
SUMMARY OF PART I: RINGS, FIELDS AND IDEALS

1. Basics on Rings and Fields

Definition 1.1. A ring is a (non-empty) set with two operations:

R×R → R

(a, b) 7→ a+ b (addition)

(a, b) 7→ a · b (multiplication)

such that the following holds:

(i) With respect to addition, R is an abelian group (i.e., there is an identity,
an inverse; associativity and commutativity holds);

(ii) a · (b · c) = (a · b) · c associativity for multiplication;
(iii) a · (b + c) = (a · b) + (a · c), (a+ b)· = (a · c) + (b · c) distributivity.

Note: • R is necessarily non-empty (due to (i): a group has > 1 elements).
• denote (as usual) (a · b) + c by a · b+ c (“multiplication comes first”);
• denote a · b by ab.

Definition 1.2. Let R be a ring.

(1) If R has an element 11R such that a · 11R = 11R · a = a for all a ∈ R, then
11R is called a (multiplicative) identity for R.

(2) If ab = ba ∀a, b ∈ R, then R is called commutative.

Example 1.3: (1) Z, Q, R, C are rings (in fact, commutative, with identity).
(2) For n > 2, Zn is not only a group, but moreover it can be given the structure

of a commutative ring with identity (we denote as usual a = a + nZ for
a ∈ Z).
For any a, b ∈ Z, the addition is defined by a+ b = a+ b and the multipli-
cation is defined by a · b = ab.

(3) With our definition, R = {0} can be viewed as a ring (with the obvious
operations 0 + 0 = 0, 0 · 0 = 0); in fact, it is not only commutative but has
a (strange) identity: the zero element.

(4) Matrix rings.
(5) Polynomial rings: let R be a ring and x a variable. Then R[x] becomes a

ring, the polynomial ring in one variable with coefficients in R.

Proposition 1.4. Let R be a ring, and let a, b ∈ R. Then

(i) −(−a) = a;
(ii) 0R · a = 0R = a · 0R;
(iii) a · (−b) = (−a) · b = −a · b; (−a) · (−b) = ab;
(iv) suppose R contains an identity 11R, then

(−11R) · a = a · (−11R) = −a.
Definition 1.5. A subring of a ring R is a subset S ⊂ R which is a ring with the
induced addition and multiplication of R, i.e.
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(i) 0R ∈ S (in particular S 6= ∅);
(ii) a, b ∈ S implies a−R b ∈ S (here a−R b := a+R (−b));
(iii) a, b ∈ S implies a ·R b ∈ S.

Note: Conditions (i)+(ii) amount to imposing that (S,+) is a subgroup of the
abelian group (R,+).

Examples 1.6: 1) For any n ∈ N, the set nZ = {nk | k ∈ Z}, together with
the inherited addition and multiplication, becomes a subring of Z; it is
commutative, and it does not have an identity if n > 1.

2) Z[x] is a subring of Q[x].
3) R[x]1 := {a+ bx | a, b ∈ R} is not a subring of R[x].
4) Z[i] := {a + bi | a, b ∈ Z} (with i2 = −1), the Gaussian integers, form a

subring of the very special ring C of complex numbers (in fact, this is a
very special ring, called a field (see below)).

Definition 1.7. Let R and S be rings. A homomorphism of rings from R to S
is a map ϕ : R → S satisfying

(i) for any a, b ∈ R we have ϕ(a+R b) = ϕ(a) +S ϕ(b);
(ii) for any a, b ∈ R we have ϕ(a ·R b) = ϕ(a) ·S ϕ(b);

Examples 1.8: For n > 2 we know that the reduction map

ϕ : Z → Zn

a 7→ a := {a+ kn | k ∈ Z}
is a homomorphism of groups. It is in fact even a homomorphism of rings, since we
also have

ϕ(a ·Z b) = a · b = a · b = ϕ(a) ·Zn
ϕ(b) .

Note: Some authors require, in case both R and S have an identity, that a ring
homomorphism ϕ : R → S respect the identity, i.e., ϕ(11R) = 11S. This is not
guaranteed, as the following example shows: ϕ : Z2 → Z6, sending 1 to 3 (and 0
necessarily to 0).

Definition 1.9. Let R and S be rings. A map ϕ : R → S is a homomorphism of
rings if it satisfies (i) and (ii), where

(i) ϕ(a+ b) = ϕ(a) + ϕ(b) for all a, b ∈ R;
(ii) ϕ(a · b) = ϕ(a) · ϕ(b) for all a, b ∈ R.

Examples 1.10: 1) The following map is a homomorphism of rings

ϕ : Z[i] → Z2 ,

a+ ib 7→ a+ b .

2) “Specialisation homomorphism”: let S be a commutative ring, R a subring
of S (necessarily commutative). For any a ∈ S the map ϕa : R[x] → S,
sending f(x) to f(a), is a homomorphism of rings.

