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Abstract: Usual exponential family regression models focus on only one designated quantity of the
response distribution, namely the mean. While this entails easy interpretation of the estimated regres-
sion effects, it may often lead to incomplete analyses when more complex relationships are indeed
present and also bears the risk of false conclusions about the significance/importance of covariates. We
will therefore give an overview on extended types of regression models that allows us to go beyond
mean regression. More specifically, we will consider generalized additive models for location, scale and
shape as well as semiparametric quantile and expectile regression. We will review the basic properties
of all three approaches and compare them with respect to the flexibility in terms of the supported types
of predictor specification, the availability of software and the support for different types of inferential
procedures. The considered model classes are illustrated using a data set on rents for flats in the City
of Munich.
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1 Introduction

A common (mis-)perception of statistics in the public opinion equates statistics with
means and averages, which has led to the famous quote that ‘statisticians are mean
lovers’ (Friedman et al., 2002). While most of us would probably argue that statistics
offers much more than means and that the analysis of any data set should usually
also comprise the calculation of other summary statistics such as variances, quantiles,
ranges, etc., the mean is still omnipresent in statistical analyses. This applies in
particular for regression modelling where the framework of generalized linear models
has led to a rather high popularity of models relating a regression predictor to
the mean of a response via a suitably chosen link function. While considerable
work has been done in recent years on extending regression models towards more
flexible specifications of the predictor with generalized additive models (Hastie and
Tibshirani, 1990; Ruppert et al., 2003; Wood, 2006) being the most prominent
example, the combination of such flexible, semiparametric predictors with regression
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models that go beyond the mean is still challenging. We will therefore review the
current state of the art of semiparametric regression beyond the mean and try to
guide the reader towards suitable model classes and to provide information on the
flexibility of the different model specifications, supported inferential principles and
the availability of software for actually fitting such regression models.

To set the scene, consider a regression situation with n observations (yi , zi ),
i = 1, . . . , n, on a continuous response variable y and covariates z. Then a typi-
cal regression model for the mean takes the form

yi = ηi + εi , E(εi ) = 0, Var(εi ) = σ 2,

with regression predictor ηi specified in dependence of the covariate z (we will discuss
specific choices later). The two assumptions on the error term imply that, on the one
hand, the predictor describes the expectation of the response since

E(yi ) = ηi + E(εi ) = ηi

and, on the other hand, that ordinary least squares estimation can be used due to the
homoscedasticity of the errors. Often, the error term will additionally be assumed
to follow a normal distribution such that εi i.i.d. N(0, σ 2) to facilitate inference
about the parameters contained in the regression predictor. In this case, the mean
regression model does not only imply that the variance does not depend on covariates
but also implies that all other distributional characteristics (such as the skewness or
the kurtosis) are equal for all observations.

Of course, mean regression models have the advantage of being easy to understand
and estimate and to entail easy interpretation of the regression effects contained in the
predictor since changes in the covariate values only induce changes in the expected
value of the response. However, it is often also too restrictive due to the strong
assumptions on the error term. For example, in case of heteroscedasticity also the
variance (or the standard deviation) of the response may depend on covariates.
This can (at least conceptually) easily be incorporated in the model formulation by
modifying the regression equation to the location-scale model

yi = ηi1 + exp(ηi2)εi , E(εi ) = 0, Var(εi ) = 1, (1.1)

with two predictor structures ηi1 for the mean and ηi2 for the standard deviation,
respectively, such that

E(yi ) = ηi1, Var(yi ) = exp(ηi2)2.

When the errors additionally follow a normal distribution, this is the simplest exam-
ple of a generalized additive model for location, scale and shape (GAMLSS, in fact
without an effect on the shape) as introduced by Rigby and Stasinopoulos (2005)
as a comprehensive class of models where different parameters of the response dis-
tribution are related to regression predictors. GAMLSS rely on flexible regression
specifications where a predictor is formulated not only for the mean of the response
but also for further parameters of the response distribution. This has the advan-
tage that a parametric distribution is kept for the response such that interpretation
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remains feasible (at least for not too complex types of distributions) and maximum
likelihood estimation can still be used. We will introduce GAMLSS in more detail in
Section 4.

While GAMLSS retain the assumption of a parametric distribution for the
responses (or equivalently the error terms), it may also be useful to completely drop
this assumption and to formulate nonparametric models that still allow us to describe
more than the mean of the response. This may in particular be the case if interest is
not on identifying covariate effects on specific parameters of the response distribu-
tion but on the relation of ‘extreme’ observations in the tails of the distribution on
covariates. This is enabled in quantile and expectile regression models where we go
back to the initial model formulation

yi = ηiτ + εiτ , (1.2)

but modify the assumptions on the error terms appropriately to model observations
in the tails as denoted by the asymmetry parameter τ ∈ (0, 1) that specifies the desired
‘extremeness’ and is therefore added to both the predictor and the error terms as a
subscript. In quantile regression (as originally proposed in Koenker and Bassett 1978
and comprehensively described in Koenker 2005), we assume that the τ -quantile of
the error term is zero, i.e., Fεiτ (0) = τ , where Fεiτ (·) denotes the cumulative distribution
function of the ith error term. This assumption implies that the predictor ηiτ specifies
the τ -quantile of yi and, as a consequence, the regression effects can be interpreted
on the quantiles of the response distribution. Estimation results for a dense set of
quantiles then also allow us to characterize the complete distribution of the responses
in terms of covariates, see Section 5 for details. An alternative to quantile regression
is expectile regression where basically the assumptions on quantiles are replaced with
expectiles which provide an alternative way of describing the tails of distributions in
terms of a generalization of the mean instead of a generalization of the median as in
quantile regression. We will introduce expectiles in more detail in Section 6.

Note that in fact any regression model relying on an explicit distributional assump-
tion for the responses also implicitly defines a quantile regression model. For example,
in case of a simple mean regression model with homoscedastic normal errors, the
τ -quantile of response yi is given by ηi + σ zτ , where zτ denotes the τ -quantile of
the standard normal distribution, and as a consequence the simple mean regression
structure implies parallel quantile curves. This can be overcome in the location-scale
model (1.1), where the quantiles are determined as ηi1 + exp(ηi2)zτ , but flexibility is
still limited as compared to ‘real’ quantile regression models.

