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1. Motivation

In September 1994, the British mathematician Andrew Wiles finished his proof
of a long-held conjecture which stated that

For n > 3, there are no solutions in positive integers x, y, z of
xn + yn = zn .

Fermat famously had scribbled “I have a truly marvelous proof of this fact but
the margin here is too small to contain it” on his copy of Diophantus’s Oeuvre
“Arithmetica”, and the search for such a proof had challenged number theorists for
more than 350 years...

“Fermat’s Last Theorem”, as the statement was called, is in a sense an em-
blematic problem for number theory: it is a question about integer solutions of an
easily formulated equation but whose proofs are often exceedingly hard. In the
quest of finding a solution for it, important structures were found (like ideals, class
groups, . . . ) and amazing connections were uncovered (to elliptic curves, Galois
representations, algebraic K-theory, . . . ).

It should be emphasized that Wiles was building on work of many other math-
ematicians (Taniyama, Shimura, Weil, Frey, Ribet, Mazur, Langlands, Tunnell,
Taylor. . . ).

The proof of FLT is far beyond what we are able to cover in this course. Never-
theless, we will use similar questions which can be treated with considerably easier
methods, but which still have a “Diophantus–Fermat-like” flavour.

The main number theorist of ancient Greek times is Diophantus (∼250 A.D.),
who studied more generally equations with integer coefficients and found ingenious
methods to solve them in integers or also rationals. In honor of this eminent scholar
such equations, where one is only interested in rational numbers—or sometimes only
integers—as solutions, are called Diophantine equations.

For Diophantus, elementary geometry triggered a number of challenging ques-
tions, like the following one inspired by Pythagoras’s theorem:

Q.1: Are there infinitely many “Pythagorean triples”, i.e. solutions (in positive
integers x, y and z) of the equation

x2 + y2 = z2 ?

Can one list/describe all the solutions?
[[ Note that the square of an odd number is again odd, and since any odd integer
2n+1 is the difference of two successive squares n2 and (n+1)2, there are certainly
infinitely many Pythagorean triples. ]]

Using a geometric method one can parametrise the set of all solutions.

Q.2: Which primes can occur as the hypotenuse of a right-angled triangle with
integer sides? (This refines Q.1.) Formally, for which prime p can we write
p2 = x2 + y2 with x, y > 0?
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[[ Answer: roughly “half of them”: precisely when p ≡ 1(4). ]]

Q.3: How often does a cube exceed a square by 2? In mathematical notation:
what are the solutions (in integers x and y) of

x2 + 2 = y3 ?

[[ There are two rather simple solutions x = ±5, y = 3; and they are in fact the
only ones. The structure here is less visible: if one allows rational solutions instead
one finds that there are infinitely many of them. More precisely, if one also adds
the “point at infinity” (as one often does for such objects), one can define a group
structure on the set of solutions, and it turns out to be isomorphic to Z, generated
by either of the two simple solutions given above. ]]

This is an equation which can be adequately analysed by a very rich theory, the
arithmetic of elliptic curves which also plays an important role in Wiles’s proof.

One of the first renowned people in “modern” times deserving the name “number
theorist” is Pierre de Fermat (1601–1665) who by profession was actually a lawyer
in Toulouse. He had obtained one of the six books that Diophantus had left as his
legacy, which turned out to be the stimulus for Fermat’s ingenuity in inventing new
methods (and new interesting, often innocuous-looking, problems) for the solutions
of Diophantine equations. Among his findings are the following:

Q.4: Which primes can be expressed as a sum of two (integer) squares? Varia-
tions on this question: given an integer N , which primes p can be written
as

p = x2 +Ny2 , x, y ∈ Z ?

[[ For N = 1, the solutions are p = 2 and, again, all primes p ≡ 1(4).
For N = 2, one can solve it precisely for the primes p ≡ 1(8) and p ≡ 3(8) (and
obviously for p = 2).
For N = −2, one can solve it precisely for the primes p ≡ 1(8) and p ≡ 7(8). ]] For
N = 3, one can solve it precisely for the primes p ≡ 1(3) (and obviously for p = 3).

Statements like the three ones above led to one of the most celebrated theories
of 20th century mathematics, the so-called class field theory. The latter establishes
e.g. the fact that the factorization of primes in Z[i] is determined simply by its
congruence class modulo 4.
In each of the above cases the “structure” on the set of solutions is that they
constitute precisely the primes in certain conjugacy classes (i.e. cosets) modulo a
certain integer (1 or 2 (mod 4) in case N = 1, 1, 2 or 3 (mod 8) for N = 2, etc.).

Q.5: Are there finitely many or infinitely many solutions of

x2 − 2012y2 = 1 ?

Can you describe the set of all solutions?
[[ Write xn + yn

√
2012 = (1215047807 + 27088152

√
2)n for n ∈ Z, then the pairs

±(xn, yn) describe precisely the—infinitely many—solutions of the above equation.
The structure of the set of solutions in given by a group, in fact by Z × Z/2Z
(the component in Z arising from the exponent in the above expression, while the
component in Z/2Z arising from the sign). ]]

In the literature, this and similar questions are nowadays referred to as “Pell’s
equation”. It is intimately connected with one of the fundamental objects in al-
gebraic number theory, the units in number rings. Furthermore, it is also directly
related to continued fractions.
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A result which at first glance is very surprising is which integers can be written
as a sum of four squares (here terms 02 is allowed, e.g. 5 = 22 + 12 + 02 + 02,
1367 = 272 + 252 + 32 + 22, or 1234567891 = 287292 + 202292 + 32 + 02).

Q.6: Show that all positive integers are sums of four squares!

[[ We will see a proof below. ]]

The first proof is accredited to Lagrange (while Fermat was the first to have
claimed the fact, and very likely had a proof).

Even more surprisingly, two centuries after Fermat (who did not pass on a proof
of his claim) another renowned number theorist, C.G. Jacobi (1804–1851), in a
brilliant piece of work using Fourier analysis of elliptic functions, found an explicit
formula expressing the number of ways in which an integer can be written as
such a sum of four squares.

Fermat did not only look at quadratic equations (although they already provide
a wealth of beautiful and intricate structures). For example, another innocuous-
looking question about triangles leads naturally to an equation of degree 3:

Q.7: Which integers are congruent numbers, i.e. occur as the area of a right-
angled triangle with rational sides?

[[ For instance, 6 does occur, since 32 + 42 = 52, there is a right-angled triangle with
sides of lengths 3, 4 and 5, whose area is 6. Since

(
20
3

)2 +
(

3
2

)2 =
(

41
6

)2, one can
conclude the non-obvious fact that 5 is also a congruent number.

Amusingly enough, the number 157 is congruent and, although itself rather small,
its least complicated corresponding right triangle has hypotenuse length for which
numerator and denominator have a whopping 46 resp. 48 digits. More precisely, it
equals

224403517704336969924557513090674863160948472041
8912332268928859588025535178967163570016480830

.

This example has been calculated by Zagier and is reproduced in Koblitz’s book
“Introduction to elliptic curves and modular forms”, p.5. ]]

In order to tackle problems as the ones above, many ingenious techniques had
to be invented. The more elementary ones deal with divisibility questions (often in
an ad hoc manner), other more sophisticated approaches use more systematic tools
like number rings (like Z[

√
2012] in Q.5) or even elliptic curves (like the last two

questions). Typically one is immediately led to rather profound mathematics.

