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Motivation: GAIA data

GAIA is an astrophysics mission of the European Space Agency
(ESA) which will undertake a detailed survey of over 10? stars in
our Galaxy and extragalactic objects.

Satellite to be launched in 2011.

Aims of the mission (among others)

» Classify objects (star, galaxy, quasar,...)

» Determine astrophysical parameters (“"APs’: temperature,
metallicity, gravity) from spectroscopic data (photon counts at
certain wavelengths).

Work on these aims is led by the group “Astrophysical parameters”
based at MPIA Heidelberg, being part of the DPAC (Data

Processing and Analysis Consortium) which is responsible for the
general handling of data from the GAIA mission.

Yet, one has to work with simulated data generated through
complex computer models.
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GAITA data

® Photon counts simulated from APs through computer models:
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GAITA data: Estimation of APs

® Note that, for the actual estimation problem, the photon counts
form the predictor space and the AP’s form the response space (this

is opposite to the direction of simulation!)

® As a consequence, the regression problem may be degenerate (i.e.,
one set of photon counts may be associated to two different APs).
We focus here on the temperature, which features the least
amount of degeneration.

® Can one use a linear model here?
» Fit temperature against 16-dim photon counts (n = 1000).

> gala.lm <- Im(temperature™ specl + spec2 +
...+ specl6, data= gaia)
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GAIA data: Estimation of APs (cont.)

> summary(gaia.lm)
Coefficients:

Estimate Std. Error t value Pr(>|t])
(Intercept) -14033286 21104764 -0.665 0.506

specl 14065842 21104812 0.666  0.505
spec2 14216977 21107526 0.674  0.501
spec3 13982281 21106961 0.662  0.508
specd 13987405 21109664 0.663  0.508
specl6 13886697 21106076 0.658  0.511

Residual standard error: 1978 on 983 degrees of freedom

Does not seem to be a useful model for this data.



Dimension reduction

® Usual remedies:
» Model/ variable selection procedures

# Dimension reduction techniques
® The second one is obviously the more promising here.

® Look at scree plot:

[ p—

Comp.1 Comp.2 Comp.3 Comp.4 Comp.5 Comp.6 Comp.7 Comp.8 Comp.9 Comp.10

Vi
0.0000 0.0002 0.0004 0.0006 0.0008 0.0010 0.0012 0.0014

® Two (or maximal three) components appear to be sufficient.
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Principal component regression

® Fit temperature against the first three PC scores:

gaia.pcim <- Im(temperature © Compl + Comp2 +
+ Comp3, data = gaiapc)

Coefficients:
Estimate Std. Error t value Pr(>|t])

(Intercept) 10835.90 65.14 166.34 <2e-16

Compl -187339.39 1706.85 -109.76  <2e-16
Comp?2 -173967.35 3157.61 -55.09 <2e-16
Comp3 -155314.86 6726.19 -23.09 <2e-16

Residual standard error. 2060 on 996 degrees of freedom

® This is somewhat more appropriate than the full linear model,

but....

*k*x
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Principal component scores

® We plot the the first three principal component scores.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud.
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Principal component scores

® We plot the the first three principal component scores and shade
higher temperatures red.
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® Actually, we seem to need only one parameter if we were able to lay
a smooth curve through the data cloud.

® The parameterization along such a curve would be informative
w.r.t. to the target variable, temperature.
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GATA data and principal curves

® Hence, the following is to do:
(1) Estimate the smooth curve capturing the structure of the
(3-dim/16-dim) predictor space.
(2) Parameterize this curve and project all data points onto it.

(3) Fit temperature (or other APs) against the (1-dim.)
projections.

® Step (1) is a task for principal curves. There are a couple of
principal curve algorithms available, but not all of them are suitable

for task (2).

® \We concentrate here on local principal curves.
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Local principal curves (LPCs)

® Einbeck, Tutz & Evers (2005)

® Idea: Calculate alternately a local center of mass and a first local
principal component.
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Algorithm for LPCs

Given: A data cloud X = (X1,...,X,), where X; = (X1, ..., X5q).

1.
2.

Choose a starting point xg. Set x = x.

At x, calculate the local center of mass u* = > " ; w; X;, where

w; = Kp(X; —2) X5/ > " 1 Ku(X; — x), with bandwidth matrix H..

Compute the 15! local eigenvector v* of X% = (05%) (1<j,k<d), Where
0% = Dim Wil Xij — pf) (X — pi)-

Step from p* to x 1= p”* + oy

Repeat steps 2. to 4. until the 1™ remain constant. Then set x = x(, set
~v* := —~% and continue with 4.

