = (az + b)d−1 where a and d are similar and not real.
Then f has a fixed point in H if and only if bd = ab. Moreover, if bd = ab then f is
conjugate to g0(z) = aza−1 and if bd 6= ab then f is conjugate to g1(z) = (az+1)a−1.

Proof: Suppose that there exists v ∈ H such that f(v) = v. That is, av + b = vd.
Then using |a|2 = |d|2 and a + a = d + d we have

bd− ab = (vd− av)d− a(vd− av)

= vd2 + |a|2v − (a + a)vd

= vd(d + d)− (d + d)vd

= 0.

Conversely, assume that bd = ab. Then set v = (a−a)−1b = (a−a)b/|a−a|2, which
is defined since we supposed that a is not real. Using abd−1 = b, we have

f(v) =
(
a(a− a)−1b + b

)
d−1 = (a− a)−1(a + a− a)bd−1 = (a− a)−1b = v.

For the second part, conjugating by a diagonal map if necessary, we may always
suppose d = a. When ba − ab = 0, conjugating so that 0 is a fixed point gives
the result. When ba − ab 6= 0 it is easy to check that (ba − ab) commutes with a.
Conjugating by h(z) =

(
(a− a)z + b

)
(ba− ab)−1 gives the result. �

Using Lemma 6.2.3, we see that the condition bd = ab is equivalent to σ and τ
both being real. We are now in a position to prove Theorem 6.2.1.

Proof: (Theorem 6.2.1) If a quaternionic Möbius transformation is conjugate to
a real Möbius transformation then σ and τ are real, by Proposition 6.2.4. Conversely,
given a quaternionic Möbius transformation f , suppose that σ and τ are both real.
We may replace f by a conjugate transformation that fixes∞ (meaning that c = 0).
Proposition 6.2.4 ensures that σ and τ remain real. Now we apply Lemma 6.2.3. If a
and d are real but b is not real then we conjugate f by the map g, given by the equa-
tion g(z) = b−1z, to obtain the real Möbius transformation gfg−1(z) = (az + 1)d−1.

It remains to consider the case when a and d are similar, not real and σ = |a|2 and
τ = 2Re[a]. If b 6= 0 then bdb−1 = σa−1 = ā so that, by Lemma 6.2.5, f has a fixed
point v in H. After replacing f by another conjugate transformation we may assume
that v = 0 (meaning that b = 0). Apply one final conjugation to f by a map of the
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form z 7→ uz, for u ∈ H, to ensure that a 6= d. This means that a = x + µy and
d = x+ νy for real numbers x and y and distinct purely imaginary unit quaternions
µ and ν. From the matrix equation

(
µ 1
1 −ν

) (
x + µy 0

0 x + νy

) (
µ 1
1 −ν

)−1

=

(
x −y
y x

)

we see that f is conjugate to a real Möbius transformation. �

6.3 Quaternionic Hermitian forms

Let A = (aij) be a k × l quaternionic matrix. Then we define A∗ = (aji) to be the
l×k matrix given by the conjugate transpose of A. This is completely analogous to
the complex case. A k×k quaternionic matrix H is Hermitian if and only if H∗ = H .
To each k×k quaternionic Hermitian matrix we can define a quaternionic Hermitian

form on the quaternionic right vector space Hk as a map 〈·, ·〉 : V × V −→ H by

〈z,w〉 = w∗Hz.

It is clear that for all z, z1, z2 and w column vectors in Hk and all λ ∈ H, this
satisfies:

〈z1 + z2,w〉 = w∗H(z1 + z2) = w∗Hz1 + wHz2 = 〈z1,w〉+ 〈z2,w〉,
〈zλ,w〉 = w∗H(zλ) = (w∗Hz)λ = 〈z,w〉λ,

〈w, z〉 = z∗Hw = z∗H∗w = (w∗Hz)∗ = 〈z,w〉.

Moreover, using the last property listed above

〈z, z〉 = 〈z, z〉

and so for all z ∈ Hk we have 〈z, z〉 ∈ R. Therefore, we can define

V+ =
{
z ∈ Hk : 〈z, z〉 > 0

}
,

V0 =
{
z ∈ Hk \ {0} : 〈z, z〉 = 0

}

V− =
{
z ∈ Hk : 〈z, z〉 < 0

}
.

We consider H2 with a quaternionic Hermitian form of signature (1, 1). There are
two standard quaternionic Hermitian forms. The first is simply given by the first
Hermitian form associated to the Hermitian matrix H1 :

〈z,w〉1 = w∗H1z =
(
w1 w2

) (
1 0
0 −1

) (
z1

z2

)
= w1z1 − w2z2. (6.3)
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For the second, we introduce an involution ·∗ on H. This involution is defined by

z∗ = (z0 + z1i + z2j + z3k)∗ = z0 + z1i + z2j − z3k.

Observe that zk = kz∗ for all quaternions z. The second form is a direct generali-
sation of the second Hermitian form on C1,1. It is

〈z,w〉2 = w∗H2z =
(
w1 w2

)(
0 −k
k 0

) (
z1

z2

)
= w2kz1 − w1kz2 = k(w∗

2z1 − w∗

1z2).

(6.4)
We also have

〈zλ, zλ〉 = λz∗Hzλ = λ〈z, z〉λ = |λ|2〈z, z〉

since 〈z, z〉 is real and so commutes with λ. Therefore the map P : H2 −→ Ĥ

respects the division of H2 into V+, V0 and V−. We define the hyperbolic 4-space
H4 to be H4 = PV− and its ideal boundary ∂H4 to be PV0.

We define the quaternionic unit ball to be B =
{
z ∈ H : |z| < 1

}
. It is easy

to see that, for the first Hermitian form P(V−) = B. Also the unit sphere in H is
∂B = P(V0). For H2 we have P(V−) =

{
z = z0 + z1i + z2j + z3k ∈ H : z3 > 0

}
and

P(V0) =
{
z ∈ H : z3 = 0

}
∪ {∞}.

We define the hyperbolic metric on H4 = P(V−) by

ds2 =
−4

〈z, z〉2 det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
, cosh2

(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉.

Exercise 6.3.1 1. Show that for the first Hermitian form H1

ds2 =
4dz dz

(
1− |z|2

)2 , cosh2
(ρ(z, w)

2

)
=

|wz − 1|2(
1− |z|2

)(
1− |w|2

) .

2. For the second Hermitian form H2 show that

ds2 =
dz dz

z2
3

, cosh2
(ρ(z, w)

2

)
=
|z − w∗|2

4z3w3

.

We define a symplectic transformation A to be an automorphism of H1,1, that
is, a linear bijection such that 〈Az, Aw〉 = 〈z, w〉 for all z and w in H1,1. In
other words, “symplectic” is the natural generalisation to quaternionic matrices of
“orthogonal” for real matrices and “unitary” for complex matrices. We denote the
group of all unitary transformations by Sp(1, 1). Those symplectic transformations
that preserve a given Hermitian form H are denoted Sp(H).

Proposition 6.3.1 Let A be a 2× 2 quaternionic matrix in Sp(H1). Then

|a| = |d|, |b| = |c|, |a|2 − |c|2 = 1, ab = cd, ac = bd. (6.5)
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Proof:

A−1 = H−1
1 A∗H1

=

(
1 0
0 −1

) (
a c

b d

) (
1 0
0 −1

)

=

(
a −c

−b d

)
.

Therefore

I = A−1A =

(
|a|2 − |c|2 ab− cd

dc− ba |d|2 − |b|2
)

,

I = AA−1 =

(
|a|2 − |b|2 bd − ac

ca− db |d|2 − |c|2
)

.

Therefore ab = cd and ac = bd. Also

1 = |a|2 − |b|2 = |a|2 − |c|2 = |d|2 − |b|2 = |d|2 − |c|2.

The result follows. �

Proposition 6.3.2 Let A be a 2× 2 quaternionic matrix in Sp(H2). Then

ad∗−bc∗ = d∗a−b∗c = 1, ab∗−ba∗ = cd∗−dc∗ = c∗a−a∗c = d∗b−b∗d = 0. (6.6)

Proof:

A−1 = H−1
2 A∗H2

=

(
0 −k
k 0

) (
a c

b d

) (
0 −k
k 0

)

=

(
d∗ −b∗

−c∗ a∗

)
.

Therefore

I = A−1A =

(
d∗a− b∗c d∗b− b∗d
a∗c− c∗a a∗d− c∗b

)
,

I = AA−1 =

(
ad∗ − bc∗ ba∗ − ab∗
cd∗ − dc∗ da∗ − cb∗

)
.

The result follows. �
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6.4 Fixed points and eigenvalues

A quaternion t is a right eigenvalue of a matrix A in SL(2, H) if and only if there
is a non-zero column vector v ∈ H2 such that Av = vt. Then v is called a right

eigenvector of A. For u 6= 0, let w = vu−1. Then we see from the equation
Aw = wutu−1 that all quaternions similar to t are also right eigenvalues of A. For
B ∈ SL(2, H), we see from the equation BAB−1(Bv) = Bvt that conjugate matrices
have the same right eigenvalues.

The relationship between fixed points of quaternionic Möbius transformations and
right eigenvectors of quaternionic matrices is similar to the real and complex cases.
Suppose that v is fixed by A(z) = (az + b)(cz + d)−1 and so v, the standard lift of
v, is an eigenvector of A. Then we have

vcv + vd− av − b = 0. (6.7)

Then it is easy to see that

(
a b
c d

) (
v
1

)
=

(
v
1

)
(cv + d).

We now show that every quaternionic Möbius transformation has a right eigen-
value. In order to do this, we show that A ∈ SL(2, H) may be conjugated to
triangular form. This method is called Niven’s trick.

We suppose that c 6= 0. Then the right eigenvalue t corresponding to the fixed
point v is t = cv + d where vcv + vd − av − b = 0. Substituting v = c−1(t − d) in
this equation gives

t2 − (cac−1 + d)t + cac−1d− cb = 0

Hence t satisfies the quaternionic characteristic polynomial

t2 − τt + σ = 0. (6.8)

However, we also know that

t2 − 2Re(t)t + |t|2 = t2 − (t + t)t + tt = 0.

Subtracting these two equations gives

(
τ − 2Re(t)

)
t =

(
σ − |t|2

)
.

When τ = 2Re(t) then we must have σ = |t|2. Hence σ and τ are both real. We
have already dealt with this case.

We now suppose that τ 6= 2Re(t). Thus τ − 2Re(t) is non-zero and so we can left
multiply by its inverse t obtain

t =
(
τ − 2Re(t)

)−1
(σ − |t|2).
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We substitute this into the equations t + t = 2Re(t) and tt = |t|2 to obtain

(
τ − 2Re(t)

)−1(
σ − |t|2

)
+

(
σ − |t|2

)(
τ − 2Re(t)

)−1
= 2Re(t),

(
τ − 2Re(t)

)−1(
σ − |t|2

)
(σ − |t|2)

(
τ − 2Re(t)

)−1
= |t|2.

Multiplying on the left by
(
τ − 2Re(t)

)
and on the right by

(
τ − 2Re(τ)

)
gives

(
σ − |t|2

)(
τ − 2Re(t)

)
+

(
τ − 2Re(t)

)
(σ − |t|2) = 2Re(t)

(
τ − 2Re(t)

)(
τ − 2Re(t)

)
,(

σ − |t|2
)(

σ − |t|2
)

= |t|2
(
τ − 2Re(t)

)(
τ − 2Re(t)

)
.

Expanding and using the formulae from Exercise 6.2.2 we obtain

(
γ − 4δRe(t) + 4Re(t)2

)
2Re(t) = 2β − 2δ|t|2 + 4|t|2Re(t), (6.9)(

γ − 4δRe(t) + 4Re(t)2
)
|t|2 = 1 + |t|4. (6.10)

We have thus converted the quaternionic quadratic polynomial (6.8) into a pair of
real simultaneous polynomials in 2Re(t) and |t|2. The coefficients only involve α = 1,
β, γ and δ. Our task is to solve these equations. We begin by eliminating 2Re(t).

Equations (6.9) and (6.10) lead to:

(
2β − 2δ|t|2

)
|t|2 = 2Re(t)

(
1− |t|4

)

Using this, we can eliminate 2Re(t) to obtain

γ|t|2
(
1− |t|4

)2
+ 4|t|4

(
β − δ|t|2

)(
β|t|2 − δ

)
=

(
1 + |t|4

)(
1− |t|4

)2
.

