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1 Polynomial Interpolation

Let zo, Z1,* "+, Tn and Yo, Y1, ", Yn (n € N) be given real or complex numbers where the
z;’s, called nodes or abscissae, are distinct (no two the same). A function g interpolates
the data if it satisfies

g9(z;) = y; 1=0—mn.

Lagrange Interpolation

THEOREM. 1.1 (Ezistence and Uniqueness) Given xg,- -, %n and Yo, -+, Yn real or com-
plex numbers, where the x;’s are distinct. Then there exists a unique p, € P, :=
{polynomials of degree less than or equal to n} such that

() = y; 1=0—>n.

Uniqueness is important as there are many ways of writing the interpolating polyno-
mial, e.g. Lagrange, Newton’s divided difference and backward/forward difference formu-
lae, but all give the same polynomial.

Truncation Error of Lagrange Interpolation

Let p, € P, interpolate the function f at n + 1 distinct nodes z;, i.e.

n n

pa(z) =Y li(z)f(z;) where I(z)=T]] X%

i=0 j=o Ti — T
e

and let the truncation error be defined to be
En(z) = f(z) = pu(z).
Notice we can rewrite

li(z) = % where  wpy1(z) 1= H—c@ — ;).

ExXAMPLE. The Chebyshev polynomials
T.(z) :=cosnf  where § = cos™ 'z (1.1)
satisfies To(z) = 1, T1(z) = z and the following three term recurrence relation
T (z) = 22T, (z) — Thoa(z) n=1,2,-

from which it follows that T,,(z) =2""'z" +.--forn = 1,2, .
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THEOREM. 1.2 Let {zg,+++,T,} C [a,b] be distinct nodes, f € C"*'[a,b] and p, € P,
interpolate f at the nodes. Then for all x € [a, b]

En(e) 1= £(@) ~pa(o) = IS0 where €= @) € (@D (12

Hermite Interpolation

At distinct nodes {z;}? , fit a polynomial with heights {y;}7, and slopes {y;}

THEOREM. 1.3 The polynomial pani1(z) = MU T:A.S@_. + M%Hv,& € Pany1 where
=0

hi(z) == (2 — z)l}(z), hi(z) == [1 = 2z — z:)li(2:)] ().

has the property pani1(z:) = yi and py, 1 (x;) = y; for i =0— n, since

hi(z) = i3, Bi(w;) = 0, hi(z;) = 0 and Fi(;) = 6i;.

We call this osculatory interpolation. 1t is often referred to as Hermite interpolation
although we reserve this term for the more general case:

TueOREM. 1.4 Let {z;}, be distinct real (or complez) numbers and fU)(z;) (0<j<k:)
(0gign) be given. Then there is a unique polynomial py € Py where N = Y7 o(ki+1)—1
such that p$ (z;) = f9(z;) (0<ji<ks) (0<i<n).

THEOREM. 1.5 (Truncation Error) Let f € C*™2[a,b] and pany1 be the interpolating
osculatory polynomial at the distinct nodes z; (i = 0 — n). Then for all z € [a, b

B)i= f(0) ~ pons(e) = TR0 ey (9)

In summary, polynomials are inappropriate for general approximation of functions because
a sequence of interpolating polynomials will not always converge as n increases and even
if it does it may have to be of high degree to be accurate.

THEOREM. 1.6 Weierstrass approzimation. Given f € Cla,b] and € > 0 there ezists
n=n(e) €N and p, € P, such that

|[f(z) —pa(z)| <€ Vz€lab]
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ProOOF. It is sufficient to prove the Weierstrass theorem when [a,b] = [0, 1].

For any n € Nand £ = 0 — n define
Bni(z) = AMV aaﬁ — avzé €P, and B,(f;z) Mumi v €P,

éwmam z € [0,1]; we call B,(f;z) the Bernstein polynomial. B,(f;0) = f(0) and
B,(f;1) = f(1) but in general B,(f;£) # f(£). From the following identities

f
(z+y)" = A V , n(zty)"Tl = Mzu AMV kzF gk n(n—1)(z+y)" 2 = M:U AMV k(k—1)z

k=0 k=0

by mmzim y =1 —x we deduce the first three identities and the fourth follows from the
definition of 5, .

n

ZHMPEV, b) suwg_é, O n(n-1)a® = 3" k(h—1)fup(e), ) fus(z)>

k=0

(1.4)
We now show that |f(z) — B.(f;z)| < e. Given £ > 0 there exists § = d(¢) such that
|f(z) = f(£)] < & for all z € [0,1] where |z — £| < §. Noting (1.4a)

