
#### **Mathematics** Carousel

J.F.Blowey@durham.ac.uk www.dur.ac.uk/j.f.blowey/

#### Some FMSP cubist pictures



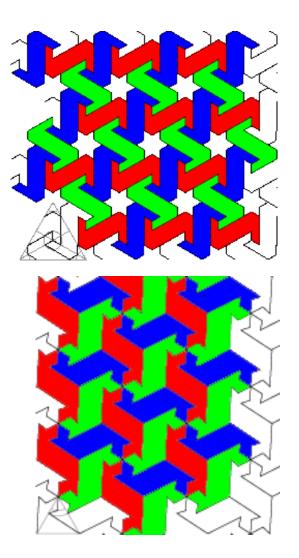


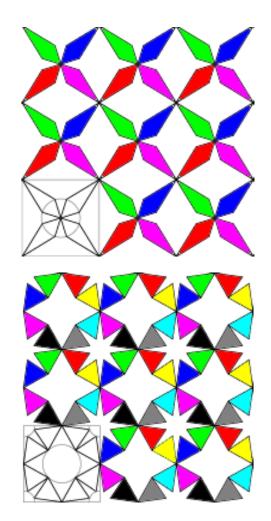


# Overview

- Platonic solids Cubism
- Tilings
- Steiner networks
- Proof
- Bell-ringing by Joyce Brown

# What makes a good mathematician? nrich.maths.org


- Logical thinking; Systematic.
- Intuitive; Creative.
- Practice; Dedication; Obsessive.
- Enthusiasm; Love for the subject.
- Solve problems.
- Rigourous "stonebreakers who grind to dust".


A Platonic Solid is a solid bounded by plane faces where each face is the same.

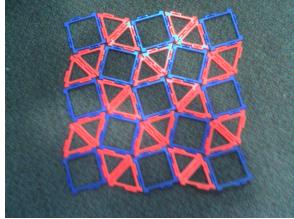
How many Platonic solids are there?

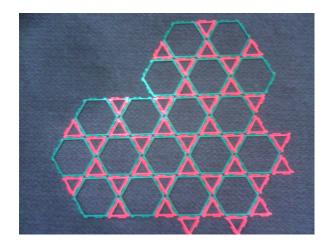
Give an overview of some twisty puzzles and what makes them "special"

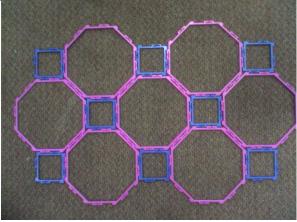
# Regular tilings for colouring

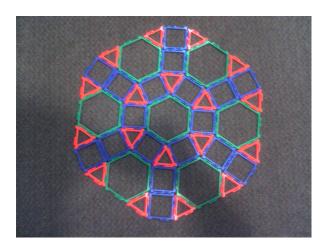





# An aside: Colour


- Each cell has a unique colour made up by mixing Red/Green/Blue which can be represented as (R,G,B).
- In html (webpages) colours are represented as #1B3D5F where pairs of digits are in hexadecimal which is the industry standard – actually the custom colour is shown!


### Postscript language


- PostScript is best known for its use as a page description language in the electronic and desktop publishing areas – its child is PDF.
- You define objects and the language is mathematical. There are commands for "scale enlargement", "translate", see an <u>example</u>.

# Irregular tilings (mix regular polygons)





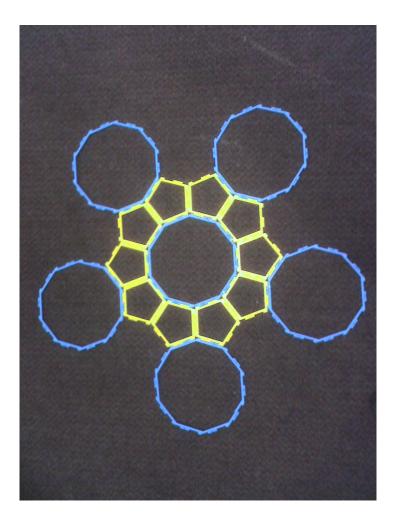




# A systematic approach leads to:

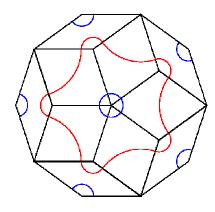
 Arriving at the formula for an internal angle of a regular n-gon: (n-2)\*180/n

