4 Padé approximations	3 Minimax and near-minimax approximation	2 Piecewise polynomial approximation	1 Polynomial Interpolation	Contents	0 $J.F$
17	11	ယ	L		J.F. Blowey

3H Numerical Analysis — lecture summaries 1997/8

Polynomial Interpolation

Let x_0, x_1, \dots, x_n and y_0, y_1, \dots, y_n $(n \in \mathbb{N})$ be given real or complex numbers where the x_i 's, called *nodes* or abscissae, are *distinct* (no two the same). A function g interpolates the data if it satisfies

$$g(x_i) = y_i \qquad i = 0 \to n.$$

Lagrange Interpolation

THEOREM. 1.1 (Existence and Uniqueness) Given x_0, \dots, x_n and y_0, \dots, y_n real or complex numbers, where the x_i 's are distinct. Then there exists a unique $p_n \in \mathcal{P}_n := \{\text{polynomials of degree less than or equal to } n\}$ such that

$$p_n(x_i) = y_i \qquad i = 0 \to n.$$

Uniqueness is important as there are many ways of writing the interpolating polynomial, e.g. Lagrange, Newton's divided difference and backward/forward difference formulae, but all give the same polynomial.

Truncation Error of Lagrange Interpolation

Let $p_n \in \mathcal{P}_n$ interpolate the function f at n+1 distinct nodes x_i , i.e.

$$p_n(x) = \sum_{i=0}^n l_i(x) f(x_i)$$
 where $l_i(x) = \prod_{\substack{j=0 \ j \neq i}}^n \frac{x - x_j}{x_i - x_j}$

and let the truncation error be defined to be

$$E_n(x) = f(x) - p_n(x).$$

Notice we can rewrite

$$l_i(x) = \frac{w_{n+1}(x)}{(x-x_i)w_{n+1}'(x_i)} \quad \text{where} \quad w_{n+1}(x) := \prod_{j=0}^n (x-x_j).$$

Example. The Chebyshev polynomials

$$T_n(x) := \cos n\theta$$
 where $\theta = \cos^{-1} x$ (1.1)

satisfies $T_0(x) = 1$, $T_1(x) = x$ and the following three term recurrence relation

$$T_{n+1}(x) = 2xT_n(x) - T_{n-1}(x)$$
 $n = 1, 2, \cdots$

from which it follows that $T_n(x) = 2^{n-1}x^n + \cdots$ for $n = 1, 2, \cdots$

2

Theorem. 1.2 Let $\{x_0, \dots, x_n\} \subset [a, b]$ be distinct nodes, $f \in C^{n+1}[a, b]$ and $p_n \in \mathcal{P}_n$ interpolate f at the nodes. Then for all $x \in [a, b]$

$$E_n(x) := f(x) - p_n(x) = \frac{w_{n+1}(x)}{(n+1)!} f^{(n+1)}(\xi) \qquad \text{where } \xi = \xi(x) \in (a,b).$$
 (1.2)

Hermite Interpolation

At distinct nodes $\{x_i\}_{i=0}^n$ fit a polynomial with heights $\{y_i\}_{i=0}^n$ and slopes $\{y_i'\}_{i=0}^n$

THEOREM. 1.3 The polynomial $p_{2n+1}(x) = \sum_{i=0}^{n} \left[h_i(x)y_i + \overline{h}_i(x)y_i' \right] \in \mathcal{P}_{2n+1}$ where

$$\overline{h}_i(x) := (x - x_i)l_i^2(x), \quad h_i(x) := [1 - 2(x - x_i)l_i^2(x_i)]l_i^2(x)$$

has the property $p_{2n+1}(x_i) = y_i$ and $p'_{2n+1}(x_i) = y'_i$ for $i = 0 \rightarrow n$, since

$$h_i(x_j) = \delta_{ij}, \ h_i'(x_j) = 0, \ \overline{h}_i(x_j) = 0 \text{ and } \overline{h}_i'(x_j) = \delta_{ij}$$

We call this osculatory interpolation. It is often referred to as Hermite interpolation although we reserve this term for the more general case:

THEOREM. 1.4 Let $\{x_i\}_{i=0}^n$ be distinct real (or complex) numbers and $f^{(j)}(x_i)$ $(0\leqslant j\leqslant k_i)$ $(0\leqslant i\leqslant n)$ be given. Then there is a unique polynomial $p_N\in\mathcal{P}_N$ where $N=\sum_{i=0}^n(k_i+1)-1$ such that $p_N^{(j)}(x_i)=f^{(j)}(x_i)$ $(0\leqslant j\leqslant k_i)$ $(0\leqslant i\leqslant n)$.

Theorem. 1.5 (Truncation Error) Let $f \in C^{2n+2}[a,b]$ and p_{2n+1} be the interpolating osculatory polynomial at the distinct nodes x_i $(i=0 \to n)$. Then for all $x \in [a,b]$

$$E(x) := f(x) - p_{2n+1}(x) = \frac{[w_{n+1}(x)]^2}{(2n+2)!} f^{(2n+2)}(\xi) \qquad \xi \in (a,b)$$
 (1.3)

In summary, polynomials are inappropriate for general approximation of functions because a sequence of interpolating polynomials will not always converge as n increases and even if it does it may have to be of high degree to be accurate.

THEOREM. 1.6 Weierstrass approximation. Given $f \in C[a,b]$ and $\varepsilon > 0$ there exists $n = n(\varepsilon) \in \mathbb{N}$ and $p_n \in \mathcal{P}_n$ such that

$$|f(x) - p_n(x)| < \varepsilon \quad \forall \ x \in [a, b].$$

3H Numerical Analysis — lecture summaries 1997/8

ن

PROOF. It is sufficient to prove the Weierstrass theorem when [a,b]=[0,1]

For any $n \in \mathbb{N}$ and $k = 0 \rightarrow n$ define

$$\beta_{n,k}(x) := \binom{n}{k} \, x^k (1-x)^{n-k} \in \mathcal{P}_n \quad \text{and} \quad B_n(f;x) := \sum_{k=0}^n \beta_{n,k}(x) f(\tfrac{k}{n}) \in \mathcal{P}_n$$

where $x \in [0,1]$; we call $B_n(f;x)$ the Bernstein polynomial. $B_n(f;0) = f(0)$ and $B_n(f;1) = f(1)$ but in general $B_n(f;\frac{k}{n}) \neq f(\frac{k}{n})$. From the following identities

$$(x+y)^n = \sum_{k=0}^n \binom{n}{k} \, x^k y^{n-k}, \quad n(x+y)^{n-1} = \sum_{k=0}^n \binom{n}{k} \, k x^{k-1} y^{n-k}, \quad n(n-1)(x+y)^{n-2} = \sum_{k=0}^n \binom{n}{k} \, k (k-1) x^{k-2} y^{n-k}$$

by setting y=1-x we deduce the first three identities and the fourth follows from the definition of $\beta_{n,k}$.

a)
$$1 = \sum_{k=0}^n \beta_{n,k}(x), \quad \text{b) } nx = \sum_{k=0}^n k \beta_{n,k}(x), \quad \text{c) } n(n-1)x^2 = \sum_{k=0}^n k(k-1)\beta_{n,k}(x), \quad \text{d) } \beta_{n,k}(x) \geqslant 0.$$

