SUMMARY OF PART I: RINGS, FIELDS AND IDEALS

1. Basics oN RINGS AND FIELDS

Definition 1.1. A ring is a (non-empty) set with two operations:
RxR — R
(a,b) — a+b (addition)
(a,b) — a-b (multiplication)
such that the following holds:

(i) With respect to addition, R is an abelian group (i.e., there is an identity,
an inverse; associativity and commutativity holds);
(ii)) a-(b-c)=(a-b)-c associativity for multiplication;
(iii) a-(b+¢c)=(a-b)+ (a-¢), (a+b)-=(a-c)+ (b-¢c) distributivity.

Note: o R is necessarily non-empty (due to (i): a group has > 1 elements).
e denote (as usual) (a-b) 4+ ¢ by a- b+ ¢ (“multiplication comes first”);
e denote a - b by ab.

Definition 1.2. Let R be a ring.

(1) If R has an element 1 such that a-1gp = lg-a = a for all a € R, then
1R is called a (multiplicative) identity for R.
(2) If ab=ba Va,b € R, then R is called commutative.

Example 1.3: (1) Z, Q, R, C are rings (in fact, commutative, with identity).

(2) Forn > 2,Z, is not only a group, but moreover it can be given the structure
of a commutative ring with identity (we denote as usual @ = a + nZ for
a€Z).
For any a,b € Z, the addition is defined by @+ b = a + b and the multipli-
cation is defined by @ - b = ab.

(3) With our definition, R = {0} can be viewed as a ring (with the obvious
operations 0+ 0 =0, 0-0 = 0); in fact, it is not only commutative but has
a (strange) identity: the zero element.

(4) Matrix rings.

(5) Polynomial rings: let R be a ring and x a variable. Then R[z] becomes a
ring, the polynomial ring in one variable with coefficients in R.

Proposition 1.4. Let R be a ring, and let a,b € R. Then
() —(-a) = a;
(ii)) O ra=0r = a-Og;
(iii) a- (=b)=(—a)-b=—a-b; (—a)-(=b) = abd;
(iv) suppose R contains an zdentzty 1R, then
( ]IR) a=a- ( ]IR)

Definition 1.5. A subring of a ring R is a subset S C R which is a ring with the
induced addition and multiplication of R, i.e.
1
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(i) Or € S (in particular S # 0);
(ii) a,b € S impliesa—prbe S (herea—prb:=a+pr(-b));
(iii) a,b € S impliesa-grb e S.

Note: Conditions (i)+(ii) amount to imposing that (S,+) is a subgroup of the

abelian group (R, +).

Examples 1.6: 1) For any n € N, the set nZ = {nk | k € Z}, together with
the inherited addition and multiplication, becomes a subring of Z; it is
commutative, and it does not have an identity if n > 1.

2) Z[x] is a subring of Q[z].

3) Rlz]1 :={a+bz|a,be R} is not a subring of R[z].

4) Z[i] := {a+bi | a,b € Z} (with i* = —1), the Gaussian integers, form a
subring of the very special ring C of complex numbers (in fact, this is a
very special ring, called a field (see below)).

Definition 1.7. Let R and S be rings. A homomorphism of rings from R to S
is a map ¢ : R — S satisfying

(i) for any a,b € R we have ¢(a+rb) = p(a)+s ¢(b);

(ii) for any a,b € R we have ¢(a-rbd) = p(a)- s (b);

Examples 1.8: For n > 2 we know that the reduction map
w: Z — 7Ly
a — a:={a+kn|kelZ}

is a homomorphism of groups. It is in fact even a homomorphism of rings, since we
also have

plazb)=a-b=a-b=y(a)z, pb).
Note: Some authors require, in case both R and S have an identity, that a ring
homomorphism ¢ : R — S respect the identity, i.e., p(Ig) = Ig. This is not
guaranteed, as the following example shows: ¢ : Zy — Zg, sending 1 to 3 (and 0
necessarily to 0).

Definition 1.9. Let R and S be rings. A map ¢ : R — S is a homomorphism of
rings if it satisfies (i) and (ii), where

(i) pla+b) =¢(a)+ @(b) for all a,b € R;

(ii) p(a-b) = p(a) - @(b) for all a,b € R.

Examples 1.10: 1) The following map is a homomorphism of rings
p:Zli] — Za,
a+tb — a+b.