To illustrate some of the basic concepts introduced so far, we analyse data from
the Munich rental guide 1999 where the response variable of interest is the net rent
paid for a specific flat. In addition to point predictions corresponding to expected
or average rents for flats with specific characteristics, interval boundaries for flats
comprising, for example, two-thirds of usual rents with given characteristics are of
high relevance to guide tenants and landlords. In the following, we consider only
very simple models where either the size of the flat (‘living area’) or the year of
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construction are treated as covariates. For the former, we use a linear model speci-
fication while a quadratic polynomial is used for the latter. A simple, homoscedas-
tic model yields the estimated effects visualized in the top row of Figure 1. Each
of the lines corresponds to a quantile curve from the set of quantiles specified
by τ = 0.01, 0.1, 0.2, . . . , 0.8, 0.9, 0.99. As discussed above, the resulting quan-
tile curves are all parallel since homoscedasticity is assumed. Especially for the effect
of living area, this assumption seems highly questionable and the estimated quantile
curves do not fit well with the visual impression of the distribution of the data, at
least for small and large values of the living area. For the year of construction, the
effect is less drastic but there seems to be some skewness in the error distribution that
is not reflected adequately.

As a second try, we consider the location-scale model (1.1) where again only a
single covariate is included in linear (living area) or quadratic (year of construction)
functional form. The results are shown in the second row of Figure 1 and indicate
an improved fit to the data especially for the living area where heteroscedasticity is
captured satisfactorily. Note that the estimated quantile curves are now nonlinear
despite the linear predictors specified for the living area since the predicted quantiles
are given by ηi1 + exp(ηi2)zτ , where the predictor for the standard deviation enters
nonlinearly. While the location-scale model seems to fit the heteroscedasticity for
living area, it still does not capture the skewness for the year of construction since
the normal distribution assumed for the errors is symmetric.

Finally, the third row of Figure 1 shows estimates for quantile regression model
(1.2). Now the estimated quantile curves are again linear for the living area since
the (linear) predictor acts directly on the quantile of interest. Obviously, quantile
regression allows to fit both heteroscedasticity and skewness satisfactorily in this
example and would therefore probably be the model of choice here. However, an
extended model including a further predictor for the skewness (utilizing for example
a Box-Cox power model or a power exponential model) may also yield a satisfactory
fit.

While this simple example already illustrates some of the advantages of going
beyond mean regression, there are several further areas of application where similar
model types are needed. Some examples, we have worked on or are currently working
on include

• childhood malnutrition in developing countries, where the impact of covariates
on extreme forms of malnutrition is of higher relevance than models for the
average nutritional status (Fenske et al., 2011).

• efficiency estimation in agricultural production, where we are particularly inter-
ested in covariates impacting above-average performance of farms.

• modelling gas flow networks, where the behaviour of the network in high
demand situations shall be studied.

In fact, once starting to think about regression models beyond the mean, they seem
to appear basically everywhere and it seems more and more questionable to restrict
attention solely to the mean of a response.
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Figure 1 Parametric models for the net rent in the Munich rental guide example. The top panel shows estimates
from a homoscedastic normal model, the second row estimates from a heteroscedastic location-scale normal
model and the third row estimates from quantile regression
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In all of the specified examples (and in fact also for the Munich rental guide),
simple linear regression specifications are not sufficient, but the data call for more
general, semiparametric predictor specifications similar in spirit to generalized addi-
tive models with predictor

ηi = β0 + f1(xi1) + . . . + fp(xip),

where β0 is an intercept while f1, . . . , fp are smooth functions of the continuous
covariates x1, . . . , xp. In this review, we will consider an even broader model class
provided by structured additive regression (Fahrmeir et al., 2004; Kneib et al., 2009)
that allows us to additionally include spatial effects, varying coefficient terms, inter-
action surfaces, random effects and a number of further extensions. Such complex
predictor structures are nowadays often required in applied regression modelling
to adequately reflect the complexity of the data collected. However, the combina-
tion of flexible predictor structures and regression models beyond the mean is still
challenging and not all desired combinations are yet supported.

The main aims of this paper can now be summarized as follows:

• Provide a brief introduction to the basic modelling concepts of GAMLSS,
quantile and expectile regression.

• Review semiparametric regression specifications and how they fit into the dif-
ferent modelling concepts.

• Discuss pros and cons of different inferential procedures and their suitability
for the different model classes.

• Discuss advantages and disadvantages of the model classes and provide guid-
ance for first time users of these models also in terms of software availability.

The view taken in this paper is notoriously subjective and not everyone will
agree with the pros and cons discussed for the different methods. This is in fact
intended and I am the first to admit that some of the statements may be debatable.
Anyway, I consider them to be worth this debate and would be happy if this paper
helps in stimulating discussion about semiparametric regression models beyond the
mean.

In the remainder of this paper, we will first introduce the class of semiparametric
predictor structures we are interested in (Section 2), followed by a discussion of
inferential procedures that could be used for fitting semiparametric regression models
(Section 3). Sections 4, 5 and 6 then contain material on GAMLSS, quantile regression
and expectile regression. Each section will introduce the basic concepts associated
with the model specification, the suitability of the previously introduced inferential
approaches and the advantages and disadvantages of the model class. Section 7 will
provide some summarizing comments as well as directions towards missing material
for future work.
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2 Semiparametric regression models

In the following, we will describe a generic structure for semiparametric regression
predictors as a general framework for any of the predictor components arising in
GAMLSS, quantile regression or expectile regression. For simplicity, we will drop
any indices indicating the specific purpose of the predictor to suppress complex
notation. For the moment, the predictor may also be considered the usual predictor
in mean regression representing the expectation of the response.

Instead of restricting our attention to regression models with linear predictors
ηi = z′iβ, we are interested in semiparametric regression models with structured
additive predictors (Fahrmeir et al., 2004; Kneib et al., 2009) of the generic form

ηi = β0 +
p∑

j=1

f j (zi ), (2.1)

where β0 is an intercept describing the overall level of the predictor and the generic
functions f j (zi ) reflect different types of regression effects depending on (subsets of)
the complete covariate vector zi . Associated with each function is a penalty term
λ j pen( f j ) that enforces specific properties of the function such as smoothness or
sparsity and λ j ≥ 0 are the corresponding smoothing parameters that govern the
impact of the penalty.