Dividing by 4|t|6 gives

γ
(
|t|2 − |t|−2

)2
/4 + β2 + δ2 − βδ

(
|t|2 + |t|−2

)
=

(
|t|2 + |t|−2

)(
|t|2 − |t|−2

)2
/4.

Define X =
(
|t|2 + |t|−2

)
/2. Note that X ≥ 1 with equality if and only if |t|2 = 1.

Using
(
|t|2 − |t|−2

)2
/4 = X − 1, this leads to

2X3 − γX2 + 2(βδ − 1)X + (γ − β2 − δ2) = 0.

We define this cubic to be q(x):

q(x) = 2x3 − γx2 + 2(βδ − 1)x + (γ − β2 − δ2). (6.11)

Observe that q(1) = −(β − δ)2 ≤ 0 and so q(x) = 0 has at least one root in the
interval [1,∞). Moreover, |t| = 1 implies that q(1) = −(β − δ)2 = 0 and so β = δ.

Let X be a root of q(x) at least 1, then |t|4 − 2X|t|2 + 1 = 0 and so

|t|2 = X ±
√

X2 − 1. (6.12)
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Also dividing (6.10) by |t|2 and substituting for X yields

2X = |t|2 + |t|−2 = γ − 4δRe(t) + 4Re(t)2.

Hence
2Re(t) = δ ±

√
δ2 − γ + 2X. (6.13)

Note that q
(
(γ−δ2/2

)
= −(2β−γδ+δ3)2/4 < 0 and so we can choose X > (γ−δ2)/2

and so 2Re(t) is defined.

Proposition 6.4.1 Let t be a root of (6.8).

(i) If δX ≥ β then |t|2 = X ±
√

X2 − 1 and 2Re[t] = δ ±
√

2X − γ + δ2.

(ii) If δX < β then |t|2 = X ±
√

X2 − 1 and 2Re[t] = δ ∓
√

2X − γ + δ2.

Proof: If t is a root of (6.8) then we have seen that |t|2 and 2Re(t) must satisfy
(6.12) and (6.13). In each of these equations there is a choice of sign. We need to
know how to make these choices consistently. We write

|t|2 = X + ε1

√
X2 − 1, 2Re(t) = δ + ε2

√
δ2 − γ + 2X.

Note that

(X2 − 1)(δ2 − γ + 2X) = q(X) + (δX − β)2 = (δX − β)2.

Using δ = Re(τ), we have

t =
(
τ − 2Re(t)

)−1(
σ − |t|2

)

=
(
τ − δ − ε2

√
δ2 − γ + 2X

)−1(
σ −X − ε1

√
X2 − 1

)

=
(
Im(τ)− ε2

√
δ2 − γ + 2X

)−1(
σ −X − ε1

√
X2 − 1

)

=

(
−Im(τ)− ε2

√
δ2 − γ + 2X

)(
σ −X − ε1

√
X2 − 1

)

2
(
X − Re(σ)

) .

From this we can substitute back for 2Re(t) to obtain

4Re(t)
(
X − Re(σ)

)
=

(
−Im(τ)− ε2

√
δ2 − γ + 2X

)(
σ −X − ε1

√
x2 − 1

)

+
(
σ −X − ε1

√
x2 − 1

)(
Im(τ)− ε2

√
δ2 − γ + 2X

)

= −Im(τ)σ + σIm(τ) + 2ε2

(
X −Re(σ)

)√
δ2 − γ + 2X

+2ε1ε2

∣∣δX − β
∣∣.

Now

Im(τ)σ − σIm(τ)− 2Re(σ)δ = Im(τ)σ − σIm(τ)− 2Re(σ)Re(τ)

= −2Re(στ )

= −2β.
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Therefore

2ε1ε2

∣∣δX − β
∣∣ = 2

(
δ + ε2

√
δ2 − γ + 2X

)(
X −Re(σ)

)

+Im(τ)σ − σIm(τ)− 2ε2

(
X −Re(σ)

)√
δ2 − γ + 2X

= 2(δX − β).

Thus if δX > β we have ε1ε2 = +1 and the two choices of sign must be the same.
Likewise, δX < β we have ε1ε2 = −1 and we have opposite signs. �

Therefore we have shown that every A ∈ SL(2, H) with c 6= 0 has a right eigenvalue
t. Then v = c−1(t − d) is a fixed point. This means we can conjugate A to upper
triangular form:

(
0 1
−1 v

) (
a b
c d

) (
v −1
1 0

)
=

(
cv + d −c

0 a− vc

)
.

Proposition 6.4.2 Let

A =

(
cv + d −c

0 a− vc

)
.

Then t1 = cv + d and t2 = a− vc are right eigenvalues of A.

Proof: We have already seen that t1 = cv + d is a right eigenvalue of A and that
|t1|2 = X + ε1

√
X2 − 1 and 2Re(t1) = δ + ε2

√
δ2 − γ + 2X for a given X ≥ 1.

We substitute v = c−1(t1 − d) in t2 = a− vc to obtain

t2 = a− c−1(t1 − d)c = c−1(cac−1 + d− t1)c = c−1(τ − t1)c.

Therefore

2Re(t2) = 2Re(τ − t1) = 2δ − 2Re(t1) = δ − ε2

√
δ2 − γ + 2X.

Also, 0 = t21 − τt1 + σ and so σ = t1(τ − t1). Therefore

|t2|2 = |τ − t1|2 = |σ|2/|t1|2 = X − ε1

√
X2 − 1.

We may reverse the steps above to see that t2 is an eigenvalue. �

We now reinterpret the above calculations in terms of the diagonal entries of an
upper triangular matrix, which we denote by t1 and t2. As we have seen, they are
both representatives for the similarity classes of eigenvalues. Recall that the quan-
tities |t1|2, |t2|2, Re[t1] and Re[t2] are independent of the particular representatives
t1 and t2 of the right eigenvalue similarity classes. Substituting c = 0, a = t1 and
d = t2 into the equations for α, β, γ and δ from Section 6.2, we find that

α = |t1|2 |t2|2 = 1,

β = |t1|2Re[t2] + |t2|2Re[t1],

γ = |t1|2 + |t2|2 + 4Re[t1]Re[t2],

δ = Re[t1] + Re[t2].



6.4. FIXED POINTS AND EIGENVALUES 53

It is easy to use these identities to show that all quaternions t similar to either t1 or
t2 satisfy the real characteristic polynomial of A

t4 − 2δt3 + γt2 − 2βt + α = 0. (6.14)

Corollary 6.4.3 The quantities α, β, γ, δ are invariant under conjugation.

Thus we have expressions for α, β, γ and δ in terms of the functions |t1|2, |t2|2,
Re[t1] and Re[t2]. Using these expressions we can solve the cubic polynomial (6.11)
and hence determine which root corresponds to X.

Theorem 6.4.4 Suppose that f is a quaternionic Möbius transformation with α = 1.
Let X denote the largest real root of the cubic polynomial (6.11)

q(x) = 2x3 − γx2 + 2(βδ − 1)x + (γ − β2 − δ2).

We let t represent one of the right eigenvalues t1 or t2.

(i) If Xδ ≥ β then |t|2 = X ±
√

X2 − 1 and 2Re[t] = δ ±
√

2X − γ + δ2.

(ii) If Xδ < β then |t|2 = X ±
√

X2 − 1 and 2Re[t] = δ ∓
√

2X − γ + δ2.

For large values of x we have q(x) > 0. Notice that q(1) = −(β − δ)2 ≤ 0 and so
we have X ≥ 1. Also, q

(
(γ − δ2)/2

)
= −1

4
(2β− γδ + δ3)2 ≤ 0 and similarly we have

2X ≥ γ − δ2. Therefore the square roots in Theorem 6.4.4 are real.

Proof: We make use of the expressions relating α, β, γ and δ to t1 and t2. One
can check that the roots of q are

Re[t1]Re[t2]±
√

(|t1|2 − Re[t1]2) (|t2|2 − Re[t2]2),
1
2
(|t1|2 + |t2|2).

Since

1
2
(|t1|2 + |t2|2) ≥ |t1| |t2| ≥ Re[t1]Re[t2]±

√
(|t1|2 − Re[t1]2) (|t2|2 − Re[t2]2)

we see that the largest real root X is the third of these numbers. �

If the eigenvalues t1 and t2 are not similar, then A may be conjugated to a diagonal
matrix with entries t1 and t2 on the diagonal. When all eigenvalues of A are similar
we may or may not be able to diagonalise A, although as we have seen, we can
conjugate it to an upper triangular matrix. Then Lemma 6.2.5 gives a criterion
which describes when such matrices A can be diagonalised.
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6.5 Conjugacy

Theorem 6.4.4 alone is insufficient to enable us to determine whether two matrices
in SL(2, H) are conjugate, nor is it sufficient to enable us to find fixed points of
quaternionic Möbius transformations. For example, the matrices

(
i i
0 i

)
,

(
i 0
0 i

)

have the same right eigenvalues, and each of β, γ and δ takes the same value on
each matrix, but they are not conjugate. This is why it is necessary to introduce
quantities such as σ and τ described in Section 6.2.

Theorem 6.5.1 Two non-trivial quaternionic Möbius transformations A(z) and
B(z) are conjugate if and only if the following two conditions hold:

(i) either both of them or neither of them are conjugate to real Möbius transfor-
mations;

(ii) βAδA = βBδB, γA = γB and δ2
A = δ2

B.

Note that we can use σ and τ to decide whether a quaternionic Möbius transfor-
mation is conjugate to a real Möbius transformation.

Proof: Suppose that A(z) and B(z) are conjugate. Condition (i) is obvious
and condition (ii) follows from the conjugacy invariance of the quantities β, γ and
δ in SL(2, H). Conversely, assume that conditions (i) and (ii) hold. If A(z) and
B(z) are both conjugate to real Möbius transformations then σ and τ are real (by
Theorem 6.2.1) and preserved under conjugation (by Proposition 6.2.4). For real
Möbius transformations, βδ = στ 2. Therefore, because σ is either −1 or 1, we have
τ 2
A/σA = τ 2

B/σB. The quantity τ 2/σ determines conjugacy amongst real Möbius
transformations, therefore A(z) and B(z) are conjugate. Henceforth we assume
that neither A(z) nor B(z) is conjugate to real Möbius transformations.

Using condition (ii), we lift A(z) and B(z) to two matrices A and B in SL(2, H)
for which βA = βB, γA = γB and δA = δB. From Theorem 6.4.4 we see that A and B
have the same pair of right eigenvalue similarity classes. If the two similarity classes
in the pair are distinct then A and B are diagonalisable, and we can conjugate one
matrix to the other using a diagonal conjugating matrix. In the remaining case,
both classes consist of quaternions similar to a particular (non-real) quaternion t.
Since A is not conjugate to a real matrix, using Lemma 6.2.5, we see they are both
conjugate to ( t 1

0 t ) �

6.6 Classification of quaternionic Möbius trans-

formations

It is straightforward to establish using either algebraic or geometric methods that
each map in PSL(2, H) can be expressed as a composite of three simple maps (and
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that the only 3–simple maps are loxodromic). The following proposition shows how
to determine whether a map can be expressed as a composite of fewer than three
simple maps.

Proposition 6.6.1 A map in PSL(2, H) is 3–simple if and only if β 6= δ.

Proof: Suppose that f1 and f2 are simple maps; possibly one of them is the identity
map. Let f = f1f2. We use the obvious notation f1(z) = (a1z + b1)(c1z + d1)

−1,
σ, σ1, σ2, and so forth. We have to show that β = δ. Conjugating if necessary, we
suppose that c = c1a2 + d1c2 = 0. If either (and hence both) of c1 and c2 are zero
then the result is straightforward. So suppose that for j = 1, 2 we have cj 6= 0 and
σj = cjajc

−1
j dj − cjbj = 1. Then we can write bj = ajc

−1
j dj − c−1

j . We have

a = a1a2 + b1c2 = a1c
−1
1 (c1a2 + d1c2)− c−1

1 c2 = −c−1
1 c2,

d = c1b2 + d1d2 = (c1a2 + d1c2)c
−1
2 d2 − c1c

−1
2 = −c1c

−1
2 .

Using these equations, we find:

β − δ = Re
[
|a|2d + |d|2a

]
−Re[a + d]

= Re
[
−|c1|−2|c2|2c−1

2 c1 − |c1|2|c2|−2c2c
−1
1

]
−Re

[
−c2c

−1
1 − c−1

2 c1

]

= 0.