(@) - Ba(fi) = Ms_%via : \@v

= 2 Burl@)(f(2) = F()) + X2 Bun(e)(F(2) = £(3)) (1.5)
S1(z) S ()
where Si(z) = {k € {0,1,...,n} : |z — £| < 6} and So(z) = {k € {0,1,...,n}
|z — £[>4}. Noting (1.4a,d)
| Y- Bas(@)(F(2) = F(R))< X0 Busl(@) @) — F() < 5. (1.6)
S1(z) S1(=)

Since f is continuous |f(z)|<M for all z € [0, 1] it follows on noting (1.4a-d) and z € [0, 1]
that

1S Bup@)(f(@) — FENI2M Y Ban(@)<2M Y Coi2 8, 4()

Sa2(z) Sa(z) Sa()
< 35 MU nz — k)2Bni(z) = 2% (0’2 — 2nz(nz) + n(n — 1)z° + nz) <25 <E1.7)
k=0 =nz(l-z)

where we choose n>M/(6%¢). Hence the results follows by combining (1.5-1.7).

2 Piecewise polynomial approximation

In this chapter we consider piecewise (broken) polynomial approximations, it turns out
that they are much more satisfactory.

k-2, n-
Y
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Piecewise linear interpolation

Let # : a = ¢g < &1 < -+ < &, = b be a partition of the interval [a,b] C R upon
which we wish to approximate a continuous function f. We will call {z;}; “knots”. The
continuous, piecewise linear, function, s, interpolating f is defined by

ZTjr1 —

s(z) =~ f(z;) +

Zij+1 — Tj Zj41 — Tj

S f(@jp1) z €[z, zip] (i=0—>n—1)

We can rewrite s as

5(2) = S M@ ()

where
T—Ti—1
_ — T; 1<TLT;
2T 0 KTLT) P T 0 LT Tn_1
A =4 ni%e Ailx) = 0 Ti<w<T A =
o\ T 3 (T N - TiSTSTiq1 n\T T—Tp—1
0 1<T<Ty m_tlﬁ h ; p——— Tn_ 1STLTn.
otherwise

Notice that if f € C2[a,b], then from linear interpolation for z € [z, :;1],
(Tiy1 — ﬁ.vm
/(@) = s(@)l« 5= M1/"ll,

where || f"||cc := maxXgefo4 [f”(2)], hence for all z € [a, b]

\«m
|f(z) — mﬂazmw 'l where h = Max i1 = Ti-

Least-squares approximation by piecewise linear functions.

Let L, f be the least-squares approximation to f by a piecewise linear polynomial. That

is L1 f(z) = Y a;Mi(z), where the coefficients a; are chosen so as to minimize
iz

E= [ @) - L) .

The coeflicients «; which minimize E satisfy 0E/0a; = 0, i.e.
n b b
ME\ A(z)A(z)dz u\ M(z) f(z)dz. (2.1)
NHQ a a
b
As \. Ai{z)Aj(z)dz = 0 when |[i — j| > 1, we can easily calculate (2.1). Let h;y :=
z; Iw?r then for i =1 — n — 1 we have
hi1 + h;

\Hyw@v&s H 4@5& \ﬁ._av:.ﬁau?r;avmuu“

hi1
6 .
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So that multiplying (2.1) by 6/(h;—; + h;) yields
hi—1 h

Qi1 + 205 +

e =36 (i=l-n-1
hio1 + hs F.L._L:Qi g (@ —n-l)

2 Tit1
where f; := ‘\. Xi(z) f(z)dz.
b= | (2)f(z)
Likewise, performing a similar calculation when ¢ = 0 and n, it results from equation (2.1)

6 (= 6 [on
200 +a; = 30y = :|o,\ Ao(z) f(z)dz, n_1+2a, =383, := o ,\ Mn(z) f(z)dz.
zo n— Tn—-1

Notice that ||8:]] oo <|| ] oo-

THEOREM. 2.1 (Diagonally dominant matrices) Let A be a square matriz with elements

aij (1,7 =1 = n). If A is strictly diagonally dominant, i.e. Y |ai;| < |ai| then A is
e
non-singular.

Hence, we see that L f exists and is unique.
A bound on the error.
Let s(z) be the piecewise linear interpolant of f on 7
If =Liflle = If =5+5—Liflleos|[f = slloo + 115 = L1 flloo = If = slloo + 1 L1(5 = f)lloo-

Can we bound ||L1g||e in terms of ||g||o? Notice that ||Lig||,, = max;—o5n || = |a;]
and assuming 1<jgn — 1, from the j’th equation

aj_1hj_1 + ajih;j

2[1Laglloe = [205] = 36 — ——p=— "
7= 7

<3651 + loj[<3llgllee + 1| Lrgll,
(If = 0 or n the same inequality holds trivially). Therefore assuming that f € C?[a, b]

\Nm
1F = L1 flloo<All = slloo <51/ oo

Piecewise cubic interpolation

If f is smoother, we may be able to get a better approximation more efficiently by looking
at piecewise polynomials of higher degree.

