James Blowey < J.F.Blowey@durham.ac.uk> University of Durham United Kingdom

maths.dur.ac.uk/MiE/

How did I get to be here in Bologna talking to High School Mathematics Pupils \& Teachers?

1. Primary: Professor Manaresi's insight to precipitate EU grant;
2. Secondary: Passion for Mathematics, Teaching and the improvement of Matematics in the UK;
3. Coincidence of teaching of module "Mathematics Teaching" to final year Mathematicians.

Talk Overview: What make MT worthwhile for student \& employers; Interesting bites; proof.

Maths and Science in the UK are fighting a battle against society \& the media - Physics' problem; recollection from a retired student who was a high school inspector.

Mathematics Teaching's aims are unique at Durham.

- To focus on school mathematics from an advanced standpoint
- Reflect on current issues
- Reflect on pupils' learning in secondary schools
- Reflect on students' own mathematical experience
- To develop a fascination for Mathematics

What are the key skills — valued by UK employers:

- Academic -- Library research; Synthesis of data; Critical and analytical thinking; Active learning; Problem solving; Project management; Creativity.
- Self-Management - Reflective learning; Action planning/Decisionmaking; Time management/Self-discipline; Independence; Initiative/Proactive approach.
- Communications - Written materials; Oral/visual presentations; Active listening; Numeracy; Information skills; Computer skills.
- Interpersonal — Group/Teamwork; Understanding/Tolerance of others; Negotiation; Peer assessment; Manage change/Adaptability.

How are they key-skills achieved?

> Assessment: 30% Essay; 5% Presentation; 15% School file work; 50% Exam.
> School file: 5 visits to secondary school over November. Observe lessons at different levels. Focus on the class learning experience not teaching style. Seminars to discuss contrasting school visits.

Interesting Investigations

Every prime number $p \geq 5$ can be expressed in the form $p=\sqrt{24 n+1}$.
At McDonalds in the UK you can get 6, 9 \& 20 nuggets** the "McNugget number" is 43 , i.e. you can order every number bigger than $43 .{ }^{\dagger}$

Fun nmemonics - e.g. geometry

Two Old Angels Sitting On High Chatting About Heaven.
Fibonacci $\left\{f_{n}\right\}_{n=1}^{\infty}=\{1,1,2,3,5,8,13, \cdots\}$ - Cones 8 \& 13

$$
\begin{align*}
& 1=1 \\
& 2=1+1 \\
& 3=1+1+1,3 \\
& 4=1+1+1+1,3+1,1+3 \\
& 5=1+1+1+1+1,3+1+1,1+3+1,1+1+3,5
\end{align*}
$$

*With Happy Meals you get 4: "Mini-McNuggett" number is 11 - Mason \& Lomas.
${ }^{\dagger}$ Contrast with book "Hitchhiker guide to the galaxy.

The number (with $n=2$)

$$
\begin{aligned}
& x=2 f_{n+1} f_{n+2}=2 \times(2 \times 3)=12 \\
& y=f_{n} f_{n+3}=1 \times 5=5 \\
& z=\left(f_{n+1}\right)^{2}+\left(f_{n+2}\right)^{2}=2^{2}+3^{2}=13
\end{aligned}
$$

satisft $x^{2}+y^{2}=z^{2}$; Lucas sequence start $\{2,1, \cdots\}$.

Non-standard method of subtraction

$$
\begin{array}{r}
437 \\
-249 \\
\hline 118
\end{array} \begin{array}{r}
437 \\
+750 \\
\hline 1187
\end{array} \rightarrow 188 \quad \begin{array}{r}
437 \\
-49 \\
\hline 388
\end{array} \begin{array}{r}
437 \\
+950 \\
\hline 1387
\end{array} \rightarrow 388
$$

Pick four different digits, then order (descending) as a single number and subtract from the reverse of the number and repeat - eventually you will end up with 6174, e.g.

9532	7731	6543	8730	8532
-2359	-1377	-3456	-0378	-2358
7173	6354	3087	8352	6174

Proof

"Most students entering higher education no longer understand that mathematics is a precise discipline in which proof plays an essential role" Tackling the Mathematics Problem (1995)

1. Some cautionary examples:

- Regions of a circle: $1,2,4,8,16, \ldots ?$
- Birthday paradox $-\geq 23$ in a class then $>50 \%$ of two being on the same day.
- Numbers of the form $\sqrt{24 n+1}-n=26$.
$-n^{2}-n+41$ is prime $-n=41$.

2. Interesting areas "ripe" for proof:

- Pythagoras Theorem
- Irrationality of $\sqrt{2}$.
- The number of primes is infinite.
- Fermat's last theorem - no non-zero integer triples solving $x^{n}+y^{n}=z^{n}$ when $n>2$.
- Twin primes conjecture: $\{(3,5),(5,7),(11,13), \cdots ? ?\}$.
- Mersenne primes (primes of the form $2^{n}-1$, e.g. $\{3,7,31,127,8191$, 131071, 524287, ..??\} - Perfect numbers (number which are the sum of its "factors" $\{6=1+2+3,28, \cdots, ? ? ?\}$.
- Strong Goldbach conjecture - all positive even integers ≥ 4 can be written as the sum of two primes.

Excellent Mathematics resource: Google - based on a sound mathematical algorithm