3) In particular, ϕ : Z[x] → C, sending f(x) to f(i), is a homomorphism of
rings. (This is far from being surjective; but it is also not injective: take
f(x) = x2 + 1.)

4) Let ϕ : R → S and ϕ : S → T be ring homomorphisms. Then the compo-
sition of the two, ψ ◦ φ : R → T (note the order), is again a ring homomor-
phism.
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Definition 1.11. (i) A homomorphism of rings ϕ : R → S is called an iso-

morphism if ϕ is both injective and surjective (as a map between sets).
(ii) The kernel and the image of a homomorphism of rings ϕ : R → S are

defined by ker(ϕ) = {a ∈ R | ϕ(a) = 0S} ⊂ R and im(ϕ) = {ϕ(a) | a ∈
R} ⊂ S.

Example 1.12: (Example 1.9 revisited) The homomorphism of rings ϕ : Z[i] → Z2,
ϕ(a + ib) = a+ b, is surjective (ϕ(0) = 0 and ϕ(1) = 1), but not injective: we
compute the obstruction to being injective.

ker(ϕ) = {a+ ib ∈ Z[i] | a+ b = 0 in Z2}
= {a+ ib ∈ Z[i] | a+ b = 2k for some k in Z}
⊂ {2k − b + ib | b, k in Z}
= {

(
(−1 − i)k + b

)
(−1 + i) | b, k in Z} [use 2 = (−1 − i)(−1 + i)]

⊂ {γ(−1 + i) | γ in Z[i]} .
The reverse inclusion {γ(−1 + i) | γ ∈ Z[i]} ⊂ ker(ϕ) also holds:

ϕ
(
γ(−1 + i)

)
= ϕ(γ)ϕ(−1 + i) = ϕ(γ) · 0 = 0 ∀γ ∈ Z[i] .

Proposition 1.13. A ring homomorphism ϕ : R → S is injective ⇔ ker(ϕ) =
{0R}.
Definition 1.14. Let R be a ring.

(i) R is called an integral domain if R is commutative, has an identity 11R 6=
0R and if for all a, b ∈ R one has

ab = 0R ⇒ a = 0R or b = 0R .

(ii) R is called a field if R is commutative, has an identity 11R 6= 0R, and if
each a ∈ R − {0R} has a multiplicative inverse, i.e.

∀a ∈ R− {0R} ∃b ∈ R such that ab = 11R = ba .

Proposition 1.15. (i) A field is in particular an integral domain.
(ii) “Cancellation”: let R be an integral domain, let a, b, c ∈ R with ab = ac

and a 6= 0R. Then b = c. [In words: A non-zero a can be cancelled.]

Examples 1.16: 1) Z is an integral domain, but no field.
2) Z[i] (i2 = −1) is an integral domain (no field): it is a subring of C (which is

commutative), so it inherits commutativity; furthermore, 11Z[i] = 1+ 0 · i 6=
0 + 0 · i = 0Z[i]; finally ab = 0 implies either a = 0 or b = 0.

3) The polynomial rings Z[x] and Q[x] are both integral domains, but no fields.
4) Q, R, C are fields.
5) Zn is a field if (and only if) n is a prime number.

Remark 1.17: In a field F , we can perform “division by a” for any non-zero a ∈ F .
Also we can do linear algebra for vector spaces over F : all the familiar notions like
dimension, basis, linear (in-)dependence, determinants or invertibility of a matrix
make sense.

Example 1.18: In M2(R), the matrix

(
a b
c d

)
has an inverse if and only if its de-

terminant ad−bc is non-zero, in which case its inverse has the form 1
ad−bc

(
d −b
−c a

)
.
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Definition 1.19. Let R be a ring with identity 1 6= 0. Then R∗ = {a ∈ R | ∃b ∈
R such that ab = ba = 1} is called the set of units of R.

Notation. For a ∈ R∗, the (unique!) element b ∈ R such that ab = ba = 1 is
denoted by a−1.

Examples 1.20: 1) Z∗ = {−1, 1}. [Note that this is different from Z − {0}.]
2) Z[i]∗ = {±1,±i}.
3) Let n > 2 be an integer. then Z∗

n = {a ∈ Zn | gcd(a, n) = 1}.
4) Let F be a field. Then F ∗ = F − {0}.
5) For a field F , the units in Mn(F ) (the ring of (n× n)-matrices with coeffi-

cients in F ) are the elements with non-zero determinant.

Definition 1.21. Let R be a commutative ring with identity 1 6= 0. Then a divides

b, denoted a | b, if and only if ∃c ∈ R : ac = b.