A broad and flexible class of function types is obtained with the following assump-
tions:

• The functions f j are approximated in terms of (possibly non-standard) basis
function expansions

f j (z) =
K∑

k=1

βjkBk(z),

where Bk(z) are the basis functions and βjk denote the corresponding basis
coefficients.

• The penalty is quadratic in the vector of basis coefficients βj = (β j1, . . . , β j K )′,
i.e.

pen( f j ) = β ′
j K jβj

with penalty matrix K j chosen such that the desired regularization properties
are achieved. In a Bayesian formulation, we would equivalently assume that
the regression coefficients are assigned a normal prior β j ∼ N(0, δ2

j K−
j ), where

the variance δ2
j represents an inverse smoothing parameter, the penalty matrix

K j defines the precision of the normal distribution and K−
j is the generalized

inverse. Note that K j is not necessarily of full rank such that the normal
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distribution may be partially improper with density

p(β j |δ2
j ) ∝

(
1
δ2

j

) rank(Kj )

2

exp

(
− 1

2δ2
j

β ′
j K jβ j

)
(2.2)

that cannot be normalized to integrate to one.

This framework comprises several well-known special cases such as generalized
additive models (Hastie and Tibshirani, 1990; Wood, 2006), varying coefficient
models (Hastie and Tibshirani, 1993) or geoadditive models (Kamman and Wand,
2003) and has been introduced in full generality as structured additive regression in
Fahrmeir et al. (2004) for Bayesian and penalized likelihood inference and (Kneib
et al., 2009) for functional gradient descent boosting.

The basis function expansion allows us to rewrite the generic predictor in matrix
notation as

η = β01 + B1β1 + . . . + Bpβp,

where 1 is a vector of ones while the design matrices B j are obtained from the
evaluations of the basis functions, i.e. B[i, k] = Bk(zi ).

Some special predictor components arising for specific choices of the basis func-
tions and penalties are as follows:

• Penalized splines for nonlinear effects f (z) = f (x) of a single continuous covari-
ate x: The basis functions are B-spline bases B(l)

k (x) of fixed degree l defined
upon a set of equidistant knots while the penalty matrix is given by K = D′ D,
where D is a dth order difference matrix. Cubic penalized splines with sec-
ond order difference penalty can be considered a low rank approximation to
smoothing splines based on an integrated squared second derivative penalty.

• Varying coefficient terms f (z) = x1 f (x2), where the effect of covariate x1 varies
smoothly with respect to the continuous covariate x2: The function f (x2) is
again represented using penalized splines and, as a consequence, the elements
of the design matrix are given by B[i, k] = xi1 B(l)

k (xi2). The penalty remains the
same as with usual penalized splines.

• Markov random fields f (z) = f (s), where s ∈ {1, . . . , S} denotes a discrete
spatial location index (e.g., regions, counties, . . . ): The basis functions are
indicator functions for the different regions, i.e., Bs(si ) = I(si = s) is equal to
one if observation i is collected in region s and zero otherwise. To enforce
spatial smoothness, the penalty matrix is an adjacency matrix with elements

K[s, r ] =

⎧⎨
⎩
−1, if regions s and r are neighbors,
Ns, if s = r and
0, otherwise,

where Ns denotes the number of neighbors for region s.

Statistical Modelling 2013; 13(4): 275–303
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• Tensor product interaction surfaces f (z) = f (x1, x2) of two continuous covari-
ates: Based on penalized spline bases B(1)

k (x1) and B(2)
l (x2) with penalty matrices

K1 and K2, the basis functions for the interaction surface are constructed by
considering all tensor product basis functions Bkl(x1, x2) = B(1)

k (x1) · B(2)
l (x2)

and forming the kronecker penalty K = (K1 ⊗ I + I ⊗ K2).
• Radial basis functions f (z) = f (x) for a vector of continuous covariates x:

Within the framework of reproducing kernel Hilbert spaces, the basis functions
are given by kernel functions k(·, ·) centered at the observed covariate values
xk, i.e., Bk(x) = k(x, xk), while the entries of the penalty matrix are given by
K[k, l] = k(xk, xl).

• Cluster-specific random effects f (z) = βc depending on the cluster index c ∈
{1, . . . , C}: As for regional spatial effects, the basis functions are indicator
functions for the different clusters, i.e. Bc(ci ) = I(si = c) is equal to one if
observation i belongs to cluster c and zero otherwise. For i.i.d. random effects,
the penalty matrix is simply the identity matrix, i.e., K = I .

3 Inferential procedures

To fit semiparametric regression models, several inferential procedures have been
proposed so far. In the following, we will mostly concentrate on three potential
avenues to adapt inference in semiparametric mean regression to regression models
beyond the mean:

• Direct optimization of a lack of fit criterion,
• Bayesian inference and
• functional gradient descent boosting.

These three areas have been chosen since they reflect the current state of the art in
semiparametric regression utilizing the predictor structure discussed in the previous
section.

Direct optimization relies on the description of the estimation task in terms of a
lack of fit criterion l(y, η) that describes the discrepancy between a candidate set of
predictors η and the observed responses y. In parametric settings, the lack of fit may
be described by the negative log-likelihood while in more general settings any type
of a loss function may be employed. Estimation is then achieved by minimizing the
penalized lack of fit criterion

l(y, η) +
p∑

j=1

λ jβ
′
j K jβ j

using some numerical optimization procedure such as penalized Fisher scoring if the
loss function is twice continuously differentiable with respect to the basis coefficients
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of the structured additive predictor. The selection of smoothing parameters is then
typically based on some external criterion such as a generalized cross validation score
or Akaike’s information criterion. An increasingly popular alternative that allows
to simultaneously estimate basis coefficients and smoothing parameters employs the
connection between penalized smoothing and mixed models (see Green, 1987; Speed,
1991, for early references and Ruppert et al., 2003; Fahrmeir and Kneib, 2011 for
comprehensive introductions). Here, the basis coefficients β j of a specific term in the
predictor are treated as random effects β j ∼ N(0, δ2

j K−
j ) such that the smoothing

variance δ2
j (and therefore also the smoothing parameter λj ) can be estimated using

restricted maximum likelihood principles.
Bayesian inference relies on the interpretation of penalties pen(β j ) as prior distri-

butions (2.2) and requires the specification of an observation model p(y|η) for the
responses corresponding to the likelihood in a frequentist setting. Then the posterior
can in principle be assessed via the proportionality