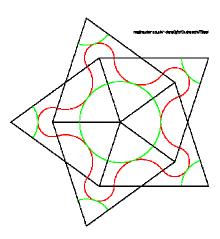
| Name      | Number of sides | Internal angle<br>(degrees) |
|-----------|-----------------|-----------------------------|
| Triangle  | 3               | 60                          |
| Square    | 4               | 90                          |
| Pentagon  | 5               | 108                         |
| Hexagon   | 6               | 120                         |
| Octagon   | 8               | 135                         |
| Nonagon   | 9               | 140                         |
| Decagon   | 10              | 144                         |
| Dodecagon | 12              | 150                         |


- Only n-gons where n is a factor of 180 is possible.
- Take a few minutes to find some answers which could lead to tessellation

• Answers diophantine equations:

```
Some answers:
  360=150+90+2\times60
  360 = 144 + 2 \times 108
  360=2x135+90
  360=3x120
  360=2x120+2x60
  360 = 120 + 4 \times 60
  360 = 120 + 2 \times 90 + 60
  360 = 4 \times 90
  360 = 2 \times 90 + 3 \times 60
  360 = 6 \times 60
```


#### Counter-example


• 360=144+2x108



### Penrose tilings

• Two Penrose tilings





#### A mathematical game

Using 6 >= numbers >= 1, how many ways can you write 8 using exactly six numbers?

- Two ways:
- 8=1+1+1+1+3
- 8=1+1+1+1+2+2

If we used these numbers as a six-sided dice with a sum total of 8 which would be best?

|   | 1 | 1 | 1 | 1 | 1 | 3 |
|---|---|---|---|---|---|---|
| 1 | D | D | D | D | D | L |
| 1 | D | D | D | D | D | L |
| 1 | D | D | D | D | D | L |
| 1 | D | D | D | D | D | L |
| 2 | W | W | W | W | W | L |
| 2 | W | W | W | W | W | L |

Probability purple wins = 10/36, Probability purple loses = 6/36.

What if we increase the sum total – use Maple.

# **Group Activity**

- Each student should take a blank dice and write a number on each side according to the following two rules:
  - You can only use the numbers 1, 2, 3, 4, 5, 6.
    The total of the six numbers number be 21.
- Form into eight groups of four and play a knock-out competition for the best of ten game:

# Amongst the group of four can you work out the best dice?

- There is a best/worst dice yes up to n=15.
- The first set of non-transitive dice is when n=14 in which case 4 beats 6, 6 beats 11 and 11 beats 4.
- For n=21 the "best" dice are
  [1, 1, 3, 5, 5, 6]
  [1, 3, 3, 4, 5, 5]

#### Sicherman Dice

# Probability distribution for Two Standard Dice 2

|   | 1 | 2 | 3 | 4 |
|---|---|---|---|---|
| 1 | 2 | 3 | 4 | 5 |
| 2 | 3 | 4 | 5 | 6 |
| 3 | 4 | 5 | 6 | 7 |
| 4 | 5 | 6 | 7 | 8 |

P(2)=1/16, P(3)=2/16, P(4)=3/16, P(5)=4/16, P(6)=3/16, P(7)=2/16, P(8)=1/16

# <sup>3</sup> Probability distribution <sup>2</sup> for Sicherman Dice

2

3

3

5

|   | 1 | 3 | 3 | 5 |
|---|---|---|---|---|
| 1 | 2 | 4 | 4 | 6 |
| 2 | 3 | 5 | 5 | 7 |
| 2 | 3 | 5 | 5 | 7 |
| 3 | 4 | 6 | 6 | 8 |