2) “Specialisation homomorphism”: let .S be a commutative ring, R a subring
of S (necessarily commutative). For any a € S the map ¢, : R[z] — S,
sending f(x) to f(a), is a homomorphism of rings.

3) In particular, ¢ : Z[z] — C, sending f(x) to f(¢), is a homomorphism of
rings. (This is far from being surjective; but it is also not injective: take
fla) =22 +1)

4) Let ¢ : R — S and ¢ : S — T be ring homomorphisms. Then the compo-
sition of the two, o ¢ : R — T (note the order), is again a ring homomor-
phism.
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Definition 1.11. (i) A homomorphism of rings ¢ : R — S is called an iso-
morphism if ¢ is both injective and surjective (as a map between sets).
(ii) The kernel and the image of a homomorphism of rings ¢ : R — S are
defined by ker(¢) = {a € R | ¢(a) = 0s} C R and im(p) = {¢(a) | a €
R} CS.

Example 1.12: (Example 1.9 revisited) The homomorphism of rings ¢ : Z[i] — Zo,
o(a +ib) = a+ b, is surjective (¢(0) = 0 and ¢(1) = 1), but not injective: we
compute the obstruction to being injective.
ker(p) = {a+ib€Z[i]|a+b=0in Zs}
= {a+ibeZ[i]|a+b=2k for some k in Z}
C {2k—b+ib|bkinZ}
= {((-1=49)k+0b)(=1+74) | b,k in Z} [use 2 = (=1 —i)(—1+1)]
C {v(=1+1i) |~ in Z[]}.
The reverse inclusion {y(—1+ 1) | v € Z[i]} C ker(y) also holds:

p(v(=1+14) =e(Me(-1+i) =¢(y)-0=0  Vye L.
Proposition 1.13. A ring homomorphism ¢ : R — S is injective < ker(p) =
{Or}.

Definition 1.14. Let R be a ring.

(i) R is called an integral domain if R is commutative, has an identity 1 g #
Ogr and if for all a,b € R one has

ab=0r = a=0gr orb=0g.

(ii) R is called a field if R is commutative, has an identity 1r # Og, and if
each a € R — {0g} has a multiplicative inverse, i.e.

Va € R—{0r} 3b € R such that ab= 1 = ba.

Proposition 1.15. (i) A field is in particular an integral domain.
(ii) “Cancellation”: let R be an integral domain, let a,b,c € R with ab = ac
and a # Og. Then b = c. [In words: A non-zero a can be cancelled.]

Examples 1.16: 1) Z is an integral domain, but no field.
2) Zli] (i* = —1) is an integral domain (no field): it is a subring of C (which is
commutative), so it inherits commutativity; furthermore, 7 = 1+0-i #
0+ 0-2=0g); finally ab = 0 implies either a =0 or b = 0.
3) The polynomial rings Z[z] and Q[z] are both integral domains, but no fields.
4) Q, R, C are fields.
5) Zy is a field if (and only if) n is a prime number.

Remark 1.17: In a field F, we can perform “division by a” for any non-zero a € F.
Also we can do linear algebra for vector spaces over F': all the familiar notions like
dimension, basis, linear (in-)dependence, determinants or invertibility of a matrix
make sense.

Example 1.18: In M3(R), the matrix (Z b) has an inverse if and only if its de-

d

. . . . oo d -b
terminant ad—bc is non-zero, in which case its inverse has the form — dl_b( ( c al
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Definition 1.19. Let R be a ring with identity 1 # 0. Then R* ={a € R| 3 €
R such that ab = ba = 1} is called the set of units of R.

Notation. For ¢ € R*, the (unique!) element b € R such that ab = ba = 1 is
denoted by a~*.

Examples 1.20: 1) Z* = {-1,1}. [Note that this is different from Z — {0}.]
9) Z[i]* = {£1, %i}.
3) Let n > 2 be an integer. then Z! = {a € Z,, | ged(a,n) = 1}.
4) Let F be a field. Then F* = F — {0}.
5) For a field F, the units in M, (F) (the ring of (n x n)-matrices with coeffi-
cients in F') are the elements with non-zero determinant.

Definition 1.21. Let R be a commutative ring with identity 1 # 0. Then a divides
b, denoted a|b, if and only if 3¢ € R : ac = b.