We now show that $|f(x) - B_n(f;x)| < \varepsilon$. Given $\varepsilon > 0$ there exists $\delta = \delta(\varepsilon)$ such that $|f(x) - f(\frac{k}{n})| < \frac{\varepsilon}{2}$ for all $x \in [0,1]$ where $|x - \frac{k}{n}| < \delta$. Noting (1.4a)

$$f(x) - B_n(f;x) = \sum_{k=0}^{n} \beta_{n,k}(x) (f(x) - f(\frac{k}{n}))$$

$$= \sum_{S_1(x)} \beta_{n,k}(x) (f(x) - f(\frac{k}{n})) + \sum_{S_2(x)} \beta_{n,k}(x) (f(x) - f(\frac{k}{n}))$$
(1.5)

where $S_1(x):=\{k\in\{0,1,\ldots,n\}:|x-\frac{k}{n}|<\delta\}$ and $S_2(x):=\{k\in\{0,1,\ldots,n\}:|x-\frac{k}{n}|>\delta\}.$ Noting (1.4a,d)

$$\left|\sum_{S_1(x)} \beta_{n,k}(x)(f(x) - f(\frac{k}{n}))\right| \leqslant \sum_{S_1(x)} \beta_{n,k}(x)|f(x) - f(\frac{k}{n})| < \frac{\varepsilon}{2}. \tag{1.6}$$

Since f is continuous $|f(x)| \leqslant M$ for all $x \in [0,1]$ it follows on noting (1.4a-d) and $x \in [0,1]$ that

$$\begin{split} &|\sum_{S_2(x)}\beta_{n,k}(x)(f(x)-f(\frac{k}{n}))|\leqslant 2M\sum_{S_2(x)}\beta_{n,k}(x)\leqslant 2M\sum_{S_2(x)}\frac{(x-\frac{k}{n})^2}{\delta^2}\beta_{n,k}(x)\\ &\leqslant \frac{2M}{n^2\delta^2}\sum_{k=0}^n(nx-k)^2\beta_{n,k}(x)=\frac{2M}{n^2\delta^2}\underbrace{(n^2x^2-2nx(nx)+n(n-1)x^2+nx)}_{=nx(1-x)}\leqslant \frac{M}{2n\delta^2}\leqslant \frac{\xi}{2}1.7) \end{split}$$

where we choose $n \ge M/(\delta^2 \varepsilon)$. Hence the results follows by combining (1.5–1.7).

2 Piecewise polynomial approximation

In this chapter we consider piecewise (broken) polynomial approximations, it turns out that they are much more satisfactory.

Piecewise linear interpolation

Let $\pi: a=x_0 < x_1 < \cdots < x_n=b$ be a partition of the interval $[a,b] \subset \mathbb{R}$ upon which we wish to approximate a continuous function f. We will call $\{x_i\}_{i=0}^n$ "knots". The continuous, piecewise linear, function, s, interpolating f is defined by

$$s(x) = \frac{x_{j+1} - x}{x_{j+1} - x_j} f(x_j) + \frac{x - x_j}{x_{j+1} - x_j} f(x_{j+1}) \quad x \in [x_i, x_{i+1}] \ (i = 0 \to n-1)$$

We can rewrite s as

$$s(x) = \sum_{j=0}^{n} \lambda_{i}(x) f(x_{i})$$

$$\lambda_0(x) = \left\{ \begin{array}{ll} \frac{z_1 - x}{x_1 - x_0} & x_0 \leqslant x \leqslant x_1 \\ 0 & x_1 \leqslant x \leqslant x_n \end{array} \right., \quad \lambda_i(x) = \left\{ \begin{array}{ll} \frac{x - x_{i-1}}{x_i - x_{i-1}} & x_{i-1} \leqslant x \leqslant x_i \\ \frac{x_i - x_{i-1}}{x_i} & x_i \leqslant x \leqslant x_{i+1} \end{array} \right., \quad \lambda_n(x) = \left\{ \begin{array}{ll} 0 & x_0 \leqslant x \leqslant x_{n-1} \\ \frac{x - x_{n-1}}{x_{n-1}} & x_{n-1} \leqslant x \leqslant x_n \end{array} \right.$$

Notice that if $f \in C^2[a, b]$, then from linear interpolation for $x \in [x_i, x_{i+1}]$,

$$|f(x) - s(x)| \leqslant \frac{(x_{i+1} - x_i)^2}{8} ||f''||_{\infty},$$

where $||f''||_{\infty} := \max_{x \in [a,b]} |f''(x)|$, hence for all $x \in [a,b]$

$$|f(x) - s(x)| \le \frac{h^2}{8} ||f''||_{\infty}$$
 where $h = \max_{i} x_{i+1} - x_i$.

Least-squares approximation by piecewise linear functions

Let L_1f be the least-squares approximation to f by a piecewise linear polynomial. That is $L_1f(x) = \sum_{i=0}^n \alpha_i \lambda_i(x)$, where the coefficients α_i are chosen so as to minimize

$$E = \int_a^b \left[f(x) - L_1 f(x) \right]^2 \mathrm{d}x$$

 $E=\int_a^b \left[f(x)-L_1f(x)\right]^2{\rm d}x.$ The coefficients α_i which minimize E satisfy $\partial E/\partial\alpha_i=0$, i.e.

$$\sum_{j=0}^{n} \alpha_{j} \int_{a}^{b} \lambda_{i}(x) \lambda_{j}(x) dx = \int_{a}^{b} \lambda_{i}(x) f(x) dx.$$
 (2.1)

As $\int_a^b \lambda_i(x)\lambda_j(x)\mathrm{d}x=0$ when |i-j|>1, we can easily calculate (2.1). Let $h_{i-1}:=x_i-x_{i-1}$, then for $i=1\to n-1$ we have

$$\int_a^b \lambda_i^2(x) \mathrm{d}x \ = \ \frac{h_{i-1} + h_i}{3} \text{ and } \int_a^b \lambda_i(x) \lambda_{i-1}(x) \mathrm{d}x = \frac{h_{i-1}}{6}.$$

3H Numerical Analysis — lecture summaries 1997/8

So that multiplying (2.1) by $6/(h_{i-1}+h_i)$ yields

$$\begin{split} \frac{n_{i-1}}{h_{i-1}+h_i}\alpha_{i-1}+2\alpha_i+\frac{n_i}{h_{i-1}+h_i}\alpha_{i+1}&=3\beta_i \qquad (i=1\to n-1)\\ \text{where}\quad \beta_i:=\frac{2}{h_{i-1}+h_i}\int_{x_{i-1}}^{x_{i+1}}\lambda_i(x)f(x)\mathrm{d}x. \end{split}$$
 Likewise, performing a similar calculation when $i=0$ and n , it results from equation (2.1)

$$2\alpha_0 + \alpha_1 = 3\beta_0 := \frac{6}{h_0} \int_{x_0}^{x_1} \lambda_0(x) f(x) dx, \qquad \alpha_{n-1} + 2\alpha_n = 3\beta_n := \frac{6}{h_{n-1}} \int_{x_{n-1}}^{x_n} \lambda_n(x) f(x) dx.$$

Notice that $||\beta_i||_{\infty} \leq ||f||_{\infty}$.

 a_{ij} $(i,j=1 \rightarrow n)$. If A is strictly diagonally dominant, i.e. $\sum_{\substack{j=1 \ j \neq i}} |a_{ij}| < |a_{ii}|$ then A is Theorem. 2.1 (Diagonally dominant matrices) Let A be a square matrix with elements

Hence, we see that L_1f exists and is unique.