P(2)=1/16, P(3)=2/16, P(4)=3/16, P(5)=4/16, P(6)=3/16, P(7)=2/16, P(8)=1/16

An application of Algebra proves this is the only alternative with this property

Representing a dice algebraically as a polynomial where the coefficient multiplying  $x^n$  corresponds to the number of ways n can be thrown. For instance, one would represent an ordinary dice as  $x^4+x^3+x^2+x^1$ 

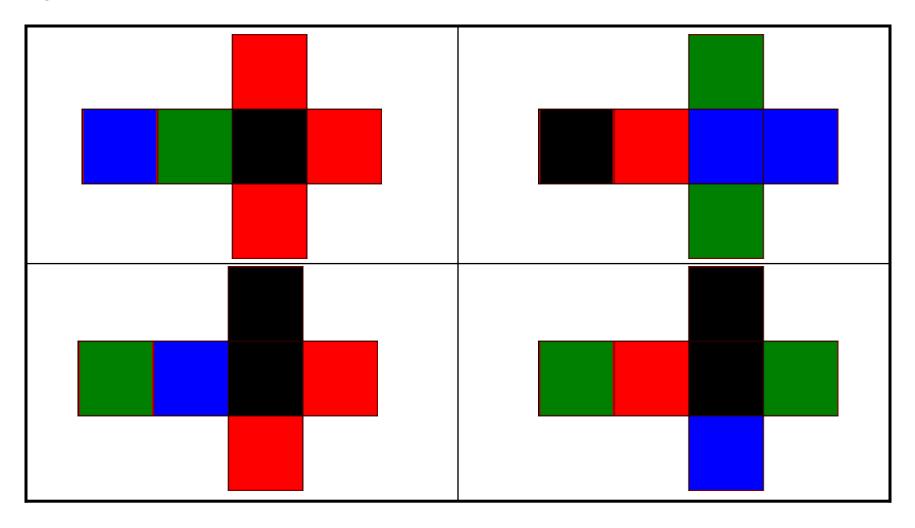
Note:

- Setting x=1 in the corresponding polynomial will always give you 6.
- You never get a term x^0 in the corresponding polynomial.

Rolling pairs of dice gives the same answer as multiply the polynomials corresponding to the two dice together.

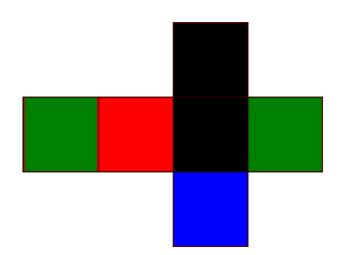
 $(x^{4}+x^{3}+x^{2}+x^{1})(x^{4}+x^{3}+x^{2}+x^{1})$ = $x^{8}+2x^{7}+3x^{6}+4x^{5}+3x^{4}+2x^{3}+x^{2}$ = $x^{2}(x^{4}+1)^{2}(x^{4}+1)^{2}$ 

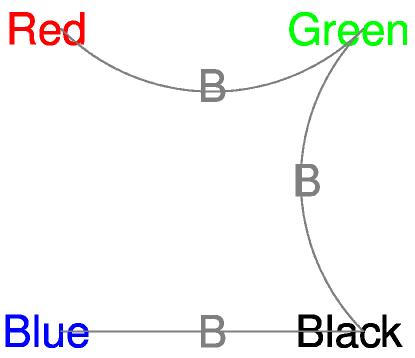
 $=x^{2}(x^{4}-1)^{2}(x-1)^{2}$  $=x^{2}(x^{2}+1)^{2}(x+1)^{2}$ 