Example 1.22: In Z[i] we want to find all elements dividing a given γ ∈ Z[i].
Important tool: the norm map N : Z[i] → Z, sending a + bi to a2 + b2. It is
multiplicative (i.e. N(αβ) = N(α)N(β)) and it transfers divisibility in Z[i] into
divisibility in Z:

(α | γ in Z[i]) ⇒ (N(α) |N(γ) in Z) .

[The reverse direction does not hold in general!]
In this way, the problem is reduced to two simpler problems: 1) to check divisi-

bility in Z (there are only few candidates α left for which N(α) divides the integer
N(γ)), and 2) to test these candidates one by one whether they indeed can be
multiplied by a number in Z[i] to give that integer N(γ).

Note: Divisibility is not changed when we multiply by units: let ε be a unit in the
commutative ring R, and α, β ∈ R. Then

α |β ⇔ εα |β ⇔ α | εβ .

2. Polynomial rings over a field

For a field F and a variable x, the elements of F [x] have the form anx
n +

an−1x
n−1 + . . .+ a1x+ a0 (for some n ∈ N ∪ {0}) and ai ∈ F , i = 0, . . . , n.

Definition 2.1. The degree deg
(
f(x)

)
of a non-zero polynomial f(x) = anx

n +
. . . + a0 ∈ F [x] with an 6= 0 is defined as n, the largest index j such that aj 6= 0.
We call an the leading coefficient of f(x), and we call f(x) monic if its leading
coefficient if equal to 1.

For f(x) = 0, we put deg
(
f(x)

)
= −∞.

Proposition 2.2. Let F be a field. Then F [x] is an integral domain, and deg
(
f(x)g(x)

)
=

deg
(
f(x)

)
+ deg

(
g(x)

)
.

Proposition 2.3. (Division algorithm)
Let F be a field and f(x), g(x) ∈ F [x] with f(x) 6= 0.
Then there are unique elements q(x) and r(x) in F [x] with deg

(
r(x)

)
< deg

(
f(x)

)

and g(x) = q(x)f(x) + r(x).

Example 2.4: For f(x) = x3 + x+ 1 and g(x) = x5 + 2x4 + x2 + 3 in Q[x], we get
from dividing g(x) by f(x):

g(x) = (x2 + 2x− 1)f(x) − 2x2 − x+ 4 ,

with q(x) = x2 + 2x− 1 and r(x) = −2x2 − x+ 4 of degree 2 (< deg
(
g(x)

)
= 3).
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Definition 2.5. Let R be a commutative ring and f(x) ∈ R[x]. An element a ∈ R
is called a root of f(x) if f(a) = 0.

Example 2.6: In R = Z6, f(x) = x2 + 3x+ 2 has 4 roots: 1, 2, 4 and 5. (We can
write f(x) = (x+ 1)(x+ 2) = (x− 1)(x− 2).)

Proposition 2.7. Let F be a field, f(x) ∈ F [x] and a ∈ F .
Then a is a root of f(x) ⇔ x− a divides f(x) in F [x].

Example 2.8: 1) One of the roots of x3 − 1 in Z5 is 1. Dividing it by x− 1
gives x3 − 1 = (x− 1)(x2 + x+ 1). Since the second factor has no roots in
Z5 (e.g., by trial and error), 1 is a so-called simple root of x3 − 1 in Z5.

2) One of the roots of x3 − 1 in Z3 is also 1, but here we find x3 − 1 =
(x−1)(x−1)(x−1) in Z3[x], and 1 is a multiple (more precisely, a 3-fold)
root of x3 − 1 in Z3.

Corollary 2.9. If F is a field and f(x) ∈ F [x] is of degree n > 1, then f(x) has
at most n roots in F .

Examples 2.10: 1) (Cf. Example 2.8) x3 − 1 has only one root in Z5.

2) x2 − 2 in Q[x] has no roots in Q (±
√

2 6∈ Q).

3) x2 − 2 in R[x] has two roots (±
√

2 ∈ R).
4) (Cf. Example 2.6) x2 + 3x+ 2 in Z6[x] has four roots (no counterexample

to 2.9 since Z6 is not a field).
5) x2 + 3x+ 2 in Z5[x] has only two roots (3, 4) (as it should by 2.9 since Z5

is a field).

Definition 2.11. Let F be a field, f(x), g(x) ∈ F [x]. Then d(x) ∈ F [x] is called
a greatest common divisor of f(x) and g(x) if

(i) d(x) | f(x) and d(x) | g(x) and
(ii) any e(x) ∈ F [x] which divides both f(x) and g(x) also divides d(x).

Example 2.12: Let f(x) = x3 +x2 +2x+2, g(x) = x3 +2x2 +x+2 in Z3[x]. We
perform division with remainder:

g(x) = 1 · f(x) + (x2 + 2x) ,

f(x) = (x+ 2) · (x2 + 2x) + (x+ 2) ,(1)

(x+ 2) = x(x + 2) + 0 .