A bound on the error.

Let s(x) be the piecewise linear interpolant of f on π

$$||f - L_1 f||_{\infty} = ||f - s + s - L_1 f||_{\infty} \le ||f - s||_{\infty} + ||L_1 s - L_1 f||_{\infty} = ||f - s||_{\infty} + ||L_1 (s - f)||_{\infty}$$

Can we bound $||L_1g||_{\infty}$ in terms of $||g||_{\infty}$? Notice that $||L_1g||_{\infty} = \max_{i=0 \to n} |\alpha_i| = |\alpha_j|$ and assuming $1 \le j \le n-1$, from the j'th equation

$$2\|L_1g\|_{\infty} = |2\alpha_j| = \left|3\beta_j - \frac{\alpha_{j-1}h_{j-1} + \alpha_{j+1}h_j}{h_{j-1} + h_j}\right| \leqslant 3|\beta_j| + |\alpha_j| \leqslant 3\|g\|_{\infty} + \|L_1g\|_{\infty}$$

(If j=0 or n the same inequality holds trivially). Therefore assuming that $f\in C^2[a,b]$

$$||f - L_1 f||_{\infty} \leqslant 4||f - s||_{\infty} \leqslant \frac{h^2}{2}||f''||_{\infty}.$$

Piecewise cubic interpolation

at piecewise polynomials of higher degree. If f is smoother, we may be able to get a better approximation more efficiently by looking

Method 1 On $[x_i, x_{i+1}]$ $(i = 1 \to n-2)$ use the polynomial which interpolates f at $x_{i-1}, x_i, x_{i+1}, x_{i+2}$. On $[x_0, x_1]$ we use the first four nodes and on $[x_{n-1}, x_n]$ we use the last four nodes. If s is the resulting approximation and $f \in C^d[a, b]$ then for all $x \in [a, b]$

$$|f(x) - s(x)| \le \frac{h^2}{16} ||f^{(4)}||_{\infty}$$
 where $h = \max x_{i+1} - x_i$

6 J.F. Blo

Method 2 On $[x_i, x_{i+1}]$ construct s so that

which follows from the Lagrange interpolation truncation error theorem.

$$s(x_i) = f(x_i), \ s'(x_i) = s'_i \qquad (i = 0 \to n)$$

and s is continuously differentiable (s_i^\prime is unknown). A calculation gives

$$s(x) = f(x_i) + s_i'(x - x_i) + c_i^2(x - x_i)^2 + c_i^3(x - x_i)^3 \quad x \in [x_i, x_{i+1}]$$

wnere

$$c_i^2 = \frac{3(f(x_{i+1}) - f(x_i))}{h_i^2} - \frac{2s_i' + s_{i+1}'}{h_i}, \quad c_i^3 = \frac{-2(f(x_{i+1}) - f(x_i))}{h_i^3} + \frac{s_{i+1}' + s_i'}{h_i^2}$$

If $s'(x_i) = f'(x_i)$ $(i = 0 \to n)$ this is piecewise cubic Osculatory interpolation on $[x_i, x_{i+1}]$ and if $f \in C^4[a, b]$ then the following error equation holds

$$|f(x) - s(x)| \leqslant \left| \frac{(x - x_i)^2 (x - x_{i+1})^2}{4!} f^{(4)}(\xi) \right| \leqslant \left(\frac{h^2}{4} \right)^2 \frac{||f^{(4)}||_{\infty}}{4!} = \frac{h^4}{384} ||f^{(4)}||_{\infty}.$$

where $h = \max x_{i+1} - x_i$.

Each of these approximations is "local" (only what happens a short distance from the interval is important) making the solution easy to generate. A non-local $C^2[a,b]$ piecewise cubic approximation is:

Cubic Splines

Let $\pi: a = x_0 < x_1 < \cdots < x_n = b$ be a given partition of the real interval [a, b]. A cubic spline with knots x_0, x_1, \cdots, x_n is a function s which has the following properties:

1. s(x) is a cubic polynomial in each interval (x_i, x_{i+1}) $(i = 0 \rightarrow n-1)$.

2. $s \in C^2[a, b]$

We now construct an interpolating cubic spline, s, explicitly. It is convenient to introduce $M_i := s''(x_i)$ and $f_i := f(x_i)$ $(i = 0 \to n)$. As s is piecewise cubic, in the interval $(x_i, x_{i+1}), s''(x)$ is linear, and for $i = 0 \to n-1$

$$s''(x) = \frac{x - x_i}{h_i} M_{i+1} + \frac{x_{i+1} - x}{h_i} M_i,$$

where $h_i = x_{i+1} - x_i$. Integrating twice and applying the continuity conditions $s(x_i) = f_i$ and $s(x_{i+1}) = f_{i+1}$, we find that that for $x \in (x_i, x_{i+1})$ $(i = 0 \to n-1)$,

$$s(x) = \frac{(x-x_i)^3}{6h_i}M_{i+1} + \frac{(x_{i+1}-x)^3}{6h_i}M_i + \left(f_i - \frac{h_i^2}{6}M_i\right)\frac{x_{i+1}-x}{h_i} + \left(f_{i+1} - \frac{h_i^2}{6}M_{i+1}\right)\frac{x-x_i}{h_i}$$

For s' to be continuous on [a,b], s' has to be continuous at the internal knots, i.e.

$$\lim_{x \to x_i^+} s'(x) = \lim_{x \to x_i^-} s'(x) \qquad (i = 1 \to n - 1).$$

$$\lim_{x \to x^+} s'(x) = -\frac{h_i}{3} M_i - \frac{h_i}{6} M_{i+1} + \frac{f_{i+1} - f_i}{h}$$
(2.2)

$$\lim_{x \to x_{i+1}^+} s'(x) = -\frac{h_i}{3} M_i - \frac{h_i}{6} M_{i+1} + \frac{f_{i+1} - f_i}{h_i}$$

$$\lim_{x \to x_{i+1}^-} s'(x) = \frac{h_i}{3} M_{i+1} + \frac{h_i}{6} M_i + \frac{f_{i+1} - f_i}{h_i}$$
(2.3)

Hence, matching equations (2.2) and (2.3) for $i=1 \to n-1$ and multiplying by $\frac{6}{h_i + h_{i-1}}$ yields

$$\mu_i M_{i-1} + 2M_i + \lambda_i M_{i+1} = d_i$$
 $i = 1 \to n-1$.

where

$$\mu_i = h_{i-1}/(h_i + h_{i-1}), \ \lambda_i = 1 - \mu_i = h_i/(h_i + h_{i-1}) \text{ and } d_i = \frac{6}{h_i + h_{i-1}} \left[\frac{f_{i+1} - f_i}{h_i} - \frac{f_i - f_{i-1}}{h_{i-1}} \right].$$

Notice that with uniform knot spacing $x_i = a + ih$ where h = (b - a)/n, we have

$$M_{i-1} + 4M_i + M_{i+1} = \frac{6}{h^2} \Delta^2 f_{i-1}$$
 (where $\Delta f_i = f_{i+1} - f_i$).