 $=[x(x^2+1)^2][x(x+1)^2]$ 

# Uniform distribution

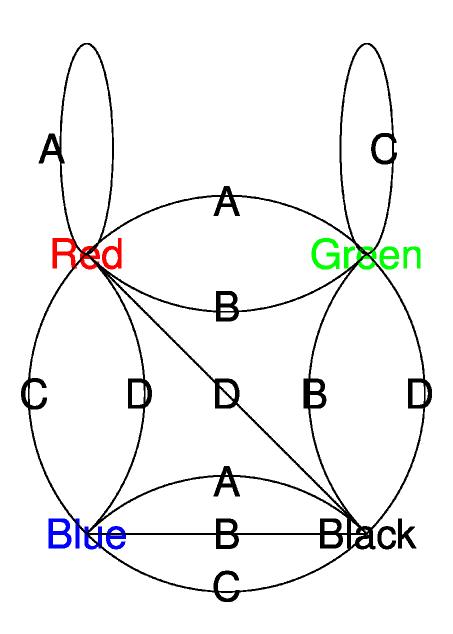
 Can you design a pair of tetrahedral dice whose distribution is uniform: 4x^1+4x^2+4x^3+4x^4 =(2+2x^2)(2x+2x^2) Are there others?


#### Instant Insanity

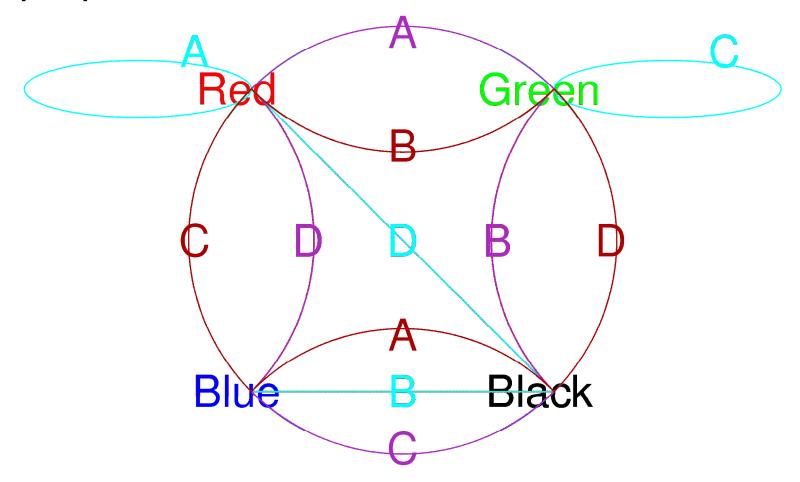

Stack the cubes up so that each of the four colours can be seen on each of the right-left and front back faces of the stack.



# Why does it drive you mad!


 24 possible ways of arranging each cube. 24<sup>4</sup> =331776 arrangements.

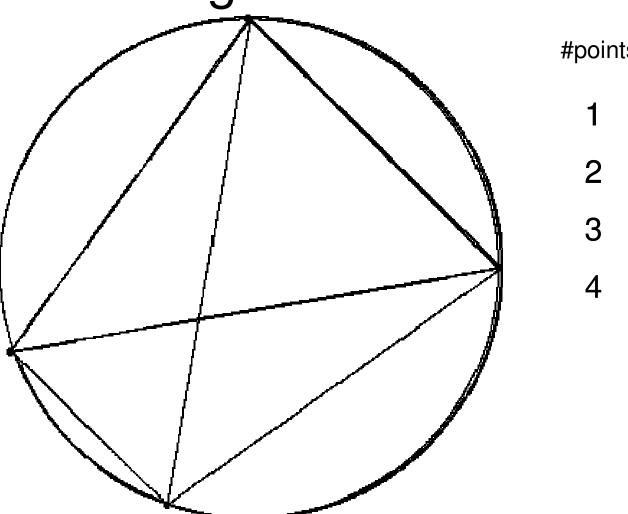





#### Katzenjammer's puzzle

- Each path visits all of the colours.
- Each letter must appear exactly once along any single path.
- The two paths cannot share an edge.




Essentially the only solution is shown below in purple and maroon.