Acknowledgments. What follows is based on a course originally given by Steve
Wilson.

2. Diophantine equations via divisibility

In this section we try to highlight the importance of the property of divisibility
which is often a crucial tool when dealing with Diophantine equations. Several of
the examples provided below have already been dealt with in courses like Algebra
II or Elementary Number Theory and Cryptography II and are recalled here for
convenience and for easier reference.

2.1. Pythagorean triples. We want to find all triples (a, b, c) of integers which
satisfy the “Pythagorean” equation x2 + y2 = z2. Since from each such solution
we get (infinitely) many others (ka, kb, kc) by simply multiplying all three by the
same number k, we restrict ourselves to the case where they are coprime, i.e. where
gcd(a, b, c) = 1.
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Problem 2.1. Determine all primitive Pythagorean triples, i.e. all triples (a, b, c),
a, b, c ∈ N>0 such that a2 + b2 = c2 (“Pythagorean”) and gcd(a, b, c) = 1 (“primi-
tive”).

Solution. We first investigate the parity of a, b and c, working first modulo 2
and then modulo 4.

Observe:
• not all three numbers a, b, c are ≡ 0(2) [[ otherwise 2 | gcd(a, b, c) ]] .
• a, b are not both even [[ or else c would also be; this we just ruled out ]] .
• a, b are not both odd: consider both sides modulo 4 [[ consider squares of

integers mod 4: m even ⇒ m2 ≡ 0 (mod 4); m odd ⇒ m2 ≡ 1 (mod 4) ]] .
If a and b were odd, then LHS ≡ 2 (mod 4), but RHS ≡ 0 or 1 (mod 4).

This is impossible.
• Therefore precisely one of a and b is odd, and consequently, c must be odd.

Swapping roles of a and b, if necessary, we can assume a even, b odd.
• Put a = 2n; note a2 = c2 − b2 = (c − b)(c + b), and both factors on the

right are even (since both b and c are odd).
Put c − b = 2v, c + b = 2w; then we obtain (2n)2 = 2v · 2w, and thus

n2 = vw (*) [[n, v and w are all non-zero ]] .
• v and w are coprime [[ a common factor would divide both b(= w − v) and
c(= w + v) ]] .

• By unique factorisation in Z, (*) therefore implies v = r2 and w = s2 [[ a
prime factor dividing v, say, does not divide w, due to their being coprime;
it also divides the LHS, in fact to an even power, and thus it divides v to
that same (even) power ]] .

• So (a, b, c) is necessarily of the form (2rs, s2 − r2, s2 + r2).
• Conversely, each such triple does satisfy the Pythagorean equation (check!).

In summary, we get as the complete list of primitive Pythagorean triples the fol-
lowing:

{(2rs, s2 − r2, s2 + r2) | r, s ∈ N>0} .
So by letting r and s run through all positive integers independently, we can create
as many Pythagorean triples as we like (they will actually be primitive whenever r
and s are coprime)—indeed, we get all those triples in this way. (This is called a
parametrisation of the solutions.)

Note: This apparently has already been known to the Babylonians (some 3500
years ago), e.g. they listed the example

49612 + 64802 = 81612 .

2.2. How many solutions to c2−b2 = n? We can ask a more refined question: in
how many Pythagorean triples does a given a occur (as one of the smaller numbers)?
It turns out that in a way it is more convenient to answer a slightly more general
question: how often can a number n be represented in the form c2 − b2 (previously
n was a square a2)?

Interlude. How many (positive) factors does an integer n(> 0) have? Notation:
σ0(n) = number of divisors of n. [[ More generally, in number theory one often
considers the function σk(n) =

∑
d|n d

k, i.e. the sum of powers dk where d runs
through the divisors of n. ]] A short table shows:

n 1 2 3 4 5 6 7 8 9 10
σ0(n) 1 2 2 3 2 4 2 4 3 4

This suggests the

Claim: σ0(n) is odd precisely when n is a square.
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Indeed: as factors come in pairs (d, n/d), it would seem that the number of
divisors should always be even, except if d and n/d agree (then this divisor d = n/d
would only be counted once). But the latter happens precisely when n = d2, i.e.,
n is a square.

Now we first try to evaluate σ0(n) for the building blocks which in our context
are prime powers.

Claim: σ0(pm) = m+ 1. [[ Proof: the divisors of pm are 1, p, p2, . . . , pm ]]

Mini-exercise: the function σ0(n) is multiplicative, i.e., if gcd(m,n) = 1
(m,n ∈ N>0) then σ0(mn) = σ0(m)σ0(n).

Using the multiplicativity, we get the following result: suppose n has the prime
decomposition n =

∏
i p
mi
i (i.e., the pi are (mutually different) primes), then we

get
σ0(n) =

∏
i

(mi + 1) .

Example: Let n = 55000. Since n = 23 · 54 · 11, we get σ0(n) = 4 · 5 · 2 = 40.

This ends the interlude, and we can now tackle the question stated at the beginning
of this subsection..

Problem 2.2. Let n > 0 be an integer.
How many solutions are there to x2 − y2 = n, with x and y in N>0?

Solution. As in the previous problem, we first try to find a necessary form for
the pairs (x, y).

So suppose (x, y) is a solution. Put d = x+ y and e = x− y. Then the equation
is rewritten as de = n. We can deduce parity for d and e: since d + e = 2x, we
know that d ≡ e mod 2. Since d− e = 2y > 0, we also know that d > e.

Thus (x, y) lies in the following set

S :=
{(d+ e

2
,
d− e

2
)

such that de = n, d ≡ e mod 2 and d > e > 0
}
.

Again, one checks easily that each element in S indeed provides a solution.

In order to determine the size of S, we distinguish two cases.
I. Case n odd. In this case any divisor of n = de is also odd, so the condition
d ≡ e (mod 2) is automatically satisfied. Furthermore, once we know d,
the other number e is determined (e = n/d). Therefore |S| is the number
of divisors of n with d > n/d, i.e., such that d >

√
n.

Now to each such d >
√
n dividing n there is an e = n/d <

√
n < d, so

d contributes a member to S. But all factorisations of n = de, d > e, entail
d >
√
n > e or d =

√
n = e. The latter occurs precisely if n is a square.

If we denote the number of (positive) divisors of a number n by σ(n),
we can therefore conclude

|S| = σ(n)
2

,

except when n is a square, in which case it reads

|S| = σ(n)− 1
2

,

II. Case n even. This case can be somehow reduced to the previous case. One
of d and e must be even, and due to the condition d ≡ e (mod 2) both have
to be. Therefore we can conclude that for n/2 odd there are no solutions,
i.e. |S| = 0.
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On the other hand, if 4|n, then we get d = 2d′ and e = 2e′ with d′, e′

in Z and d′e′ = n/4, and so we can restate the set S for the case n even in
terms of d′ and e′ (the description is slightly simpler as the condition d ≡ e
(mod 2) is no longer needed)

S = {(d′ + e′, d′ − e′) such that d′e′ = n/4, and d′ > e′ > 0} .

Proceeding as in Case I, we see that |S| is the number of divisors of n/4
which are greater than n/4, i.e.

|S| =

{
σ0(n/4)

2 if n is not a square,
σ0(n/4)−1

2 if n is a square.