We need to assign two extra conditions. Which we will analyse.

nd conditions

1. Natural cubic spline. Let s''(a) = 0 = s''(b), i.e. $M_0 = 0 = M_n$, the system we must solve is

$$A\boldsymbol{m} = \begin{pmatrix} 2 & \lambda_1 & 0 & \cdots & 0 \\ \mu_2 & 2 & \lambda_2 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & \mu_{n-2} & 2 & \lambda_{n-2} \\ 0 & \cdots & 0 & \mu_{n-1} & 2 \end{pmatrix} \begin{pmatrix} M_1 \\ M_2 \\ \vdots \\ M_{n-2} \\ M_{n-1} \end{pmatrix} \begin{pmatrix} d_1 \\ d_2 \\ \vdots \\ d_{n-2} \\ d_{n-1} \end{pmatrix} = \boldsymbol{d}$$

where $|\lambda_1|, |\mu_{n-1}| < 1$ and $|\mu_i| + |\lambda_i| = 1 < 2$ $(i = 2 \rightarrow n-2)$. That is the matrix is strictly diagonally dominant, and hence non-singular. So for given values $\{f_i\}$ there exists a unique natural cubic spline interpolating the data at the knots.

2. Complete cubic spline (clamped or displine)

If we know $f'(x_0)$ and $f'(x_n)$ we could take

$$\lim_{\substack{x \to x_0^+ \\ x \to x_0^+}} s'(x) = f'(x_0) \quad \text{and} \quad \lim_{\substack{x \to x_n^- \\ x \to x_n^-}} s'(x) = f'(x_n).$$

From (2.2) with i = 0 and (2.3) with i = n - 1

$$f'(x_0) = \frac{-h_0}{3} M_0 - \frac{h_0}{6} M_1 + \frac{f_1 - f_0}{h_0} \iff 2M_0 + M_1 = \frac{6}{h_0} \left[\frac{f_1 - f_0}{h_0} - f'(x_0) \right]$$

$$f'(x_0) = \frac{h_{n-1}}{3} M_0 + \frac{h_{n-1}}{6} M_1 + \frac{f_n - f_{n-1}}{h_0} \iff 2M_0 + M_1 = \frac{6}{h_0} \left[\frac{f_1(x_0)}{h_0} - \frac{f_n - f_{n-1}}{h_0} \right]$$

 $f'(x_n) = \frac{h_{n-1}}{3} M_n + \frac{h_{n-1}}{6} M_{n-1} + \frac{f_n - f_{n-1}}{h_{n-1}} \Longleftrightarrow 2M_n + M_{n-1} = \frac{6}{h_{n-1}} \left[f'(x_n) - \frac{f_n - f_{n-1}}{h_{n-1}} \right].$

Alternatively, we could specify $s'(x_0)$ and $s'(x_n)$ to be arbitrary numbers.

From strict diagonal dominance there is a unique solution in this case too

3. Generalize 1. and 2. to

 $2M_0 + \lambda_0 M_1 = d_0$ and $\mu_n M_{n-1} + 2M_n = d_n$ where d_0, d_n are arbitrary.

If $|\lambda_0|$, $|\mu_n| < 2$ then again from strict diagonal dominance of the matrix there exists a unique solution.

Not-a-knot

We could specify that s''' is continuous at x_1 and x_{n-1} so

$$\frac{M_1-M_0}{h_0} = \lim_{x \to x_1^-} s'''(x) = \lim_{x \to x_1^+} s'''(x) = \frac{M_2-M_1}{h_1} \quad \text{and} \quad \frac{M_n-M_{n-1}}{h_{n-1}} = \frac{M_{n-1}-M_{n-2}}{h_{n-2}}$$
 or

$$-\mu_1 M_0 + M_1 - \lambda_1 M_2 = 0 \quad \text{and} \quad -\mu_{n-1} M_{n-2} + M_{n-1} - \lambda_{n-1} M_n = 0.$$

Using the existing equations for M_0, M_1 and M_2 to eliminate M_0 and similarly eliminate M_n to obtain a system which is strictly diagonally dominant.

5. Parabolic runout We set the end conditions to be $M_0 = M_1$ and $M_{n-1} = M_n$

Of the end-conditions mentioned above, only the complete cubic spline guarantees that the piecewise cubic spline of itself is itself.

Spline functions of degree k

A spline function of degree k on the partition $\pi: a=x_0 < x_1 < \cdots < x_n=b$ is a function s_k which has the following properties

- (i) $s_k(x)$ is a polynomial of degree k on each interval $[x_i, x_{i+1}]$ $(i = 0 \rightarrow n-1)$.
- (ii) $s_k(x) \in C^{k-1}[a,b]$.

Any spline function of degree k, with knots x_0, \dots, x_n may be expressed as

$$s_k(x) = \sum_{i=0}^k c_i x^i + \frac{1}{k!} \sum_{j=1}^{n-1} g_j (x - x_j)_+^k \qquad a \! \leqslant \! x \! \leqslant \! b$$

where the truncated power functions are

$$(x-x_j)_+^k = \left\{ \begin{array}{ll} (x-x_j)^k & \text{if } x > x_j \\ 0 & \text{if } x \leqslant x_j \end{array} \right. \quad k \geqslant 0,$$

 g_j is the jump discontinuity in the k'th derivative at x_j , i.e. $g_j = \lim_{x \to x_j^+} s_k^{(k)}(x) - \lim_{x \to x_j^-} s_k^{(k)}(x)$ and $\sum_{i=0}^k c_i x^i$ is the spline defined on $[x_0, x_1]$. Notice the above function is k-1 times continuously differentiable and the number of unknowns is k+1+n-1.

This formulation may be unsatisfactory since there might be a huge loss of accuracy through cancellation.

3H Numerical Analysis — lecture summaries 1997/8

B-splines

A spline of degree 0 with support $(x_i, x_{i+1}]$ is

$$B_i^0(x) = \begin{cases} 1, & \text{if } x_i < x \leqslant x_{i+1} \\ 0 & \text{otherwise} \end{cases}$$

define

$$B_i^1(x) := \frac{x - x_i}{x_{i+1} - x_i} B_i^0(x) + \frac{x_{i+2} - x}{x_{i+2} - x_{i+1}} B_{i+1}^0(x) \Longrightarrow B_i^1(x) = \begin{cases} \frac{x - x_i}{x_{i+1} - x_i} & \text{if } x_i < x \leqslant x_{i+1} \\ \frac{x_{i+1} - x_i}{x_{i+2} - x_{i+1}} & \text{if } x_{i+1} < x \leqslant x_{i+2} \\ 0 & \text{otherwise.} \end{cases}$$

In fact $B_i^1(x) \equiv \lambda_{i+1}(x)$, in old hat function notation, is a spline function of degree 1 with support $[x_i, x_{i+2}]$. Now defining the *B-spline of degree* k, B_i^k , recursively for each i and $k = 1, \cdots$

$$B_i^k(x) := \frac{x-x_i}{x_{i+k}-x_i}B_i^{k-1}(x) + \frac{x_{i+k+1}-x}{x_{i+k+1}-x_{i+1}}B_{i+1}^{k-1}(x)$$

it is clearly a piecewise positive, polynomial of degree k with support $[x_i, x_{i+k+1}]$.