Conversely, if f is 3–simple then it is necessarily loxodromic and we can conjugate
f so that it assumes the form f(z) = (λu)z(λ−1v)d−1, where λ > 1 and u and v are
unit quaternions that are not similar. One can check that β 6= δ. �

Lemma 6.6.2 Let A ∈ Sp(H) for some quaternionic Hermitian form H and sup-

pose that t is a right eigenvalue of A. Then t
−1

is also an eigenvalue of A.

Proof: Since A−1 is conjugate (via H) to A∗ they have the same right eigenvalues.
If t is a right eigenvalue of A then t is a right eigenvalue of A∗, and so of A−1. Hence
t
−1

is a right eigenvalue of A as claimed. �

Corollary 6.6.3 If A ∈ Sp(H) then β = δ.

Proof: Either |t1| = |t2| = 1 and β = Re(t2) + Re(t1) = δ or else t2 = t
−1
1 . In the

latter case

β = |t1|2Re(t
−1
1 ) + |t1|−2Re(t1) = Re(t1) + Re(t

−1
1 ) = δ.

�

Thus for elements of Sp(H) the cubic q(x) given by (6.11) has a root x = 1. Thus
we can factor it as

q(x) = (x− 1)
(
2x2 − (γ − 2)x + 2δ2 − γ

)
.
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Therefore the roots of q are

x = 1, x =
γ − 2±

√
(γ + 2)2 − 16δ2

4
.

A brief calculation shows that x = 1 is the largest of these roots whenever

2 ≥ γ − δ2 =
∣∣Im(a + d)

∣∣2 + 2Re(ad− bc).

We have already seen the classification into k-simple transformations. A second
method of classification is the standard trichotomy based on fixed points.

We can also describe the dynamics of a quaternionic Möbius transformation f
in terms of eigenvalues and fixed points. Let t1 and t2 be the eigenvalues of a lift
of f in the group SL(2, H). Then f is elliptic if |t1| = |t2| and f has at least two
fixed points in H∞; parabolic if |t1| = |t2| and f fixes exactly one points in H∞;
loxodromic if |t1| 6= |t2|.

For Möbius transformations preserving the unit ball or upper half space this spe-
cialises to the usual definitions: Let A(z) ∈ PSp(H1) be a quaternionic Möbius
transformation preserving B. We say that

(i) A(z) is elliptic if it has at least one fixed point in B;

(ii) A(z) is parabolic if it has exactly one fixed point and this point lies in ∂B;

(iii) A(z) is loxodromic if it has exactly two fixed points and these points lie in ∂B.

Theorem 6.6.4 Let A(z) be a quaternionic Möbius transformation with α = 1.

(a) If σ = 1 and τ ∈ R then A(z) is 1–simple, β = δ, γ = δ2 +2 and the following
trichotomy holds.

(i) If 0 ≤ δ2 < 4 then A(z) is elliptic.

(ii) If δ2 = 4 then A(z) is parabolic.

(iii) If δ2 > 4 then A(z) is loxodromic.

(b) If β = δ and either τ /∈ R or σ 6= 1, then A(z) is 2–simple and the following
trichotomy holds.

(i) If γ − δ2 < 2 then f is elliptic.

(ii) If γ − δ2 = 2 then f is parabolic.

(iii) If γ − δ2 > 2 then f is loxodromic.

(c) If β 6= δ then A(z) is 3–simple loxodromic.

We remark that if A(z) is conjugate to a real Möbius transformation with deter-
minant σ and trace τ then the following possibilities occur:
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(i) σ > 0 and A(z) is 1–simple. In this case τ 2/σ determines whether A(z) is
elliptic, parabolic or loxodromic in the usual way;

(ii) σ < 0 and τ = 0 in which case A(z) is 2–simple and elliptic;

(iii) σ < 0 and τ 6= 0 in which case A(z) is 3–simple and loxodromic.

To determine the dynamics and conjugacy class of a Möbius transformation with
quaternion coefficients for which α 6= 1, one should replace the coefficients of the
transformation with suitably scaled alternatives so that α = 1, before applying
Theorem 6.5.1 and Theorem 6.6.4. We could have stated both theorems in a more
general context with α assuming any non-zero value (and the reader can easily derive
such theorems), but the exposition is simplified by assuming that α is equal to 1
throughout.

Proof: (Theorem 6.6.4) The map f is 1–simple if and only if σ = 1 and τ ∈ R.
Otherwise, either β = δ, in which case f is 2–simple, or β 6= δ, in which case f is
3–simple (by Proposition 6.6.1). This completes the classification into (a), (b) and
(c).

In case (a), we have δ2 = τ 2 and the classification into (i), (ii) and (iii) corresponds
to the usual classification for real Möbius transformations. In case (b), if f is elliptic
then we conjugate f so that it is of the form f(z) = azd−1, for unit quaternions a
and d. This map satisfies γ − δ2 < 2. If f is parabolic then we conjugate f so that
it is of the form f(z) = (az + 1)a−1. This map satisfies γ − δ2 = 2. Finally, if f
is loxodromic then we conjugate f so that it is of the form f(z) = (λu)z(λ−1v)d−1,
where λ > 1 and u and v are unit quaternions. Since β = δ we find that u and v
are similar. This means that γ − δ2 > 2. �

6.7 The geometry of hyperbolic 4-space

We have two quaternionic models of hyperbolic 4-space H4, namely the unit ball
B =

{
z ∈ H : |z| < 1

}
(which corresponds to H1) and the upper half space

U =
{
z = z0 + z1i + z2j + z3k ∈ H : z3 > 0

}
(which corresponds to H2). We can

carry over the geometric notions from lower dimensions to these models. In all cases
the proofs are the same, except that we must be careful about commutativity.

We can pass between the models using a Cayley transform C and the correspond-
ing Möbius transformation C(z) given by

C =
1√
2

(
1 −k
−k 1

)
, C(z) = (z − k)(−kz + 1)−1.

Geodesics are arcs of circles (or lines) orthogonal to the boundary of H4. Loxodromic
maps fix two points on the boundary ∂H4 and preserve the geodesic between them.
For example consider A(z) = azd−1 ∈ PSp(H2) where ad∗ = 1 and |a| 6= 1. This
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map fixes 0 and ∞ and preserves the geodesic between them, namely the positive
z3-axis.

We can extend the idea of geodesics to include (totally geodesic) copies of the
hyperbolic plane and hyperbolic 3-space embedded in H4. For the hyperbolic plane
these are discs or half-planes orthogonal to the boundary. For example in the unit
ball model one such half plane is

{
z = z0 + z1i + z2j + z3k ∈ B : z2 = z3 = 0

}

and one in the upper half space is
{
z = z0 + z1i + z2j + z3k ∈ U : z1 = z2 = 0

}

Each 1-simple Möbius transformation preserves one of these totally geodesically
embedded hyperbolic planes and its action there is the same as the action on the
corresponding Poincaré model of the hyperbolic plane. In this case, δ and τ are
equal and they are just the usual trace.

We can define spheres as before. These are just Euclidean 3-spheres but with a
different hyperbolic centre and radius. For example in the ball model, the hyperbolic
sphere of radius r centred at 0 is the Euclidean sphere centred at 0 with radius
tanh(r/2). The proof is the same as for Lemma 3.3.2. Likewise, in the upper half
space, the sphere with centre z = z0 + z1i + z2j + zjk and radius r is the Euclidean
sphere with centre z0+z1i+z2j+z3 cosh(r)k and radius z3 sinh(r). The proof of this
is the same as for Lemma 5.3.2. Elliptic maps preserve hyperbolic spheres centred
at the fixed point. For example, A(z) = azd−1 ∈ PSp(H1) where |a| = |d| = 1 fixes
every hyperbolic sphere centred at 0. If in addition d = a then A(z) fixes every
point of R(a) that lies in the unit ball. This is a copy of the hyperbolic plane. Any
sphere centred at a point of this plane is preserved by A(z).

For example, let

A =

(
cos θ + i sin θ 0

0 cos θ + i sin θ

)
,

A(z) = (cos θ + i sin θ)z(cos θ + i sin θ)−1

= (cos θ + i sin θ)z(cos θ − i sin θ).

Then

A(z0 + z1i + z2j + z3k) = z0 + z1i + (cos θ + i sin θ)2(z2j + z3k).

Then A(z) fixes each point in R(i) = C ⊂ H and rotates around this point by an
angle 2θ. Likewise if

B =

(
cos θ + i sin θ 0

0 cos θ − i sin θ

)
,

B(z) = (cos θ + i sin θ)z(cos θ − i sin θ)−1

= (cos θ + i sin θ)z(cos θ + i sin θ).
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Then
B(z0 + z1i + z2j + z3k) = (cos θ + i sin θ)2(z0 + z1i) + z2j + z3k

This fixes every point of the plane spanned by j and k and again rotates through
an angle 2θ. Both A(z) and B(z) are 1-simple.

Finally, horospheres and horoballs are defined as before. For example those based
at ∞ of height t are

Ht =
{
z = z0 + z1i + z2j + z3k ∈ U : z3 = t

}
,

Bt =
{
z = z0 + z1i + z2j + z3k ∈ U : z3 > t

}
.

Each horosphere is a copy of Euclidean 3-space. Parabolic and 1-simple elliptic
maps fixing∞ preserve each horoball and act as Euclidean isometries. For example,
consider A(z) = (az + b)d−1 ∈ PSp(H2) with |a| = |d| = 1 (and so ad∗ = 1,
ab∗ − ba∗ = d∗b− b∗d = 0). Then

0 = kd∗b− kb∗d = dkb− bkd

and so kbd−1 = d
−1

bk = bd−1k. This means that the k coordinate of bd−1 is zero.
Then

A(z0 + z1i + z2j + z3k) = a(z0 + z1i + z2j + z3k)d−1 + bd−1

= a(z0 + z1i + z2j)d
−1 + ad∗z3k + bd−1

= a(z0 + z1i + z2j)d
−1 + bd−1 + z3k.

Thus A(z) preserves each horosphere. Moreover,

∣∣∣A(z)−A(w)
∣∣∣ =

∣∣∣azd−1 + bd−1 − awd−1 − bd−1
∣∣∣ =

∣∣∣a(z − w)d−1
∣∣∣ =

∣∣∣z − w
∣∣∣

and so A(z) acts as a Euclidean isometry.
Notice that parabolic maps are no longer necessarily translations. In fact 1-simple

parabolic maps are translations, but 2-simple parabolic maps are screw motions. For
example

A =

(
cos θ + i sin θ cos θ + i sin θ

0 cos θ + i sin θ

)

acts as A(z) = (cos θ + i sin θ)z(cos θ − i sin θ) + 1. That is

A(z0 + z1i + z2j + z3k) = z0 + z1i + (cos θ + i sin θ)2(z2j + z3k) + 1.

In PSL(2, H) the 3-simple Möbius transformations do not preserve a copy of hy-
perbolic 4-space (just as 2-simple elements of SL(2, C) don’t preserve a hyperbolic
plane). We could develop a Poincaré extension, but the algebra is more complicated.
Instead, in the next section we pass to all higher dimensions at once.
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Chapter 7

Clifford Möbius transformations

7.1 Clifford algebras

The Clifford algebra Cn is the associative algebra over the real numbers generated
by n elements i1, . . . , in that anti-commute and square to −1. In other words the ij
are subject to the relations ijik = −ikij and i2j = −1 for each j 6= k in {1, . . . , n}.
Each element of Cn may be written as a real linear combination of products ik1

. . . ikm

where 1 ≤ k1 < · · · < km ≤ n. We include the empty product, thought of as the
real number 1. Hence we can identify Cn with a real vector space of dimension 2n.
If x ∈ Cn is written out in this way, the coefficient x0 of 1 will be called the real part

of x and is denoted Re(x). Also, x − x0 = x − Re(x) will be called the imaginary

part of x and denoted Im(x).
The Clifford algebras C0 and C1 are simply R and C respectively. Writing i1 = i

and i2 = j we may identify C2 with the quaternions H. In order to see this, ob-
serve that any quaternion may be written as a linear combination of 1, i = i1,
j = i2 and k = i1i2. The relations i21 = i22 = −1 and i1i2 = −i2i1 imply that
k2 = (i1i2)

2 = −i21i
2
2 = −1 and jk = i2i1i2 = −i1i

2
2 = i1 = i and so on.

Exercise 7.1.1 Show that (i1i2i3)(i1i2i3) = +1. Deduce that (1+i1i2i3)(1−i1i2i3) = 0
and (1 + i1i2i3)

2 = 2(1 + i1i2i3).