Example 1.22: In Z[i] we want to find all elements dividing a given v € Z[i].
Important tool: the norm map N : Z[i] — Z, sending a + bi to a? + b*. It is
multiplicative (i.e. N(af) = N(a)N(B)) and it transfers divisibility in Z[i] into
divisibility in Z:

(aly in Z[i]) = (N(a) | N() in Z).
[The reverse direction does not hold in generall]

In this way, the problem is reduced to two simpler problems: 1) to check divisi-
bility in Z (there are only few candidates « left for which N(«) divides the integer
N(7)), and 2) to test these candidates one by one whether they indeed can be
multiplied by a number in Z[i] to give that integer N (7).

Note: Divisibility is not changed when we multiply by units: let € be a unit in the
commutative ring R, and «, 8 € R. Then

alf & ealf & alep.
2. POLYNOMIAL RINGS OVER A FIELD

For a field F' and a variable z, the elements of F[z] have the form a,z™ +
an_12" 1+ ...+ a1z + ag (for some n € NU{0}) and a; € F,i=0,...,n.

Definition 2.1. The degree deg (f(z)) of a non-zero polynomial f(z) = a,z™ +
...+ ao € Flz] with a, # 0 is defined as n, the largest index j such that a; # 0.
We call a,, the leading coefficient of f(x), and we call f(z) monic if its leading
coefficient if equal to 1.

For f(x) =0, we put deg (f(z)) = —o0.
Proposition 2.2. Let F be a field. Then F[z] is an integral domain, and deg (f(x)g(x)) =
deg (f(x)) + deg (g(z)) -
Proposition 2.3. (Division algorithm)

Let F be a field and f(z), g(x) € Flx] with f(z) # 0.

Then there are unique elements q(x) and r(z) in F|z] with deg (r(z)) < deg (f(z))
and g(z) = q(z)f(x) +r(z).
Example 2.4: For f(z) = 23 + z+ 1 and g(x) = 2° + 22* + 2% + 3 in Q[z], we get
from dividing g(x) by f(z):

g(x) = (2 + 22— 1) f(x) — 22° —x + 4,

with g(z) = 2? + 2z — 1 and r(z) = —22? — z + 4 of degree 2 (< deg (g(z)) = 3).
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Definition 2.5. Let R be a commutative ring and f(x) € R[z]. An element a € R
is called a root of f(x) if f(a) =0.

Example 2.6: In R = Zg, f(x) = 2% + 3z + 2 has 4 roots: 1,2,4 and 5. (We can
write f(z) = (z + 1)(z + 2) = (z — 1)(z — 2).)

Proposition 2.7. Let F be a field, f(z) € Flz] and a € F.
Then a is a root of f(x) < x— a divides f(x) in Flz].

Example 2.8: 1) One of the roots of 2 — T in Zj5 is 1. Dividing it by z — T
gives 23 — 1= (x — T)(2% + x +1). Since the second factor has no roots in

Zs (e.g., by trial and error), 1 is a so-called simple root of 2 — T in Zs.
2) One of the roots of x3 — 1 in Zs3 is also 1, but here we find 2% — 1 =
(x—1)(x—1)(z—1) in Z3[z], and 1 is a multiple (more precisely, a 3-fold)

root of z° — 1 in Zs.

Corollary 2.9. If F is a field and f(z) € F[x] is of degree n > 1, then f(z) has
at most n roots in F.

Examples 2.10: 1) (Cf. Example 2.8) 2° — 1 has only one root in Zs.
2) 22 — 2 in Q[z] has no roots in Q (+v2 ¢ Q).
3) 22 — 2 in R[z] has two roots (£v/2 € R).
4) (Cf. Example 2.6) 22 + 3x + 2 in Zg[x] has four roots (no counterexample
to 2.9 since Zg is not a field).
5) 2% + 3z + 2 in Zs[z] has only two roots (3,4) (as it should by 2.9 since Zs
is a field).

Definition 2.11. Let F be a field, f(x), g(x) € Flz]. Then d(z) € Flx] is called
a greatest common divisor of f(z) and g(x) if

(i) d(x)[ f(z) and d(x)[g(x) and

(ii) any e(z) € Flx] which divides both f(x) and g(x) also divides d(x).
Example 2.12: Let f(z) = 2° + 22+ 22+ 2, g(x) = 23 + 222 + 2 + 2 in Z3[z]. We
perform division with remainder:

glx) = T-f(x)+ (2*+22),
(1) fz) = (@+2)-(2®>4+22)+ (2 +2),
(r+2) = 2(x+2)+0.