Therefore we have gcd
(
f(x), g(x)

)
= x+ 2. (It is already monic.)

Theorem 2.13. Let F be a field and f(x), g(x) ∈ F [x]. Then there exists a gcd
d(x) of f(x) and g(x). It is unique up to multiplication by elements in F ∗.

If f(x) and g(x) are not both 0, then we can compute a gcd of f(x) and g(x)
using the Euclidean algorithm. We can find, using iterated substitution, A(x) and
B(x) in F [x] such that d(x) = A(x)f(x) +B(x)g(x).

Example 2.14: (Example 2.12 cont’d) We have seen that x+ 2 is a gcd of f(x) =
x3 + x2 + 2x+ 2 and g(x) = x3 + 2x2 + x + 2 in Z3[x]. Using the second and the
first line in (1), we find

x+2 = f(x)− (x+2)(x2 +2x) = f(x)− (x+2)(g(x)−f(x)) = xf(x)− (x+2)g(x) .

Definition 2.15. Let F be a field. Then f(x) in F [x] is called irreducible if

1) deg
(
f(x)

)
> 1 (i.e., f(x) 6= 1 and f(x) is not a unit).
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2) If f(x) = g(x) · h(x) with g(x) and h(x) in F [x], then f(x) or g(x) is in
F ∗ (i.e., g(x) or h(x) has degree 0).

Otherwise f(x) is called reducible.

f(x) is called prime if, for any g(x), h(x) ∈ F [x],

f(x) | g(x)h(x) ⇒
(
f(x) | g(x) or f(x) |h(x)

)
.

Example 2.16: Checking irreducibility for general polynomials of small degree:

• deg
(
f(x)

)
= 1. Then f(x) is irreducible.

• deg
(
f(x)

)
= 2. Suppose f(x) = g(x)h(x) in F [x], then 2 = deg

(
f(x)

)
=

deg
(
g(x)

)
+ deg

(
h(x)

)
= 0 + 2 or = 1 + 1 or = 2 + 0. Therefore f(x) is

reducible if and only if the second case 1 + 1 can occur, i.e., if and only if
f(x) can be written as a product of two polynomials of degree 1, i.e., if and
only if f(x) has a root in F .

• deg
(
f(x)

)
= 3. Suppose f(x) = g(x)h(x) in F [x], then 3 = deg

(
f(x)

)
=

deg
(
g(x)

)
+ deg

(
h(x)

)
= 0 + 3 or = 1 + 2 or 2 + 1 or = 3 + 0. Therefore

f(x) is reducible if and only if one of the two cases 1+2 or 2+1 can occur,
i.e., if and only if f(x) is divisible by a polynomial of degree 1, i.e., if and
only if f(x) has a root in F .

• deg
(
f(x)

)
= 4. f(x) is reducible if and only if one of the three cases 1 + 3,

2 + 2 or 3 + 1 can occur, i.e., if and only if f(x) has a root in F or f(x) is
a product of two quadratic factors.

Examples 2.17: Checking irreducibility for specific polynomials of small degree:

1) x2 + 1 is irreducible in R[x], since deg(x2 + 1) = 2 and it has no roots in R.
2) x2 + 1 is reducible in C[x], since it has roots in C (in fact, ±i).
3) x2 − 2 is irreducible in Q[x], since it is of degree 2 and has no roots in Q.

4) x2 − 2 is reducible in R[x], since it has roots in R (in fact, ±
√

2).
5) x3 − 2x+ 2 has odd degree and must therefore have a root in R. Therefore

it is reducible in R[x].
6) x3 − 2x+ 2 is irreducible in Q[x] since it has degree 3 and no root in Q.
7) x4 +2x2 +1 has no roots in R, but it is nevertheless reducible in R[x] since

it factors as (x2 + 1)2.

Proposition 2.18. Let f(x) = anx
n + . . . + a0 be in Z[x] of degree n > 1. If

b/c ∈ Q is a root of f(x) such that gcd(b, c) = 1, then necessarily c | an and b | a0.
In particular, if an = ±1, then all the roots of f(x) in Q must in fact belong to Z.

Example 2.19: The roots of f(x) = x2 − 2x + 2 in Q, if they exist, must lie in
{±1,±2}. Substituting shows that none of them is a root. Therefore f(x) has no
root in Q (and since it is furthermore of degree 6 3, it is irreducible in Q[x]).

Proposition 2.20. Let F be a field and f(x) ∈ F [x] be irreducible. Then f(x) is
prime.

Theorem 2.21. Let F be a field, and let f(x) be in F [x] of degree at least 1. Then

• (Existence) f(x) = g1(x) · · · · · gs(x) for some gj(x) which are irreducible in
F [x];

• (Uniqueness) if f(x) = h1(x) · · · · · ht(x) for some hj(x) which are irre-
ducible in F [x], then necessarily s = t and—after renumbering the hj(x) if
necessary—we have gj(x) = cj · hj(x) for some cj ∈ F ∗.
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Examples 2.22: 1) Let F = Q and f(x) = 3x3+x2+6x+2 = (x+ 1
3 )(3x2+6).