A consequence of Exercise 7.1.1 is that Cn contains zero divisors when n ≥ 3 and
so is not a division ring. This means that the constructions we have made for n = 1
and n = 2 (that is for C and H) do not generalise directly. To get around the
problem of zero divisors we introduce two subsets of Cn as follows. A Clifford vector

is a real linear combination of 1, i1, . . . , in and the set of Clifford vectors, denoted
Vn+1, may be identified with Rn+1 in a canonical way. The Clifford group Γn is the
collection of all finite products of non-zero Clifford vectors. We will see below that
this really is a group!

There are three involutions on Cn that generalise complex conjugation. In what
follows, assume that x ∈ Cn is written as a linear combination of products of the ij
as above. Then

61
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(i) x′ is obtained from x by sending ij to −ij in each product. Hence the product
ik1

. . . ikm
is sent to (−1)mik1

. . . ikm
.

(ii) x∗ is obtained from x by reversing the order of each product of ij . Hence
the product ik1

. . . ikm
is sent to ikm

. . . ik1
which may be rearranged using the

relations to ±ik1
. . . ikm

.

(iii) x is obtained from x by sending ij to −ij and reversing the order of each
product of ij . Hence the product ik1

. . . ikm
is sent to (−1)mikm

. . . ik1
which

may be rearranged using the relations to ±ik1
. . . ikm

.

Therefore when n = 1 we have (x+ iy)∗ = x+ iy and (x+ iy)′ = (x + iy) = x− iy,
which is the usual complex conjugation in C. Similarly, when n = 2 we have
(x0 + x1i + x2j + x3ij)

∗ = x0 + x1i + x2j − x3ij which is the involution x∗ defined
in the previous chapter. Also, x0 + x1i + x2j + x3ij = x0 − x1i − x2j − x3ij which
is the usual quaternionic conjugate x of x. Finally x′ = x∗.

Exercise 7.1.2 1. Show that

(ik1
. . . ikm

)∗ =

{
(−1)m/2ik1

. . . ikm
if m is even,

(−1)(m−1)/2ik1
. . . ikm

if m is odd.

2. Show that

ik1
. . . ikm

=

{
(−1)m/2ik1

. . . ikm
if m is even,

(−1)(m+1)/2ik1
. . . ikm

if m is odd.

The following lemma is easy to prove.

Lemma 7.1.1 For all a, b ∈ Cn we have a = (a′)∗ = (a∗)′ and

(a + b)′ = a′ + b′, (ab)′ = a′b′, (a′)′ = a,
(a + b)∗ = a∗ + b∗, (ab)∗ = b∗a∗, (a∗)∗ = a,

a + b = a + b, (ab) = b a, (a) = a.

We now consider products of vectors. Suppose that x = x0 + x1i1 + · · ·+ xnin is
in Vn+1. Then applying the definitions, we see that x′ = x = x0 − x1i1 − · · · − xnin
and x∗ = x. For vectors we generally write x and x and do not use x′ and x∗. For
a vector x the real part is given by Re(x) = x0 = (x + x)/2.

Moreover, xx = xx = x2
1 + x2

1 + · · ·+ x2
n ∈ R and we define |x| by |x|2 = xx = xx.

This notion may be extended to products of vectors. If x and y are in Vn+1 then

xy(xy) = xyy x = x|y|2x = xx|y|2 = |x|2|y|2

where we have used the fact that, since |y|2 it real, it commutes with x. By induction,
we may extend this definition so that if a ∈ Γn then aa = aa = |a|2. Therefore, we
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can define the inverse of a ∈ Γn to be a−1 = a|a|−2. Therefore the Clifford group
really is a group.

It is not true in general that a + a is real for all a ∈ Γn. For example,

i1i2i3 = (−i3)(−i2)(−i1) = −i3i2i1 = i2i3i1 = −i2i1i3 = i1i2i3.

Therefore i1i2i3 + i1i2i3 = 2i1i2i3 which is not real. However, for products of two
vectors it is still true:

Lemma 7.1.2 Let x = x0 + x1i1 + · · ·+ xnin and y = y0 + y1i1 + · · ·+ ynin lie in
Vn+1. Then

xy + yx = xy + xy = 2(x0y0 + x1y1 + · · ·xnyn) = 2x · y

where · is the usual dot product.

This enables us to write down reflections in hyperplanes in Vn+1 in terms of
Clifford numbers.

Lemma 7.1.3 If y ∈ Vn+1 then the reflection in the hyperplane orthogonal to y is
given by Ry : x 7−→ −yx y−1.

Proof: We know that the reflection in the hyperplane orthogonal to y is given by

x 7−→ x− 2(x · y)y

|y|2 = x− (xy + yx)y

|y|2 = x− x|y|2 + yxy

|y|2 = −yx y−1.

�

Proposition 7.1.4 For each a ∈ Γn consider the map Aa : x 7−→ axa′−1 = axa∗/|a|2.
The map a 7−→ Aa(x) is a surjective homomorphism from Γn to SO(n+1) with ker-
nel R− {0}.

Proof: If a, b ∈ Γn then

Aab = (ab)x(ab)′
−1

= a(bxb′
−1

)a′−1
= a

(
Ab(x)

)
a′−1

= AaAb(x)

and so this map is a homomorphism.
Let y ∈ Vn+1 then, using Lemma 7.1.3, we see that Ry(x) = −yx y−1. Also, when

y = 1 we have R1(x) = −x. Therefore the map

Ay(x) = yxy−1 = RyR1(x)

is the product of reflection in the hyperplane orthogonal to 1 followed by reflection
in the hyperplane orthogonal to y. (Note that when y ∈ Vn+1 then y′ = y and by
convention we use the latter.) Therefore this map lies in SO(n+1). If a = y1y2 · · · ym
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then, since a 7−→ Aa(x) is a homomorphism, we have Aa(x) = Ay1
Ay2
· · ·Aym

(x).
This is a product of elements of SO(n + 1) and so lies in SO(n + 1).

Finally, any element of SO(n + 1) can be written as a product of an even number
of reflections and so the map a 7−→ Aa is surjective. Clearly if t ∈ R − {0} then
At(x) = txt′−1 = txt−1 = x. In fact,this is the only way to get the identity. In
order to see this, suppose that Aa(x) = x. Then ax = xa′ for all x ∈ Vn+1. In
particular this is the case when x is real and so a = a′. Suppose that we write a
as a linear combination of products of the ij . The condition a = a′ means that
the only products which appear with non-zero coefficients comprise an even number
(possibly zero) of the ij . If ik1

. . . ik2m
is such a product then for each j = 1, . . . , 2m

(ik1
. . . ik2m

)ikj
= −ikj

(ik1
. . . ik2m

)′

and so this term cannot arise in a when aikj
= ikj

a′. Hence the only terms in a are
empty products, which is the same as saying that a is real. �

Corollary 7.1.5 Suppose a and b are in Γn. Then a−1b ∈ Vn+1 if and only if
ba∗ ∈ Vn+1.

Proof: If a−1b ∈ Vn+1 then so is Aa(a
−1b) = a(a−1b)a∗/|a|2 = ba∗/|a|2. �

Proposition 7.1.6 Let y ∈ Vn+1 − {0} then there exists a ∈ Γn so that y = aa∗.

Proof: Write y = ru where r is a positive real number and u ∈ Vn+1 has |u| = 1.
Then, by construction, u lies on the unit sphere Sn in Vn+1. Since SO(n + 1) acts
transitively on Sn there is an element of SO(n+1) sending 1 to u. Using Proposition
7.1.4 we can write this map as Aa(x) = axa∗/|a|2 for some a ∈ Γn. Moreover, any
non-zero real multiple of a yields the same map. Thus we have

u = Aa(1) = aa∗/|a|2.

Multiplying a by a positive real number if necessary, we suppose that |a|2 = r.
Therefore

aa∗ = |a|2Aa(1) = |a|2u = ru = y

as claimed. �

Proposition 7.1.7 Any Euclidean similarity of Vn+1 can be written in the form
S(x) = (ax + b)a∗ or S(x) =

(
a(−x) + b

)
a∗ for some a in Γn and b ∈ Γn ∪ {0} with

ba∗ ∈ Vn+1.

Proof: We can write any orientation preserving Euclidean similarity as a rotation
followed by a dilation and then a translation. These maps can all be written in terms
of Clifford algebras to give the map indicated. For orientation reversing similarities,
first apply the reflection x 7−→ −x and then an orientation preserving similarity. �
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7.2 Hermitian forms and unitary matrices

We would like to mimic the construction of complex and quaternionic vector spaces
equipped with a Hermitian form and the corresponding unitary or symplectic ma-
trices that preserve this form. Unfortunately, we have an additive structure on Vn+1

but not a multiplicative structure and we have a multiplicative structure on Γn but
not an additive structure. This means that we have problems defining a vector
space. However, we can still define Hermitian and unitary matrices.

Let A = (aij) be a k× l matrix with entries in Γn∪{0}. Then we define A∗ = (aji)
to be the matrix obtained by taking the transpose and applying the involution
a 7−→ a to each entry – there is an unfortunate problem with the star notation here!
A k×k matrix H with entries in Γn∪{0} is said to be Clifford Hermitian if H∗ = H .
When k = 2 we consider two particular Clifford Hermitian matrices that generalise
those we considered for the complex numbers and quaternions. They are

H1 =

(
1 0
0 −1

)
, H2 =

(
0 −in
in 0

)
.

Given a Clifford Hermitian matrix H , we can define Clifford unitary matrices to be
matrices A with entries in Γn∪{0} so that A∗HA = H . Provided H is invertible we
also have A−1 = H−1A∗H as before. We now characterise Clifford unitary matrices
with respect to H1 and H2.

Proposition 7.2.1 Let A be a 2 × 2 matrix with entries a, b, c, d ∈ Γn ∪ {0}. If
A∗H1A = H1 then

|a| = |d|, |b| = |c|, |a|2 − |c|2 = 1,

ab = cd, ac = bd.

Proof: We have
(

1 0
0 −1

)
=

(
a c

b d

) (
1 0
0 −1

) (
a b
c d

)
=

(
|a|2 − |c|2 ab− cd

ba− dc |b|2 − |d|2
)

.

Therefore |a|2 − |c|2 = |d|2 − |b|2 = 1 and ab = cd.
From this we see that |a| |b| = |c| |d| and so

|a|2 = |a|2|d|2 − |a|2|b|2 = |a|2|d|2 − |c|2|d|2 = |d|2.

Therefore |a| = |d| and hence |b| = |c|. Finally

acd = aab = |a|2b = b|d|2 = bdd

and so ac = bd. (This uses |d| ≥ 1 and so d 6= 0.) �

Lemma 7.2.2 If a ∈ Γn−1 then ina∗ = ain.
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Proposition 7.2.3 Let A be a 2× 2 matrix with entries a, b, c, d ∈ Γn−1 ∪ {0}. If
A∗H2A = H2 then

ad∗ − bc∗ = d∗a− b∗c = 1,

ab∗ − ba∗ = cd∗ − dc∗ = c∗a− a∗c = d∗b− b∗d = 0.

Proof: We have
(

0 −in
in 0

)
=

(
a c

b d

) (
0 −in
in 0

) (
a b
c d

)
=

(
in(c∗a− a∗c) in(c∗b− a∗d)
in(d∗a− b∗c) in(d∗b− b∗d)

)
.

Therefore d∗a − b∗c = 1 and c∗a − a∗c = d∗b − b∗d = 0. From these equations we
have 1 = (d∗a− b∗c) = ad′ − cb′. Also (a′c∗ − ca)|a|2 = a′(c∗a − a∗c)a = 0 and so
a′c∗ − ca = 0. Similarly, b′d∗ − db = 0.

Therefore

ab∗ − ba∗ = a(ad′ − cb′)b∗ − b(da′ − bc′)a∗

= |a|2(d′b∗ − bd)− |b|2(ac− c′a∗) = 0,

cd∗ − dc∗ = c(ad′ − cb′)d∗ − d(da′ − bc′)c∗

= |d|2(ca− a′c∗)− |c|2(b′d∗ − db) = 0.

Finally, when d 6= 0

|d|2 = d′(d∗a− b∗c)d∗ = |d|2ad∗ − d′b∗cd∗ = |d|2ad∗ − bddc∗ = |d|2(ad∗ − bc∗)

and so ad∗ − bc∗ = 1. When d = 0 we have −c∗b = 1 and so

−bc∗ = b(−c∗b)B−1 = bb−1 = 1.