2.3. The four-square theorem. The following striking statement, together with
its proof, should give a first glimpse of the power of ingenious ideas. It is not so
difficult to find four squares which add up to 111, say (111 = 92 +52 +22 +12), but
it seems forbidding to achieve such a presentation for a much larger number, like
“Hirzebruch’s prime” 1234567891. Fermat had already stated that each natural
number can be thus represented, albeit he didn’t leave a proof. The first proof
came from J.L. Lagrange (1736–1813), and we will follow his argument.

Theorem 2.3. (Fermat) For any N ∈ N, there are w, x, y, z in Z such that

N = w2 + x2 + y2 + z2 .

Proof: (Lagrange) Step 0. The statement is clear for N = 2 since 2 = 12 +
12 + 02 + 02. Step 1. Reduction to N a prime: we use an identity by L. Euler

(1707–1783):

(a2 + b2 + c2 + d2)(w2 + x2 + y2 + z2) = (aw + bx+ cy + dz)2

+(ax− bw − cz + dy)2

+(ay + bz − cw − dx)2

+(az − by + cx− dw)2 .

Therefore the product of two four-squares (as on the left) is also a four-square (as
on the right). Thus it is enough to show the statement of the theorem for the
(multiplicative) building blocks, i.e., for N = p prime.

Step 2. It is rather easy to show that a slightly weaker claim holds: the four-
square property holds for a non-zero multiple of the prime p:

∃m > 0 such that mp = w2 + x2 + y2 + z2 for some w, x, y, z ∈ Z .

Note that, if we cah choose m = 1 then we are done with the proof of the theorem,
by virtue of Step 1.

One actually shows, using the pigeon-hole principle, the following even stronger
claim:

Lemma 2.4. For a prime p, there exists m < p such that mp can be written as a
sum of 3 squares; more specifically, for some m > 0 we can solve mp = x2 + y2 + 1
in integers x, y.

[[ Proof: Exercise; for hints see Problem Sheet 1, Ex. 5. ]]

Step 3. Starting from the claim in Step 2, successively replace m by smaller m′,
still satisfying the four-square property for m′p, until m′ = 1. Then we are done.

How to replace? Distinguish two cases, according to whether m is even or odd:
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I. Case m even. If mp satisfies the four-square property, then so does m
2 p:

More generally, if 2N = w2 + x2 + y2 + z2, then there are an even number
of odd integers and also an even number of even integers among w, x, y,
z. So we can group them in pairs, say w ≡ x(2) and y ≡ z(2). Then

N =
(w + x

2

)2

+
(w − x

2

)2

+
(y + z

2

)2

+
(y − z

2

)2

.

We can assume p > 2 (cf. Step 0) and therefore, if m is even, reduce m
to m/2.

II. Case m > 1 odd (for m = 1 we are done). By assumption, we have
mp = w2 +x2 +y2 +z2 (from Step 2); in fact, we can assume 0 < m < p by
the lemma above. We are clearly done if m = 1, so we can further assume
1 < m < p.

Now we “switch” the point of view and work modulo m (a quite inge-
nious trick due to Lagrange). We choose the unique a, b, c and d which
are congruent to w, x, y and z modulo m, respectively, such that −m/2 <
a, b, c, d < m/2. This immediately implies that

a2 + b2 + c2 + d2 ≡ w2 + x2 + y2 + z2 ≡ 0 (mod m) ,

and in fact that

a2 + b2 + c2 + d2 = km with 0 < k < m .

The latter claim on the size of k follows directly from a2 <
(
m
2

)2 (and
similarly for b, c, d) so that a2 + b2 + c2 + d2 < 4

(
m
2

)2 = m2 and so
k < m. Note that k 6= 0. [[ Otherwise a = b = c = d = 0 and therefore
w ≡ x ≡ y ≡ z ≡ 0 (mod m) which implies thatm2 divides w2+x2+y2+z2.
But the latter is equal tomp by assumption and som | p which implies either
m = 1 (against our assumption) or m = p contradicting our assumptions
(1 < m < p). ]]

Finally, all we need is to use Euler’s identity again, this time with the
specific expressions above. On the left hand side, we get (a2 + b2 + c2 +
d2)(w2 + x2 + y2 + z2) = km ·mp, while on the right hand side we have
the squares of aw + bx + cy + dz, ax − bw − cz + dy, ay + bz − cw − dx
and az − by + cx − dw, respectively. But the way we have chosen a, b, c, d
implies that all these four expressions are divisible by m. Therefore we can
conclude that

kp = W 2 +X2 + Y 2 + Z2 ,

where W , X, Y and Z are these expressions divided by m, e.g. W =
(aw + bx + cy + dz)/m, X = (ax − bw − cz + dy)/m, etc. which are all
integers by the above.

This finishes the reduction step for m odd, and therefore also the proof of the
theorem.

The above proof does not provide any specific decomposition, but one can give a
“constructive” proof, e.g., check at http://www.alpertron.com.ar/4SQUARES.HTM,
where one can find an applet (http://www.alpertron.com.ar/FSQUARES.HTM) by
Dario Alpern which gives in our case above

1234567891 = 287292 + 202292 + 32 + 02 .
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2.4. The descent method. Many Diophantine equations have either no solution
or infinitely many solutions. Fermat invented a technique which can deal with either
situation! This technique is called the descent (method). The idea, roughly, is to
devise a mechanism which produces from a given “old” solution a “new” (different)
one.

More precisely, the new solution should be in some sense “smaller” than the old
one (typically one takes as measure the smallest—in absolute value—member in a
given solution). Note that a variant of this has already been used in the proof of
the 4-square theorem (when passing from a solution for mp to a solution for m′p,
0 < m′ < m). Surprisingly, the descent also works when there is no solution.

A good example for the method is Fermat’s last theorem (FLT) for the expo-
nent 4.

Proposition 2.5. The equation

x4 + y4 = z4

has no (non-trivial) solution in integers.

For the proof, we will use the “descent technique”, but also our knowledge of
the shape of Pythagorean triples. Again, we will actually show a slightly stronger
statement:

Claim 2.6. The equation x4 + y4 = z2 has no (non-trivial) solution in integers.

Proof: Assume we had a primitive solution (x, y, z) of this equation (i.e., where
gcd(x, y, z) = 1), then, writing it as (x2)2 +(y2)2 = z2, this is a Pythagorean triple,
so necessarily of the form (up to possibly swapping the roles of x and y)

x2 = 2rs , y2 = s2 − r2 , z = s2 + r2

for some r, s ∈ N, s > r. Note that gcd(r, s) = 1 [[ otherwise gcd(x2, y2, z) 6= 1, but
then also gcd(x, y, z) 6= 1, contrary to our assumption ]] .

We can rewrite the equation as

x4 = (z − y2)(z + y2) .

As before, we would like to conclude that each of the factors on the right is itself
a fourth power. (This is not quite true, but it is not far from being correct.) So
suppose p prime divides both factors, then p|(sum=)2z and p|(diff =)2y2, so p|2
[[ as (z, y) = 1 implies also (z, y2) = 1 ]] . Therefore (z − y2, z + y2) = 2 [[ check that
no higher power of 2 can divide the gcd ]] .