Method 1 On [z;,%;41] (i = 1 — n — 2) use the polynomial which interpolates f at
Ti 1, Ti, Tit1, Tira. On [Zg, z1] we use the the first four nodes and on (2,1, z,| we use the
last four nodes. If s is the resulting approximation and f € C*[a,b] then for all z € [a, b]

3\»
|f(z) — m?uv_mm__\@:oo where h = maxz;y1 —z;
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which follows from the Lagrange interpolation truncation error theorem.
Method 2 On [z;, z;41] construct s so that
s(ai) = f(zi), s'(ws) =s;  (i=0—n)
and s is continuously differentiable (s} is unknown). A calculation gives
s(z) = fz:) + si(x — z5) + Xz —z)? + Sz — 1)z € 25,2041

where

2 3(f(ziy1) — flzs)) 28+ &i 3 —2(f(zig1) — f(z:)) + &i + s}
G- 12 T 0 47T A2 2

If §'(z;) = f'(z;) (¢ = 0 — n) this is piecewise cubic Osculatory interpolation on [x;, Ti11]
and if f € C%a,b] then the following error equation holds

2
R 1o

4 n _ (4)
Foe)| < () Mol = B2y oy

() — sta)| | T2 )

where h = maxz; 1 — z;.

Each of these approximations is “local” (only what happens a short distance from the
interval is important) making the solution easy to generate. A non-local C?[a, b] piecewise
cubic approximation is:

Cubic Splines

Let 7 :a =129 <z < -+ <z, = b be a given partition of the real interval [a, b]. A cubic
spline with knots zg, z1,-- -, %, is a function s which has the following properties:

1. s(z) is a cubic polynomial in each interval (z;, ;1) (i =0 — n —1).

2. s € C?a,b].

We now construct an interpolating cubic spline, s, explicitly. It is convenient to introduce

M; = §"(z;) and f; := f(z;) (i = 0 — n). As s is piecewise cubic, in the interval

(i, %ip1), 8"(z) is linear, and for i =0 - n — 1
r—x;

n
- M;
s"(z) i, 1+

Tit1 —
hi

Es.q

where h; = z;.1 — ;. Integrating twice and applying the continuity conditions s(z;) = f;
and s(z;41) = fip1, we find that that for z € Aarﬁtu (i=0—>n-1),
(z — z;)°

Tip1 — T
s(z) = 6h; .>\b.+H+A +m? vg._. fi— —=M; p|a.+ b+HI| i+l

Tiy1 — vw T — T;
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For §' to be continuous on [a,b], s’ has to be continuous at the internal knots, i.e.
lim__, .+ §'(z) = lim,_, - s'(z) (t=1—-n-1).

lim, .+ 8'(2) = —%M; — B My, + S=0 (2:2)

:Esiﬁt s'(z) = W ir1 + WE& + ‘btwb (2.3)
Hence, matching equations (2.2) and (2.3) for ¢ = 1 — n — 1 and multiplying by 73— t: -
yields

ts.gs.\u +2M; + v:.gsjﬁ =d; i=1—>n-1.
where
6 fin—fi  fi—fia
i = hi_1/(hi+h;_ Ai =1—p; = hy/(h;+h;_ dd; = -

. 1/(hithica), : / 1) an hi +hiy hi hia

Notice that with uniform knot spacing z; = a + ih where h = (b — a)/n, we have

M; 1 +4M; + ETL = |>m.\.sl Asﬁmﬂo D.\.a = .\.TL — .\.sv .
We need to assign two extra conditions. Which we will analyse.

End conditions

1. Natural cubic spline. Let §"(a) = 0 = s"(b), i.e. My =0= M,, the system we must

solve is
2 N 0 - 0 M, dy
pe 2 A2 : M, dy
Am=| o - PR 0 : =| { |=4d
O pae 2 Mg | | M2 dn—s
0 .- 0 T 9 M, 4 dn_1

where [\, |tn_1] < 1 and || + [X| =1 <2 (4 =2 — n — 2). That is the matrix is
strictly diagonally dominant, and hence non-singular. So for given values {f;} there

exists a unique natural cubic spline interpolating the data at the knots.
2. Complete cubic spline (clamped or displine)
If we know f'(zo) and f'(z,) we could take

lim s'(z) = f'(z0) and lim s'(z) = f'(zn).

alvso T,

From (2.2) with ¢ =0 and (2.3) withi=n—1

—~ho ho fi—fo 6 [fi—fo
(20) = —0 0y — 20 p1 = 2Mo+ My = — | == — f
.\. A&av 3 0 6 1+ — ho o+ M; ho ho .\ Aaav
F:IH \NSIH .\.: - \.:IH .\.3 - .\.:IH
! _ — ! _Jn_ Jn-1
f(z,) = 3 M,+ 6 M, 1+ o <= 2M,+M,_, . ' (zn) e

From strict diagonal dominance there is a unique solution in this case too.