The linear (i.e., of degree 1) factor x+ 1
3 is irreducible; but also the second

factor 3x2 + 6 is irreducible as it has degree 2 and has no root in Q. We
have also other decompositions, like f(x) = (3x+ 1)(x2 + 2), whose factors
can be written according to the theorem as c1(x + 1

3 ) and c2(3x
2 + 6) for

some cj ∈ Q∗ (in fact, we find c1 = 3 and c2 = 1
3 ).

2) Let f(x) = x4 + x3 + 2x2 + 4x+ 2 ∈ Q[x]. Candidate roots are ±1,±2. A
quick check shows that −1 is indeed a root, and f(x) = (x+1)(x3 +2x+2).
The second factor is irreducible since it is of degree 6 3 and has no root in
Q. (The first factor is irreducible, since it is of degree 1.)

3) Let f(x) = x4 − 4 in Q[x]. Then candidate roots are ±1,±2,±4. A quick
check shows that none of them are roots. We cannot yet conclude irre-
ducibility, though, since there is still the possibility that f(x) decomposes
into two (necessarily irreducible) quadratic factors—and this indeed holds:
f(x) = (x2 + 2)(x2 − 2).

4) Let f(x) = x3−1 in Z5[x]. One checks that 1 is a root, and that the second
factor in the decomposition x3 − 1 = (x− 1)(x2 + x+ 1) is also irreducible
(it has no root in Z5 and is of degree 6 3).

Remark 2.23: Let F be a field. If f(x) ∈ F [x] is of degree at least one, then we
could also write f(x) = c · g1(x) · · · · · gk(x) with c ∈ F ∗ the leading coefficient of
f(x), and where all gj(x) are monic and irreducible in F [x].

This decomposition is unique, up to permutation of the gj(x).

Lemma 2.24. Let f(x) be in Z[x], n > 2 an integer. Then reducing the coefficients
modulo n, i.e., the map

ϕn : Z[x] → Zn[x]

f(x) = amx
m + . . .+ a0 7→ f(x) := amx

m + . . .+ a0

is a ring homomorphism.

Theorem 2.25. (Gauss lemma) Let f(x) ∈ Z[x] have degree > 1. Suppose f(x) =
g(x)h(x) with g(x), h(x) ∈ Q[x].

Then already f(x) = g̃(x)h̃(x) with g̃(x), h̃(x) ∈ Z[x] and deg
(
g̃(x)) = deg

(
g(x)),

deg
(
h̃(x)) = deg

(
h(x)). More precisely, there exists an a ∈ Q∗ such that a · g(x) ∈

Z[x] and a−1 · h(x) ∈ Z[x].

Examples 2.26: 1) The quadratic polynomial f(x) = 2x2 +7x+3 which can
be decomposed over Q as (x+ 1

2 )(2x+6) has a decomposition in Z[x] given
by f(x) = (2x+ 1)(x+ 3).

2) Factorize x4 + 4 in Q[x]. It has no roots in Q, so either it is irreducible or
it factorises as a product of two quadratics (without roots in Q).

Make the “Ansatz” x4 + 4 = (Ax2 + Bx + C)(Dx2 + Ex + F ) with
A,B, . . . , F ∈ Q. By the Gauss lemma, we can find a factorisation of the
same type with A,B, . . . , F ∈ Z.

Multiplying out and comparing coefficients of the different monomials
xr (r = 0, . . . , 4) gives us conditions on the integers A, . . . , F . A short
calculation then gives indeed a factorization

x4 + 4 = (x2 + 2x+ 2)(x2 − 2x+ 2) .
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Proposition 2.27. (Criterion for irreducibility in Z[x])
Let f(x) ∈ Z[x] be non-constant. Let p be a prime number such that f(x) ∈ Zp[x]

has the same degree as f(x).
If f(x) is irreducible in Zp[x] then f(x) is irreducible in Q[x].

Examples 2.28: 1) f(x) = 3x2 + 7x+ 13. Take p = 2: f(x) = x2 + x+ 1 ∈
Z2[x]. The latter is irreducible in Z2[x] as it has degree 2 and neither 0 nor
1 are roots. Furthermore deg

(
f(x)

)
= deg

(
f(x)

)
= 2.

Therefore f(x) is irreducible in Q[x].
2) f(x) = 3x2 + 2x, take p = 3. Then f(x) = 2x is irreducible in Z3[x],

as it has degree 1. But f(x) = x(3x + 2) is not irreducible. [Note that
deg

(
f(x)

)
< deg

(
f(x)

)
.]