Therefore we have ged (f(z), g(z)) = « 4+ 2. (It is already monic.)

Theorem 2.13. Let F be a field and f(x), g(z) € Flz]. Then there exists a ged
d(z) of f(z) and g(x). It is unique up to multiplication by elements in F*.
If f(x) and g(x) are not both 0, then we can compute a gcd of f(x) and g(x)

using the Euclidean algorithm. We can find, using iterated substitution, A(x) and
B(z) in Flz] such that d(z) = A(x)f(z) + B(x)g(z).

Example 2.14: (Example 2.12 cont’d) We have seen that 2+ 2 is a ged of f(z) =
23+ 22 4+ 22+ 2 and g(z) = 2> + 222 + 2 + 2 in Z3[z]. Using the second and the
first line in (1), we find

o+2 = f(z) = (z+2)(2* +22) = f(z) — (z+2)(9(2) - f(2)) = 2 (x) = (x+2)g(2).
Definition 2.15. Let F be a field. Then f(x) in F[z] is called irreducible if
1) deg (f(z)) =1 (i.e., f(x) #1 and f(z) is not a unit).
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If f(z) = g(x) - h(x) with g(x) and h(x) in Flz], then f(x) or g(x) is in
F* (i.e., g(x) or h(zx) has degree 0).

Otherwise f(x) is called reducible.
f(x) is called prime if, for any g(z), h(z) € Flz],

f@) | g(@)h(z) = (f(z)|g(x) or f(z)|h(z)).

Example 2.16: Checking irreducibility for general polynomials of small degree:

deg (f(z)) = 1. Then f(z) is irreducible.

deg (f(z)) = 2. Suppose f(z) = g(x)h(z) in F[z], then 2 = deg (f(z)) =
deg (g(z)) + deg (h(z)) =0+20r =1+ 1 or =2+ 0. Therefore f(z) is
reducible if and only if the second case 1+ 1 can occur, i.e., if and only if
f(x) can be written as a product of two polynomials of degree 1, i.e., if and
only if f(x) has a root in F.

deg (f(x)) = 3. Suppose f(z) = g(x)h(z) in F[z], then 3 = deg (f(z)) =
deg (g(z)) + deg (h(x)) =0+3o0r =1+2o0r 2+ 1 or = 3+ 0. Therefore
f () is reducible if and only if one of the two cases 1+ 2 or 2+ 1 can occur,
i.e., if and only if f(x) is divisible by a polynomial of degree 1, i.e., if and
only if f(x) has a root in F.

deg (f(z)) = 4. f(z) is reducible if and only if one of the three cases 1+ 3,
242 or 3+ 1 can occur, i.e., if and only if f(x) has a root in F or f(z) is
a product of two quadratic factors.

Examples 2.17: Checking irreducibility for specific polynomials of small degree:

1)

2)
3)
4)
5)

6)
7)

22 + 1 is irreducible in R[], since deg(z? + 1) = 2 and it has no roots in R.
22 + 1 is reducible in C[z], since it has roots in C (in fact, ).

2?2 — 2 is irreducible in Q[z], since it is of degree 2 and has no roots in Q.
x? — 2 is reducible in R[], since it has roots in R (in fact, £+/2).

2% — 22+ 2 has odd degree and must therefore have a root in R. Therefore
it is reducible in R[z].

23 — 2z + 2 is irreducible in Q[z] since it has degree 3 and no root in Q.
x* +22? +1 has no roots in R, but it is nevertheless reducible in R[z| since
it factors as (22 + 1)2.

Proposition 2.18. Let f(x) = ana™ + ... 4+ ag be in Z[x] of degree n > 1. If
b/c € Q is a root of f(x) such that ged(b,c) = 1, then necessarily ¢|a, and b|ap.
In particular, if a, = £1, then all the roots of f(x) in Q must in fact belong to 7Z.

Example 2.19: The roots of f(z) = 22 — 2z + 2 in Q, if they exist, must lie in
{+£1, £2}. Substituting shows that none of them is a root. Therefore f(z) has no
root in Q (and since it is furthermore of degree < 3, it is irreducible in Qx]).