Alternatively, we could specify s'(zo) and s'(z,) to be arbitrary numbers.
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3. Generalize 1. and 2. to B-splines

2My + MM, =dy and  p,M,_1+ 2M, =d, where dy,d, are arbitrary.
. o ) . . A spline of degree 0 with support (z;, ;1] is
If |Aol, |#n| < 2 then again from strict diagonal dominance of the matrix there exists
a unique solution. BY(z) = ﬁ 1, if z; < x4
0  otherwise

4. Not-a-knot
. . . define
We could specify that s is continuous at z; and z, ; so
M, — M, My — M- M, — M, M, M, T—z Tiya— T ot if 2 < 2<Tin
L0 fim §(z) = lim ¢"(z) = >~ and . ol Sonol T s Bl(z) := L BY(z)+—+2 Bl (2) = Bla)={ =iz o <oaca
ho zay z—z) hi Rn_1 hn—2 Ziy1 — T4 Tit2 — Tipl Tit+2~Tit1 w+ LT o2
or 0 otherwise.

In fact B} (z) = Aiy1(z), in old hat function notation, is a mn:um function of degree 1 with
support [z;,Tiys]. Now defining the B-spline of degree k, B, recursively for each i and
Using the existing equations for My, M; and M, to eliminate M, and similarly k=1,--

- ; N . . . -z ~ Tirgp1 —
eliminate M, to obtain a system which is strictly diagonally dominant. BXz) = B¥(z) + +h+1 mst (z)

i

Titk — Ti Titk+1 — Tigl

—pmMy+ My — MMy =0 and  — pn_ 1 Mpu_o+ My_1 — MM, =

5. Parabolic Tunout We set the end conditions to be My = M; and M,,_; = M,,. o . . L . .
it is clearly a piecewise positive, polynomial of degree k with support [z;, Z;1k41]-
Of the end-conditions mentioned above, only the complete cubic spline guarantees that . ] ] . )

the piecewise cubic spline of itself is itself. THEOREM. 2.2 Bf(z) is a spline function of degree k with support [z;, Tiyri1]-

. . PrOOF. Embed g, - -, z, in infinite knot sequence
Spline functions of degree k
KT 9< T << <K Ty < Ty < cvv

A spline function of degree k on the partition 7 : a = 29 < 1 < -+ < z, = b is a function

. . ; For equally spaced knots the recurrence relation becomes
sk which has the following properties

- - 1
B(z):= z asm»_ Ems z — ;) B¥ () + (zipry1 — ) BX
(i) sk() is a polynomial of degree k on each interval [z;, 7;41] (1 =0 — n —1). (=) kh @)+ kh (@) = kh T 0 (2) + (@ihss = ) Bl (2 L
(ii) sp(z) € C*[a, ] Next we show that for £ > 1 and for all =
d ok Lipea
Any spline function of degree k, with knots g, - - -, 7, may be expressed as ﬂm (z) = h Fs, () - Bii(z L
1t For k = 1 the above equation is true except at the knots. Assume the statement to be true
MS& T k! M 9i(@ — v asz<h for all 7. Differentiating the B-splines recurrence relation, substituting in the hypothesis

and rearranging

L BXz) = & [BF'(2) - B (@) + (= — 2) £ BF(2) + (ziri1 — 7) £ Bl (2)]

where the truncated power functions are

(z —z;)k = (2 —2p)* if o> a; k>0
770 if 2<a; ’ = & Eré B (2) + 555 [BI (@) — Bi2 ()] + 225222 Bl (2) — BiZ(2)]]
g; is the jump discontinuity in the k’th derivative at z;, ie. g; = lim__, o mmaﬁ ) — = m FMT;S - B (2) + (k= 1)Bf '(2) + B (z) — (k — 1)BES () — Bz ;

lim, . mma (z) and Yk, ciat is the spline defined on [29,z;]. Notice the mco<o function

is k — 1 times continuously differentiable and the number of unknowns is & +1 +n — 1.

w ﬁmeAau - 1; A L

This formula holds everywhere except possibly at the knots. However noting that B} is
This formulation may be unsatisfactory since there might be a huge loss of accuracy continuous for all 7 it follows by induction that Bf € C*~!(—o0,00) i.e. BY is a spline
through cancellation. function of degree k.