�

7.3 Clifford Hermitian forms

We now show how to use Hermitian matrices to construct Clifford Hermitian forms.
We only do this for the two standard Clifford Hermitian matrices constructed above.

As indicated above,
(
Vn+1

)2
is not a vector space. So we confine our interest to all

right multiples of the standard lift of a point in V̂n+1. Let z ∈ V̂n+1 = Vn+1 ∪ {∞}
and define the standard lift of z to be

z 7−→ z =

(
z
1

)
for z ∈ Vn+1, ∞ 7−→

(
1
0

)
.

We can let Γn act by right multiplication on such vectors. That is, for all λ ∈ Γn

we define

zλ =

(
z
1

)
λ =

(
zλ
λ

)
.
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We can then use the Hermitian matrices H1 and H2 to define Hermitian forms on
this collection of vectors as follows:

〈zλ,wµ〉1 = µw∗H1zλ = µ(wz − 1)λ,

〈zλ,wµ〉2 = µw∗H2zλ = µ(inz − win)λ.

In particular

〈zλ, zλ〉1 = λz∗H1zλ = |λ|2
(
|z|2 − 1

)
,

〈zλ, zλ〉2 = λz∗H2zλ = −2|λ|2zn.

Hence 〈zλ, zλ〉 is real and we can define V+, V0 and V− as before.
We may define projection to be the map which identifies all right multiples of z,

namely

P :

(
z1

z2

)
7−→ z1z

−1
2 when z2 6= 0, P :

(
z1

0

)
7−→ ∞.

For the first Hermitian form PV− is the unit ball in Vn+1 given by |z| < 1 and for
the second Hermitian form PV− is the upper half space in Vn+1 given by zn > 0.
These are both models for hyperbolic (n + 1)-space Hn+1.

7.4 Clifford Möbius transformations

We want to let Clifford unitary matrices act on V̂n+1 via Möbius transformations.
As in previous chapters, this will be done by writing A(z) = PAz. The main problem
is that P is only defined for right multiples of the standard lift of vector. This is
done to ensure that the image lies in V̂n+1. We need to impose further conditions
on A so that Az has the required form.

We have a map from matrices to Möbius transformations as before

A =

(
a b
c d

)
7−→ A(x) = (ax + b)(cx + d)−1 (7.1)

whenever the right hand side is well defined. The kernel of this map is ±I.
A necessary condition for the map A(x) = (ax + b)(cx + d)−1 to preserve V̂n+1

is that A(0), A(∞), A−1(0) and A−1(∞) are all in V̂n+1. It turns out that this
condition is sufficient. Now

A(0) = bd−1, A(∞) = ac−1, A−1(0) = −a−1b, A−1(∞) = −c−1d

or else is ∞ (when d = 0, c = 0, a = 0 or c = 0 respectively). In particular,
multiplying by |d|2, |c|2, |a|2 or |c|2 respectively, we see that we must have

bd, ac, ab, cd ∈ Vn+1.
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Proposition 7.4.1 Let A be a 2× 2 matrix with entries a, b, c, d ∈ Γn ∪ {0} with

ad∗ − bc∗ = 1. Suppose that bd, ac, ab, cd ∈ Vn+1. Then for all z ∈ V̂n+1 we have
A(z) = (az + b)(cz + d)−1 ∈ V̂n+1.

Proof: Since a−1b ∈ Vn+1 and c−1d ∈ Vn+1 (when a 6= 0 and c 6= 0 respectively)
for all z ∈ Vn+1 we have

az + b = a(z + a−1b) ∈ Γn, cz + d = c(z + c−1d) ∈ Γn.

Then, using ac−1d− b = (ad∗ − bc∗)c∗−1 = c∗−1, we have

(az + b)(cz + d)−1 = a(z + a−1b)(z + c−1d)−1c−1

= a
(
(z + c−1d) + (a−1b− c−1d)

)
(z + c−1d)−1c−1

= ac−1 + (b− ac−1d)(z + c−1d)−1c−1

= ac−1 − (ad∗ − bc∗)c∗−1(z + c−1d)−1c−1

= ac−1 −
(
c(z + c−1d)c∗

)−1
.

This lies in Vn+1 since c(z + c−1d)c∗ ∈ Vn+1 and so is its inverse. �

Proposition 7.4.2 Suppose that A1 and A2 are two matrices that satisfy the hy-
potheses of Proposition 7.4.1. Then their product A1A2 also satisfies these hypothe-
ses.

Proof: When all the entries of A1 and A2 are non-zero, we have

A1A2 =

(
a1 b1

c1 d1

) (
a2 b2

c2 d2

)
=

(
a1(a2c

−1
2 + a−1

1 b1)c2 a1(b2d
−1
2 + a−1

1 b1)d2

c1(a2c
−1
2 + c−1

1 d1)c2 c1(b2d
−1
2 + c−1

1 d1)d2

)
.

So the entries of A1A2 lie in Γn ∪ {0}. Similar, but simpler, formulae hold when
some of the entries are zero.

Moreover,

(c1b2 + d1d2)
∗ =

(
c1(b2d

−1
2 + c−1

1 d1)d2

)∗
= d∗

2(d
∗

2
−1b∗2 + d∗

1c
∗

1
−1)c∗1 = b∗2c

∗

1 + d∗

2d
∗

1

and so

(a1a2 + b1c2)(c1b2 + d1d2)
∗ − (a1b2 + b1d2)(c1a2 + d1c2)

∗

= (a1a2 + b1c2)(b
∗

2c
∗

1 + d∗

2d
∗

1)− (a1b2 + b1d2)(a
∗

2c
∗

1 + c”
2d

∗

1)

= a1a2d
∗

2d
∗

1 + b1c2b
∗

2c
∗

1 − a1b2c
∗

2d
∗

1 − b1d2a
∗

2c
∗

1

= (a1d
∗

1 − b1c
∗

1)(a2d
∗

2 − b2c
∗

2) = 1.

Finally,

(a1a2 + b1c2)(c1a2 + d1c2)
−1 = (a1a2c

−1
2 + b1)(c1a2c

−1
2 + d1) = A1(a2c

−1
2 ) ∈ V̂n+1

by Proposition 7.4.1. Similarly

(a1b2 + b1d2)(c1b2 + d1d2)
−1 = A1(b2d

−1
2 ) ∈ V̂n+1.

The result follows. �
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Corollary 7.4.3 The set of 2×2 matrices with entries a, b, c, d ∈ Γ∪{0} satisfying
the conditions of Proposition 7.4.1 form a group under matrix multiplication.

Motivated by this, we define

SU(H1, Γn) =

{(
a b
c d

)
:
|a| = |d|, |b| = |c|, |a|2 − |c|2 = 1,

ab = cd ∈ Vn+1, ac = bd ∈ Vn+1

}
.

Similarly, using Corollary 7.1.5, we must have

d∗b, c∗a, ba∗, dc∗ ∈ Vn+1.

Since x∗ = x for elements of Vn we must have d∗b = (d∗b)∗ = b∗d and so on.
Motivated by this we define

SU(H2, Γn−1) =

{(
a b
c d

)
: ad∗ − bc∗ = d∗a− b∗c = 1, ab∗, cd∗, c∗a, d∗b ∈ Vn

}
.

We define PSU(H1, Γn) to be the image of SU(H1, Γn) under the map (7.1) and
PSU(H2, Γn−1) to be the image of SU(H2, Γn−1) under the map (7.1). These maps
are Clifford Möbius transformations.

Proposition 7.4.4 The set SU(H1, Γn) is a group and is generated by

D =

(
cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

)
, S =

(
u 0
0 u′

)

where λ ∈ R+ and u ∈ Γn with |u| = 1.

Proof: Define λ by sinh(λ) = |b| = |c|. Therefore |a| = |d| = cosh(λ). Using
Corollary 7.1.6, we find u, v ∈ Γn with |u| = |v| = 1 so that ac = |a| |c|uu∗ ∈ Vn+1

and ba = |a| |b|v∗v ∈ Vn+1. Thus

ba

|a| |b| = v∗v = v∗uuv = (uv′)(uv),

dc

|d| |c| = v∗v = v∗u∗u′v = (u′v′)(u′v),

ac

|a| |c| = uu∗ = uvvu∗ = (uv)(u′v),

bd

|b| |d| = uu∗ = uv′v∗u∗ = (uv′)(u′v′).

Then

a = cosh(λ)uv, b = sinh(λ)uv′, c = sinh(λ)u′v, d = cosh(λ)u′v′.
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Therefore ad∗− bc∗ = 1 and the hypotheses of Proposition 7.4.1 are satisfied. Hence
by Corollary 7.4.3 the members of SU(H1, Γn) form a group under matrix multipli-
cation.

Moreover,
(

u 0
0 u′

) (
cosh(λ) sinh(λ)
sinh(λ) cosh(λ)

) (
v 0
0 v′

)
=

(
a b
c d

)
.

�

Proposition 7.4.5 The set SU(H2, Γn−1) is a group and is generated by

D =

(
a 0
0 a∗−1

)
, T =

(
1 t
0 1

)
, R =

(
0 −1
1 0

)

where a ∈ Γn−1 and t ∈ Vn.

Proof: If c 6= 0 then
(

1 ac−1

0 1

) (
c∗−1 0
0 c

) (
0 −1
1 0

) (
1 c−1d
0 1

)
=

(
a b
c d

)
.

We have used
ac−1d− c∗−1 = ad∗c∗−1 − c∗−1 = bc∗c∗−1 = b.

�

Once again, we have the fact that if t is an eigenvalue of a Clifford matrix then
so is t

−1
. If |t| 6= 1 then these eigenvalues are distinct and the corresponding

eigenvectors are null. In this way we can define loxodromic maps. However it is not
straightforward to find eigenvalues from the entries of a Clifford matrix.

7.5 The geometry of hyperbolic (n + 1)-space

We define the hyperbolic metric by

ds2 =
−4

〈z, z〉2det

(
〈z, z〉 〈dz, z〉
〈z, dz〉 〈dz, dz〉

)
, cosh2

(
ρ(z, w)

2

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉.

For H1 that is

ds2 =
dz dz

(
1− |z|2

)2 , cosh2

(
ρ(z, w)

2

)
=

(wz − 1)(zw − 1)(
|z|2 − 1

)(
|w|2 − 1

) .

We remark that the numerator is real, using Lemma 7.1.2. For H2

ds2 =
dz dz

4z2
n

, cosh2

(
ρ(z, w)

2

)
=

(inz − win)(inw − zin)

(inz − zin)(inw − win)
=
|z − w|2 + 4znwn

4znwn
.
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Theorem 7.5.1 The collection of all orientation preserving isometries of hyperbolic
(n+1)-space is PSU(Hi, Γn) where i = 1, 2. Furthermore, any orientation reversing
isometry of hyperbolic (n + 1)-space is A(−z) where A(z) ∈ PSU(Hi, Γn) where
i = 1, 2.

Proof: We prove this in the same way that we proved Proposition 3.2.7. We work
with the upper half space model. Let φ be any hyperbolic isometry. By applying a
Clifford Möbius transformation, we may suppose that φ(in) = in and φ(2in) = yin
for some y > 1. Arguing as in Proposition 3.2.7 we see that this implies that φ fixes
the whole in axis.

Now suppose that φ(z) = w. Then for all y > 0 we have

|z − yin|2 + 4znyn

4znyn
= cosh2

(
ρ(z, yin)

2

)

= cosh2

(
ρ(w, yin)

2

)

=
|w − yin|2 + 4wnyn

4wnyn

.

From this we see that zn = wn and |z| = |w|. Therefore z−znin and w−wnin are in
the same sphere in Vn and so there is a ∈ Γn−1 for which w−wnin = a(z−znin)a′−1

or w − wnin = a(−z − znin)a′−1. Hence w = aza′−1 or w = a(−z)a′−1 which is in
PSU(H2, Γn−1). �

Exercise 7.5.1 Show that in the upper half space model of Hn+1 the in axis is a
geodesic.

In the unit ball model of Hn+1, describe the hyperbolic ball of radius r centred at
the origin.
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Chapter 8

p-adic Möbius transformations

8.1 The p-adic numbers

Let X be a non-empty set. A distance or metric on X is a function ρp from pairs of
elements (x, y) to the real numbers satisfying:

(i) ρ(x, y) ≥ 0 with equality if and only if x = y;

(ii) ρ(x, y) = ρ(y, x);

(iii) ρ(x, y) ≤ ρ(x, z) + ρ(z, y) for all z ∈ X.