Although we thus cannot conclude that both z−y2 and z+y2 are fourth powers,
we get at least that

• either z − y2 = 2a4, a odd, z + y2 = 23b4

• or z − y2 = 23a4, z + y2 = 2b4, b odd.
But the first alternative would imply 2y2 = 23b4−2a4, and so y2 = 4b4−a4, which
is impossible as we see upon reducing both sides modulo 4 [[ LHS≡ 1 (mod 4), while
RHS≡ 0− 1 = −1 (mod 4) ]] .

Therefore we can only have the second alternative, from which we deduce

y2 = b4 − 4a4 , z = b4 + 4a4 .

Note that the latter equation implies 0 < b < z, while the former gives

4a4 = (b2 − y)(b2 + y) .

Similar to our reasoning above, the gcd of the two factors on the RHS is 2 [[ check
this! ]] , so we have

b2 − y = 2c4 , b2 + y = 2d4 ,
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and by eliminating y from them (add them up and then divide both sides by 2) we
get

b2 = c4 + d4 ,

which constitutes a new primitive solution [[ recall 0 < b < z ]] .
Conclusion: From each solution we can construct a new, in fact “smaller” one (as
b < z), which is also non-trivial (as 0 < b).

Now in order to finish the proof, suppose we took the solution of x4 + y4 = z2

with the smallest possible z. Then by the above we could fabricate an even smaller
one. Contradiction.

Therefore we have shown: there cannot be a (non-trivial) solution of x4+y4 = z2

[[ we could always reduce it to an even smaller one, and after a finite number of steps
it would have to be reduced to the smallest one—which we just showed cannot
exist ]] . �

From this Claim we can immediately deduce the above Proposition, i.e., the case
n = 4 of FLT. [[ If we cannot find solutions to x4 + y4 = z2, then we have an even
harder time finding a solution with the further constraint that z be a square. ]]

We also indicate a proof of the special case of Fermat’s last theorem (FLT) for
the exponent 3.

Proposition 2.7. The equation

x3 + y3 + z3 = 0 (∗)
has no (non-trivial) solution in integers.

Proof: (sketch, following an idea of Euler’s, via P.Ribenboim: “Fermat’s Last
Theorem for Amateurs”): Let us assume, for a contradiction, that the triple (x, y, z)
satisfies the above equation (note the sign for z3).

Let us first collect several conditions that we can take for granted:
• We can assume that gcd(x, y, z) = 1.
• Clearly, all three numbers have to be different, as 2 is not a rational cube.
• Precisely one of the three numbers is even (otherwise 2 | gcd(x, y, z)).

We let z be this even number.
We now turn to the actual idea of proof. Among all the solutions of (∗) there is

one with smallest possible (even) |z|.
Our goal is to produce from this solution another one for which the unique even
member has a strictly smaller modulus, thereby violating the minimality property,
and hence providing the sought-for contradiction.

A preconsideration is that x+y and x−y are even, so we there must be a, b ∈ Z
such that

x+ y = 2a , x− y = 2b , (whence x = a+ b, y = a− b),
and a and b are coprime and moreover have opposite parity (clearly a 6= 0, b 6= 0).
In fact, a must be the even one of the following reason: z is even, a2 + 3b2 is odd
and hence from

−z3 = x3 + y3 = (a+ b)3 + (a− b)3 = 2a3 + 6ab2 = 2a(a2 + 3b2)

it follows that 8 divides the right hand side, in fact divides 2a, so a is even as
claimed.

Now we claim that gcd(2a, a2 + 3b2) divides 3:
each prime power pk (k > 1) that divides both 2a and a2+3b2 is odd (as is a2+3b2),
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hence divides a already and then must also divide 3b2. Since (a, b) = 1 we must
actually have that any prime p that divides both 2a and a2 + 3b2 already divides
3, and we note that the maximal power 3k which can divide is for k = 1 [[ if 32

divides that gcd, then it follows that 3 must divide both a and b, contradicting
their coprimality ]] .

Hence there are two cases to treat, and we only concentrate on one of them:
assume gcd(2a, a2 + 3b2) = 1, then in particular 3 6 | a. Since we have a cube on the
left hand side of

(−z)3 = 2a · (a2 + 3b2)
we must have cubes for the coprime factors on the right, i.e., for some r, s ∈ Z we
have {

2a = r3

a2 + 3b2 = s3

with s being odd and not divisible by 3 [[ otherwise 3|a and then 3|b, violating
coprimality ]] .

Lemma 2.8. Suppose s is odd and satisfies s3 = a2 + 3b2 for some coprime a, b.
Then s itself has this form, i.e. s = u2 + 3v2 for some coprime u, v and{

a = u(u2 − 9v2)
b = 3v(u2 − v2).

This is a somewhat technical step for the proof of which we refer to Ribenboim’s
book mentioned above, pp.27-31.

Assuming that technical lemma, we can deduce that the three numbers 2u, u+3v
and u−3v are mutually coprime and hence r3 = 2a = 2u · (u+3v) · (u−3v) implies
that each of the factors on the right has to be a cube itself, say

2u = −n3, u+ 3v = `3, u− 3v = m3 ,

and we have `3 +m3 +n3 = 0, i.e. we found a new solution (`,m, n) to (∗), with `,
m, n non=zero, where the unique even member n satisfies |n| < |z|, contradicting
our minimality assumption on |z|. [[ Note that one has |z|3 = |2a(a + 3b2)| =
|n|3 · |u2 − 9v2| · |a2 + 3b2| > |n|3 as |a2 + 3b2| > 4 > 1. ]]

A similar argument works for the remaining case gcd(2a, a2 + 3b2) = 3.

Remark 2.9. We note that in the three proofs above there was an important step
(highlighted in red) in which we (implicitly) have used the uniqueness of factorisa-
tion in Z, e.g.: {

xk = vw (k > 2)
(v, w) = 1

}
⇒ v = ±�, w = ±� , (1)

i.e. both v and w are squares, up to possible sign.

2.5. Rings larger than Z and (the lack of) uniqueness of factorisation.

2.5.1. A simple proof of the first case of FLT(p)? Let us try to solve “half” of
Fermat’s Last Theorem FLT(p) for an odd prime p > 3 using the quotient ring
Z[X]/

(
Φp(X)

)
of the ring Z[X] of integer polynomials by the (principal) ideal(

Φp(X)
)

where Φp(X) = xp−1 +xp−2 + · · ·+x+ 1 is the (irreducible by Eisenstein
for the prime p) pth cyclotomic polynomial. Let ζp be a primitive pth root of unity
(e.g., ζp = e2πi/p), then one identifies Z[ζp] and Z[X]/

(
Φp(X)

)
and one finds that

the elements in Z[ζp] can be written as

a0 + a1ζp + · · ·+ ap−2ζ
p−2 , for some a0, . . . , ap−2 ∈ Z.



LECTURE NOTES FOR NT III/IV, MICHAELMAS 2012 11

We could factor

zp = xp + yp
(∗)
= (x+ y)(x+ ζpy)(x+ ζ2

py) · · · (x+ ζp−1
p y)

[[ why does the latter equality
(∗)
= hold? It may help to consider the (roots of the)

polynomial Xp + 1. . . ]]
and check that the p factors on the right are “coprime” (what should this mean?).
Then we seem to be able to conclude that each factor on the right is itself a pth
power (times a unit), using the argument of the previous Remark.