10 J.F'. Blowey

One can use the B-splines as a basis for the spline function space. The advantages
of expressing the spline in terms of B-splines are: only a few multiplications are required
to calculate the value of the splines; one does not suffer from severe cancellation; the
splines have small support; calculating the B-spline from the recurrence relation is a
computationally stable process.

n—1
For example instance let s(z) = Y a;B¥(z) be the natural interpolating cubic splines.
i=—3
Noting that
(z — ;) Ti<T<Tis

, 1 :M + vaAa — Zip1) + 3h(z — Htlv“ - 3(z — aiLM Tip1<TLTip2
Bj(z) = 75l h? +3h*(zips — x) + 3h(Tips — )% — 3(Tiys — ©)°  Tipa<T<Tiys

AHa#» - Hum Ti13<TLTi44
0 otherwise
and
6(z — z:) Ti<T<Tip
1 [ 6h—18(z = mip1) Tip1<TLTie
(Bi(x))" = 58 | 60— 18(zirs — @) Tita<a<Tigs
6(zira — ) Ti13<TLTita
0 otherwise
noting that
z Ti Titl Tiy2 Tiy3 Tipa

6B¥z) 0 1 4 1 0
RA(B}z)" 0 1 -2 1 0

we find that interpolating and natural boundary conitions correspond to:

n—1 1
.\AHNL = M QTWWAHNL = WAQ»Iw + dag_o + Q»IHV Qa =0—- ﬁv
i=—3
n—1
0=h>Y a(B¥z0))" =a_3—2a_s+a; and au_3— 20,2+ a1 =0
i=—3

thus eliminating a_3 and a,_; we get the following strictly diagonally dominant system
of linear equations to solve

6 0 0 - 0\ /a F(zo)
1 4 1 - ay f(z1)
0 . .. .0 a0 | =6 flz2)
: o1 4 1 : :

0 -~ 0 0 6/ \ans fza)

That is the cubic B-splines form a basis for the natural cubic splines.

It is possible to prove a similar result to the Weierstrass theorem, see Powell’s book
on Approximation theory and methods.
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THEOREM. 2.3 (Holladay’s Theorem.) Letw :a =1zo < 1 < -+ < T, = b be a partition
and y € C%a,b] be arbitrary such that y interpolates a function f at the knots. The
natural cubic spline, s, with those knots uniquely minimizes

b 2
\ y' (z)" dz.

In other words, the natural cubic spline gives the smallest value for the integral over the
admissible class of functions.

PROOF. Let y € C2%[a,b] and y(z;) = f(z;) (j = 0 = n). Let s be the interpolating
natural cubic spline with knots zg, -+ -, Zn, i.e. s(z;) = f(z;) (j = 0 = n) and s"(a) =
s"(b) = 0. From the identity a® — 82 = (a — 8)® + 28(a — B), we get
b b b b
.\ Y (z)%dz I\ s"(z)%dz = \ (y"(z) — §"(z))* dz + m,\ s"(z) (¥"(z) — §"(z)) dz.
The last integral is zero; this is called the first integral relation. Now it is clear that
b b
\. @\Aaumaaw\ §"(z)%dx

with equality if and only if

b
[ '@ - s"@)tdr =0

That is y"(z) = s"(z) hence y(z) = s(z)+cz+d and applying s(a) = y(a) and s(b) = y(b)

we find that [°y”(z)?dz is minimized if and only if y(z) = s(z). o

COROLLARY 2.4 Let y € C%a,b] be arbitrary, such that y interpolates the function f at
the knots z; (j = 0 — n) and satisfies the additional conditions y'(a) = f'(a) and y'(b) =
f'(b). The complete cubic spline, s, with those knots uniquely minimizes [°y"(z)*dz.

THEOREM. 2.5 (Error) Let f € C?[a,b], then the second derivative s" of the complete
cubic spline S is the least-squares approrimation to f" by piecewise linear functions on
the partition n. Furthermore, if f € C*[a,b], then for all x € [a,b],

119(2) = s(@) o< Cib" (| f Do, (6=10,1,2)
where h = maxzjy; — z; and f = d@f/dz®,

3 Minimax and near-minimax approximation

Introduction

Any “measure of distance” of an approximating function to a given function will suffice to
give us an error. The natural setting for approzimation theory is a metric space, however
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normed linear spaces have nicer properties. A normed linear space is a metric space,
where d(z,y) = ||z - y.

Let X be a vector space over a field F and € X. The norm of z is a non-negative
number, ||z||, with the properties

1. [|lz]|>0 V2 € X and [jz|| =0 iff z = 0.

2. |lez|| = le|||z|| Yz € X and V ¢ € F.

3. lz+gli<llel + [yl V =,y € X.

Let Cla,b], as usual be all those continuous, real-valued functions on the interval [a, b].
For 1<p < 0o and f € Cla,b] = X we define the LP-norm to have the value

1/p

b
£l = | [ 1f(2)Pda

The L*°-norm (also called uniform norm) has the value

[flleo = max |f(z)].

agzgb

—~

Only (X,

«) gives us a complete metric space.