p(β0, β1, . . . , βp|y) ∝ p(y|η)p(β0)p(β1) · . . . · p(βp)

although in most cases of practical relevance the normalizing constant for the right
hand side cannot be determined analytically such that the posterior is only known
upon proportionality. Still, maximization of the posterior for given smoothing para-
meters is possible using the same numerical optimization schemes as for direct opti-
mization. The resulting posterior mode estimates then coincide with penalized like-
lihood estimates. However, in most cases, Bayesian inference will rely on Markov
chain Monte Carlo (MCMC) simulation techniques that do not only provide the
posterior mode but also give access to the full posterior distribution. In particular,
if the observation model is Gaussian or has a latent Gaussian representation (as for
example in case of the probit model), MCMC simulations can be conveniently imple-
mented since the normal prior (2.2) is conjugate and will lead to simple Gibbs sample
updates. For more general types of distributions, iteratively weighted least squares
proposals based on a quadratic approximation of the full conditional are generally a
good alternative that automatically adapts to the form of the full conditional without
requiring the manual tuning of proposal hyperparameters (Gamerman, 1997; Brezger
and Lang, 2006). Inference based on MCMC also naturally incorporates estimation
of the smoothing variance δ2

j by assigning an additional hyperprior such as an inverse
gamma prior δ2

j ∼ IG(a, b) that is conjugate to the multivariate normal prior of the
basis coefficients. A recent alternative to Bayesian inference utilizing MCMC is pro-
vided by nested integrated Laplace approximations (Rue et al., 2009) that allow
to construct precise approximate solutions for marginal posterior distributions of
interest.

A third alternative to perform inference in structured additive regression mod-
els is given by functional gradient descent boosting, an approach that originated
from the machine learning community for optimization in complex problems (see
Bühlmann and Hothorn 2007 for an introduction from a statistical perspective). The
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basic idea is to fit simple base-learning procedures to iteratively updated gradients
of an optimization problem to achieve a final estimate. When using a component-
wise boosting approach, where separate base-learners are specified for each of the
model components in the semiparametric predictor (2.1), boosting has the particular
advantage that it combines model estimation (including data-driven determination of
the appropriate amount of smoothness) with automatic variable selection and model
choice.

In case of structured additive regression with the quadratic penalties discussed in
the previous section, a suitable base-learner class is given by penalized least squares
fits as characterized by the hat matrix

H j = B j (B ′
j B j + λ j K j )

−1 B ′
j

that projects the current gradients to the fitted values (see Kneib et al., 2009 for
details). Note that in this case, the smoothing parameter λj is not a hyperparameter
of the model but only a tuning constant of the base-learner. In fact, the exact value
of λj is not of that much importance as long as all base-learners are of comparable
complexity (see Hofner et al., 2012).

A compact description of functional gradient descent boosting is provided by the
following algorithm:

1. Initialize the predictor η̂[0] ≡ offset and the functions f̂
[0]
j ≡ 0; set m = 0.

2. Increase m by 1. Compute the negative gradients (‘residuals’)

ui = − ∂

∂η
l(yi , η)|η=η̂[m−1], i = 1, . . . , n.

3. Fit the base-learners to the negative gradient vector u = (u1, . . . , un)′, yielding

û j = B j (B ′
j B j + λ j K j )

−1 B j u.

4. Find the best-fitting base-learner

j∗ = arg min
j

n∑
i=1

(ui − ûi j )
2.

5. Update f̂
[m]
j∗ = f̂

[m−1]
j∗ + ν · û j∗ and keep all other effects constant, i.e. f̂

[m]
j =

f̂
[m−1]

, j =/ j∗.
6. Iterate steps 2 to 4 until m = mstop.

The step length factor ν is applied in the update step to prevent the algorithm
from overfitting the current base-learner. This is particularly advantageous in case
of correlated covariates where boosting gives all covariates a chance to enter the
final estimate while using a full fit in the update would usually only include one
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representative out of the correlated set of covariates. Usual values for the step length
are ν = 0.1 or ν = 0.01. The most crucial quantity for the boosting algorithm is
the number of boosting iterations mstop. When using a rather larger value of mstop,
this will yield estimates very close to the minimum of the loss function. However, in
complex models with a large number of terms, some kind of regularization is usually
desired. In boosting, this regularization is achieved implicitly by stopping early, more
precisely stopping in an iteration that yields results that are well generalizable to new
data sets. Hence, mstop is often determined by cross validation techniques. Another
advantage of early stopping in componentwise boosting is that covariates that carry
only very few information on the responses will effectively drop out of the model
since they will not be selected in the early iterations of the boosting algorithm.

Before actually relating the inferential procedures to the three types of regression
models we want to consider, we will now give some information on their advantages
and disadvantages.

Direct optimization has the advantage that, unlike MCMC inference and partially
also boosting, it does not depend on hyperprior choices, sampling performance or
the choice of tuning constants such as step length and smoothing parameters for the
base-learners. It is therefore also often advantageous for theoretical considerations
since the estimates can be characterized as roots of the (quasi-) score function of the
lack of fit criterion. Finally, the connection to mixed models for smoothing parameter
selection does not only allow for a routine determination of an adequate amount of
smoothness but also bridges the gap between frequentist and Bayesian interpretation
of semiparametric regression when the basis coefficients are interpreted as random
effects. On the other hand, direct optimization is not very modular and therefore
also smaller modifications in the model structure often require the re-development of
numerical implementations. For example, utilizing an L1 penalty for some of the basis
coefficients not only affects estimation of these basis coefficients but would induce
a combination of L1 and L2 penalties that makes inference challenging. Moreover,
the connection to mixed models is usually only useful with quadratic penalty terms
since for the corresponding case of Gaussian random effects distributions, estima-
tion of random effects variances is well developed. Finally, measures of uncertainty
and hypothesis tests will usually rely on asymptotic arguments when using direct
optimization techniques.