The sequence of the local centers of mass y* makes up the local
principal curve (LPC).
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Parametrization

® After the LPC is fitted, a cubic spline is laid through the points p*
and the origin is fixed to t = 0 at one of the two ends. E.g., for
d = 2, we consider the LPC as a curve

f:R—>R2,tn—>(x(t))

and the parametrization along the curve is defined through the arc
length of the spline w.r.t. this origin.

® FEach point (x;, ;) can then be projected on the point of the curve
nearest to it, yielding the corresponding projection index ¢;, which
could, for example, be used as one-dimensional summary of the
predictor space in a multivariate regression problem.
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LPCs through GAIA data
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Local principal curves seem to capture the structure of the data
cloud adequately.

We want to predict stellar temperature from spectral data, using
the projection indices of the spectra as predictors.
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LPC Regression with GAIA data

® This is now a simple one-dimensional regression problem
yi = fti) +ei:
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LPC Regression with GAIA data

® This is now a simple one-dimensional regression problem
yi = fti) +ei:
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Shortcut

® | PC fitted directly through 16- dimensional space:

S YN e )N N NN N R




Direct data compression with LPCs

® 7oom into the the first three dimensions:

Data LPC

® Approximating the data cloud directly by a LPC works in principle,
but is potentially “dangerous™ As data gets sparse in high
dimensions, the LPC may miss remote parts of the predictor space
and its performance will depend on the choice of the starting point.
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Prediction

® For a new observation x,., (i.e., here, a new set of spectra),
prediction proceeds as follows:

® Project x,eq onto the LPC, giving t,c0.
o Compute Ynew = f(tnew) from the fitted regression model.

® Comparison: Prediction error (x10°) for 200 observations sampled
from the training data set:

LM  PC+4+Regr LPC+Regr PC+LPCHRegr
average(¢?) 4,119 4,395 2,215 2,633
median(é?) 1,035 1,300 66 51

where &; is the difference between true and predicted temperature.
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® Compare predicted values through LM and PC+LPC with true

Take care with boundaries!

temperature values:
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Conclusion and Outlook

® |ocal principal curves are well suited to compress complex
high-dimensional data structures, as long as the intrinsic
dimensionality of the data cloud is close to one.

® When the intrinsic dimensionality is two or larger, the extension to
local principal manifolds should be considered.
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Conclusion and Outlook

® |ocal principal curves are well suited to compress complex
high-dimensional data structures, as long as the intrinsic
dimensionality of the data cloud is close to one.

® When the intrinsic dimensionality is two or larger, the extension to
local principal manifolds should be considered.

=

L
QN

ET '
VAT
EI

I

A

/2y
0y
5

N
S
°2] .“ :
.#'f
|
)

ANAVANAVAVAN,
T
= a“ 1 %
N
&

ANANAN

A

g

".

‘L'

<IN
I~
I~

AVAVAVAV A

RN

YA
YAV
SRS
I H"
N
=
v
5
A

A
AVAVAY
Se8

S
B
SR

‘a Sl
e

’gb

o

]

'
o
o

TAN i,

e

Sy ""'--:\.
e ...work in progress!
d

e
it
SEERE
[
-

o
yav.
L
<y
2
L
~

e
T4,
M
o

5 :‘! g
K]
N

Ay
[

—n. 21/2



Literature

Einbeck, Tutz & Evers (2005): Local principal curves. Statistics and
Computing 15, 301-313.

Einbeck, Tutz & Evers (2005b): Exploring multivariate data structures
with local principal curves. In: Weihs, C. and Gaul, W. (Eds.):
Classification - The Ubiquitous Challenge. Springer, Heidelberg.

Einbeck, Evers & Bailer-Jones (2007): Representing complex data using
localized principal components with application to astronomical
data. In: Gorban, Kegl, Wunsch, & Zinovyev: Principal Manifolds

for Data Visualization and Dimension Reduction: Lecture Notes in
Computational Science and Engineering 58, 180—204.

—n. 22/°



	Motivation: GAIA data
	GAIA data
	GAIA data: Estimation of APs
	GAIA data: Estimation of APs (cont.)
	Dimension reduction
	Principal component regression
	Principal component scores
	Principal component scores
	GAIA data and principal curves
	Local principal curves (LPCs)
	Algorithm for LPCs
	Parametrization
	LPCs through GAIA data
	LPC Regression with GAIA data
	LPC Regression with GAIA data
	Shortcut
	Direct data compression with LPCs
	Prediction
	Take care with boundaries!
	Conclusion and Outlook
	Conclusion and Outlook

	Literature