For discrete problems, when X =R™, we can define analogous norms, i.e. for g € R™
P

lglleo = max |gi}  and lgll, = |D[g:"|  1<p < oo
i=1

1<igm

Best Approximation

Given {¢;}7, an appropriate basis, and the function f(z) on the interval [a, b] we consider
the approximations of the form

Fo() = M&:

A best approzimation is one which minimizes the distance. In general, different norms
yield different best approximations.

A minimaz approzimation minimizes

If = Fulloo := max |f(z) = Fu(z)|-

z€[a,b]

A least-squares approrimation minimizes

" 1/2

If = Falla = | [ 1£(@) = Fa(a)dz

a
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One can also consider approximations using discrete norms.

EXAMPLE. On [0, 1] find some best constant approximations to e®.

Given f and || - || we can ask:
Is there a best approximation? 3 How can it be found? Algorithm.
Is it unique? ! What is the error like? Accuracy

Can it be describe? Characterization How does the accuracy change with n? Convergence.

THEOREM. 3.1 Let E,(f) := ming, ||f(z) — X7 aip(z)|| for the given function and cho-
sen norm. If F, and G, are two best approzimations, then for a € (0,1), aF, +(1—a)G,
is also a best approzimation. Furthermore E,(f) does not increase with n.

THEOREM. 3.2 (De la Vallée Poussins) Given f € Cla,b] and n>0. Suppose ¢.(z) € P,
such that )
f(z) = an(zj) = (=1)e;  (j=0—-n+1)

where e; # 0 and all of the same sign, a<zo < -+ < Tpy1<b. Then

min 1<l = B losllf = dnlls

where pZ is the the minimaz polynomial of degree n for f on [a,b].

THEOREM. 3.3 (Equioscillation) For a giwen function f € Cla,b], a polynomial p, is a
minimaz polynomial of degree n if and only if there is a sequence of n + 2 points {z;},
with agzg < 1 < +++ < Tpy1<b, at which E.(z) = f(z) — pn(x) takes alternately the
values +E, where E, .= || f — pnl|co-

ProoF. (a) sufficiency This follows de la Vallée Poussins theorem.

(b) necessity. Suppose that p, is a minimax approximation of degree n for f on the
interval I = [a,b]. Let E,(z) := f(z) — pn(z). If E,(z) = 0 on I there is nothing to

prove. Otherwise, suppose that E, := max |E.(z)| is attained at 7o, -, 7, (r>1), where

the 7; are well ordered, i.e. agmp < m < -+ < 7,<b. Then E,(n;) = +E,. Consider the
sign changes of E,(n;) as j increases from 0 to r. If the k’th change occurs between 7);
and 741, let ax = $(m + niy1). Assume there are s such that points a (k = 1 — s).
There exists a unique polynomial g, of degree s such that g¢,(ax) = 0 (k =1 — s) and
¢s(10) = En(no). Since g,(n;) has the same sign as E,(n;) for j = 0 — r, it follows that for
some 3 sufficiently small, for all z € [a,b], |E.(z) — B¢s(z)| is smaller than E,. This means
that meTA&v — [pa(z) + ueh@v:m@: i.e. p, + B¢, has a smaller maximum value error

zel
than p,. But p, is a minimax polynomial of degree n, so s>n+1 (otherwise we contradict
the minimax property). From the set {7, m, -, 7, } choose a subset {z¢, z1,- -, z,} with

ag®o < 1 < +++ < z,<b, such that E,(z11) = —En(z;) (j=0— s—1). Since spn +1
there are at least n + 2 points zg, 1, -+, Tni1- O
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ExAMPLES. The minimax polynomial of degree n for z"*! on [—1,1] is p, where p,(z) =
a™*tt — LT,,1(z) which follows from the equioscillation property of T41(z).

See a previous example for the constant minimax polynomial of ¢* on [0,1].
COROLLARY 3.4 Let p¥ be a minimaz polynomial of degree n on [a, b] for a given function
f € C"*'[a,b]. Then there are n+ 1 distinct points tg,t1, -+ ,t, in [a,b] such that

f(z) —pi(z) = (- ﬂoXaQMH.LC_ G ﬁ:v\?tvﬁv for some ¢ € (a,b).

THEOREM. 3.5 (Uniqueness) Let f € Cla,b] be given, then there exists at most one
minimaz polynomial

THEOREM. 3.6 (Convergence) Let pl, be the minimaz polynomial approzimation to f €
Cla,b]. Then E, :=||f — pillc = 0 as n — oo.

Computing the minimax approximation
We call a set of n + 2 points such that agép < & < -+ < &,41<b a reference.

THEOREM. 3.7 (Discrete De la Vallée Poussins) Given a reference {&}2 C {z:}™,

(m > nx0) and {f(2:)}™0, suppose ¢.(z) € P, such that
f(&) — (&) = (-1)'e;  (i=0-n+1)
where e; # 0 are all of the same sign. Then

min_e;|<[|f — pyllo = max [f(z:) = p,(z:) </ = gallo

i=0—-n+1 i=0—3m

where p, is the the minimaz polynomial of degree n for f on the discrete point set {x;}1* .