Now the “first case of FLT(p)” (this is the “half” alluded to above) claims that

xp + yp = zp is impossible for p 6 | xyz (x, y, z ∈ Z>0).

So for a contradiction we assume p > 3 and a solution (x, y, z) of the above with
p 6 | xyz. Using the above preparation, we can deduce that, for r = 0, . . . , p− 1, we
have x+ ζrpy = ur t

p
r for some unit ur in Z[ζp] and some tr ∈ Z[ζp].

It follows (non-trivially!, see e.g. Borevich-Shafarevich, Ch.III, §4) that

x ≡ y (mod p) .

We get also from xp + (−z)p = (−y)p, by switching roles of y and −z, that x ≡ −z
(mod p).
Altogether we get

2xp ≡ xp + yp ≡ zp ≡ −xp (mod p)

and hence
3xp ≡ 0 (mod p) ,

hence we get p | 3 (which violates our assumption p > 3) or p | x, against our
assumption p 6 | xyz. This provides the sought-for contradiction.

2.5.2. A serious gap/tacit assumption in the proof. In the early 19th century, the
French Academy offered a number of prizes for a proof of FLT. The story goes that,
in the way indicated above, Gabriel Lamé, and independently the far more famous
Augustin Cauchy, tried to claim a proof, but Joseph Liouville pointed out a serious
“gap”: the implicit assumption that an analogous statement to the Fundamental
Theorem of Arithmetic (amounting to unique factorisation) holds in Z[ζp].

As it turns out, this unique factorisation rarely holds: in fact, in Z[ζp] (p prime)
it holds precisely if p < 23.

2.5.3. Example of non-uniqueness of factorisation. We can exemplify the problem
for the following easier case: in the ring Z[

√
10], we have

(
√

10 + 1)(
√

10− 1) = 9 = 32 . (2)

But one can check that all the factors on the left and on the right of this equation
are irreducible in Z[

√
10].

[[ Recall that an element a in a ring R is irreducible if for any decomposition a = bc
with b, c in R one has that b or c must be a unit. ]]

In particular, neither 1 +
√

10 nor 1−
√

10 is a square in Z[
√

10], so we cannot
conclude as in (1). (Also, the gcd might not exist in such larger rings.) In summary,
we have encountered the new phenomenon of an ambiguity of decomposition of a
number into irreducibles.

This phenomenon (i.e. lack of unique factorisation) sincerely limits our capability
to solve Diophantine equations.
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2.5.4. A way out. The big question thus is: how to overcome this ambiguity in
the decomposition? An ingenious solution was suggested by E.E. Kummer (1810–
1893) who postulated “ideal elements” into which numbers in such a larger ring
then would decompose. We illustrate with our previous example Z[

√
10]: suppose

there were “ideal elements” π1, π2 with the following properties
3 = π1 · π2 ,√

10 + 1 = π2
1 ,√

10− 1 = π2
2 ,

then (2) would become
π2

1 · π2
2 = (π1π2)2 ,

which looks very good already, i.e. the decomposition is essentially the same on
both sides. We would still need certain important properties of these ideal elements:
they should satisfy the usual divisibility

(
e.g. (π | α and π | β) ⇒ π | (α ± β)

)
.

Furthermore, we would need to be able to add and multiply ideal elements. Kummer
showed that this can be done consistently.

But where can we find these ideal numbers? The complex numbers do not seem
to be of much help. [[ This is not quite true, one can in fact view the ideal numbers
as being represented by certain algebraic numbers (keyword “Hilbert class field”)
which can be embedded into the complex numbers. But this would take us too far
afield (pun intended). ]] Instead, R. Dedekind (1831–1916) had a very nice point of
view: one can characterise an ideal number π by the “shadow” that it throws in
the underlying ring of integers R in the following sense: the shadow of π is the set
of all integers in R which are divisible by π. From this idea is derived the notion
of an ideal (=the above shadow) in a ring, which replaces Kummer’s notion of an
ideal element.

This concludes our motivation for the study of such (number) rings and ideals.

3. Recap of Rings and Ideals

We collect a number of properties of rings and ideals from Algebra, occasionally
recalling definitions.
General assumption: A ring in this course is always understood to be commu-
tative with identity (unless otherwise stated).

Examples: The following are all rings in the sense above:
(1) Z, Q, R, C;
(2) Zn = Z/nZ (n ∈ Z>0),
(3) Q[π] (π = 2

∫ 1

−1

√
1− x2dx);

(4) Zn[X1][X2] = Zn[X2][X1] =: Zn[X1, X2],;
(5) Z[

√
17
3 ], Z21[

√
5,
√
−13];

(6) Q[ζp] (ζp a primitive pth root of 1, for some p > 1).
(7) A Q-vector space can become a ring, e.g. Q4 together with the strange

looking multiplication

(v1, . . . , v4) ? (w1, . . . , w4) =
(
v1w1 + v2w3, v1w2 + v2w4, v3w1 + v4w3, v3w2 + v4w4)

becomes a ring! In fact, you have seen this ring before, in Linear Algebra:
we just have encoded the usual matrix multiplication for 2× 2–matrices.

Non-examples: The following are not rings in the sense above, although they
have two different operations which are compatible:

(1) Q>0 (not a group under addition–only forms a “semiring”);
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(2) N[X] (i.e. polynomials with coefficients in the natural numbers);
(3) (R ∪ {−∞}, ” + ”, ” ◦ ”), where a” + ”b = max(a, b) and a” ◦ ”b = a+ b

(i.e. ” ◦ ” is the usual addition of real numbers, extended in the obvious
way to include −∞).

Definition 3.1. An integral domain or, for short, a domain is a ring R (i.e.,
commutative with identity by our general assumption) without zero divisors, i.e.

a, b ∈ R− {0} ⇒ a · b ∈ R− {0} .

Examples: The following are (integral) domains:
(1) Zp for p prime;
(2) Z, Q, R, C, Z[X], R[X,Y ] (variables X, Y ), Z[m

√
n] (positive integers m,n).

(3) Q[X]/
(
Φ(X)

)
, where Φ(X) ∈ Q[X] is irreducible.

Non-examples: The following are no domains:
(1) Zn with n composite;
(2) Q[X]/

(
Φ(X)

)
, where Φ(X) ∈ Q[X] is reducible (i.e. there exist non-units

f(X), g(X) in Q[X] such that Φ(X) = f(X)g(X);
(3) Z × Z15 which is a ring (as a direct product of rings) but since one of the

factors is not a domain, the product is also none.

Note. The units of R form an (abelian) group, denoted by R∗. We can think of
them as the “divisors of 1”.

Examples:
(1) R = Z[

√
−5] is a subring of C, in fact an integral domain. Its group of

units is given by R∗ = {±1}.
(2) R = Z[i] has units R∗ = {±1,±i}.
(3) For R = Z[

√
10] we have seen that {(19 + 6

√
10)r | r ∈ Z} ⊂ R∗. This is

actually not the full story: it will turn out (later in the course) that

R∗ = {±(3±
√

10)r | r ∈ Z} ∼= Z× Z/2 .
(4) We have C[X]∗ = C∗ = C \ {0}.

Definition 3.2. Two elements a, b in a ring R are called associate (to each other),
denoted

a ∼ b
if a = ub for some unit u, i.e. u ∈ R∗.