Proposition 2.20. Let F be a field and f(x) € F[z] be irreducible. Then f(x) is

prime.

Theorem 2.21. Let F' be a field, and let f(x) be in F[z] of degree at least 1. Then

(Existence) f(x) = g1(x)----- gs(z) for some g;(x) which are irreducible in
Flx];

(Uniqueness) if f(x) = hi(z) - --- - h(x) for some hj(zx) which are irre-
ducible in F[x], then necessarily s =t and—after renumbering the hj(z) if
necessary—uwe have g;(x) = ¢;j - hj(x) for some c; € F*.
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Examples 2.22: 1) Let F = Qand f(z) = 3°+22+63+2 = (2+3)(32%+6).
The linear (i.e., of degree 1) factor = + % is irreducible; but also the second
factor 322 + 6 is irreducible as it has degree 2 and has no root in Q. We
have also other decompositions, like f(x) = (3z + 1)(22 + 2), whose factors
can be written according to the theorem as c1(z + 1) and c2(32? + 6) for
some ¢; € Q* (in fact, we find ¢; = 3 and ¢ = £).

2) Let f(x) = 2* + 2 4+ 22% + 42 + 2 € Q[z]. Candidate roots are £1,+2. A
quick check shows that —1 is indeed a root, and f(z) = (z+1)(z% +22+2).
The second factor is irreducible since it is of degree < 3 and has no root in
Q. (The first factor is irreducible, since it is of degree 1.)

3) Let f(z) = 2* — 4 in Q[z]. Then candidate roots are +1,+2, +4. A quick
check shows that none of them are roots. We cannot yet conclude irre-
ducibility, though, since there is still the possibility that f(z) decomposes
into two (necessarily irreducible) quadratic factors—and this indeed holds:
F(@) = (2% + 2)(a® — 2).

4) Let f(z) = 23 —T1 in Zs[x]. One checks that T is a root, and that the second
factor in the decomposition 23 —1 = (z — 1)(2% + 2 + 1) is also irreducible
(it has no root in Zs and is of degree < 3).

Remark 2.23: Let F be a field. If f(z) € F[z] is of degree at least one, then we

could also write f(z) = c¢-g1(z) - -+ - gp(z) with ¢ € F* the leading coefficient of

f(x), and where all gj(x) are monic and irreducible in F[x].

This decomposition is unique, up to permutation of the g;(x).

Lemma 2.24. Let f(x) be in Z[z], n > 2 an integer. Then reducing the coefficients
modulo n, i.e., the map
on: Llz] —  Znlz]
f(x)=apz™ +...+ay +— f(x):=aGpa™ +...+a

is a ring homomorphism.

Theorem 2.25. (Gauss lemma) Let f(x) € Z[x] have degree > 1. Suppose f(x) =
g(x)h(z) with g(z), h(z) € Qlz]. B

Then already f(z) = g(z)h(z) with g(z), h(z) € Z[z] and deg (§(z)) = deg (g(z)),
deg (ﬁ(a:)) = deg (h(z)). More precisely, there exists an a € Q* such that a- g(x) €
Z[z] and a=! - h(x) € Zx].

—~

Examples 2.26: 1) The quadratic polynomial f(x) = 222+ 7x+ 3 which can
be decomposed over Q as (z+ 1)(2z +6) has a decomposition in Z[z] given
by f(z) = 2z +1)(x + 3).

2) Factorize z* + 4 in Q[z]. It has no roots in Q, so either it is irreducible or

it factorises as a product of two quadratics (without roots in Q).

Make the “Ansatz” z* + 4 = (A2? + Bz + C)(Dx? + Ex + F) with
A, B,...,F € Q. By the Gauss lemma, we can find a factorisation of the
same type with A, B, ..., F € Z.

Multiplying out and comparing coefficients of the different monomials
2" (r = 0,...,4) gives us conditions on the integers A,...,F. A short
calculation then gives indeed a factorization

ot 4= (2422 +2)(2® — 20 +2).
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Proposition 2.27. (Criterion for irreducibility in Z[x])

Let f(z) € Z[x] be non-constant. Let p be a prime number such that f(z) € Z,[x]
has the same degree as f(x).