Theorem. 2.2 $B_i^k(x)$ is a spline function of degree k with support $[x_i, x_{i+k+1}]$

PROOF. Embed x_0, \dots, x_n in infinite knot sequence

$$\cdots < x_{-2} < x_{-1} < x_0 < \cdots < x_n < x_{n+1} < \cdots$$

For equally spaced knots the recurrence relation becomes

$$B_i^k(x) := \frac{x-x_i}{kh}B_i^{k-1}(x) + \frac{x_{i+k+1}-x}{kh}B_{i+1}^{k-1}(x) = \frac{1}{kh}\left[(x-x_i)B_i^{k-1}(x) + (x_{i+k+1}-x)B_{i+1}^{k-1}(x)\right]$$

Next we show that for k > 1 and for all x

$$\frac{\mathrm{d}}{\mathrm{d}x} B_i^k(x) = \frac{1}{h} \left[B_i^{k-1}(x) - B_{i+1}^{k-1}(x) \right]$$

For k=1 the above equation is true except at the knots. Assume the statement to be true for all *i*. Differentiating the B-splines recurrence relation, substituting in the hypothesis and rearranging

$$\begin{split} &\frac{\mathrm{d}}{\mathrm{d}x}B_{i}^{k}(x) = \frac{1}{kh}\Big[B_{i}^{k-1}(x) - B_{i+1}^{k-1}(x) + (x-x_{i})\frac{\mathrm{d}}{\mathrm{d}x}B_{i}^{k-1}(x) + (x_{i+k+1}-x)\frac{\mathrm{d}}{\mathrm{d}x}B_{i+1}^{k-1}(x)\Big] \\ &= \frac{1}{kh}\Big[B_{i}^{k-1}(x) - B_{i+1}^{k-1}(x) + \frac{x-x_{i}}{h}\Big[B_{i}^{k-2}(x) - B_{i+1}^{k-2}(x)\Big] + \frac{x_{i+k+1}-x}{h}\Big[B_{i+1}^{k-2}(x) - B_{i+2}^{k-2}(x)\Big]\Big] \\ &= \frac{1}{kh}\Big[B_{i}^{k-1}(x) - B_{i+1}^{k-1}(x) + (k-1)B_{i}^{k-1}(x) + B_{i+1}^{k-2}(x) - (k-1)B_{i+1}^{k-1}(x) - B_{i+1}^{k-2}(x)\Big] \\ &= \frac{1}{h}\Big[B_{i}^{k-1}(x) - B_{i+1}^{k-1}(x)\Big] \end{split}$$

This formula holds everywhere except possibly at the knots. However noting that B_i^1 is continuous for all i it follows by induction that $B_i^k \in C^{k-1}(-\infty,\infty)$ i.e. B_i^k is a spline function of degree k.

9

10 J.F. Blowe

One can use the B-splines as a basis for the spline function space. The advantages of expressing the spline in terms of B-splines are: only a few multiplications are required to calculate the value of the splines; one does not suffer from severe cancellation; the splines have small support; calculating the B-spline from the recurrence relation is a computationally stable process.

For example instance let $s(x) = \sum_{i=-3}^{n-1} \alpha_i B_i^3(x)$ be the natural interpolating cubic splines.

Noting that

$$B_{i}^{3}(x) = \frac{1}{6h^{3}} \begin{cases} (x - x_{i})^{3} & x_{i} \leq x \leq x_{i+1} \\ h^{3} + 3h^{2}(x - x_{i+1}) + 3h(x - x_{i+1})^{2} - 3(x - x_{i+1})^{3} & x_{i+1} \leq x \leq x_{i+2} \\ h^{3} + 3h^{2}(x_{i+3} - x) + 3h(x_{i+3} - x)^{2} - 3(x_{i+3} - x)^{3} & x_{i+2} \leq x \leq x_{i+3} \\ (x_{i+4} - x)^{3} & x_{i+3} \leq x \leq x_{i+4} \end{cases}$$
 otherwise

noting that

and

$$(B_i^3(x))'' = \frac{1}{6h^3} \begin{cases} 6(x - x_i) & x_i \leqslant x \leqslant x_{i+1} \\ 6h - 18(x - x_{i+1}) & x_{i+1} \leqslant x \leqslant x_{i+2} \\ 6h - 18(x_{i+3} - x) & x_{i+2} \leqslant x \leqslant x_{i+3} \\ 6(x_{i+4} - x) & x_{i+3} \leqslant x \leqslant x_{i+4} \\ 0 & \text{otherwise} \end{cases}$$

we find that interpolating and natural boundary conitions correspond to:

$$f(x_k) = \sum_{i=-3}^{n-1} \alpha_i B_i^3(x_k) = \frac{1}{6} (\alpha_{k-3} + 4\alpha_{k-2} + \alpha_{k-1}) \quad (k = 0 \to n)$$

$$0 = h^2 \sum_{n=1}^{n-1} \alpha_i (B_i^3(x_0))'' = \alpha_{-3} - 2\alpha_{-2} + \alpha_{-1} \quad \text{and} \quad \alpha_{n-3} - 2\alpha_{n-2} + \alpha_{n-1} = 0$$

thus eliminating α_{-3} and α_{n-1} we get the following strictly diagonally dominant system of linear equations to solve

$$\begin{pmatrix} 6 & 0 & 0 & \cdots & 0 \\ 1 & 4 & 1 & \ddots & \vdots \\ 0 & \ddots & \ddots & \ddots & 0 \\ \vdots & \ddots & 1 & 4 & 1 \\ 0 & \cdots & 0 & 0 & 6 \end{pmatrix} \begin{pmatrix} \alpha_{-2} \\ \alpha_{-1} \\ \vdots \\ \alpha_{n-2} \end{pmatrix} = 6 \begin{pmatrix} f(x_0) \\ f(x_1) \\ \vdots \\ f(x_n) \end{pmatrix}$$

That is the cubic B-splines form a basis for the natural cubic splines.

It is possible to prove a similar result to the Weierstrass theorem, see Powell's book on Approximation theory and methods.

3H Numerical Analysis — lecture summaries 1997/8

11

Theorem. 2.3 (Holladay's Theorem.) Let $\pi: a=x_0 < x_1 < \cdots < x_n=b$ be a partition and $y \in C^2[a,b]$ be arbitrary such that y interpolates a function f at the knots. The natural cubic spline, s, with those knots uniquely minimizes

$$\int_{a}^{b} y''\left(x\right)^{2} \mathrm{d}x.$$

In other words, the natural cubic spline gives the smallest value for the integral over the admissible class of functions.

PROOF. Let $y \in C^2[a,b]$ and $y(x_j) = f(x_j)$ $(j=0 \to n)$. Let s be the interpolating natural cubic spline with knots x_0, \cdots, x_n , i.e. $s(x_j) = f(x_j)$ $(j=0 \to n)$ and s''(a) = s''(b) = 0. From the identity $\alpha^2 - \beta^2 = (\alpha - \beta)^2 + 2\beta(\alpha - \beta)$, we get

$$\int_{a}^{b} y''(x)^{2} dx - \int_{a}^{b} s''(x)^{2} dx = \int_{a}^{b} (y''(x) - s''(x))^{2} dx + 2 \int_{a}^{b} s''(x) (y''(x) - s''(x)) dx.$$

The last integral is zero; this is called the first integral relation. Now it is clear that

$$\int_a^b y''(x)^2 \mathrm{d}x \geqslant \int_a^b s''(x)^2 \mathrm{d}x$$

with equality if and only if

$$\int_{a}^{b} (y''(x) - s''(x))^{2} dx = 0.$$

That is $y''(x) \equiv s''(x)$ hence y(x) = s(x) + cx + d and applying s(a) = y(a) and s(b) = y(b) we find that $\int_a^b y''(x)^2 dx$ is minimized if and only if y(x) = s(x).