Proposition 2.29. (Eisenstein’s [irreducibility] criterion)
Let f(x) = anx

n + . . .+ a0 ∈ Z[x], an 6= 0, n ≥ 1. If there is a prime p ∈ Z with

p | a0, p | a1, . . . , p | an−1 , but p6 |an and p26 |a0 ,

then f(x) is irreducible in Q[x].

Examples 2.30: 1) f(x) = xn − 2, for n ∈ N, is irreducible in Q[x], by
Eisenstein’s criterion for p = 2.

2) Let p be prime. Then f(x) = xp−1 +xp−2 + . . .+x+1 is irreducible in Q[x].

[Use: f(x) irreducible ⇔ f(x + 1) irreducible; then, writing f(x) = xp
−1

x−1
gives

f(x+ 1) =
(x + 1)p − 1

(x+ 1) − 1
=

(xp +
(
p
1

)
xp−1 + . . .+

(
p

p−1

)
x+ 1) − 1

x

= xp−1 +

(
p

1

)
xp−2 + . . .+

(
p

p− 1

)
.

Now apply Eisenstein’s criterion for the prime p.]

3. Ideals and Quotient Rings

Definition 3.1. Let R be a ring. A subset I in R is called an ideal if the following
three conditions hold:

(i) 0R ∈ I;
(ii) if r and s are in I, then also r − s ∈ I;
(iii) if r ∈ I and a ∈ R, then r · a ∈ I and a · r ∈ I.

Note: In particular, I is a subring of R (can think of it as a “black hole”: it absorbs
everything which comes near it...).

Remark 3.2: If R has an identity 11R, and if an ideal I ⊂ R contains 11R, then
necessarily I = R. Similarly, if I contains any unit, then I = R.

Examples 3.3: (1) R = Z. Then any subgroup under addition is either {0}
or of the form nZ (n = 1, 2, . . . ). All of them are ideals, and any ideal
(which is in particular a subgroup) of Z is of this form. (For n = 1 we get
the full ring.)

(2) “Trivial ideals”: {0} is an ideal, R is also an ideal (for any ring R).
(3) R = F a field. Its only ideals are {0} and R (any r 6= 0 is a unit).
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Examples 3.4: 1) (a) = {ra | r ∈ R} has a single generator and is called a
principal ideal.

2) (a1, a2) = {r1a1+r2a2 | r1, r2 ∈ R}. Sometimes this can be written simpler,
e.g., (15, 21)Z = (3)Z.

3) All ideals in Z are principal (cf. Example 3.3 (1)).

Proposition 3.5. Let ϕ : R → S be a ring homomorphism. Then ker(ϕ) is an
ideal.

Examples 3.6: 1) (Cf. Example 1.11) ϕ : Z[i] → Z2, ϕ(a + bi) = a+ b, is a
homomorphism of rings, with ker(ϕ) = {γ(−1 + i) | γ ∈ Z[i]} = (−1 + i), a
(principal) ideal in Z[i].

2) ϕ : Z[i] → Z37, sending a + bi to a+ 6b, is a ring homomorphism. Since

6
2

= −1 in Z37, the number 6 reflects the crucial property of the number i
in Z[i]. Then ker(ϕ) = (37, 6 − i) = {α · 37 + β(6 − i) | α, β ∈ Z[i]}.

Example 3.7: (Example 3.6, 2), revisited) There is a simpler description of the
kernel, since (37, 6 − i) = (6 − i) (note that 37 = (6 − i)(6 + i) already lies in the
ideal (6 − i)).

Proposition 3.8. Let F be a field. Then all ideals of F [x] are principal. More
precisely, the ideals of F [x] are given by (0), (1) and

(
f(x)

)
for deg

(
f(x)

)
> 1.

Moreover, we have the inclusion of ideals
(
f(x)

)
⊂

(
g(x)

)
iff g(x) | f(x) ∈ F [x]

and equality of ideals
(
f(x)

)
=

(
g(x)

)
iff f(x) = c · g(x) ∈ F [x] for some c ∈ F ∗.

[In particular, each non-zero ideal of F [x] has a unique monic generator.]

Let R be a ring and I ⊂ R an ideal. The set of cosets {a+ I | a ∈ R} not only
forms a group, the quotient group R/I, but in fact even becomes a ring.

The multiplication of cosets is given, for a, b ∈ R, as

(a+ I)(b + I) = a · b+ I .

Definition 3.9. For an ideal I in a ring R, the map π : R → R/I, sending a ∈ R
to its coset a+ I, is called the canonical projection (along I), and R/I is called
the quotient ring of R with respect to I.

Proposition 3.10. 1) R/I is indeed a ring. [So the name is justified.]
2) The canonical projection π : R → R/I is a ring homomorphism. Morever,

it is surjective, and I is its kernel.