THEOREM. 3.8 p; is the polynomial of degree n which minimizes the expression

max |f(z:) = p(2i)l,

over the polynomials of degree n, if and only if there is a reference {&}24 such that

f&iv1) = ph(&inr) = —(f(&) —pn(&))  (1=10,1-n).

Proor. This is the same as the equioscillation theorem except we replace [a, b] by the z
and [|f — plleo by max |f(z;) — pn(z:)|. o

i=0—-m
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In principle, calculating the minimax polynomial on a discrete set is easy! Let pi(z) =
7o a;z?, then we have to find h, @ such that

f&) =Y ael =(=1)'h  i=0-n+1;
7=0
n + 2 equations for the n 4+ 2 unknowns.

EXAMPLE. Find the minimax straight line for e¢® on the reference {0,0.5,1}, i.e. find
ag,a; € R such that

z —
fnax | le® — (ao + a1z)|

is minimized.

How do we go about calculating the discrete minimax polynomial of degree n where
we have m + 1 points to choose from where m + 1>n + 27

The Discrete Exchange Algorithm

1. The values of a function f are known on a set of point Z := {z; : i = 0 — m} such
that agzo < 1 < --- < Z,,<b. We want to find the polynomial p,(z) of degree

n < m which minimizes max |f(z;) — pn(2;)|
i=0—=m

step 1. Choose a reference {¢; :1=0,1 > n+1} C Z.
step 2. Solve the equation

f&) =Y al = (=1'h,  i=01-n+1
=0
to find ag, a1, "+, a, and h. This gives the polynomial
) = a0
=0

i=
step 3. Calculate |f(z;) — p{V)(z;)| for the points z; € Z which are not
in the reference. If none of these exceed |h| then STOP.
step 4. Choose a new reference set {£;"} such that
IF(&) — PV (&")|>|R| with strict inequality for at least one
value of 4, and with
sign[£(&81) — pD(&41)] = —sign[ (&) — (&)
step 5. Return to step 2.

Hroammﬂm Aﬂ_ﬁv %mmaa:ﬂnromammmo:rmaomma:oﬁmzamonmnermmSuoomciaco
polynomial exists which minimizes max |f(&x) — pn(&x)|. From the discrete version
of the de la Vallée Poussin theorem, the algorithm must strictly increase h at each

step, so we must stop in a finite number of steps.
ExaMpPLE. What is the quadratic discrete minimax polynomial of e® on the set
{0,0.2,0.4,0.6,0.8,1}?

2. CoNTINUOUS VERSION. To find the minimax polynomial p}(z) of degree n for a
function f € Cla, b].
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steps 1. & 2. As for the discrete case.

step 3. Find the extrema of f(z) — p{!)(z) on [a,b]. By the
de la Vallée Poussin’s theorem |h|<||f — pXlloo<||f — PP |lco
where p? is the minimax polynomial. If ||f — p ||, — |A]
is sufficiently small STOP.

steps 4. & 5. This is the same as the discrete case except the points
added to the reference set are extrema of f(z) — p{)(z).

EXAMPLE. Previous example revisited.

One way to choose your initial reference is via the method of forced oscillation that

is take your reference &, = cos % For the intervals [a, b] we take the shifted nodes

& = La+b)+ L(b—a)cos AT,
EXAMPLE. A cubic approximation for sin Amluv on [0,1].

The first reference consists of the extrema of the Chebyshev polynomial 7,(z) mapped
onto [0,1], i.e. the points & = WE + cos QTSJ. (6 = 0,6 = (1 - Pv & = W:Mw =

3(1+ J5),& = 1). We now seek ) MEHN and h so that f(& Mfm» = (=1*n
7=0

(k=0 4) with f(z) = sin(%)

MON —Qag = h
Go osin("F) —a0 —mb -8 —asf = —h
&: sin(Z)  —ag wa Iwgw Iwaw = h
Mwn MHEA%V —aq \QHMw \Qmmum \mew = —h
&a: mwuﬂwv —ag —a —as —az3 = h

Eliminate h by adding or subtracting the first equation appropriately

2a9p + 0-14645a; + 0-02145a; + 0-00314a3 = 0-22801
0-5a, + 0-25a4 +  0-125a3 = 0125