The inequality in (iii) is called the triangle inequality. A metric is said to be non-

Archimedean if the triangle inequality is replaced with the following stronger in-
equality, called the ultrametric inequality:

(iv) ρ(x, y) ≤ max
{
ρ(x, z), ρ(z, y)

}
for all z ∈ X.

A simple consequence of the ultrametric inequality is the fact that every triangle in
a non-Archimedean metric space is isosceles:

Lemma 8.1.1 Suppose that ρ is a non-Archimedean metric on a space X. If x, y
and z are points of X so that ρ(x, y) < ρ(x, z) then ρ(x, z) = ρ(y, z).

Proof: We have

ρ(y, z) ≤ max
{
ρ(x, y), ρ(x, z)

}
= ρ(x, z)

by hypothesis. Likewise,

ρ(x, z) ≤ max
{

ρ(x, y), ρ(y, z)
}

= ρ(y, z)

since otherwise we would have ρ(x, z) ≤ ρ(x, y) which would be a contradiction.
Therefore, we have

ρ(y, z) ≤ ρ(x, z) ≤ ρ(y, z)

73
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and hence these quantities are equal. �

Many metrics arise from valuations on a ring. Let R denote a non-trivial ring.
An absolute value (or valuation or norm) on R is a real valued function x 7−→ |x|
on R satisfying:

(i) |x| ≥ 0 with equality if and only if x = 0;

(ii) |xy| = |x| |y|;

(iii) |x + y| ≤ |x|+ |y|.

Once again, a valuation is said to be non-Archimedean if the inequality in (iii) is
replaced with the stronger inequality:

(iv) |x + y| ≤ max
{
|x|, |y|

}
.

Given a valuation | | on a ring R we may define a metric on R by:

ρ(x, y) = |x− y|.

For example, the standard absolute value on R, C or or H gives rise to the
Euclidean metric.

Fix a prime number p and let r ∈ Q be non-zero. Write r = pfu/v where f ∈ Z

and u, v are coprime integers both of which are also coprime to p. Then define a
valuation | |p on Q by:

|r|p = p−f , |0|p = 0. (8.1)

One can then show that |r+s|p ≤ max
{
|r|p, |s|p

}
. This valuation is called the p-adic

valuation. A rational number is p-adically small if it is divisible by a large power of
p. We use the p-adic valuation | · |p to define a metric ρp on Q by ρp(x, y) = |x− y|p.
This is called the p-adic metric. Two rational numbers are p-adically close if their
difference is divisible by a large power of p.

The set of p-adic numbers Qp is the completion of Q with respect to the p-adic
valuation (8.1). The p-adic numbers form a field. Any p-adic number can be written
as a semi-infinite power series in p, which resembles a Laurent series:

x =

∞∑

n=k

xnp
n. (8.2)

Here k is any integer and xn ∈ {0, 1, . . . , p− 1} for all n with xk 6= 0. Since we are
summing over pn for n ≥ k we see that pk divides each term (and no other power
of p does since xk 6= 0). Therefore if x has the form (8.2) then |x|p = p−k. We can
extend the p-adic metric to Qp. Let

x =

∞∑

n=k

xnpn, y =

∞∑

n=l

ynp
n.
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Then ρp(x, y) = p−j where j is the smallest index so that xj 6= yj (where we put
xn = 0 for n < k and yn = 0 for n < l). In other words x and y are p-adically close
if their series agree up to the term corresponding to a large power of p.

A p-adic integer is any p-adic number m with |m|p ≤ 1. Each p-adic integer m
has an expansion

m =

∞∑

n=0

mnpn (8.3)

where mn ∈ {0, 1, . . . , p− 1}. The p-adic integers form a ring, denoted Zp.
These p-adic expansions can be slightly surprising. For example, take p = 5.

Consider x = 1+5+52 +53 + · · · . It is clear that 5x = 5+52 +53 +54 + · · · = x−1.
Therefore 4x = −1 and x = −1/4.

We can show that Zp is compact (with respect to the topology induced by the
p-adic valuation). Likewise, a p-adic unit is any non-zero p-adic number u so that
u ∈ Zp and u−1 ∈ Zp. That is, u has the form (8.3) with m0 6= 0. Since the set of
units is the intersection of two compact subsets of Qp, we see that it is compact.

By definition, Zp is the p-adic unit ball in Qp, that is the ball B1(0) of radius 1
centred at 0. That is, it is the set of p-adic numbers whose p-adic norm is at most
1. If y is any p-adic number, then the unit ball centred at y is

B1(y) =
{
x ∈ Qp : ρp(x, y) = |x− y|p ≤ 1

}
.

Note that this means that x = y + m where m is a p-adic integer. Therefore we
denote this ball by y + Zp. Note that if y ∈ Zp then y + Zp = Zp. This means that
any point inside a p-adic unit ball is its centre!

It is clear that pkZp is the p-adic ball centred at the origin (or any other point of
its interior) of radius p−k. Likewise y + pkZp is the p-adic ball centred at y of radius
p−k. Again any point in the ball y + pkZp may be taken to be its centre.

8.2 p-adic matrices and Möbius transformations

In this section we consider

SL(2, Qp) =

{(
a b
c d

)
: a, b, c, d ∈ Qp, ad− bc = 1

}
.

There is a natural projection to p-adic Möbius transformations, namely

PSL(2, Qp) = {A(x) = (ax + b)/(cx + d) : a, b, c, d ∈ Qp, ad− bc = 1.} .

These act on Qp ∪ {∞} = Q̂p.
For example, consider

A =

(
a b
0 a−1

)
, D =

(
pm 0
0 p−m

)
, R =

(
0 −1
1 0

)
. (8.4)

where a is a unit in Qp and b is any element of Qp.
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Proposition 8.2.1 The group SL(2, Qp) is generated by A, D, R as given in (8.4)
where a is a unit, b is any element of Qp and m is an integer.

Proof: If c = 0 then write a = pku where u is a unit. Then d = p−ku−1.
(

a b
0 d

)
=

(
pk 0
0 p−k

) (
u p−kb
0 u−1

)

Suppose c 6= 0. Write c = pku where u is a unit. Then
(

a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
pk 0
0 p−k

) (
u p−kd
0 u−1

)
.

�

As Möbius transformations these act as

A(x) = (ax + b)a, D(x) = p2mx, R(x) = −1/x.

Now it is not hard to show that

ρp

(
A(x), A(y)

)
=

∣∣A(x)− A(y)
∣∣
p

=
∣∣a(x− y)a

∣∣
p

=
∣∣x− y

∣∣
p

= ρp(x, y)

so that A(x) is an isometry of the metric ρp. Similarly,

ρp

(
D(x), D(y)

)
=

∣∣D(x)−D(y)
∣∣
p

= |p2mx− p2my|p = |p2m|p|x− y|p = p−2mρp(x, y).

Thus D(x) is a dilation. Likewise,

ρp

(
R(x), 0

)
=

∣∣R(x)
∣∣
p

=

∣∣∣∣
−1

x

∣∣∣∣
p

=
1

|x|p
=

1

ρp(x, 0)
,

ρp

(
R(x), R(y)

)
=

∣∣R(x)− R(y)
∣∣
p

=

∣∣∣∣
−1

x
− −1

y

∣∣∣∣
p

=
|x− y|p
|x|p|y|p

=
ρp(x, y)

ρp(x, 0), ρp(y, 0)
.

8.3 The tree Tp

We now show how to define a tree Tp whose boundary is Qp∪{∞}. The closed balls
in Qp are the vertices of Tp, that is

V =
{

x + pkZp : x ∈ Qp, k ∈ Z

}
.

Two vertices x + pkZp and y + pjZp are joined by an edge of Tp if and only if one
is a maximal ball properly contained in the other. In other words, either k = j + 1
and x− y ∈ pjZp or else j = k + 1 and x− y ∈ pkZp.
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3−1Z3

Z3
−13  +Z33Z−3  +−1

3Z3 1+3Z3 3  −1+3Z3
−1 3  +1+3−1 Z3−1+3Z3Z−3  +1+33

−1−3  +3Z3
−1−3  −1+3Z3

−1
3Z3  +3−1

−3 30−1 −1

Figure 8.1: Part of the tree T3 for Z3.

Notice that each ball x + pkZp of radius p−k is contained in exactly one ball of
radius p−k+1, namely x + pk−1Zp. Similarly, x + pkZp contains exactly p balls of
radius p−k−1, namely x+ypk +pk+1Zp where y = 0, 1, . . . , p−1. Hence each vertex
has exactly p + 1 edges emanating from it. Therefore the graph Tp we have just
constructed is an infinite, regular p + 1 tree. The tree Tp has a natural metric,
namely the graph metric where each edge has length 1.

We divide the vertices into two classes, namely those for which k is even denoted
V + and those for which k is odd, denoted V −:

V + =
{

x + p2kZp : x ∈ Qp, k ∈ Z

}
, V − =

{
x + p2k+1Zp : x ∈ Qp, k ∈ Z

}
.

By construction, each edge has one end in V + and the other in V −.

Example. For example, in Figure 8.1 we illustrate the tree T3 in the case where
p = 3. (We choose to take the coefficients in (8.2) from {−1, 0, 1} rather than
{0, 1 2}.) In this case, each vertex has the form x+3kZ3. Such a vertex is linked to
the vertices x+3k−1Z3, x−3k+3k+1Z3, x+3k+1Z3 and x+3k+3k+1Z3 by edges. Thus
T3 is a regular 4-valent tree. We also indicate the geodesic from 0 to∞ which passes
through the vertices . . . , 3Z3, Z3, 3−1Z3, . . . and the geodesic from−3−1 to 3−1 pass-
ing through the vertices . . . , −3−1+3Z3, −3−1 +Z3, 3−1Z3, 3−1+Z3, 3−1+3Z3, . . ..

We now find the boundary of Tp. We consider geodesic paths through Tp (with
respect to the graph metric). In other words, such a path is a (possibly infinite)
sequence of vertices vj so that for all j the vertices vj , vj+1 are joined by an edge
and vj−1 6= vj+1, that is there is no back tracking. The semi-infinite geodesic path
p−kZp for k = 0, 1, 2, . . . identifies a point of the boundary denoted by ∞. Every
other semi-infinite geodesic path starting at the vertex Zp eventually consists of a
sequence of nested, decreasing balls x + pkZp for k = K, K + 1, K + 2, . . .. The
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limit of this sequence is the point x of Qp. Choosing a starting point other than
Zp makes only finitely many changes to these paths. Hence the boundary of Tp is
Qp ∪ {∞}. From this construction ∂Tp is totally disconnected.

Any two distinct points z, w in Qp ∪ {∞} are the end points of a unique doubly
infinite geodesic path through Tp. We denote this path by γ(z, w).

We may also define horocycles. The horocycle Hk centred at ∞ of height pk is
defined to be the collection of all vertices in Tp corresponding to balls of radius pk.
In other words

Hk =
{

x + p−kZp : x ∈ Qp

}
.

Likewise, the horoball Bk centred at ∞ of height pk is the union of all horocycles of
height greater than k. That is

Bk =
{
x + pjZp : x ∈ Qp, j < −k

}
.

This is suggested in Figure 8.1 where points on the same horocycle are drawn on
the same horizontal line.

We can define the p-adic topology on Qp ⊂ ∂Tp by measuring the maximum height
of any point on the geodesic joining two boundary points.

8.4 Automorphisms of the tree Tp

An automorphism of Tp is a bijection from Tp to itself that preserves adjacency.
Tits classified tree automorphisms into three types. Let A : T −→ T be a tree
automorphism. Then

(i) A is called a rotation if there is a vertex v of Tp so that A(v) = v.

(ii) A is called an inversion if there are two adjacent vertices v and w of Tp so that
A interchanges v and w. This means that A preserves the edge of Tp with
endpoints v and w but reverses its orientation.

(iii) A is called a translation if there is a geodesic {vn : n ∈ Z} and a non-zero
integer k so that A(vn) = vn+k for all n ∈ Z.

The first two classes of automorphism correspond to elliptic maps and reflections
respectively. The third class corresponds to loxodromic maps when k is even and to
glide reflections when k is odd.

