James Blowey <J.F.Blowey@durham.ac.uk> University of Durham United Kingdom

maths.dur.ac.uk/MiE/

How did I get to be here in Bologna talking to High School Mathematics Pupils & Teachers?

- 1. Primary: Professor Manaresi's insight to precipitate EU grant;
- 2. Secondary: Passion for Mathematics, Teaching and the improvement of Matematics in the UK;
- 3. Coincidence of teaching of module "Mathematics Teaching" to final year Mathematicians.

Talk Overview: What make MT worthwhile for student & employers; Interesting bites; proof.

Maths and Science in the UK are fighting a battle against society & the media — Physics' problem; recollection from a retired student who was a high school inspector.

Mathematics Teaching's aims are unique at Durham.

- To focus on school mathematics from an advanced standpoint
- Reflect on current issues
- Reflect on pupils' learning in secondary schools
- Reflect on students' own mathematical experience
- To develop a fascination for Mathematics

What are the key skills — valued by UK employers:

- Academic Library research; Synthesis of data; Critical and analytical thinking; Active learning; Problem solving; Project management; Creativity.
- Self-Management Reflective learning; Action planning/Decisionmaking; Time management/Self-discipline; Independence; Initiative/Proactive approach.
- Communications Written materials; Oral/visual presentations;
 Active listening; Numeracy; Information skills; Computer skills.
- Interpersonal Group/Teamwork; Understanding/Tolerance of others; Negotiation; Peer assessment; Manage change/Adaptability.

How are they key-skills achieved?

Assessment: 30% Essay; 5% Presentation; 15% School file work; 50% Exam.

School file: 5 visits to secondary school over November. Observe lessons at different levels. Focus on the class learning experience *not* teaching style. Seminars to discuss contrasting school visits.

Interesting Investigations

Every prime number $p \ge 5$ can be expressed in the form $p = \sqrt{24n+1}$.

At McDonalds in the UK you can get 6, 9 & 20 nuggets^{*} the "McNugget number" is 43, i.e. you can order every number bigger than $43.^{\dagger}$

Fun nmemonics — e.g. geometry

Two Old Angels Sitting On High Chatting About Heaven.

Fibonacci
$$\{f_n\}_{n=1}^{\infty} = \{1, 1, 2, 3, 5, 8, 13, \dots\}$$
 — Cones 8 & 13
1 = 1 (#1)
2 = 1 + 1 (#1)
3 = 1 + 1 + 1, 3 (#2)
4 = 1 + 1 + 1 + 1, 3 + 1, 1 + 3 (#3)
5 = 1 + 1 + 1 + 1 + 1, 3 + 1 + 1, 1 + 3 + 1, 1 + 1 + 3, 5 (#3)

*With Happy Meals you get 4: "Mini-McNuggett" number is 11 — Mason & Lomas. [†]Contrast with book "Hitchhiker guide to the galaxy. The number (with n = 2)

$$x = 2f_{n+1}f_{n+2} = 2 \times (2 \times 3) = 12$$

$$y = f_n f_{n+3} = 1 \times 5 = 5$$

$$z = (f_{n+1})^2 + (f_{n+2})^2 = 2^2 + 3^2 = 13$$

satisft $x^2 + y^2 = z^2$; Lucas sequence start $\{2, 1, \dots\}$.

Non-standard method of subtraction

437		437		437		437	
-249	\leftrightarrow	+750		-49	\leftrightarrow	+950	
118		1187	\rightarrow 188	388		1387	\rightarrow 388

Pick four different digits, then order (descending) as a single number and subtract from the reverse of the number and repeat — eventually you will end up with 6174, e.g.

9532	7731	6543	8730	8532
-2359	-1377	-3456	-0378	-2358
7173	6354	3087	8352	6174

Proof

"Most students entering higher education no longer understand that mathematics is a precise discipline in which proof plays an essential role" *Tackling the Mathematics Problem* (1995)

1. Some cautionary examples:

- Regions of a circle: 1, 2, 4, 8, 16,...?
- Birthday paradox \geq 23 in a class then > 50% of two being on the same day.
- Numbers of the form $\sqrt{24n+1} n = 26$.

-
$$n^2 - n + 41$$
 is prime - $n = 41$.

- 2. Interesting areas "ripe" for proof:
 - Pythagoras Theorem
 - Irrationality of $\sqrt{2}$.
 - The number of primes is infinite.
 - Fermat's last theorem no non-zero integer triples solving $x^n + y^n = z^n$ when n > 2.
 - Twin primes conjecture: $\{(3,5), (5,7), (11,13), \dots, ??\}$.
 - Mersenne primes (primes of the form 2^n-1 , e.g. $\{3, 7, 31, 127, 8191, 131071, 524287, \dots,??\}$ Perfect numbers (number which are the sum of its "factors" $\{6 = 1 + 2 + 3, 28, \dots, ???\}$.
 - Strong Goldbach conjecture all positive even integers \geq 4 can be written as the sum of two primes.

Excellent Mathematics resource: Google — based on a sound mathematical algorithm