If f(x) is irreducible in Zy[z] then f(z) is irreducible in Q[x].

Examples 2.28: 1) f(x) =322+ T2+ 13. Takep=2: f(z) =2>+x+1¢€
Zs|x]. The latter is irreducible in Zs[x] as it has degree 2 and neither 0 nor
T are roots. Furthermore deg (f(z)) = deg (f(z)) = 2.
Therefore f(z) is irreducible in Qlz].
2) f(z) = 322 + 2z, take p = 3. Then f(x) = 2z is irreducible in Zs3[x],
as it has degree 1. But f(x) = x(3z + 2) is not irreducible. [Note that
deg (f(z)) < deg (f(2)).]

Proposition 2.29. (Eisenstein’s [irreducibility] criterion)
Let f(x) = anz™ + ... 4+ ag € Z[z], an, # 0, n > 1. If there is a prime p € Z with

plao, plai,....plan—1, but pfay and p*fag
then f(x) is irreducible in Qx].
Examples 2.30: 1) f(z) = 2™ — 2, for n € N, is irreducible in Q[z], by
Eisenstein’s criterion for p = 2.
2) Let p be prime. Then f(z) = 2P~!+2P~2+.. .+ +1 is irreducible in Q[z].

[Use: f(z) irreducible < f(z + 1) irreducible; then, writing f(z) = ?Tp_’ll
gives

(E+1)P -1 (xp—l—(ﬁ’)xp’l—i—...—l—(pfl)x—i—l)—l
(z+1)—1 x

_ p—1 p p—2 p
T +(1)x +...+(p_1>.

Now apply Eisenstein’s criterion for the prime p.]

fle+1)

3. IDEALS AND QUOTIENT RINGS

Definition 3.1. Let R be a ring. A subset I in R is called an ideal if the following
three conditions hold:
(i) Or € I;
(ii) if r and s are in I, then alsor —s € I;
(iii) frel anda € R, thenr-a €l anda-r € I.

Note: In particular, I is a subring of R (can think of it as a “black hole”: it absorbs
everything which comes near it...).

Remark 3.2: If R has an identity 1 g, and if an ideal I C R contains 1 g, then
necessarily I = R. Similarly, if I contains any unit, then I = R.

Examples 3.3: (1) R = Z. Then any subgroup under addition is either {0}
or of the form nZ (n = 1,2,...). All of them are ideals, and any ideal
(which is in particular a subgroup) of Z is of this form. (For n =1 we get
the full ring.)
(2) “Trivial ideals”: {0} is an ideal, R is also an ideal (for any ring R).
(3) R = F afield. Its only ideals are {0} and R (any r # 0 is a unit).
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Examples 3.4: 1) (a) = {ra | r € R} has a single generator and is called a
principal ideal.
2) (a1,a2) = {ria1+raas | 11,72 € R}. Sometimes this can be written simpler,
e.g., (15, 21)2 = (3)2
3) All ideals in Z are principal (cf. Example 3.3 (1)).
Proposition 3.5. Let ¢ : R — S be a ring homomorphism. Then ker(y) is an
ideal.

Examples 3.6: 1) (Cf. Example 1.11) ¢ : Z[i] — Za, p(a +bi) =a+ b, is a
homomorphism of rings, with ker(p) = {vy(=1+14) | v € Z[i]} = (-1 +1), a
(principal) ideal in Z[4].

2) ¢ : Z[i] — Zs7, sending a + bi to a + 6b, is a ring homomorphism. Since
6= _-Tin Z37, the number 6 reflects the crucial property of the number i
in Z[i]. Then ker(p) = (37,6 —i) = {a- 37+ B(6 —4) | o, B € Z[i]}.

Example 3.7: (Example 3.6, 2), revisited) There is a simpler description of the

kernel, since (37,6 —i) = (6 — 1) (note that 37 = (6 — )(6 + 4) already lies in the

ideal (6 —17)).

Proposition 3.8. Let F be a field. Then all ideals of F[z] are principal. More

precisely, the ideals of Flx] are given by (0), (1) and (f(z)) for deg (f(z)) > 1.

Moreover, we have the inclusion of ideals
(f(2)) € (9(x)) iff  g(z)| f(x) € Fla]
and equality of ideals
(f(x)) = (g(x)) if  f(x)=c-g(x) € Flz] for some ¢ € F*.