Bayesian inference based on MCMC simulations has the distinct advantage of
being very flexible since it decomposes the estimation of the complete model into
smaller blocks that are treated separately in a modular fashion using the corre-
sponding full conditionals. As a consequence, the hierarchical model formulation in
structured additive regression can be fully exploited to derive both numerically effi-
cient sampling techniques and to build complex models from simple building blocks.
In particular, when modifying the prior for one basis coefficient block, this does not
affect the full conditional for the remaining basis coefficients. The decomposition into
parameter blocks also has the advantage that the estimation complexity only grows
linearly with the number of model terms while direct optimization will usually grow
with quadratic or cubic order. Finally, MCMC provides access to the full posterior
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distribution and therefore enables exact uncertainty assessments also for complex
functions of the unknown parameters without the need of asymptotic arguments.
On the downside, MCMC requires the specification of a likelihood and is therefore
not directly applicable in quasi-likelihood or distribution-free approaches (although
we will abuse the Bayesian machinery later on in quantile regression nevertheless).
Moreover, the suitable choice of a proposal density as well as sensitivity with respect
to prior choices including hyperparameters may lead to debates about the validity of
the results obtained with MCMC (although this may not be that much of an issue
in situations with enough informative data and IWLS proposals). Another technical
difficulty is the question whether the posterior is actually proper although some of
the basis coefficient priors (2.2) are (partially) improper (see Fahrmeir and Kneib,
2009, for some results in this regard).

For boosting, the main advantage is its automatic ability to perform variable
selection and model choice by early stopping when choosing the number of boost-
ing iterations appropriately. It also offers considerable flexibility with respect to the
considered optimization problem since basically any loss function can be plugged
into the generic algorithm described above. This in particular enables the estimation
of robust regression models or quasi-likelihood regression. In addition, the decom-
position of the model into base-learners that are fitted separately provides a similar
kind of modularity as in case of MCMC although the flexibility is more limited for
boosting. On the other hand, boosting does only provide point estimates for the
predictor terms while no measures of estimation uncertainty are directly available.

In summary, there is no generally favourable approach to estimate structured
additive regression models but all approaches have their characteristic properties.
The discussion above will hopefully give some guidance on which approach may be
most suitable for a given problem.

4 Generalized additive models for location, scale and shape (GAMLSS)

GAMLSS provide a unified framework for estimating semiparametric regression
models when assuming that the responses yi follow distributions depending on up
to four parameters (μi , σi , νi , ξi ), where usually μi and σi are a location and a scale
parameter, respectively, while νi and ξi correspond to shape parameters such as skew-
ness or kurtosis. The limitation to four parameters is only chosen for convenience
since common distributions rarely have more than four distributional parameters
and because interpretation becomes quite messy in more complex cases. Each of the
distributional parameters is related to a predictor via a suitable link function, i.e.

μ = g1(η1), σ = g2(η2), ν = g4(η4) . . .

The class of distributions covered by GAMLSS is very broad and comprises, at
the moment, more than 50 different distributions. For continuous responses, the
most prominent examples are the normal distribution (with up to two parameters
and either the standard deviation or the variance as scale parameter), the power
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exponential distribution (with up to three parameters), the gamma distribution (with
up to three parameters), the t-distribution (with up to three parameters) or the Box-
Cox power exponential distribution (with four parameters). Discrete distributions
such as zero-inflated Poisson or zero-inflated negative binomial are also supported
but are not considered here since they do not fit well in the framework where we aim
at comparing GAMLSS with quantile and expectile regression.

Estimation in GAMLSS usually relies on likelihood principles and requires the
(at least numerical) availability of first (and optimally second) derivatives to facili-
tate optimization via Fisher-scoring type algorithms. Penalized maximum likelihood
inference for GAMLSS including the automatic determination of smoothing parame-
ters is included in the R add-on package gamlss (Stasinopoulos and Rigby, 2011).

Bayesian inference in GAMLSS is also conceptually straightforward but the devel-
opment of suitable proposal densities for the basis coefficient blocks can become quite
challenging depending on the type of distribution considered. Some first attempts in
this direction are available in Cottet et al. (2008) and we are currently in the process
of developing a general strategy based on iteratively weighted least squares proposals
for Bayesian GAMLSS that shall be included in the software package BayesX (Belitz
et al., 2012).

The derivation of boosting algorithms is somewhat more challenging since a
GAMLSS comprises not only one but also several predictors. As a consequence,
the optimal stopping iteration may be different for each of the predictors such that
algorithmic fine-tuning is required. Such a proposal is made in Mayr et al. (2012)
and implemented in the R add-on package gamboostLSS (Hofner et al., 2011).

The major advantage of GAMLSS is that the predictors act directly on inter-
pretable response quantities and therefore facilitate the understanding of the esti-
mated regression effects. As an example, we estimate a location-scale model

yi ∼ N(μi , σ 2
i ),

with
μi = ηi1 and σi = exp(ηi2)

based on the normal distribution for the Munich rental guide data, where both pre-
dictors for the mean and the standard deviation are additively composed of nonlinear
effects of living area and year of construction. For both nonlinear effects, a cubic
penalized spline with 20 inner knots and second difference penalty has been chosen
and estimation was carried out using the penalized maximum likelihood approach
implemented in gamlss. The estimation results are visualized in Figure 2 and basi-
cally confirm our initial findings from the introduction. More specifically, we find an
almost linear increase in the expected net rent with increasing living area and also
an increasing net rent for newer buildings. The latter effect is almost absent for very
old buildings but only starts for flats built after 1950. For very new buildings, there
seems to be a small decline in net rents but the associated uncertainty does not allow
to make a strong statement about that decline. For the standard deviation, we also
find a linear increase with the living area that confirms our exploratory detection of
heterogeneous variances for this covariate. For the year of construction, the effect
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Figure 2 Additive model fits obtained with a location-scale normal model. The top panel shows results for the
mean and the lower panel results for the standard deviation. The solid line indicated the penalized maximum
likelihood estimate, the dashed lines indicate pointwise 95% confidence intervals

on the standard deviation is much smaller in magnitude but gives some indication
of reduced variability during the 1960s and 1970s. Although these results are in line
with the ones obtained in the introduction based on parametric models, the GAMLSS
specification based on splines has two important advantages: It considers both living
area and year of construction in one joint additive model and determines the amount
of smoothness and nonlinearity from the data instead of imposing a parametric form
for the effects.

Another advantage of GAMLSS in addition to easy interpretability is that we
formulate one coherent model for the response distribution. This also implies that
quantile curves derived from the estimated model will never cross (which will be
an issue in quantile regression, where separate curves are estimated per quantile,
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see the next section). Finally, GAMLSS can be interpreted and estimated in both a
frequentist and Bayesian context without any conceptual difficulties.