COROLLARY 2.4 Let $y \in C^2[a,b]$ be arbitrary, such that y interpolates the function f at the knots x_j $(j=0 \to n)$ and satisfies the additional conditions y'(a) = f'(a) and y'(b) = f'(b). The complete cubic spline, s, with those knots uniquely minimizes $\int_a^b y''(x)^2 dx$.

Theorem. 2.5 (Error) Let $f \in C^2[a,b]$, then the second derivative s'' of the complete cubic spline S is the least-squares approximation to f'' by piecewise linear functions on the partition π . Furthermore, if $f \in C^4[a,b]$, then for all $x \in [a,b]$,

$$||f^{(i)}(x) - s^{(i)}(x)||_{\infty} \le C_i h^{4-i} ||f^{(4)}||_{\infty}, (i = 0, 1, 2)$$

where $h = \max x_{j+1} - x_j$ and $f^{(i)} = d^{(i)} f / dx^{(i)}$.

Minimax and near-minimax approximation

Introduction

Any "measure of distance" of an approximating function to a given function will suffice to give us an error. The natural setting for approximation theory is a metric space, however

12 J.F. Blowey

normed linear spaces have nicer properties. A normed linear space is a metric space, where $d(x,y) = \|x-y\|$.

Let X be a vector space over a field $\mathbb F$ and $x\in X$. The norm of x is a non-negative number, $\|x\|$, with the properties

- 1. $||x|| \ge 0 \ \forall \ x \in X \text{ and } ||x|| = 0 \text{ iff } x = 0.$
- 2. $||cx|| = |c|||x|| \ \forall \ x \in X \text{ and } \forall \ c \in \mathbb{F}.$
- 3. $||x+y|| \le ||x|| + ||y|| \ \forall \ x, y \in X$.

Let C[a,b], as usual be all those continuous, real-valued functions on the interval [a,b]. For $1 \le p < \infty$ and $f \in C[a,b] = X$ we define the L^p -norm to have the value

$$||f||_p = \left[\int_a^b |f(x)|^p dx \right]^{1/p}$$
.

The L^{∞} -norm (also called uniform norm) has the value

$$||f||_{\infty} = \max_{a \leqslant x \leqslant b} |f(x)|.$$

Only $(X, \|.\|_{\infty})$ gives us a complete metric space.

For discrete problems, when $X = \mathbb{R}^m$, we can define analogous norms, i.e. for $g \in \mathbb{R}^m$

$$\|\boldsymbol{g}\|_{\infty} = \max_{1 \leqslant i \leqslant m} |g_i| \quad \text{ and } \quad \|\boldsymbol{g}\|_p = \left[\sum_{i=1}^m |g_i|^p\right]^{1/p} \quad 1 \leqslant p < \infty.$$

Best Approximation

Given $\{\phi_i\}_{i=0}^n$, an appropriate basis, and the function f(x) on the interval [a,b] we consider the approximations of the form

$$F_n(x) = \sum_{i=0}^n a_i \phi_i(x).$$

A best approximation is one which minimizes the distance. In general, different norms yield different best approximations.

A minimax approximation minimizes

$$||f - F_n||_{\infty} := \max_{x \in [a,b]} |f(x) - F_n(x)|.$$

A least-squares approximation minimizes

$$||f - F_n||_2 = \left[\int_a^b |f(x) - F_n(x)|^2 dx \right]^{1/2}$$
.

3H Numerical Analysis — lecture summaries 1997/8

13

One can also consider approximations using discrete norms.

Example. On [0,1] find some best constant approximations to e^x .

Given f and $\|\cdot\|$ we can ask:

Is there a best approximation? ∃ How c
Is it unique?! What

What is the error like? Accuracy

Can it be describe? Characterization How does the accuracy change with n? Convergence.

Theorem. 3.1 Let $E_n(f) := \min_{a_i} ||f(x) - \sum_{i=0}^n a_i \phi(x)||$ for the given function and chosen norm. If F_n and G_n are two best approximations, then for $\alpha \in (0,1)$, $\alpha F_n + (1-\alpha)G_n$ is also a best approximation. Furthermore $E_n(f)$ does not increase with n.

Theorem. 3.2 (De la Vallée Poussins) Given $f \in C[a,b]$ and $n \geqslant 0$. Suppose $q_n(x) \in \mathcal{P}_n$ such that

$$f(x_j) - q_n(x_j) = (-1)^j e_j$$
 $(j = 0 \to n+1)$

where $e_j \neq 0$ and all of the same sign, $a \leq x_0 < \cdots < x_{n+1} \leq b$. Then

$$\min_{j=0 \to n+1} |e_j| \le ||f - p_n^*||_{\infty} \le ||f - q_n||_{\infty}$$

where p_n^* is the the minimax polynomial of degree n for f on [a,b].

Theorem. 3.3 (Equioscillation) For a given function $f \in C[a,b]$, a polynomial p_n is a minimax polynomial of degree n if and only if there is a sequence of n+2 points $\{x_j\}$, with $a \leqslant x_0 < x_1 < \cdots < x_{n+1} \leqslant b$, at which $E_n(x) = f(x) - p_n(x)$ takes alternately the values $\pm E_n$ where $E_n := \|f - p_n\|_{\infty}$.

PROOF. (a) sufficiency This follows de la Vallée Poussins theorem

(b) **necessity**. Suppose that p_n is a minimax approximation of degree n for f on the interval I = [a,b]. Let $E_n(x) := f(x) - p_n(x)$. If $E_n(x) \equiv 0$ on I there is nothing to prove. Otherwise, suppose that $E_n := \max_{x \in I} |E_n(x)|$ is attained at η_0, \dots, η_r ($r \ge 1$), where the η_i are well ordered, i.e. $a \le \eta_0 < \eta_1 < \dots < \eta_r \le b$. Then $E_n(\eta_j) = \pm E_n$. Consider the sign changes of $E_n(\eta_j)$ as j increases from 0 to r. If the k-th change occurs between η_i and η_{i+1} , let $\alpha_k = \frac{1}{2}(\eta_i + \eta_{i+1})$. Assume there are s such that points α_k ($k = 1 \to s$). There exists a unique polynomial q_s of degree s such that $q_s(\alpha_k) = 0$ ($k = 1 \to s$) and $q_s(\eta_0) = E_n(\eta_0)$. Since $q_s(\eta_j)$ has the same sign as $E_n(\eta_j)$ for $j = 0 \to r$, it follows that for some β sufficiently small, for all $x \in [a,b]$, $|E_n(x) - \beta q_s(x)|$ is smaller than E_n . This means that $\max_{x \in I} |f(x) - [p_n(x) + \beta q_s(x)]| \le |E_n|$, i.e. $p_n + \beta q_s$ has a smaller maximum value error than p_n . But p_n is a minimax polynomial of degree n, so s > n + 1 (otherwise we contradict the minimax property). From the set $\{\eta_0, \eta_1, \dots, \eta_r\}$ choose a subset $\{x_0, x_1, \dots, x_s\}$ with $a \le x_0 < x_1 < \dots < x_s \le b$, such that $E_n(x_{j+1}) = -E_n(x_j)$ ($j = 0 \to s - 1$). Since s > n + 1 there are at least n + 2 points x_0, x_1, \dots, x_{n+1} .

14

EXAMPLES. The minimax polynomial of degree n for x^{n+1} on [-1, 1] is p_n^* where $p_n^*(x) = x^{n+1} - \frac{1}{2^n} T_{n+1}(x)$ which follows from the equioscillation property of $T_{n+1}(x)$.