[In particular, each non-zero ideal of F[x] has a unique monic generator.)

Let R be a ring and I C R an ideal. The set of cosets {a + I | a € R} not only

forms a group, the quotient group R/I, but in fact even becomes a ring.
The multiplication of cosets is given, for a,b € R, as

(a+Db+1I)=a-b+1.

Definition 3.9. For an ideal I in a ring R, the map w: R — R/I, sending a € R
to its coset a + 1, is called the canonical projection (along I), and R/I is called
the quotient ring of R with respect to I.

Proposition 3.10. 1) R/I is indeed a ring. [So the name is justified.]
2) The canonical projection m: R — R/I is a ring homomorphism. Morever,
it is surjective, and I is its kernel.
Note: Computation rules in R/I:
ed+b=a+b a-b=a-b
ea=bsa—bel (inparticulara=0<a€l).
Examples 3.11: 1) Let I = (=14 1)z C Z[i]. Then —6 + i = —i in Z[i]/I.
2) Let I = (22 4+ x4+ 1)gy) C Q[z]. Then z + 2 # 222 in Q[z]/(2? + x + 1).
Theorem 3.12. (First Isomorphism Theorem for Rings) Let ¢ : R — S be a
surjective ring homomorphism. Then there is an isomorphism of rings
R/ker(p) — S,

a+ker(p) — p(a).
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Example 3.13: Define ¢ : R[z] — C, sending f(z) to f(i) (where i> = —1). We
can check the following properties.
e ¢ is a homomorphism of rings.
e o is surjective: any a + bi € C (a,b € R) can be obtained as ¢(a + bz).
e ker(p) = (2% +1).
Now the above corollary implies that we have
Rz]/(2* + 1) = C.

Proposition 3.14. Let ¢ : R — S be a ring homomorphism. Let I C R be an
ideal and w: R — R/I the canonical projection.

If I C ker(p) then there exists a unique map @ : R/I — S such that pom = ¢,
and @ is in fact a ring homomorphism.

We can write this statement effectively with the help of a diagram:

R

| N

Examples 3.15: 1) ¢ : Z — Zn(=Z/(n)z),
homomorphism of rings. Its kernel is ker(y)
(a single generator being n or —n).
I C (n) means that I = (k) with k € (n), i.e., n|k, i.e., K = mn for
some m € Z.
So assuming k = mn we get the diagram

|

Z/(mn) - = = Z/(n)

n > 2, sending a to @, is a
= (n)z = nZ, a principal ideal

2) ¢ : Z[i] — Zs, sending a + bi — a + b, is a surjective ring homomorphism,
with kernel ker(y) = (=14 1).
Note that (4) C ker(p) since ¢(4) = 0. The proposition gives us a map
P fitting into the following diagram

Z1i)/(4) > I

Example 3.16: (Example 3.15, 2) cont’d) Since ¢ is surjective, we can apply the
First Isomorphism Theorem for rings, giving

Z[i)/(-1+41) 2 Zs,
where the map is given by a + bi + (=1 +14)z;;) — a +b.
Operations on ideals: Let R be a ring and I, J ideals in R. Then

1)INnJ={a€R|acIandacJ}
2y I+J={a+beR|acl beJ}
3) I'J:{Zﬁniteakbk€R|ak€I3«ndbk€J}~
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All of the three are ideals, and we have the following inclusions:

1
I-JCIDJC{J

Example 3.17: Let R = Z, I = (4)={all multiples of 4 inside Z}, J = (6)={all
multiples of 6 inside Z}. Then I N J ={all n in Z which are multiples of both 4
and 6}, i.e. precisely the multiples of 12, i.e., I NJ = (12). This example shows in
particular that the above inclusions are all strict:

(24) € (12) {Eg;} c@).

Important fact: Let R be a commutative ring with identity. Then we have the
following identity of ideals in terms of generators:

(al,...,an)—k(bl,...,bm) = (al,...,an,bl,...,bm),
(a1, an) + (b1,...;bm) = (a1b1,...,¢1bm, ... anb1,. .., anby).