On the downside, GAMLSS bear the risk of mis-specifying the response model.
For example, in case of the rental guide, we found some evidence for varying skewness
with year of construction in the introduction. With the above location-scale model,
we will not be able to detect or capture such effects. Of course, utilizing a more
complex model with more parameters allows to address the skewness problem, but
naturally the maximum flexibility is limited and any distributional choice bears the
risk of deciding for the wrong model. An exploratory tool for assessing the model
fit and also for comparing different model specifications are quantile residuals as
suggested in Dunn and Smyth (1996). Another disadvantage of GAMLSS is the fact
that no direct estimates of quantiles of the response distribution are available. If the
ultimate aim of an analysis is the determination of specific quantiles, then it may be
more adequate to formulate a model directly for these quantiles (as detailed in the
following section).

5 Quantile regression

Quantile regression for the τ -quantile starts from the model

yi = ηiτ + εiτ , Fεiτ (0) = τ,

where Fεiτ (·) denotes the cumulative distribution function of εiτ . This defines a spec-
ification that is similar to usual mean regression but replaces the assumption of zero
means for the error terms with the assumption of zero τ -quantiles. As a consequence,
the predictor ηiτ is the τ -quantile of the response yi since

τ = Fεiτ (0) = P(εiτ ≤ 0) = P(ηiτ + εiτ ≤ ηiτ ) = P(yi ≤ ηiτ ) = Fyi (ηiτ ).

Note that no further assumptions (apart from independence) are made on the error
terms and therefore quantile regression is also applicable in situations with het-
eroscedastic error terms. In fact, quantile regression is only of interest in such situ-
ations, where not only the mean depends on covariates but also other properties of
the response distribution.

Classical estimation in quantile regression relies on optimizing an asymmetrically
weighted absolute error criterion. Recall that empirical quantiles q̂τ based on an i.i.d.
sample of observations y1, . . . , yn can be estimated as

q̂τ = arg min
q

n∑
i=1

wτ (yi , q)|yi − q|
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with asymmetric weights

wτ (yi , q) =

⎧⎨
⎩

1 − τ, yi < q,

0, yi = q,

τ, yi > q,

that basically weight observations below and above the quantile of interest differently
to shift the estimate to upper or lower parts of the sample. Regression quantiles
can then in analogy be determined by replacing the common quantile q with the
predictor ηiτ of the semiparametric regression model and augmenting the penalty
terms, yielding

n∑
i=1

wτ (yi , ηiτ )|yi − ηiτ | +
p∑

j=1

λ j pen( f j ). (5.1)

For quantile regression, linear programming is the standard approach in parametric
model specifications that allows for routine and fast optimization of the asymmetri-
cally weighted L1-loss function (see Koenker, 2005, for details). This approach can
still be used in combination with L1 penalty terms arising for example from the
LASSO or in total variation penalization for spline regression (Koenker et al., 1994)
where

pen( f j ) =
∫

| f ′′j (x)|dx.

However, the class of quadratic penalties introduced in Section 2 does not fit in
the L1 framework and renders linear programming inappropriate. This is particu-
larly problematic when moving from purely additive quantile regression to extended
models that also comprise spatial or random effects. In addition, the simultaneous
estimation of basis coefficients and smoothing parameters is still challenging and
largely unsolved in the linear programming framework.

While Bayesian inference is obviously an alternative for estimation in GAMLSS,
it seems to be more complicated to relate Bayesian approaches to the nonparametric
formulation of quantile regression that does not involve an explicit specification of
the observation model. However, due to the formal equivalence between penalized
estimates and posterior modes based on suitable auxiliary error distributions, such
a connection is indeed possible (see Yu and Moyeed, 2001 and Yue and Rue, 2011,
for references on Bayesian quantile regression). Assuming the asymmetric Laplace
distribution ALD(0, σ 2, τ ) with density

pεiτ (εi ) =
τ (1 − τ )

σ 2
exp

(
−wτ (εi , 0)

|εi |
σ 2

)
.
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for the error terms induces the likelihood

exp

(
−

n∑
i=1

wτ (yi , ηiτ )
|yi − ηiτ |

σ 2

)

and therefore maximizing the corresponding penalized likelihood is equivalent to
minimizing (5.1).

The main advantage of the connection between quantile regression and the asym-
metric Laplace distribution is that the latter has a representation as a location-scale
mixture of normals and therefore enables the construction of efficient Gibbs sam-
pling algorithms based on this latent Gaussian formulation. More specifically, if
zi | σ 2 ∼ Exp(1/σ 2) and

yi | zi , ητ , σ 2 ∼ N(ητ + ξzi , σ 2/wi )

with

ξ =
1 − 2τ

τ (1 − τ )
, wi =

1
δ2zi

, δ2 =
2

τ (1 − τ )
,

then yi is marginally ALD(ηiτ , σ 2, τ ) distributed. It therefore turns out that, after
imputing zi as additional unknowns in the Bayesian algorithm, yi can be treated as
conditionally Gaussian with the same regression predictor as the quantile regression
problem of interest if an additional offset term ξzi and weights wi are included. As
a consequence, Gibbs sampling updates result for all unknown quantities (including
the latent variables zi ) and Bayesian inference becomes feasible even for rather com-
plex predictor structures and including the automatic determination of smoothing
parameters (see Yue and Rue, 2011, and Waldmann et al., 2013, for details on the
location scale representation of the ALD and its application in Bayesian semipara-
metric quantile regression). An alternative, approximate solution to the optimization
of Bayesian quantile regression within the framework of integrated nested Laplace
approximations is provided by Yue and Rue (2011).

In the following, we discuss a geoadditive extension of the Munich rental guide
analysis, where the quantile-specific predictor is given by

ητ = β0 + f1(living area) + f2(year of construction) + f3(subquarter),

where f1 and f2 are Bayesian cubic penalized splines with 20 inner knots and second
order difference penalty for living area and year of construction and f3 corresponds
to a Markov random field defined upon the roughly 450 subquarters of the City
of Munich where two subquarters are treated as neighbors if they share a common
boundary. Estimation is based on a Gibbs sampler implemented in BayesX (Belitz
et al., 2012). Figure 3 shows selected posterior mean estimates for the 0.1, 0.5 and
0.9 quantiles together with pointwise 95% credible intervals. For the living area,
we obtain close to linear estimates for all quantiles but the slope of the estimated
effect seems to increase with larger values for the quantile τ (as already seen in the
introduction). For the year of construction, there is less variation across the different
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Figure 3 Estimated nonlinear effects in a Bayesian geoadditive quantile regression model for the Munich rental
guide. The top row shows results for τ = 0.1, the middle row for τ = 0.5 and the bottom row for τ = 0.9
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Figure 4 Estimated spatial effects in a Bayesian geoadditive quantile regression model for the Munich rental
guide

quantiles. Figure 4 shows estimated spatial effects for four different quantiles. There
seems to be a somewhat larger variation in the spatial effect for more extreme
quantiles, i.e., either cheap or expensive flats seem to be more heterogeneous across
the subquarters of Munich. In addition, there is a tendency for larger effects in the
center where even the 10% quantile is higher than on average.