We now describe the action of A, D and R on Tp. Consider the vertex v = x+pjZp.
This is the p-adic ball centred at x with radius p−j. The image of v under A or
D should be a p-adic ball (that is another vertex of Tp). We require that a point
z ∈ Qp lies in v if and only if A(z) lies in A(v) (or D(z) lies in D(v) respectively).
We must have z = x + pjw where w ∈ Zp. Then

A(z) = (a(x + pjw) + b)a = (ax + b)a + pja2w = A(x) + pja2w,

D(z) = p2m(x + pjw) = p2mx + pj+2mw = D(x) + pj+2mw.
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As w ranges over Zp then, since a is a unit, a2w also ranges over the whole of Zp.
Therefore

A(v) = A(x + pjZp) = (ax + b)a + pjZp = A(x) + pjZp, (8.5)

D(v) = D(x + pjZp) = p2mx + pj+2mZp = D(x) + pj+2mZp. (8.6)

Thus the image of each vertex of Tp under A and D is also a vertex of Tp.
The action of R on Tp is slightly more complicated. Consider the vertex v = x+pjZp

and suppose for the moment that 0 is not in v. In other words, suppose that x is
not in pjZp. We may write x = pku where u is a unit. Our hypothesis is that
k < j. Let y ∈ Qp be given by y = R(x) = −x−1 = p−ku′ where u′ is a unit so that
uu′ = −1. We can write a general point of v as x+ pjw = pku+ pjw. We claim that
R(pku + pjw)− p−ku′ ∈ pj−2kZp. In order to see this, observe that

(pku + pjw)
(
R(pku + pjw)− p−ku′

)
= −1− (pku + pjw)p−ku′

= −1 + 1− pj−kwu′

= −pj−kwu′.

Because wv ∈ Zp all powers of p in the expansion of the right hand side, and hence
also of the left hand side, must be at least pj−k. Moreover, since k < j there is
a factor of pk in (pku + pjw). Thus the smallest power of p in the expansion of
R(pku+ pjw)−p−ku′ must be at least pj−2k. Hence R(pku+ pjw)−p−ku′ ∈ pj−2kZp

as claimed. Therefore R(v) = R(pku+pjZp) ⊂ p−ku′ +pj−2kZp. A similar argument
shows that p−k + pj−2kZp ⊂ R(pku + pjZp) and so these two balls are equal. That
is, for k < j

R(v) = R(pku + pjZp) = p−ku′ + pj−2kZp = R(pku) + pj−2kZp. (8.7)

Thus when 0 is not contained in v the image of v under R is also a vertex of Tp.
In principle, the same argument works when 0 ∈ v. If a ball contains 0 then we

may write it as pjZp for some integer j. The image under R of a ball centred at
0 should be a ball centred at R(0) = ∞. Therefore we must make sense of p-adic
balls centred at ∞. Just as for the Riemann sphere, a neighbourhood of ∞ is the
exterior of a bounded set. Thus balls centred at ∞ are the exteriors of finite balls.
Consider v = pjZp. Then certainly v contains points of the form pju where u is
a unit. Then R(pju) = −p−ju−1 ∈ p−jZp. However pjZp also contains points pku
where k > j and u is a unit. For such points R(pku) = −p−ku−1 which lies in the
exterior of p−jZp. Therefore we define

R(v) = R(pjZp) = p−jZp. (8.8)

Proposition 8.4.1 Suppose that A, D and R act on the vertices of Tp via (8.5),
(8.6), (8.7) and (8.8). Then A, D and R act on the edges of Tp.
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Proof: Let x + pjZp and y + pj+1Zp where x − y ∈ pjZp be adjacent vertices of
Tp.

Then A(x) − A(y) = (ax + b)a − (ay + b)a = a2(x − y) ∈ pjZp as a is a unit.
Therefore A(x+pjZp) = A(x)+pjZp and A(y+pj+1Zp) = A(y)+pj+1Zp are adjacent
vertices of Tp.

Similarly, we have D(x) − D(y) = p2mx − p2my = p2m(x − y) ∈ pj+2mZp. Thus
D(x+pjZp) = D(x)+pj+2mZp and D(y +pj+1Zp) = D(y)+pj+2m+1Zp are adjacent
vertices of Tp.

Suppose that x + pjZp and y + pj+1Zp neither contain 0. In other words x 6∈ pjZp

and y 6∈ pj+1Zp. We write x = pku and y = plv where k < j, l < j + 1 and u, v are
units. If x and y are adjacent then x− y = pku− plv ∈ pjZp and so, in fact, k = l
and u− v ∈ pj−kZp Then R(x) = −p−ku−1 and R(y) = −p−kv−1. Thus

R(x)−R(y) = −p−ku−1 + p−kv−1 = p−ku−1v−1(u− v) ∈ pj−2kZp

since u−1 and v−1 are both units. Therefore R(x + pjZp) = R(x) + pj−2kZp and
R(y + pj+1Zp) = R(y) + pj−2k+1Zp are adjacent vertices.

Suppose now that x+ pjZp contains 0 but y + pj+1Zp does not. Therefore we may
take x = 0. This means that y ∈ pjZp. Because we assumed that y + pj+1Zp does
not contain 0 we must have y = pju where u is a unit. We have R(pjZp) = p−jZp

and R(pju + pj+1Zp) = −p−ju−1 + p1−jZp. Then −p−ju−1 ∈ p−jZp and so R(pjZp)
and R(y + pj+1Zp) are adjacent vertices.

Finally, suppose that x + pjZp and y + pj+1Zp both contain 0. Then we may
suppose that x and y are both 0. Then R(pjZp) = p−jZp and R(pj+1Zp) = p−j−1Zp

which are adjacent vertices. �

Theorem 8.4.2 There is an injective group homomorphism from PSL(2, Qp) to the
automorphism group of Tp. The action of PSL(2, Qp) preserves the sets V + and V −

and acts transitively on each of these sets. Non-trivial maps in the image are either
rotations or even translations.

Proof: In Proposition 8.4.1 we showed (8.5), (8.6), (8.7) and (8.8) define actions of
A(x), D(x) and R(x) as automorphisms of Tp. Since A(x), D(x) and R(x) generate
PSL(2, Qp), this action may be extended to a homomorphism from PSL(2, Qp) to
the automorphism group of Tp. If an element B of PSL(2, Qp) is mapped to the
identity it must fix all points of Tp. That is it fixes all balls in Qp. By considering
families of nested balls, we see that B fixes all points of the boundary of Tp, that
is all points of Qp. Hence B was in fact the identity. Hence this homomorphism is
injective.

It is also obvious that A(x), D(x) and R(x) preserve V + and V −. Therefore the
associated tree automorphisms can only be rotations or even translations.

In order to show that the action is transitive on V + we show how to map Zp to
x + p2kZp. This is achieved by

(
1 x
0 1

) (
pk 0
0 p−k

)
=

(
pk p−kx
0 p−k

)
.
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Thus Zp 7−→ p2kZp 7−→ x + p2kZp. �

We now investigate the action a little more closely. Consider

A =

(
1 t
0 1

)

where t = pju ∈ Qp where u is a unit. It is clear that if j ≥ i + k then

A
(
pi(x + pkZp)

)
= pi(x + pkZp) + pju = pi(x + pkZp).

Hence the vertex pi(x + pkZp) is fixed by A.

Example. Let p = 3. Let x0 ∈ Z3 have 3-adic expansion x0 = 1+3+32 +33 + · · · .
Then

2x0 = 3x0 − x0 = (3 + 32 + 33 + 34 + · · · )− (1 + 3 + 32 + 33 + · · · ) = −1

so x0 = −1/2. Consider A(x) = x + 1. Then

A(x0) = A(−1/2) = −1/2 + 1 = 1/2 = −x0 = −1− 3− 32 − 33 − · · · ,
A2(x0) = A2(−1/2) = −1/2 + 2 = 3/2 = −3x0 = −3− 32 − 33 − 34 − · · · .

Thus x0 ∈ 1+3Z3, A(x0) ∈ −1+3Z3, A2(x0) ∈ 3Z3 and A3(x0) ∈ 1+3Z3. Therefore
A(x0) fixes Z3 and cyclically permutes 1 + 3Z3, −1 + 3Z3 and 3Z3.

On the next level, similar arguments give:

x ∈ 1 + 3 + 32Z3, A(x) ∈ −1− 3 + 32Z3, A2(x) ∈ −3 + 32Z3,
A3(x) ∈ 1− 3 + 32Z3, A4(x) ∈ −1 + 32Z3, A5(x) ∈ 32Z3,
A6(x) ∈ 1 + 32Z3, A7(x) ∈ −1 + 3 + 32Z3, A8(x) ∈ 3 + 32Z3.

Proposition 8.4.3 SL(2, Zp) fixes the vertex Zp.

Proof: Let A ∈ SL(2, Zp) have entries a, b, c, d ∈ Zp with ad − bc = 1. If c = 0
then we have ad = 1 and so a and d are units. It is clear that

Zp 7−→ ad−1Zp + bd−1 = Zp.

For example suppose that a, b, c, d are all in Zp with ad − bc = 1. If c is a unit
then ac−1 and dc−1 are in Zp. Writing

(
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
c 0
0 c−1

) (
1 dc−1

0 1

)
.

we see that each of these four matrices preserve Zp.



82 CHAPTER 8. P -ADIC MÖBIUS TRANSFORMATIONS

Now suppose that a, b, c, d are all in Zp with ad− bc = 1 and c = upj where j > 0
and u is a unit. Note that this implies a and d are units. Consider

(
a b
c d

)
=

(
1 ac−1

0 1

) (
0 −1
1 0

) (
c 0
0 c−1

) (
1 dc−1

0 1

)
.

(Note that these matrices are not all in SL(2, Zp).) Then applying these matrices in
turn, we obtain

Zp 7−→ p−j(du−1 + pjZp) 7−→ pj(du + pjZp) 7−→ p−j(−au−1 + pjZp) 7−→ Zp.

This proves the result. �



Chapter 9

Rank 1 symmetric spaces of
non-compact type

9.1 Symmetric spaces

Let X be a simply connected, complete, geodesic metric space. Consider a point
x ∈ X and a local geodesic γ : R −→ X parametrised by arc length and with
γ(0) = x. In other words, for all points s and t of R that are sufficiently close the
arc γ : [s, t] −→ X is the geodesic arc between γ(s) and γ(t). However for long arcs
this arc may not be the shortest path. This is the case for great circles on a sphere.

We say that a map Φ : γ −→ γ is a reflection of γ in x if Φ
(
γ(t)

)
= γ(−t). We

say that X is a symmetric space if for each point x the map given by reflection in
x of each geodesic through x maps X to itself and is an isometry. Note that this
implies that X is homogeneous. For if we take any two points y, z ∈ X there is a
geodesic arc between them. Let x be the midpoint of this arc. Reflection in x maps
y to z.

Simple examples of symmetric spaces are spheres of all dimensions, Euclidean
space of all dimensions and hyperbolic space of all dimensions.

By construction the map γ : R −→ X sending R to a geodesic parametrised by
arc length is a locally isometric embedding of the Euclidean line to X. Consider Rn

with its standard Euclidean metric. Suppose we can find a map γ : Rn −→ X that
maps Rn locally isometrically to X. Then we call the image of Rn a flat subspace
of X. The rank of X is the largest dimension of a flat subspace of X.

For example, spheres and hyperbolic spaces each have rank 1 whereas Euclidean
n-space has rank n.

A symmetric space is of compact type if it is compact and of non-compact type
if it is non-compact. Therefore S2 is a rank 1 symmetric space of compact type and
H2 is a rank 1 symmetric space of non-compact type. In fact these two examples
are indicative of all rank one symmetric spaces.

Theorem 9.1.1 Let X be a rank 1 symmetric space. Then

83
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(i) If X has compact type then X is one of the following: a sphere Sn, a complex
projective space CPn, a quaternionic projective space HPn or the octonionic
projective plane OP2.

(ii) If X has compact type then X is one of the following: (real) hyperbolic space
Hn

R
, complex hyperbolic space Hn

C
, quaternionic hyperbolic space Hn

H
or the

octonionic hyperbolic plane H2
O
.

The spaces in (ii) are called the hyperbolic spaces.

9.2 Real, complex and quaternionic hyperbolic

spaces

The construction of the hyperbolic spaces and their isometries follows along the
same lines that we have been discussing earlier. In the case of the real, complex and
quaternionic hyperbolic spaces the general construction is the following. Consider
Rn,1, Cn,1 or Hn,1 the vector space over R, C or H with dimension n + 1 equipped
with a Hermitian (or quadratic) form H of signature (n, 1). Write 〈z,w〉 = w∗Hz.
There are two standard choices of Hermitian form, which we have seen when dealing
with the Klein model of Hn; compare (4.1):

H1 =





1 0 · · · 0 0
0 1 · · · 0 0
...