See a previous example for the constant minimax polynomial of e^x on [0,1].

 $f \in C^{m+1}[a,b]$. Then there are n+1 distinct points t_0, t_1, \dots, t_n in [a,b] such that Corollary 3.4 Let p_n^* be a minimax polynomial of degree n on [a,b] for a given function

$$f(x) - p_n^*(x) = \frac{(x - t_0)(x - t_1) \cdots (x - t_n)}{(n+1)!} f^{(n+1)}(\zeta) \quad \text{for some } \zeta \in (a,b).$$

Theorem. 3.5 (Uniqueness) Let $f \in C[a,b]$ be given, then there exists at most one minimax polynomial

C[a,b]. Then $E_n := ||f - p_n^*||_{\infty} \to 0$ as $n \to \infty$. Theorem. 3.6 (Convergence) Let p_n^* be the minimax polynomial approximation to $f \in$

Computing the minimax approximation

We call a set of n+2 points such that $a \le \xi_0 < \xi_1 < \cdots < \xi_{n+1} \le b$ a reference

 $(m > n \geqslant 0)$ and $\{f(x_i)\}_{i=0}^m$, suppose $q_n(x) \in \mathcal{P}_n$ such that Theorem. 3.7 (Discrete De la Vallée Poussins) Given a reference $\{\xi_i\}_{i=0}^{n+1} \subset \{x_i\}_{i=0}^m$

$$f(\xi_i) - q_n(\xi_i) = (-1)^i e_i$$
 $(i = 0 \to n+1)$

where $e_i \neq 0$ are all of the same sign. Then

$$\min_{i=0 \to n+1} |e_i| \leqslant ||f - p_n^*||_{\infty} = \max_{i=0 \to m} |f(x_i) - p_n^*(x_i)| \leqslant ||f - q_n||_{\infty}$$

where p_n^* is the the minimax polynomial of degree n for f on the discrete point set $\{x_i\}_{i=0}^m$.

Theorem. 3.8 p_n^* is the polynomial of degree n which minimizes the expression

$$\max_{i=0\to m} |f(x_i) - p_n(x_i)|,$$

over the polynomials of degree n, if and only if there is a reference $\{\xi_i\}_{i=0}^{n+1}$ such that

$$f(\xi_{i+1}) - p_n^*(\xi_{i+1}) = -(f(\xi_i) - p_n^*(\xi_i))$$
 $(i = 0, 1 \to n).$

and $||f - p||_{\infty}$ by $\max_{i=0 \to m} |f(x_i) - p_n(x_i)|$. PROOF. This is the same as the equioscillation theorem except we replace [a,b] by the x_i'

3H Numerical Analysis — lecture summaries 1997/8

15

In principle, calculating the minimax polynomial on a discrete set is easy! Let $p_n^*(x) = \sum_{j=0}^n a_j x^j$, then we have to find h, a such that

$$f(\xi_i) - \sum_{j=0}^{n} a_j \xi_i^j = (-1)^i h$$
 $i = 0 \to n+1;$

n+2 equations for the n+2 unknowns

 $a_0, a_1 \in \mathbb{R}$ such that EXAMPLE. Find the minimax straight line for e^x on the reference $\{0,0.5,1\}$, i.e. find

$$\max_{x=0,0.5,1} |e^x - (a_0 + a_1 x)|$$

How do we go about calculating the discrete minimax polynomial of degree n where we have m+1 points to choose from where $m+1 \ge n+2$?

The Discrete Exchange Algorithm

- 1. The values of a function f are known on a set of point $Z := \{x_i : i = 0 \to m\}$ such that $a \le x_0 < x_1 < \cdots < x_m \le b$. We want to find the polynomial $p_n(x)$ of degree n < m which minimizes $\max_{i=0 \to m} |f(x_i) p_n(x_i)|$
- step 1. Choose a reference $\{\xi_i: i=0,1\rightarrow n+1\}\subset Z$
- step 2. Solve the equation n

$$f(\xi_i) - \sum_{j=0}^{n} a_j \xi_i^j = (-1)^i h, \qquad i = 0, 1 \to n+1$$

to find a_0, a_1, \cdots, a_n and h. This gives the polynomial $p_n^{(1)}(x) = \sum_i a_j x^j.$

$$p_n^{(1)}(x) = \sum_{i=0}^{n} a_i x^i$$

- Calculate $|f(x_i) p_n^{(1)}(x_i)|$ for the points $x_i \in Z$ which are not in the reference. If none of these exceed |h| then STOP.
- Choose a new reference set $\{\xi_i^+\}$ such that $|f(\xi_i^+) - p_n^{(1)}(\xi_i^+)| \ge |h|$ with strict inequality for at least one
- $\operatorname{sign} \left[f(\xi_{i+1}^+) p_n^{(1)}(\xi_{i+1}^+) \right] = -\operatorname{sign} \left[f(\xi_i^+) p_n^{(1)}(\xi_i^+) \right]$ value of i, and with
- Return to step 2.

of the de la Vallée Poussin theorem, the algorithm must strictly increase \boldsymbol{h} at each polynomial exists which minimizes max $|f(\xi_k) - p_n(\xi_k)|$. From the discrete version step, so we must stop in a finite number of steps. There are $\binom{m+1}{n+2}$ different choices for the reference, and for each reference a unique

 $\{0, 0.2, 0.4, 0.6, 0.8, 1\}$? Example. What is the quadratic discrete minimax polynomial of e^x on the set

2. Continuous Version. To find the minimax polynomial $p_n^*(x)$ of degree n for a function $f \in C[a, b]$.

steps 1. & 2. As for the discrete case.

ep 3. Find the extrema of $f(x) - p_n^{(1)}(x)$ on [a, b]. By the de la Vallée Poussin's theorem $|h| \leqslant ||f - p_n^*||_{\infty} \leqslant ||f - p_n^{(1)}||_{\infty}$ where p_n^* is the minimax polynomial. If $||f - p_n^{(1)}||_{\infty} - |h|$ is sufficiently small STOP.

steps 4. & 5. This is the same as the discrete case except the points added to the reference set are extrema of $f(x) - p_n^{(1)}(x)$.

Example revisited.

One way to choose your initial reference is via the method of forced oscillation that is take your reference $\xi_k = \cos\frac{(n+1-k)\pi}{n+1}$. For the intervals [a,b] we take the shifted nodes $\xi_k = \frac{1}{2}(a+b) + \frac{1}{2}(b-a)\cos\frac{(n+1-k)\pi}{n+1}$.

Example. A cubic approximation for $\sin\left(\frac{\pi x}{2}\right)$ on [0,1].