Obviously, Bayesian quantile regression abuses the likelihood for the asymmetric
Laplace distribution based on the formal equivalence of posterior modes and penal-
ized maximum likelihood inference. This may seem questionable since of course
the data will usually not follow the asymmetric Laplace distribution and moreover
different distributional specifications are used for each quantile, so that there is no
coherent supermodel combining the separate specification. In addition, we obtain
posterior mean estimates and also estimate the smoothing parameters along with
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the rest of the parameters which makes the connection between the original opti-
mization criterion and the Bayesian formulation even weaker. In summary, it is not
automatically clear that either the point estimates or the credible bands obtained
from our Bayesian analyses can be interpreted in a meaningful way. This problem is
investigated in more detail in Waldmann et al. (2013) who study Bayesian quantile
regression in simulations and complex case studies and also compare the results with
those from a frequentist analysis using quantile smoothing splines (Koenker et al.,
1994). Their findings indicate that the point estimates of Bayesian quantile regression
are typically very close to the true model. The credible bands are usually too narrow
in particular for extreme quantiles but still reasonably reflect the uncertainty attached
to the estimated effects.

As a consequence, alternative avenues for Bayesian quantile regression have
also been explored in the literature. Basically, these approaches refrain from using
the asymmetrically weighted absolute error criterion underlying fequentist quantile
regression and instead aim at modelling the error distribution Fε in a flexible, data-
driven way while still incorporating the quantile restriction Fε(τ ) = 0 such that the
covariates affect the quantile of interest. Examples include Kottas and Krnjajic (2009)
based on different Dirichlet process mixtures for the quantile-specific error distribu-
tion, Reich et al. (2010) utilising a joint location-scale model for all quantiles with
linear predictors for mean and standard deviation and Dirichlet process mixture for
the error density, and Taddy and Kottas (2010) utilising a joint Dirichlet process
mixture for covariates and responses.

An alternative to a Bayesian treatment of quantile regression is provided by a
special instance of the boosting algorithm described in Section 3 (see Fenske et al.,
2011 for details). This algorithm requires the gradients of the loss function which, in
case of quantile regression, are given by

ui =

⎧⎨
⎩

τ, yi > η̂
[m−1]
i ,

0, yi = η̂
[m−1]
i ,

τ − 1, yi < η̂
[m−1]
i .

Note that the case yi = η̂
[m−1]
i only appears with zero probability and therefore the

definition in this point is basically arbitrary. Based on these gradients, the boosting
algorithm can be applied without any further changes.

Concerning software for quantile regression, the usual starting point will be the
R-package quantreg (Koenker, 2011) that collects both standard parametric quan-
tile regression and a number of extensions comprising quantile smoothing splines in
additive models. Most of the optimization in this package is based on linear pro-
gramming techniques. Bayesian structured additive quantile regression is available
in BayesX (Belitz et al., 2012) while the boosting approach is implemented in the
R-package mboost (Hothorn et al., 2011).

The main advantage of classical quantile regression is that it allows to analyse
regression data in a completely distribution-free approach that avoids restrictive
assumptions about the error terms and only requires independence. It also facilitates
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easy interpretation of the estimated effects that impact the conditional quantiles of
the response distribution. While flexibility of the possible predictor structures is basi-
cally limited to additive model specifications (possibly comprising bivariate surfaces
based on triograms; Koenker and Mizera, 2004), both the Bayesian formulation and
boosting enable the application of the full potential of structured additive regression
and also allow for the data-driven determination of smoothing parameters.

A disadvantage of the Bayesian approach already discussed above is that it relies
on a misspecified likelihood. As a consequence, formal inferences about the estimated
effects are not possible although simulation evidence suggests that these inferences
can be considered to be relatively reliable at least for not too extreme quantiles.

A theoretical disadvantage of quantile regression in general is that the estimated
cumulative distribution function for the responses is a step function (similar as the
empirical cumulative distribution function that can be considered the special case
of quantile regression with only an intercept term) while the theoretical cumulative
distribution function is usually assumed to be continuous. Of course, this problem is
not too important for larger data sets where the steps will be rather small. Another
disadvantage of quantile regression is that estimates for each quantile are determined
separately. As a consequence, crossing quantile curves where η̂τ1 > η̂τ2 for some
τ1 < τ2 are frequently observed especially when considering a dense set of quantiles.
Possibilities to circumvent this problem for example based on simultaneous estima-
tion of all quantiles in quantile sheets (Schnabel and Eilers, 2013a) or based on
non-decreasing rearrangements (Dette and Volgushev, 2008) have been proposed in
the literature but these always require additional efforts and are not always applicable
with additive predictor specifications.

6 Expectile regression

An alternative to quantile regression is obtained when replacing the asymmetric
absolute deviations with asymmetric quadratic deviations, yielding the optimization
criterion

n∑
i=1

wτ (yi , ηiτ )(yi − ηiτ )2 +
p∑

j=1

λ j pen( f j ). (6.1)

This has been originally proposed by Newey and Powell (1987) under the term
expectile regression (in a linear framework without penalization) and has recently
regained considerable attention due to its computational advantages (Schnabel and
Eilers, 2009; Sobotka and Kneib, 2012; Sobotka et al., 2013a). The expectile regres-
sion criterion exhibits a closer connection to ordinary least squares estimation and in
fact usual mean regression appears as a special case with τ = 0.5 where (6.1) reduces
to a scaled least squares criterion.