Examples:
(1) In Z[i], we have

2 + i ∼ −1 + 2i ∼ −2− i ∼ 1− 2i .

(More generally a+ bi ∼ −b+ ai ∼ . . . )
(2) In the integral domain Q[X] (polynomials in one variable with coefficients

in Q), we have f(x) ∼ af(x) for any a ∈ Q∗(= Q− {0}).

Definition 3.3. An element a in the ring R divides b ∈ R—or “b is divisible
by a ∈ R”—if b = a · c for some c ∈ R. If, furthermore, a 6∼ b (i.e., the c above
6∈ R∗), then a is called a proper divisor of b.

Lemma 3.4. Let R = Z[
√
−d] ⊂ C where d ∈ Z>0, and let α, β ∈ R∗. Then

(1) αᾱ ∈ Z>0 (here ᾱ is the complex conjugate of α). Note that αᾱ = N(α) in
our previous notation.
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(2) If α | β in R, then αᾱ | ββ̄ in Z.
(3) Let α | β. Then α is a proper divisor of β if and only if αᾱ < ββ̄.

Lemma 3.5. Let a, b be elements in a ring R. Then we have
(1) a | b and b | a ⇒ a ∼ b.
(2) a ∼ 1 ⇔ a is a unit in R.

Definition 3.6. An element r ∈ R \R∗ is irreducible if

r = a · b, with a, b ∈ R ⇒ a ∈ R∗ or b ∈ R∗ .
In other words: any proper divisor of an irreducible element is a unit.

The above definition of irreducible is what we typically use to characterise prime
numbers. Instead, the algebraic definition of being prime is the following:

Definition 3.7. An element r ∈ R \ R∗ is prime if r | ab for some a, b ∈ R
implies that r | a or r | b.

For Z both concepts (prime and irreducible) turn out to be the same.

Examples:
(1) Prime numbers in Z are irreducible.
(2) In Q[X], irreducible polynomials are indeed irreducible in the above sense.
(3) δ = 1− 3

√
−6 in Z[

√
−6] is irreducible.

Proof of (3).
• δ is not a unit [[ we know that the units in Z[

√
−d], d > 1, are only ±1:

their norm has to be 1, i.e., a2 +b2d = 1, and this is only possible for b = 0,
whence a = ±1. ]]

• Suppose α is a proper divisor of δ. Need to show: α is a unit. By the above
lemma we know αᾱ | δδ̄(= 55) and so αᾱ < δδ̄. Therefore α ∈ {1, 5, 11}.

But αᾱ = 5 entails a2 + b2 · 6 = 5, whence b = 0 and a2 = 5 which is not
possible. Similarly αᾱ = 11 would give either b = 0 and a2 = 11, or else
b = ±1 and a2 = 5; both cases are not possible.

Therefore αᾱ = 1, i.e., α is a unit.

Problem: Factorise β = 16 + 7
√
−6 into irreducibles in R = Z[

√
−6].

Solution: Suppose α|β, then also N(α)|N(β) = 550. Now we only need to check
divisors of 550 up to

√
550 < 24, i.e. 1, 2, 5, 10, 11, 22.

Putting α = a + b
√
−6 = a2 + 6b2 can not become 2 or 5. [[ b would have to be

0. . . ]] On the other hand, N(α) = 10 is possible: b = ±1, a = ±2.
So we check whether we can divide β by any of these four numbers—which, up

to associates, are only two different ones, e.g., 2±
√
−6. Division gives

16 + 7
√
−6

2±
√
−6

=
16 + 7

√
−6

2±
√
−6

2∓
√
−6

2∓
√
−6

=
32± 42 + (14∓ 16)

√
−6

10
.

This shows that the “upper” sign gives a number which is not in R, while the
lower sign gives −1 + 3

√
−6, and this number we happen to have just recognized

as irreducible (see above). Thus we get

β = (2−
√
−6)(−1 + 3

√
−6) ,

and both factors are irreducible (any proper divisor of 2 −
√
−6 would have norm

2 or 5, but we just saw that there are no such. . . ).

Two central notions in an integral domain which are particularly interesting for
us are the notions of prime and irreducible. The former implies the latter, but in
general not vice versa:
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Proposition 3.8. Let π ∈ R, where R is an integral domain. Then if π is prime
(in R), then it is also irreducible (in R).

Proof. Write π = ab. We want to show: a or b is a unit.
Since in particular π | ab, we have (use that π is prime) π | a or π | b.

Up to swapping a and b, we can suppose π | a, i.e., a = πρ for some ρ ∈ R. Then

π = ab = (πρ)b = π(ρb)

and hence ρb = 1, i.e., b is a unit.
Conclusion: π = ab ⇒ b is a unit or a is a unit (keep above swapping in mind). �

Many of our proofs of statements about, say, Diophantine equations so far have
invoked the (implicit) use of unique factorisation into irreducibles, but we have seen
that for more general rings we cannot expect this property to hold. Therefore we
distinguish this class:

Definition 3.9. An integral domain R is called a unique factorisation domain
(=UFD) if every non-zero element factors into a product of irreducible elements
and the factorisation is unique, up to replacing each irreducible element by an as-
sociate one, and up to reordering the factors. In less verbose terms:

for any x ∈ R, if x = up1 · · · pr = vq1 · · · qs for u, v ∈ R∗ with pi, qj irreducible in
R, then r = s and, after possible reordering of the qj, we have pj ∼ qj (1 6 j 6 r).

For these especially nice rings we have a converse of the above proposition:

Proposition 3.10. In a UFD, any irreducible element is also prime.

Proof. Let π be irreducible in the UFD R (in particular, π is not a unit).
Suppose π | ab for some a, b ∈ R. Then we need to show that π | a or π | b.
Start by decomposing both a and b into irreducibles pi and units ua and ub,

respectively:

a = uap1 · · · p` , b = ubp`+1 · · · p`+r , and so ab = uaubp1 · · · p`+r .
By assumption, the decomposition of ab is unique, up to replacing each pi by an
associate and up to reordering the pi.

Now π | ab implies ab = πρ, where ρ = uρq1 · · · qs is some decomposition into
irreducibles. Since the factorisation of ab is unique (in the above sense), π must be
associate to one of the pi as well [[ compare the two decompositions uρq1 · · · qs · π =
uaubp1 · · · p`+r ]] . If 1 6 i 6 `, then π | a, otherwise π | b. �

Examples:
(1) The following are UFDs: Z, Z[i] and Z[ζp] with p prime 6 19.
(2) The following are no UFDs: Z[

√
−6], in fact most rings of the form Z[

√
−d],

d > 0 squarefree, are not UFDs; nor are Z[ζp] with p prime > 23.

This motivates the quest for criteria to
• to find UFDs, or at least,
• in non-UFDs, to “measure” the ambiguity in how many ways we can de-

compose a number [[ this will be the number of ideal classes below ]] .

3.1. Passing from one ring to another. We have used before that we can trans-
fer a problem about the integers (an infinite ring), e.g. solving x2 − 4y2 = 3 in
integers, to a—hopefully easier—problem about Zm = Z/mZ (a finite ring); e.g.
we can take m = 4 and see immediately that the resulting reduced equation x2 ≡ 3
(mod 4) has no solutions in Zm.