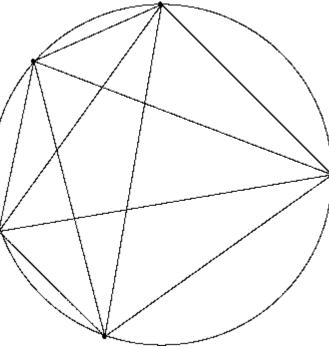
## **Steiner Networks**

• Go to external link

#### An example of why we need proof: Regions of a circle

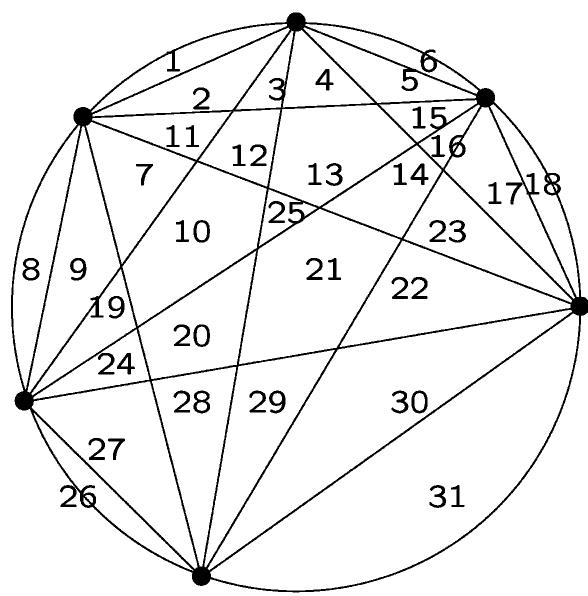


#points #regions

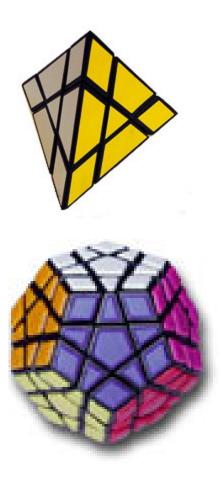

2

4

8


#### **Question 3**

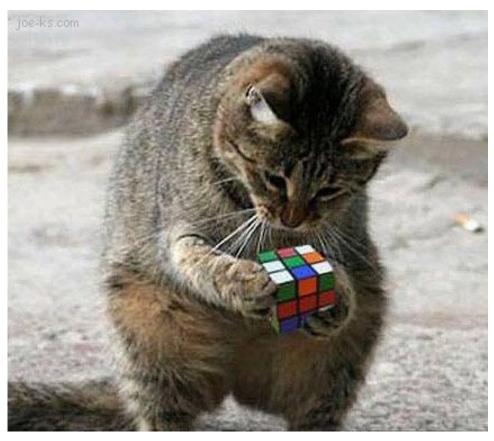
With five points on the edge of the circle how many regions do you think there will be?




Enter your answer and press Send.

#### With six points on the edge:



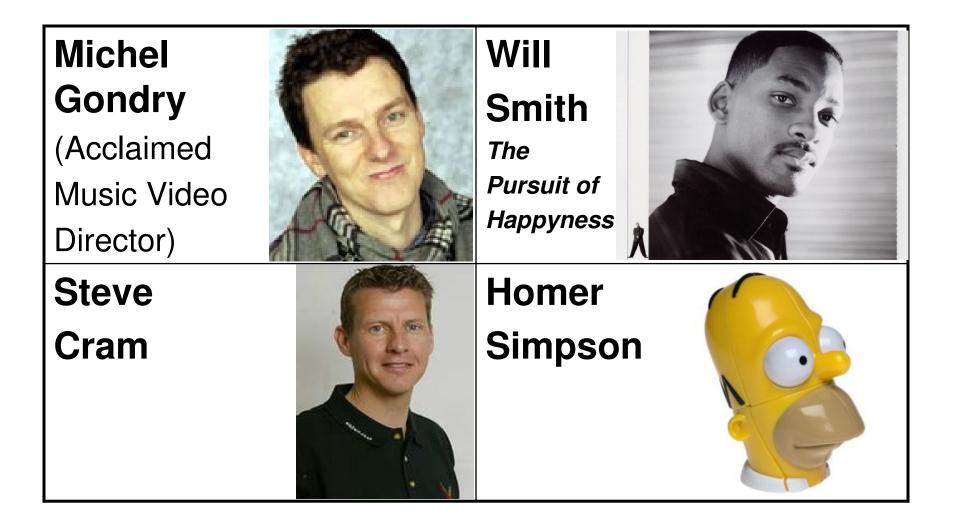

# What do the other Rubik Platonic solids look like?







#### Emmanuel College: Rubik's Puzzles!




The are 519,024,039,293,878,272,000 permutations of the cube and only "12" solutions. Lots of Maths & engineering. Is my brain big enough to memorize all possible solutions?