Note: Computation rules in R/I:

• a+ b = a+ b, a · b = a · b.
• a = b⇔ a− b ∈ I (in particular a = 0 ⇔ a ∈ I).

Examples 3.11: 1) Let I = (−1 + i)Z[i] ⊂ Z[i]. Then −6 + i = −i in Z[i]/I.

2) Let I = (x2 + x+ 1)Q[x] ⊂ Q[x]. Then x+ 2 6= 2x2 in Q[x]/(x2 + x+ 1).

Theorem 3.12. (First Isomorphism Theorem for Rings) Let ϕ : R → S be a
surjective ring homomorphism. Then there is an isomorphism of rings

R/ ker(ϕ) → S ,

a+ ker(ϕ) 7→ ϕ(a) .
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Example 3.13: Define ϕ : R[x] → C, sending f(x) to f(i) (where i2 = −1). We
can check the following properties.

• ϕ is a homomorphism of rings.
• ϕ is surjective: any a+ bi ∈ C (a, b ∈ R) can be obtained as ϕ(a+ bx).
• ker(ϕ) = (x2 + 1).

Now the above corollary implies that we have

R[x]/(x2 + 1) ∼= C .

Proposition 3.14. Let ϕ : R → S be a ring homomorphism. Let I ⊂ R be an
ideal and π : R→ R/I the canonical projection.

If I ⊂ ker(ϕ) then there exists a unique map ϕ : R/I → S such that ϕ ◦ π = ϕ,
and ϕ is in fact a ring homomorphism.

We can write this statement effectively with the help of a diagram:

R

π

��

ϕ

  B
B

B

B

B

B

B

B

R/I
ϕ

//___ S

Examples 3.15: 1) ϕ : Z → Zn(=Z/(n)Z), n > 2, sending a to a, is a
homomorphism of rings. Its kernel is ker(ϕ) = (n)Z = nZ, a principal ideal
(a single generator being n or −n).
I ⊂ (n) means that I = (k) with k ∈ (n), i.e., n | k, i.e., k = mn for

some m ∈ Z.
So assuming k = mn we get the diagram

Z

π

��

ϕ

%%J
J

J

J

J

J

J

J

J

J

Z/(mn)
ϕ

//___ Z/(n)

2) ϕ : Z[i] → Z2, sending a+ bi → a+ b, is a surjective ring homomorphism,
with kernel ker(ϕ) = (−1 + i).

Note that (4) ⊂ ker(ϕ) since ϕ(4) = 0. The proposition gives us a map
ϕ fitting into the following diagram

Z[i]

π

��

ϕ

##G
G

G

G

G

G

G

G

G

Z[i]/(4)
ϕ

//___ Z2

Example 3.16: (Example 3.15, 2) cont’d) Since ϕ is surjective, we can apply the
First Isomorphism Theorem for rings, giving

Z[i]/(−1 + i) ∼= Z2 ,

where the map is given by a+ bi+ (−1 + i)Z[i] 7→ a+ b.

Operations on ideals: Let R be a ring and I, J ideals in R. Then

1) I ∩ J = {a ∈ R | a ∈ I and a ∈ J};
2) I + J = {a+ b ∈ R | a ∈ I, b ∈ J};
3) I · J = {∑finite akbk ∈ R | ak ∈ I and bk ∈ J}.
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All of the three are ideals, and we have the following inclusions:

I · J ⊂ I ∩ J ⊂
{
I
J

}
⊂ I + J .

Example 3.17: Let R = Z, I = (4)={all multiples of 4 inside Z}, J = (6)={all
multiples of 6 inside Z}. Then I ∩ J ={all n in Z which are multiples of both 4
and 6}, i.e. precisely the multiples of 12, i.e., I ∩ J = (12). This example shows in
particular that the above inclusions are all strict:

(24) ⊂ (12) ⊂
{

(4)
(6)

}
⊂ (2) .

Important fact: Let R be a commutative ring with identity. Then we have the
following identity of ideals in terms of generators:

(a1, . . . , an) + (b1, . . . , bm) = (a1, . . . , an, b1, . . . , bm) ,

(a1, . . . , an) + (b1, . . . , bm) = (a1b1, . . . , a1bm, . . . , anb1, . . . , anbm) .

Example 3.18: In Z[
√
−5], we take I = (2, 3+

√
−5), J = (3, 1−

√
−5). Then we

have

I + J = (2, 3 +
√
−5) + (3, 1 −

√
−5) = (2, 3 +

√
−5, 3, 1 −

√
−5) = (1) ,

since 1 = (−1) · 2 + 1 · 3 + 0 · (3 +
√
−5) + 0 · (1 −

√
−5).