In the process we need to keep the relevant structures, which leads to the notion
of a homo(=same)morphism(=structure):
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Definition 3.11. Let A and B be rings. A homomorphism of rings ϕ : A→ B is
a map respecting both ring operations, i.e.,

ϕ(a+A b) = ϕ(a) +B ϕ(b) ,
ϕ(a ∗A b) = ϕ(a) ∗B ϕ(b) .

In the following we will drop the subscripts indicating in which ring we are working.

Examples:
(1) For any m ∈ N, we have the reduction homomorphism ϕ : Z −→ Zm, where

ϕ(a) = ā = a+mZ = {a+mn | n ∈ Z}.
(2) For any a ∈ C there is the specialisation homomorphism ϕ : Z[X] → Z[a],

where ϕ
(
f(X)

)
= f(a).

Note that both homomorphisms are surjective. What are their kernels? Recall:

Definition 3.12. The kernel of a ring homomorphism ϕ : A → B, denoted by
ker(ϕ), is the set ϕ−1(0B)(= {a ∈ A | ϕ(a) = 0B}).

Note further that ker(ϕ) is always a subring (but not necessarily with identity!)
of A. It is in fact an ideal (see below).

Examples: For the previous example, we have
(1) in the first case

ker(ϕ) = {a ∈ Z | ā = 0̄ in Z/mZ} = {a ∈ Z | a ∈ mZ} = mZ ,
(2) in the second case

ker(ϕ) = (X − a)Z[X] . (Exercise)

This gives us yet another motivation to introduce the following

Definition 3.13. An ideal I in the ring R is a subgroup of (R,+) which is closed
under multiplication by elements in R, i.e.,

∀a ∈ I ∀r ∈ R : ar ∈ I ,
i.e. I ·R ⊂ I .

[[ You can think of the ideal as a “black hole” swallowing everything which comes
“near” it. . . ]]

We can see the connection of ideals to divisibility questions:
(1) The subgroup property: if b ∈ R divides a and a′ in R, then b divides a−a′

as well.
(2) Furthermore, if b ∈ R divides a, then b ∈ R divides ar for any r ∈ R.

Examples: For the previous example, we have
(1) For m ∈ Z, we have the ideal (m)Z = {rm | r ∈ Z}
(2) For a, b ∈ Z, the set I = (a+ bi)Z[i] ⊂ Z[i] forms an ideal.

In either case, the ideals given are the only ones.

We can compute with ideals (just as we would expect to compute with “ideal
elements/numbers”):

Lemma 3.14. If I, J are ideals in R, then so are I + J , I · J and I ∩ J .

Using the ideals in the previous example, we can get a feel for the corresponding
operations:

• (m)Z + (n)Z = (m,n)Z corresponds to taking the multiples of m and the
multiples of n together; if we allow to add them, we get the gcd(m,n) and
all its multiples, i.e.,

(
gcd(m,n)

)
Z.
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• (m)Z(n)Z corresponds to taking among the numbers which are divisible by
m those numbers which are further divisible by n, i.e., the multiples of mn,
or as an ideal (mn)Z.
• (m)Z ∩ (n)Z corresponds to taking numbers which are at the same time

multiples of m and n, i.e., the multiples of the lcm(m,n).
We still should recall how we are allowed to compute with sets: for any subgroups

A and B of (R,+) we define

A+B := { a+ b | a ∈ A, b ∈ B } ,
A ·B := {

∑
finite

aibi | ai ∈ A, bi ∈ B} = 〈ab | a ∈ A, b ∈ B〉gp .

Lemma 3.15. (i) IJ ⊂ I, I + J ⊃ I ,

(ii) I · J ⊂ I ∩ J ⊂
{
I
J

}
⊂ I + J .

3.2. Principal and non-principal ideals. The simplest ideals in R are given as
“all the multiples of a given a ∈ R”:

Lemma-Definition 3.16. For a ∈ R, the set {ar | r ∈ R} is an ideal. It is called
the principal ideal generated by a. We write it as aR = (a)R = (a) (the latter
notation, albeit sloppy, is the standard one, while in the book of Stewart–Tall, it is
denoted 〈a〉).

Example 3.17. (i) (32, 12, 20, 250)Z =
(
gcd(32, 12, 20, 250)

)
Z = (2)Z is prin-

cipal.
(ii) (2, 1 +

√
−5)Z[

√
−5] is not principal (use norms: a common divisor must

have norm dividing the norm of each generator, hence its gcd (= 2), but
there are no elements of norm 2 in Z[

√
−5]).

(iii) (7, X3 +X + 1)Z[X] is not principal.
(iv) (Z)Z, an ideal generated by infinitely many elements, is actually already

generated by a single one, in two ways: = (1)Z = (−1)Z.
(v) (X,Y )R[X,Y ] is not principal (only units divide both X and Y , but 1 is not

a inear combination of X and Y ).

We collect a few simple immediate consequences of the definitions.

Lemma 3.18. Let I ⊂ R be an ideal, and let a, b ∈ R.
(i) For any a ∈ R, we have (a)R ⊂ I.

(ii) a | b ⇔ (a)R ⊃ (b)R ⇔ b ∈ (a)R ;
(iii) a ∼ b ⇔ (a)R = (b)R ;
(iv) (a)R · (b)R = (ab)R ;
(v) a ∈ R∗ ⇒ (a)R = R .

Notation. For a, b ∈ R, we write

(a, b)R = (a)R + (b)R = {ar + bs | r, s ∈ R} ,
and more generally

(a1, . . . , an)R = {
n∑
i=1

airi | ri ∈ R} ,

the ideal generated by {a1, . . . , an}.

Proposition 3.19. Let a, b, c, d ∈ R, and let I ⊂ R be an ideal. Then
(i) (a)RI = aI

(
:= {ar | r ∈ I}

)
;

(ii) (a, b)R · (c)R = (ac, bc)R;
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(iii) (a, b)R · (c, d)R = (ac, bc, ad, bd)R and so forth for more generators:

(a1, . . . , am)R · (b1, . . . , bn)R = (. . . , aibj , . . . )R .

We just indicate the proof of (ii), leaving the rest as a simple exercise:

(a, b)R · (c)R =
(
(a)R + (b)R

)
· (c)R = (a)R(c)R + (b)R(c)R = (ac)R + (bc)R .

For (iii), we need to apply the distributive law several times.

Example (of a non-principal ideal): take R = Z[
√
−6].

Claim: I = (2,
√
−6) is not principal.

Proof. Suppose I were principal, then for some α ∈ R (we can put α = a+ b
√
−6

for some a, b ∈ Z) we have

I = (α)R = (a+ b
√
−6)R .

Then α | 2 and α |
√
−6 [[ as I = (2,

√
−6) contains both (2) and (

√
−6) ]] . Applying

the norm map N : a + b
√
−6 7→ a2 + 6b2 yet again gives N(α) | N(2) = 4 and

N(α) | N(
√
−6) = 6, from which we deduce N(α) | 2, i.e. a2 + 6b2 = 1 or = 2;

but the latter is obviously not possible. Therefore we can colclude that b = 0 and
a = ±1, i.e. α = ±1, a unit.

But then we know that I = (±1)R = R [[ Lemma 3.18(v) ]] , so in particular 1 ∈ I,
and we should be able to write

1 = 2β + γ
√
−6 , for some β, γ ∈ R .