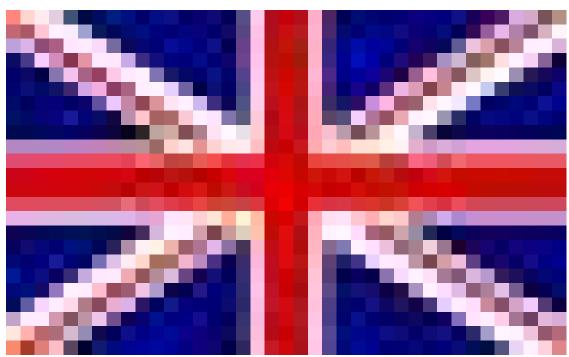
J.F.Blowey@durham.ac.uk

– who am I?

### Who is the odd one out?



# Using cubes in teaching


- Discovering "squared" and "cubed"
- $1+3+...+(2n-1)=n^2$
- 1+2+3+...+n=n(n+1)/2
- Minimum number of moves is currently 22.

#### Rubik's Cubism of the last supper – a world record using 4,050 Rubik's style cubes on a panel measuring (5 m x 2.5 m)



### The union flag

 Convert into something with fewer pixel, but approximately the same aspect ratio



- Use a computer programme which averages to a 39x24 picture.
- Not clean. How do I make my own picture?

#### Automated programme

 I wanted to write a computer programme which could automatically generate numbers and letters to create a picture. For instance a "T" could be represented in 5x3 matrix form as:

| 1 | 1 | 1 |
|---|---|---|
| 0 | 1 | 0 |
| 0 | 1 | 0 |
| 0 | 1 | 0 |
| 0 | 1 | 0 |

#### Labelling the cubes

- Three examples from the Hilbert Hotel and the Infinite Bus Company Limited.
  - One new customer.
  - One bus of load.
  - A countable number of buses