...
...

...
0 0 · · · 1 0
0 0 · · · 0 −1




,

H2 =





0 0 0 · · · 0 1
0 1 0 · · · 0 0
0 0 1 · · · 0 0
...

...
...

...
...

0 0 0 · · · 1 0
1 0 0 · · · 0 0





.

Let V+, V0 and V− be the positive, null and negative vectors respectively. Define
a right projection from Rn,1, Cn,1 or Hn,1 to RPn, CPn or HPn respectively. Then
the corresponding hyperbolic space is PV− and its ideal boundary is PV0. In each
case we define the metric by

ds2 =
−κ2

〈z, z〉2det

(
〈z, z〉 〈z, dz〉
〈dz, z〉 〈dz, dz〉

)

where κ is a positive real number. Once again, this leads to a distance formula

cosh2

(
ρ(z, w)

κ

)
=
〈z,w〉〈w, z〉
〈z, z〉〈w,w〉
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We have seen that there is an isometry between complex hyperbolic 1-space (the
Poincaré models) and real hyperbolic 2-space (the Klein model). Likewise, there
is an isometry between quaternionic hyperbolic 1-space (as discussed in Chapter 6)
and real hyperbolic 4-space. Similar identifications do not arise in other dimensions.

Let O(n, 1), U(n, 1) and Sp(n, 1) be the groups of matrices preserving the form
H in each case. Then entries lie in R, C or H respectively. Since they preserve the
form it is clear that they preserve the metric on the respective hyperbolic space.

We can define geodesics, totally geodesic subspaces, spheres, balls, horospheres
and horoballs as before, although there are some subtle differences. For example, for
C and H and n ≥ 2 there are no totally geodesic real hypersurfaces and horospheres
naturally carry the structure of a Heisenberg group (that is nil geometry) rather
than Euclidean geometry.

9.3 The octonionic hyperbolic plane

There is still one remaining case, namely the octonionic hyperbolic plane. The
octonions O comprise the real vector space spanned by 1 and ij for j = 1, . . . , 7
together with a non-associative multiplication defined on the basis vectors as follows
and then extended to the whole of O by linearity. First for j, k = 1, . . . , 7 and j 6= k
we have

1ij = ij1 = ij, i2j = −1, ijik = −ikij.

Finally
ijik = il

precisely when (j, k, l) is a cyclic permutation of one of the triples:

(1, 2, 4), (1, 3, 7), (1, 5, 6), (2, 3, 5), (2, 6, 7), (3, 4, 6), (4, 5, 7).

We write an octonion z as

z = z0 +
7∑

j=1

zjij .

Define the conjugate z of z to be

z = z0 −
7∑

j=1

zjij .

Conjugation is an anti-automorphism, that is for all octonions z and w

(zw) = w z.

The real part of z is Re(z) = 1
2
(z+z) and the imaginary part of z is Im(z) = 1

2
(z−z).

The modulus |z| of an octonion is the non-negative real number defined by

|z|2 = zz = zz = z0
2 + z1

2 + · · ·+ z7
2.
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The modulus is multiplicative, that is |zw| = |z| |w|. Clearly |z| > 0 unless z = 0
(that is z0 = z1 = · · · = z7 = 0). An octonion z is a unit if |z| = 1.

The following result is due to Artin

Proposition 9.3.1 For any octonions x and y the subalgebra with a unit generated
by x and y is associative. In particular, any product of octonions that may be written
in terms of just two octonions is associative.

The octonions are not associative and so we loose the notion of a vector space. The
basic idea here is to use the fact that two generator subalgebras of O are associative
(and are isomorphic to H).

Consider z = (z1, z2) where z1, z2 ∈ O. Then the standard lift of z is the “octo-
nionic vector”

z =




z1

z2

1



 .

Suppose that λ is an octonion in the same associative subalgebra of O as the entries
of z. Then we can let λ act on z by right multiplication.

zλ =




z1

z2

1



 λ =




z1λ
z2λ
λ



 .

Motivated by this, we define

O3
0 =




z =




z1

z2

z3



 : z1, z2, z3 all lie in some associative subalgebra of O




 .

We define an equivalence relation on O3
0 by z ∼ w if w = zλ for some λ in an

associative subalgebra of O containing the entries z1, z2, z3 of z. The map from O3
0

to the set of equivalence classes is the analogue of right projection and so we let PO3
0

denote the set of right equivalence classes.
Let H be a real Hermitian matrix of signature (2, 1), for example one of those

considered in (4.1):

H1 =




1 0 0
0 1 0
0 0 −1



 , H2 =




0 0 1
0 1 0
1 0 0



 .

Given z ∈ O3
0, define Z = zz∗H . This is a 3 × 3 matrix whose entries all lie in

an associative subalgebra of O. Right multiplication of z by λ lying in the same
associative subalgebra as the entries of z leads to multiplication of Z by |λ|2

(zλ)(zλ)∗H = zλλz∗H = |λ|2zz∗H.
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In particular, if z = (z1, z2) where z1, z2 ∈ O and if z is the standard lift of z then
z and Z = zz∗H2 are given by

z =




z1

z2

1



 , Z =




z1 z1z2 |z1|2
z2 |z2|2 z2z1

1 z2 z1



 .

We consider M(3, O) the real vector space of 3 × 3 octonionic matrices. Let X∗

denote the conjugate transpose of a matrix X in M(3, O). Given a real Hermitian
matrix H , as above, define

J =
{
X ∈ M(3, O) : HX = X∗H

}
.

Then J is closed under the Jordan multiplication

X ∗ Y =
1

2
(XY + Y X),

and so we call J the Jordan algebra associated to H . Real numbers act on M(3, O)
by multiplication of each entry of X. We define an equivalence relation on J by
X ∼ Y if and only if Y = kX for some non-zero real number k. Then PJ is defined
to be the set of equivalence classes [X].

If z ∈ O3
0 then

HZ = Hzz∗H = (zz∗H)∗H = Z∗H

and so Z = zz∗H lies in the Jordan algebra J . Hence this map defines an embedding
O3

0 −→ J . Moreover, the two projection maps are compatible and so there is a well
defined map PO3

0 −→ PJ .
Moreover, tr(Z) = tr(zz∗H) = z∗Hz, which is real. This is the analogue of our

Hermitian form. Therefore define

V− =
{
z ∈ O3

0 : tr(zz∗H) < 0
}
,

V0 =
{
z ∈ O3

0 − {0} : tr(zz∗H) = 0
}
,

V+ =
{
z ∈ O3

0 : tr(zz∗H) > 0
}
.

Then we define H2
O

= PV− and ∂H2
O

= PV0. To each z ∈ H2
O

we can take the
standard lift z of z and the corresponding element Z of the Jordan algebra.

We can define a bilinear form on M(3, O) by

〈X, Y 〉 = Re
(
tr(X ∗ Y )

)
=

1

2
Re

(
tr(XY + Y X)

)
.

Then if Z = zz∗H and W = ww∗H then

〈Z, W 〉 = |w∗Hz|2.

Note that 〈Z, Z〉 = (z∗Hz)2 = tr(Z)2
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Then the metric on H2
O

is given by

ds2 =
−4

(
tr(Z)tr(dZ)− 〈Z, dZ〉

)

tr(Z)2
=
−4

(
(z∗Hz)(dz∗Hdz)− |z∗Hdz|2

)

|z∗Hz|2

where z ∈ V− and Z = zz∗H ∈ J . The distance formula is then given by

cosh2

(
ρ(z, w)

2

)
=

〈Z, W 〉
tr(Z)tr(W )

=

∣∣w∗Hz|2
(z∗Hz)(w∗Hw)

.

The isometries of H2
O

form an exceptional group F4(−20). This group may be
defined via a set of generators analogous to those we have seen before. First, the
following real matrices act on O3

0 by left multiplication.

T =




1 −1 −1/2
0 1 1
0 0 1



 , D =




t 0 0
0 1 0
0 0 1/t



 , R =




0 0 1
0 −1 0
1 0 0





where t 6= 0 is real. Since each of them satisfies A−1 = H−1
2 A∗H2 where H2 is given

by (4.1), they also act on J by conjugation:

(Az)(Az)∗H2 = Azz∗A∗H2 = A(zz∗H2)A
−1.

Finally, let u be a unit imaginary octonion, that is u is an octonion with |u| = 1
and Re(u) = 0. Let Su be the map defined by

Su :




z1

z1

1



 =




uz1u
z2u
1



 .

This sends the corresponding Z = zz∗H2 ∈ J by

Su :




z1 z1z2 |z1|2
z2 |z2|2 z2z1

1 z2 z1



 7−→




uz1u u(z1z2) |z1|2
z2u |z2|2 (z2z1)u
1 uz2 uz1u



 .

This uses the identity (uz1u)(uz2) = u(z1z2) which is valid provided u is a unit
imaginary octonion. Therefore Su acts on J via conjugation by the matrix




u 0 0
0 1 0
0 0 u



 .



Chapter 10

Further reading

The material in Chapters 2, 3, 4 and 5 is completely standard. It would be impossible
to give a complete bibliography of text books in this area, not to mention research
papers. Therefore we have given a few standard references for further reading. We
have taken a mildly non-standard approach in order to justify the material in later
chapters. The material in Chapters 6, 7 and 8 is less well known. Therefore we give
a more detailed bibliography for this material. No doubt there are many omissions
from this list. Finally, we give a brief list of references for the survey in Chapter 9
of how this material may be generalised.

Chapter 2. The material in this section is fairly standard linear algebra and can
be found in many text books.

Chapter 3. This material may be found in most text books on hyperbolic geometry,
for example Anderson [5] or Beardon [8]. It is not standard to base the treatment
so closely on linear algebra, however.

Chapter 4. Ratcliffe [33] and Beardon [8] discuss the relationship between the
Poincaré and Klein models of the hyperbolic plane. In [1] Ahlfors gives an account
of high dimensional Möbius transformations by generalising the construction in this
section.

Chapter 5. This material is again standard and may be found in Beardon [8] or
Ratcliffe [33]. In particular, Beardon discusses the Poincaré extension and Ratcliffe
discusses the Klein model.

Chapter 6. The foundations of quaternionic linear algebra were laid down by
Brenner [9], Coxeter [14], Gormley [19], Lee [26]. The quadratic equation was solved
by Niven [30] and this was used to find eigenvalues by Huang and So [20], [21]; see
also Zhang [40]. Other more recent work is by Wilker [39].

The classification problem has been discussed by various people, such as Cao [12]
Parker and Wang [11] Foreman, [16] Gongopadhyay and Kulkarni, [18] Kido [24]
and Parker and Short [31]. See the discussion in [31] for more details.

Applications of quaternionic matrices to hyperbolic geometry have been given by
Kellerhals [22], [23].

Chapter 7. Clifford Möbius transformations were first introduced over a century

89
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ago by Vahlen [35] and subsequently discussed by Maass [27]. However, it was
Ahlfors [2], [3] who really popularised their use. Other authors who have studies
Clifford Möbius transformations are Cao [10], Waterman [38] and Wada [36], [37]
among others.
Chapter 8. The general theory of automorphisms of trees and their relationship
to p-adic numbers is due to Serre [34]. The approach we use here is based on
Figà-Talamanca [15], which was extended by Armitage and Parker [6].
Chapter 9. The generalisation of classical hyperbolic geometry to other rank one
symmetric spaces of non-compact type may be found in Chen and Greenberg [13]
and Mostow [29].

Complex hyperbolic geometry is currently an active topic of research; see [17].
More details of the approach we take here may be found in Parker [32]. There has
been some work on quaternionic hyperbolic geometry; see [25]. The account we give
here of octonionic hyperbolic geometry is based on Allcock, [4]. See also Markham
and Parker [28] for further work in this area. See Baez [7] for background material.
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Acad. Sci. Fenn. Ser. A I Math. 10 (1985), 15–27.

[4] D.J. Allcock. Reflection groups on the octave hyperbolic plane, Journal of

Algebra 213 (1998), 467–498.

[5] J.W. Anderson Hyperbolic Geometry Springer 1999.

[6] J.V. Armitage & J.R. Parker Jørgensen’s inequality for non-Archimedean
metric spaces, Geometry and Dynamics of Groups and Spaces Progress in
Mathematics 265, Birkhäuser, to appear, 1–15.
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Variables Thy. Appl. 15 (1990) 125–133.
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