The first reference consists of the extrema of the Chebyshev polynomial $T_4(x)$ mapped onto [0,1], i.e. the points $\xi_k=\frac{1}{2}[1+\cos\frac{(4-k)\pi}{4}]$. $(\xi_0=0,\xi_1=\frac{1}{2}(1-\frac{1}{\sqrt{2}}),\xi_2=\frac{1}{2},\xi_3=\frac{1}{2}(1+\frac{1}{\sqrt{2}}),\xi_4=1)$. We now seek $p_3^{(1)}(x)=\sum_{j=0}^3 a_jx^j$ and h so that $f(\xi_k)-\sum_{j=0}^3 a_j\xi_k^j=(-1)^kh$ $(k=0\to 4)$ with $f(x)=\sin(\frac{\pi x}{2})$

Eliminate h by adding or subtracting the first equation appropriately

This gives $p_3^{(1)}(x) = -0.0014 + 1.6103x - 0.1741x^2 - 0.4362x^3$ and $h = -a_0 = 1.4 \times 10^{-3}$. Let $E(x) = \sin\frac{\pi x}{2} - p_3^{(1)}(x)$. Then $E'(x) = \frac{\pi}{2}\cos\frac{\pi x}{2} - \frac{dp_3^{(1)}}{dx}$ which has zeros (found by for example Newton-Raphson) at 0.1559, 0.522 and 0.8596, the turning points of E(x). We find that $E(0.1559) = 1.314 \times 10^{-3}$, $E(0.522) = 1.422 \times 10^{-3}$ and $E(0.8596) = -1.329 \times 10^{-3}$. If $p_3^*(x)$ is the minimax polynomial of degree 3, then by de la Vallée Poussin's theorem,

$$1 \cdot 4 \times 10^{-3} \leqslant ||f - p_3^*||_{\infty} \leqslant 1 \cdot 422 \times 10^{-3} = ||f - p_3^{(1)}||_{\infty},$$

so to 2 significant figures $p_3^{(1)}$ and p_3^* have the same maximum error.

3H Numerical Analysis — lecture summaries 1997/8

Chebyshev Economization of power series

Chebyshev economization is simple. You are given an interval [a,b] and a function f(x). Compute the Maclaurin polynomial of degree n, p_n , and bound the remainder term. Now compute $q_{j-1}(x) = q_j(x) - \alpha_j T_j(x)$ where $q_n(x) = p_n(x), T_j$ is the appropriate Chebyshev polynomial for the interval [a,b] and α_j is chosen so that $q_{j-1} \in \mathcal{P}_{j-1}$.

EXAMPLE. Find some near minimax approximations to e^x on [-1, 1].

To apply the minimax idea on an interval [a,b] the appropriate Chebyshev polynomial of degree n is $T_n(\frac{2x-(a+b)}{b-a})$.

Example. Find some near minimax approximations e^x but on [0,1].

Example. Using Chebyshev economisation find a degree 5 near minimax approximation of $\sin(\pi x/2)$ [-1, 1].

Conclusions

- Minimax polynomial approximation is relevant in achieving the maximum accuracy over all polynomial approximations of a given degree or smallest degree for a given accuracy
- . The minimax puts a bound on the achievable accuracy
- 3. Near minimax approximations (forced oscillation or Chebyshev economization) are easier to compute and frequently adequate.

1 Padé approximations

We now consider rational approximations. Let f have a convergent Maclaurin series expansion, i.e.

$$f(x) = c_0 + c_1 x + c_2 x^2 + \cdots$$

The [m/k] Padé approximant is a rational function

$$R_{mk}(x) = \frac{p_m(x)}{q_k(x)} = \frac{a_0 + a_1 x + \dots + a_m x^m}{b_0 + b_1 x + \dots + b_k x^k},$$

such that $f(x) - R_{mk}(x) = \mathcal{O}(x^r)$ (r as large as possible). $R_{mk}(x)$ has m+k+1 independent variables (we can multiply the numerator and denominator by an arbitrary constant), we hope to make r = m + k + 1. We assume that $b_0 \neq 0$ (otherwise R_{mk} is not analytic at 0!) and set $b_0 = 1$. As f is analytic,

$$f(x) - R_{mk}(x) = \frac{\left(\sum_{i=0}^{\infty} c_i x^i\right) (1 + b_1 x + \dots + b_k x^k) - (a_0 + a_1 x + \dots + a_m x^m)}{(1 + b_1 x + \dots + b_k x^k)}$$

17

18 J.F. Blowey

Now choose
$$a_j$$
 $(j=0 \to m)$ and b_j $(j=1 \to k)$ so that
$$f(x) - R_{mk}(x) = \frac{d_r x^r + \mathcal{O}(x^{r+1})}{(1+b_1 x + \dots + b_k x^k)}.$$
 Note that $\frac{d_r x^r}{(1+b_1 x + \dots + b_k x^k)}$

is an estimate of the truncation error.

EXAMPLE.
$$f(x) = \sqrt{1+2x} = 1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{5}{8}x^4 + \cdots |x| < \frac{1}{2}$$
. $R_{00}(x) = 1, \ R_{10}(x) = 1 + x, \ R_{20}(x) = 1 + x - \frac{1}{2}x^2 \ (q_0(x) \equiv 1)$ these are just the Taylor polynomials. Let $R_{21}(x) = (a_0 + a_1x + a_2x^2)/(1 + b_1x)$

$$q_1(x)(f(x) - R_{21}(x)) = (1 + x - \frac{1}{2}x^2 + \frac{1}{2}x^3 - \frac{5}{8}x^4 + \cdots)(1 + b_1x) - (a_0 + a_1x + a_2x^2) = d_4x^4 + \mathcal{O}(x^5).$$

i.e. $R_{21}(x) = \left(1+2x+\frac{1}{2}x^2\right)/\left(1+x\right)$. This has a singularity at x=-1 whereas f has an essential singularity at x=-1/2. $d_4=-5/8+b_1/2=-1/8$, so an estimate of the truncation error is $-x^4/(8+8x)$. Now to 3 d.p. f(0.5)=1.414, $R_{21}(0.5)=1.417$ and $p_3(0.5)=1.438$ (the Taylor cubic). The estimate of the error for $R_{21}(0.5)$ is 5.2×10^{-3} , whereas the actual error is 3×10^{-3} . Let us briefly analyse and compare the number of operations required using alternative formulations:

$$R_{21}(x) = \frac{1 + 2x + 0.5x^2}{1 + x} = \frac{1 + (2 + 0.5x)x}{1 + x}$$

which requires 2 multiplications, 3 additions and 1 division. If we use continued fractions

$$R_{21}(x) = \frac{1 + 2x + 0.5x^2}{1 + x} = 0.5 \frac{(x+1)^2 + 2(x+1) - 1}{1 + x} = 0.5 \left[(x+3) - \frac{1}{x+1} \right]$$

which requires 1 multiplication, 1 division and 3 additions (a subtraction counting as an addition). Note that when using a finite arithmetic, it may be advantageous to use as few arithmetic operations as possible.

Remark. We have just considered a "Taylor like" expansion of Padé approximations, one could equally consider Minimax & Interpolating Padé approximations (see Powell – Approximation theory & methods).

Index

Approximation Theory, 11

B-spline of degree k, 9
Bernstein polynomial, 3
Best Approximation, 12

Chebyshev economization, 17 Chebyshev Polynomials, 1 Complete cubic spline, 7 Cubic splines, 6

De la Vallée Poussin, 13 Discrete Exchange Algorithm, 15 Distinct, 1

First Integral relation, 11

Hermite interpolation, 2

Interpolate, 1

Least-squares Approximation, 12

Method of forced oscillation, 16 Minimax Approximation, 12

Natural cubic spline, 7 Near minimax, 17 Nodes, 1 Norm, 12 Not-a-knot, 8

Osculatory Interpolation, 2

Padé approximation, 17
Partition, 4

Reference, 14

Spline function of degree k, 8 Strictly diagonally dominant, 5

Truncated power, 8 Truncation Error, 1

Weiertrass approximation theorem, 2