Example 3.18: In Z[v/—5], we take I = (2,3++/-5), J = (3,1 —+/—5). Then we
have

I+J=(234+vV=5)+(3,1—v=5)=(2,3+vV=5,3,1—v=5) =(1),
since 1 =(—1)-24+1-3+0-(3++/-5)+0-(1—+/-5).

beres

o= (2 3+\/_) (3,1-v=5)

(2-3,2- (1-v=5),3+V=5)-3,(3+V=5)(1 - V-5))

(6, 2—2x/_ 9+3v=5,8 —2/-5)

(6,2—2v=5,9+3V-5) [8—2V-5=6+(2—2V-5)]

(6,2 —2v=5,-3 4 3V-5) [replace 9 + 3v/—5 = 12 4+ (=3 + 3v/=5) by
—3 + 3v/—5 since 12 is a linear combination of the other two generators]

= (6,1-+v-5)) [replace the last two generators by their ged]

= 1-vV=5). [B=>0+V=5)(01—-V-5)]

Theorem 3.19. (Chinese Remainder Theorem for Rings) Let R be a ring and I,
J C R ideals such that I + J = R. Then

R/(INJ) — RJ/IxR/J,
a +— (a@,a)=(a+I,a+J).
If R is commutative with identity, then we further have
R/(I-J)-—R/IxR/J,

with the same map as above.

Remark 3.20: 1) Suppose R has an identity, then I + J = R if and only if
l=a+0bforsomeac I, be J. (I and J are then called coprime to each
other.)

2) Suppose R is commutative with identity. Then if I + J = R, then I N J =
I-J.
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Remark 3.21: Suppose R is commutative with identity and I, J ideals in R with
I+ J = R, then we can write l =a+b,ac I, be J.
For r,s € R, we get

=iel  —Ir€J
r o= rla+b =78+ 7b,
s = sla+b)=s-a+ s-b

ERN =:1js€J

Under the above map
R/I-J=5R/Ix R/J
we obtain that sa+rb+ I -J maps to (r+1,s+ J).

Examples 3.22: 1) Let R=Z and I = (m)z, J = (n)z. Then I +J =
ged(m,n), so I +J =R < ged(m,n) = 1.
Suppose that ged(m,n) =1, so that I + J = Z. Then we have

Z/(m-n) — Z/(m)xZ/(n),
a+mnZ ~— (a+mZ,a+nZ).

Make surjectivity explicit: given b, ¢ € Z, which class in Z/(mn) maps to
(b,2)?
Write 1 = km + ¢n for some k, ¢ € Z (this is possible since (m,n) = 1).
Then we have

eJ
—
b = k-m-b+/¢-n-b,
c = k-m-c+Hl-n-c.
——

el

Putting these together, we get
Inb + kmc — (b,).
=2Z[l, I = (2+1),J = B3+1i). Wehave I + J = Z[i] since 1 =
1)- 244 +1-(3+19).
By the above, INJ = I-J = (2+i)p-(3+i)r = ((2+4)(3+1)) 5, = (5+5i)r,
and by the Chinese Remainder Theorem we get
Z[i) /(5 + 50)——Z[i]) /(2 + i) x Z[i] /(3 + i) .
We find the element on the left hand side which maps to (34 1,2+ J): by
the above remark, we take (forr =3, s=2,a=—-2—iand b=3+1)
(r-b+s-a+I-J=) 3-B+i)+2-(—2—-9)+I1-J,

which can be written slightly simpler as 5 +¢ 41 - J.

9) R
(_

Definition 3.23. Let R be commutative with identity 1r # Ogr, and let I be an
ideal in R. Then I is called a prime ideal if

for any a,b € R : (abEI = a€l or bEI),
and I is called o maximal ideal if

for any ideal J C R with I C J C R we have either J =1 or J =R.
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Examples 3.24: For R = Z, all the ideals are of the form (n), n € Z.

1) (0) is a prime ideal (but it is not maximal: e.g., (0) G (2) G Z).
2) Z is neither a prime ideal nor a maximal ideal in Z.
3) Consider (n) for n > 2.
If n is a prime number, then (n) is a prime ideal. In fact, it is even a
maximal ideal.
If n is not a prime number, then (n) is not a prime ideal. It is also not

maximal.

Theorem 3.25. Let R be commutative with identity, I C R an ideal. Then

1) I is a prime ideal in R < R/I is an integral domain.
2) I is a maximal ideal in R < R/I is a field.

Corollary 3.26. A maximal ideal is also a prime ideal.