2a90 + 0-85355a; + 0-72855a; + 0-62186a3 = 0-97366
ap + as + as = 1

This gives p{"(z) = —0-0014+1-6103z — 0-174122 — 0-43622% and h = —ag = 1-4x1073,
&)
Let E(z) = sin 5 — ps(z). Then E'(z) = Zcos 5t — ﬁ_ﬂ_a which has zeros (found by for
example Newton-Raphson) at 0-1559, 0-522 and 0-8596, the turning points of E(z). We
find that @Ao.ﬂmmwvﬂu.wﬂﬁvﬁo&u E(0-522)= 1-422%1073 and E(0-8596)= —1-329x1073.
If p}(z) is the minimax polynomial of degree 3, then by de la Vallée Poussin’s theorem,

1-4 % 107°<) f = pilloosc1 - 422 x 107 = || f = p{ o,

(1

S0 to 2 significant figures p ) and p; have the same maximum error.
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Chebyshev Economization of power series

Chebyshev economization is simple. You are given an interval [a,b] and a function f(z).
Compute the Maclaurin polynomial of degree n, p,, and bound the remainder term. Now
compute g;_1(z) = ¢j(z) — a;T;(z) where ¢,(z) = p,(z), Tj is the appropriate Chebyshev
polynomial for the interval [a, ] and «; is chosen so that g;_; € P;_;.

ExAMPLE. Find some near minimax approximations to e* on [—1,1].

To apply the minimax idea on an interval [a, b] the appropriate Chebyshev polynomial

of degree n is T,,(2312H)),

EXAMPLE. Find some near minimax approximations e* but on [0, 1].

EXAMPLE. Using Chebyshev economisation find a degree 5 near minimax approximation
of sin(nz/2) [—1,1].

Conclusions

1. Minimax polynomial approximation is relevant in achieving the maximum accuracy
over all polynomial approximations of a given degree or smallest degree for a given
accuracy

2. The minimax puts a bound on the achievable accuracy

3. Near minimax approximations (forced oscillation or Chebyshev economization) are
easier to compute and frequently adequate.

4 Padé approximations

We now consider rational approximations. Let f have a convergent Maclaurin series
expansion, i.e.

f@) =co+az+cr®+ .
The [m/k] Padé approzimant is a rational function

Rol() = DPm(T) _Gtmzrt---+ giasu
Q»Aav by + b1z + - - - + bk
such that f(z)—Rmi(z) = O(z7) (r as large as possible). R,,i(z) has m+k+1 independent
variables (we can multiply the numerator and denominator by an arbitrary constant), wi
hope to make r = m + k + 1. We assume that by # 0 (otherwise R,,x is not analytic at
0!) and set by = 1. As f is analytic,

Sert| (1 +biz+ -+ bez®) — (ag + @z + -+ - + amz™)

f(@) = R (z) = (1+bz+ -+ brat)
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Now choose a; (j =0 — m) and b; (j =1 — k) so that

d,z" + O(z™) d.x"
. N h
(bt tbat) O b+t b

f() = Roi(2) =

is an estimate of the truncation error.

EXAMPLE. fl@)=Vi+2r =14z — 22+ 3° - 3o+ o] < L.
Roo(z) =1, Rio(z) =1+ @, Roo(z) = 1 + 7 — 327 (go(x) = 1) these are just the Taylor
polynomials. Let Roi(z) = (ag + a1z + as2?)/(1 + b1z)

1 1 5
01(2)(f(2) = Bn(2)) = (1+z—52"+ 52" —2a’ 4+ )(1 +biz)
—(ap + a1z + as7?) = dyz* + O(zP).
70 l—a = 0 < a=1
SH” H+@H\Q‘H = 0 << QH”H+@~ 1
?: —i+4bi—a = 0 <= a=b—1 va_lmvamlmu
z3 WlW? =0 <= bh=1

ie. Ry(z) = AH + 2z + wamv;_ + av This has a singularity at = —1 whereas f has
an essential singularity at z = —1/2. ds = —5/8 + b;/2 = —1/8, so an estimate of the
truncation error is —z1/(8 + 8z). Now to 3 d.p. f(0.5) = 1.414, R (0.5) = 1.417 and
p3(0.5) = 1.438 (the Taylor cubic). The estimate of the error for Ro;(0.5) is 5.2 x 1073,
whereas the actual error is 3 x 1073, Let us briefly analyse and compare the number of
operations required using alternative formulations:

142240522 1+ (2+0.5z)z

Fn(z) = 1+z = 1+zx

which requires 2 multiplications, 3 additions and 1 division. If we use continued fractions

1+ 2z + 0.522 1242 +1) 1 1
Ror(z) = LF22 40527 (@ P2 ) 2L T gy
1+z 1+z z+1

which requires 1 multiplication, 1 division and 3 additions (a subtraction counting as an
addition). Note that when using a finite arithmetic, it may be advantageous to use as few
arithmetic operations as possible. O

REMARK. We have just considered a “Taylor like” expansion of Padé approximations,
one could equally consider Minimax & Interpolating Padé approximations (see Powell —
Approximation theory & methods).
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