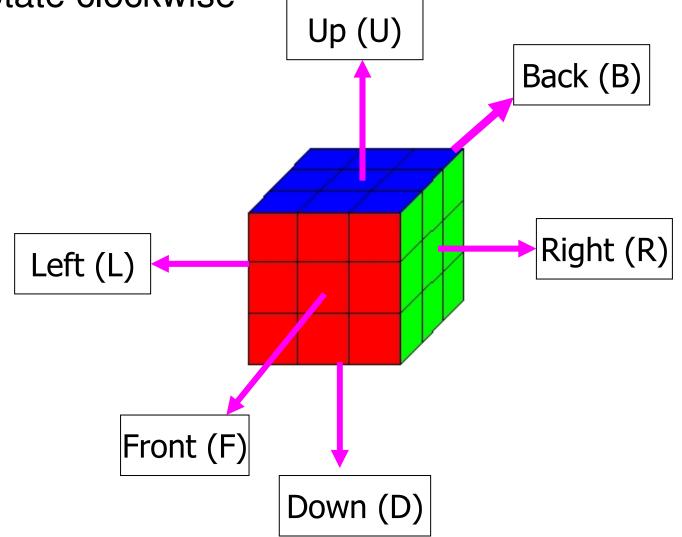
#### Mathematics of Cubism

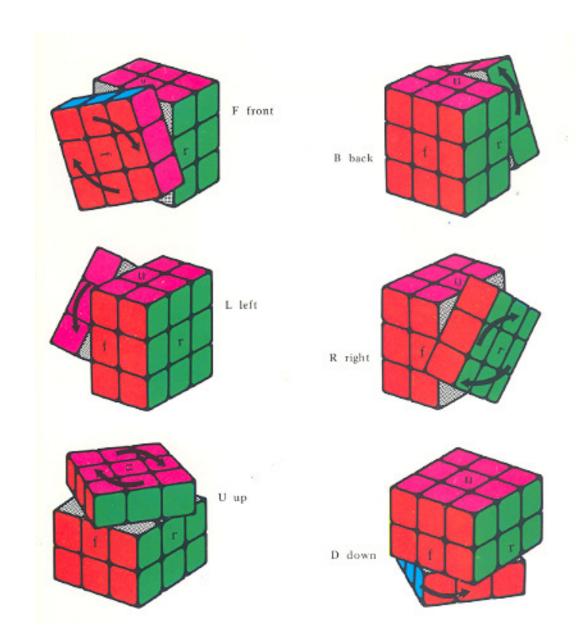
- Colours
- Programming language
- Labelling
- Transferrable
   Skills



#### **Group Properties**

There are six basic permutations of the cube which are clockwise quarter turns of the six sides.


- Closure; if we combine two sequences we get another sequence that still belongs to the cube group. For example, (FRU) and (RUL) are both in the cube group and so is (FRU)(RUL)
- **Associative**; if we combine three elements, both ways of combining the elements are the same. For example, **(FB)L** = **F(BL)**
- Identity; an element I which when combined with any other element gives that element again. For example, **RI=R** and **IR=R**
- Inverse; every sequence of moves can be done backwards and therefore undone. For example, RR<sup>-1</sup>=I and R<sup>-1</sup>R=I

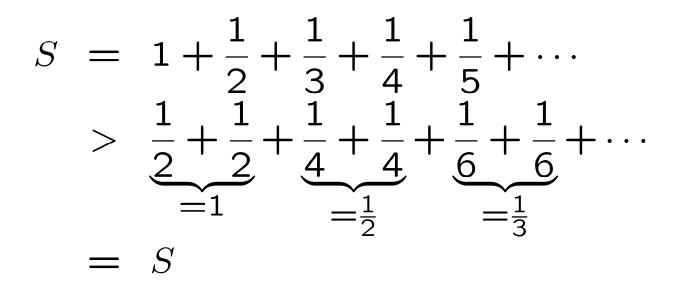

Example: two corner rotation

- Sub-group of order 3 with  $(R^{-1}D^2RDR^{-1}DR)(L^{-1}D^2LDL^{-1}DL)$ 

Aka Right-Left face corner twist

We can adapt ideas. We start by needing an orientation – thankfully centres are fixed. We always rotate clockwise






#### Infinity and Countability

Assume that

$$S = 1 + \frac{1}{2} + \frac{1}{3} + \frac{1}{4} + \frac{1}{5} + \cdots$$

is finite, then



so that S > S which is a contradiction

#### You can count the positive rationals

| 1222<br>2232<br>4252<br>: | 1323<br>3343<br>53 | 142434454     | 152153545555  | •••   |
|---------------------------|--------------------|---------------|---------------|-------|
| 2                         | 3                  | 4             | 5             |       |
| <u>3</u><br>2             | <u>3</u><br>3      | <u>3</u><br>4 | <u>3</u><br>5 | •••   |
| <u>4</u><br>2             | $\frac{4}{3}$      | $\frac{4}{4}$ | 4<br>5        | • • • |
| <u>5</u><br>2             | <u>5</u><br>3      | <u>5</u><br>4 | <u>5</u><br>5 | •••   |
| :                         | ÷                  | :             | :             | ••.   |

# Maths, the best choice for a career in Science, Engineering and beyond

www.mathscareers.org.uk/

## Who are the following & what do they have in common?



Science 'not for normal people'

Sometimes you see beautiful people with no brains. Sometimes you have ugly people who are intelligent, like scientists.

#### • UK needs lots more maths graduates

actuary | computer game designer | statistical consultant | systems administrator | avalanche researcher | medical statistician | aerodynamicist | meteorologist | audio software engineer

• Maths graduates *can* earn more

On average graduates earn 160K more than those without while Maths graduates earn 225K.

 Universities have Grant schemes to help cover fees