·J = (2, 3 +
√
−5) · (3, 1 −

√
−5)

=
(
2 · 3, 2 · (1 −

√
−5), (3 +

√
−5) · 3, (3 +

√
−5)(1 −

√
−5)

)

=
(
6, 2 − 2

√
−5, 9 + 3

√
−5, 8 − 2

√
−5

)

=
(
6, 2 − 2

√
−5, 9 + 3

√
−5

)
[8 − 2

√
−5 = 6 + (2 − 2

√
−5)]

=
(
6, 2 − 2

√
−5,−3 + 3

√
−5

)
[replace 9 + 3

√
−5 = 12 + (−3 + 3

√
−5) by

−3 + 3
√
−5 since 12 is a linear combination of the other two generators]

=
(
6, 1 −

√
−5)

)
[replace the last two generators by their gcd]

=
(
1 −

√
−5)

)
. [6 = (1 +

√
−5)(1 −

√
−5)]

Theorem 3.19. (Chinese Remainder Theorem for Rings) Let R be a ring and I,
J ⊂ R ideals such that I + J = R. Then

R/(I ∩ J)
∼=−→ R/I ×R/J ,

a 7→ (a, a) = (a+ I, a+ J) .

If R is commutative with identity, then we further have

R/(I · J)
∼=−→R/I ×R/J ,

with the same map as above.

Remark 3.20: 1) Suppose R has an identity, then I + J = R if and only if
1 = a+ b for some a ∈ I, b ∈ J . (I and J are then called coprime to each
other.)

2) Suppose R is commutative with identity. Then if I + J = R, then I ∩ J =
I · J .
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Remark 3.21: Suppose R is commutative with identity and I, J ideals in R with
I + J = R, then we can write 1 = a+ b, a ∈ I, b ∈ J .

For r, s ∈ R, we get

r = r(a + b) =

=:ir∈I︷︸︸︷
r · a +

=:jr∈J︷︸︸︷
r · b ,

s = s(a+ b) = s · a︸︷︷︸
=:is∈I

+ s · b︸︷︷︸
=:js∈J

.

Under the above map

R/I · J ∼=−→R/I ×R/J

we obtain that sa+ rb + I · J maps to (r + I, s+ J).

Examples 3.22: 1) Let R = Z and I = (m)Z, J = (n)Z. Then I + J =
gcd(m,n), so I + J = R ⇔ gcd(m,n) = 1.

Suppose that gcd(m,n) = 1, so that I + J = Z. Then we have

Z/(m · n)
∼=−→ Z/(m) × Z/(n) ,

a+mnZ 7→ (a+mZ, a+ nZ) .

Make surjectivity explicit: given b, c ∈ Z, which class in Z/(mn) maps to
(b, c)?

Write 1 = km+ ℓn for some k, ℓ ∈ Z (this is possible since (m,n) = 1).
Then we have

b = k ·m · b+

∈J︷ ︸︸ ︷
ℓ · n · b ,

c = k ·m · c︸ ︷︷ ︸
∈I

+ℓ · n · c .

Putting these together, we get

ℓnb+ kmc 7→ (b, c) .

2) R = Z[i], I = (2 + i), J = (3 + i). We have I + J = Z[i] since 1 =
(−1) · (2 + i) + 1 · (3 + i).

By the above, I∩J = I·J = (2+i)R·(3+i)R =
(
(2+i)(3+i)

)
R

= (5+5i)R,
and by the Chinese Remainder Theorem we get

Z[i]
/
(5 + 5i)

∼=−→Z[i]
/
(2 + i) × Z[i]

/
(3 + i) .

We find the element on the left hand side which maps to (3 + I, 2 + J): by
the above remark, we take (for r = 3, s = 2, a = −2 − i and b = 3 + i)

(r · b+ s · a+ I · J =) 3 · (3 + i) + 2 · (−2 − i) + I · J ,
which can be written slightly simpler as 5 + i+ I · J .

Definition 3.23. Let R be commutative with identity 11R 6= 0R, and let I be an
ideal in R. Then I is called a prime ideal if

for any a, b ∈ R :
(
ab ∈ I ⇒ a ∈ I or b ∈ I

)
,

and I is called a maximal ideal if

for any ideal J ⊂ R with I ⊂ J ⊂ R we have either J = I or J = R .
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Examples 3.24: For R = Z, all the ideals are of the form (n), n ∈ Z.

1) (0) is a prime ideal (but it is not maximal: e.g., (0) $ (2) $ Z).
2) Z is neither a prime ideal nor a maximal ideal in Z.
3) Consider (n) for n > 2.

If n is a prime number, then (n) is a prime ideal. In fact, it is even a
maximal ideal.

If n is not a prime number, then (n) is not a prime ideal. It is also not
maximal.

Theorem 3.25. Let R be commutative with identity, I ⊂ R an ideal. Then

1) I is a prime ideal in R ⇔ R/I is an integral domain.
2) I is a maximal ideal in R ⇔ R/I is a field.

Corollary 3.26. A maximal ideal is also a prime ideal.