While it is obvious that expectiles provide a counterpart to quantiles, they do
not enjoy the easy interpretability of quantiles. It is therefore of interest to not only
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define an optimization criterion but also gain a deeper understanding of what an
expectile is. Empirical expectiles for i.i.d. samples are obtained as a special case of
(6.1) when considering a constant predictor ηiτ = eτ (and dropping the penalty)
yielding a weighted average of the responses, i.e.

êτ =
n∑

i=1

wτ (yi , êτ )yi .

Note, however, that the weights depend on the solution so that the solution cannot
be determined analytically but has to be computed iteratively. One can also define
theoretical expectiles eτ for a random variable y by replacing the empirical risk in
(6.1) with the expectation, i.e.

eτ = arg min
e

E(wτ (y, e)(y − e)2).

It can then be shown that the solution can also be characterized via

τ =

∫ eτ

−∞ |y − eτ | fy(y)dy∫ ∞
−∞ |y − eτ | fy(y)dy

=
Gy(eτ ) − eτ Fy(eτ )

2(Gy(eτ ) − eτ Fy(eτ )) + (eτ − μ)
,

where fy(·) and Fy(·) denote the density and cumulative distribution function of y,
Gy(e) =

∫ e
−∞ yfy(y)dy is the partial moment function of y and Gy(∞) = μ is the

expectation of y. When not considering only one expectile for given τ but a dense set
of asymmetries τ , the complete distribution of y can be characterized by the expec-
tile function similar as with the quantile function. This also offers the possibility to
determine quantiles from expectiles as shown in Schnabel and Eilers (2011b) and
Waltrup et al. (2012). Waltrup et al. (2012) also compare expectiles and quantiles
based on theoretical investigations and simulations and find that expectiles may be
more efficient in estimating quantiles than the direct calculation of quantiles for a
number of distributions and also show a smaller probability to obtain crossing expec-
tile curves than in the direct estimation of quantiles. Still, non-crossing expectiles can
be enforced with similar approaches as discussed for quantile regression. Another
point in favour of expectiles is their relation to commonly applied risk measures in
finance such as the expected shortfall, see Taylor (2008) or Kuan et al. (2008).

However, the main advantage of expectile regression is that estimates can be
derived fairly easily based on iteratively weighted least squares iterations

β̂
[t+1]
jτ = (B ′

j W
[t]
τ B j + λ j K j )

−1 B ′
j W

[t]
τ y,

where B j is the design matrix associated with the jth model term, y is the vector of
responses and Wτ = diag(wτ (y1, η1τ ), . . . , wτ (yn, ηnτ )) is a diagonal matrix containing
the weights. Since the weights also depend on the current estimates, an iteration loop
is required to obtain the final estimates. Still, the approach already shows that the
asymmetrically weighted quadratic loss fits well with the class of quadratic penalties
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we are considering. Expectile regression also enables the incorporation of smoothing
parameter selection, for example by making use of the mixed model representation of
penalized regression, see Sobotka and Kneib (2012) and Schnabel and Eilers (2009)
for details.

Similarly as with Bayesian quantile regression, an asymmetric normal distribu-
tion can be considered in Bayesian expectile regression but this avenue has not yet
been explored in detail (most probably since estimation via iteratively weighted least
squares already allows for data-driven determination of smoothing parameters). Still
it would have the advantage that some flexible model extensions that can be easily
included in Bayesian inference (such as LASSO regularization or Dirichlet process
priors for random effects) could then also be employed in expectile regression.

A boosting approach for expectile regression, on the other hand, is very easy to
derive since in this case the gradients are given by

ui =

⎧⎨
⎩

τ |yi − η̂
[m−1]
i |, yi > η̂

[m−1]
i ,

0, yi = η̂
[m−1]
i ,

(τ − 1)|yi − η̂
[m−1]
i |, yi < η̂

[m−1]
i .

Both direct optimization and boosting for expectile regression are available in the
R-package expectreg (Sobotka et al., 2012b).

We utilize the direct optimization approach to re-estimate the geoadditive model
for the rental guide example that we have studied in the context of Bayesian quantile
regression in the last section. Figure 5 shows estimated effects for three selected
asymmetries τ reflecting the lower, central and upper part of the rent distribution.
The results are basically in line with those from the Bayesian quantile regression,
indicating again that similar information can be acquired from expectile regression
as with quantile regression.

7 Summary and conclusions

This paper should convey two basic messages: (i) there is more than mean regression
and (ii) for models beyond mean regression there are more flexible alternatives than
simple parametric predictor specifications. Actually, both extensions of the classical
regression situation fit together very nicely in many situations and provide a flexible,
convenient framework for applied analyses of complex regression data.

When choosing a specific model type to work with, the basic distinction is between
‘complete distribution models’ provided by GAMLSS that fully specify the distrib-
ution of the response and the ‘distribution free’ approaches provided by quantile
regression and expectile regression without relying on specific distributional assump-
tions. To decide between these two branches, one may consider the following ques-
tion: Does the main interest in the analysis lie on specific quantiles of the response?
In this case, quantile and expectile regression may be more attractive since they
directly target the quantity of interest and avoid restrictive assumptions for the
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responses/error terms. If, on the other hand, one is mainly interested in understand-
ing changes in the complete distribution of the response given covariates, the fully
integrated models provided by GAMLSS will usually be more attractive since they
provide a coherent, comprehensive description of the response distribution. More-
over, GAMLSS may be advantageous in less informative situations, e.g., in case of
comparably small sample sizes.

The decision between quantile and expectile regression is less clear-cut. Most
people would probably argue that quantile regression is preferable due to the easier
interpretation of quantiles. However, as Waltrup et al. (2012) have shown, expec-
tiles can be easily transformed to calculate quantiles and may then also be more
efficient. In addition, inference for expectiles in models with complex semiparamet-
ric predictors is at present better developed than for classical quantile regression. Still,
the connection between the asymmetric Laplace distribution and quantile regression
(and in particular the location-scale mixture representation) makes Bayesian quantile
regression a promising alternative.

One further type of regression models that goes beyond mean regression and has
purposely been left out of the comparison is modal regression that estimates con-
ditional modes of the response distribution. Einbeck and Tutz (2006) provide an
example for nonparametric estimation in the bivariate scatterplot smoothing setup
relying on kernel smoothing. While modal regression is interesting from an applied
perspective as an alternative to mixture models for multi-modal response distribu-
tions, inference is at the moment limited to rather simple regression specifications
and therefore not yet readily combined with the full complexity of semiparametric
regression.
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