Putting β = r+ s
√
−6, γ = t+u

√
−6, then we find 1 = 2r−6u+ (2s+ t)

√
−6, and

taking the real part on both sides of the latter equation gives 1 = 2r − 6u which
obviously cannot hold.

Conclusion: our supposition (that I is principal) cannot hold. Therefore we have
found that I is not principal. �

Although in general we cannot take the gcd of two numbers in a ring R (with
identity denoted by 11R), we still have it for the numbers m · 11R which correspond
to the integers m ∈ Z:

Lemma 3.20. Let R be an integral domain. If m,n ∈ Z \ {0} with d = gcd(m,n),
then

(m · 11R, n · 11R)R = (d · 11R)R .

Proof. Since d | m and d | n, we have (d·11R)R ⊃ (m·11R)R and (d·11R)R ⊃ (n·11R)R,
from which we deduce that the LHS equals (m · 11R)R + (n · 11R)R ⊂ (d · 11R)R, the
latter just being the RHS.

Moreover, since d = am+ bn for some a, b ∈ Z, we have

d · 11R = a(m · 11R) + b(n · 11R) ∈ (m · 11R, n · 11R)R
and so the RHS is contained in the LHS as well. �

Now we can “remedy” the non-uniqueness of factorisation, if only on the “level
of ideals”:

Example: In R = Z[
√
−6], we have

(1 + 3
√
−6)(1− 3

√
−6) = 5 · 11 as numbers in R .

In terms of ideals this gives

(1 + 3
√
−6)R(1− 3

√
−6)R = (5)R · (11)R as ideals in R . (3)

Now define two ideals

p5 = (5, 1 + 3
√
−6)R , p′5 = (5, 1− 3

√
−6)R ,
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and similarly

p11 = (11, 1 + 3
√
−6)R , p′11 = (11, 1− 3

√
−6)R .

Then we have p5 · p′5 = (5)R and p11 · p′11 = (11)R:

p5 · p′5 = (5, 1 + 3
√
−6)R · (5, 1− 3

√
−6)R

= (25, 5 · (1− 3
√
−6), (1 + 3

√
−6) · 5, 55)R

= (25, 55, 5 · (1− 3
√
−6), 5 · (1 + 3

√
−6))R

= (25, 5, 5 · (1− 3
√
−6), 5 · (1 + 3

√
−6))R

= (5)R ,

the latter identity holds because all four generators are multiples of the second one,
5, so can be discarded.

A similar fact holds for p11 · p′11.
Now another possible product of the four ideals under consideration is

p5 · p11 = (5, 1 + 3
√
−6)R · (11, 1 + 3

√
−6)R

= (55, 5 · (1 + 3
√
−6), (1 + 3

√
−6) · 11, (1 + 3

√
−6)2)R

= (55, 5 · (1 + 3
√
−6), 1 + 3

√
−6, (1 + 3

√
−6)2)R

= (1 + 3
√
−6)R ,

since all four generators are divisible by the third one, 1 + 3
√
−6.

In a similar way, we can find that p′5 · p′11 = (1− 3
√
−6)R.

Finally, (3) becomes

(p5 · p11)R · (p′5 · p′11)R = (p5 · p′5)R · (p11 · p′11)R ,

which indicates that the original ambiguity of the decomposition is now resolved.

It turns out that the above ideals pi and p′i (i ∈ {5, 11}) can be viewed as
“building blocks” among the ideals in Z[

√
−6], in a similar fashion as the prime

numbers are building blocks for Z. In particular, we will be able to deduce that if
one of them divides one side of some equation, then it also has to divide the other
side. So the following notion should be not particularly surprising.

Definition 3.21. An ideal p ( R is called prime if it satisfies the condition

∀a, b ∈ R with a · b ∈ p we have a ∈ p or b ∈ p .

Note that, just as 1 ∈ Z is not a prime, we do not consider (1)R (which is equal
to R itself) as a prime ideal ((1)R would “destroy” unique factorisation). On the
other hand, (0)R is considered to be a prime ideal.

Proposition 3.22. Let I, J and p be non-zero ideals in R, let p be prime. Then

p ⊃ IJ ⇔ p ⊃ I or p ⊃ J .

Proof. “⇐” is obvious, as e.g. I ⊃ IJ .
“⇒”: Suppose p ⊃ IJ , but p 6⊃ I. Then ∃a ∈ I \ p. Now for any b ∈ J we have

a · b ∈ I · J ⊂ p, so a ∈ p or b ∈ p. But a /∈ p [[ by the choice of a ]] , so b ∈ p.
Conclusion: J ⊂ p. �

Note: Let us define divisibility of ideals in the obvious manner, i.e., I | J (for two
ideals I and J in R) if there is an ideal K such that J = I · K. Then it is clear
that I | J implies I ⊃ J , i.e. “to divide is to contain” [[ since J = IK ⊂ IR ⊂ I ]] .
The converse holds only for special rings—e.g., for so-called “Dedekind rings”, to
be introduced later—in which case the proposition says: p | IJ ⇒ p | I or p | J .
In other words: prime ideals then “behave” analogously to prime elements. Good
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news: most of the rings in the course will indeed turn out to be “Dedekind rings”.
(A particular non-Dedekind domain will be investigated on Sheet 3: Z[

√
−3].)

As a possible mnemonic of the above, we give:

Caesar’s ‘primest’ ideal
“Mighty Caesar, please care to explain
why you’re breaking your conquests in twain?”

“So let us reveal
our ruling ideal:

To divide does infer to contain.”
H.G.

Definition 3.23. An ideal m ( R is called maximal if there is no ideal properly
containing it except R itself, i.e., for any ideal I in R, we have I ) m ⇒ I = R.

Recall that, for a ring R and an ideal I in R, the set of cosets r + I, r ∈ R,
forms a ring, the quotient ring of R with respect to I, which is denoted R/I.
[[ This is compatible to our previous notation: r + I = {r} + I = {r + i | i ∈ I}.
Furthermore, we have an addition of cosets: (r + I) + (s+ I) = (r + s) + I, and a
multiplication of cosets: (r + I)(s+ I) = (rs) + I. ]] Note that a+ I = I ⇔ a ∈ I.

Now there is a very useful characterisation of prime and maximal ideals, respec-
tively, in terms of the corresponding quotient rings.

Theorem 3.24. Let R be an integral domain.
(1) An ideal p ⊂ R is prime ⇔ R/p is an integral domain.
(2) An ideal m ⊂ R is maximal ⇔ R/m is a field.

Proof
(1) Let a, b ∈ R. They correspond to cosets a+ p, b+ p in R/p.

The prime condition ab ∈ p ⇒ a ∈ p or b ∈ p translates into the
integral domain condition “no zero divisors”

a · b ∈ p = 0̄ in R/p ⇒ a+ p = 0̄ or b+ p = 0̄ in R/p .

Note that, moreover, 11R ∈ R maps to an identity 11R/p(= 11R + p) in R/p.
(2) “⇒”: Suppose m is maximal. Need to show: any class a+ m, a /∈ m, has

an inverse. [[ Here a+m = {a}+m = {a+m | m ∈ m} is the coset notation,
not to be confused with the ideal addition. ]]

Since (a)R + m ) m, it must be equal to R [[ by the maximality of m ]] .
In particular, we have 11R ∈ (a)R + m, i.e., 1R = ba+ cm for some b, c ∈ R.
For the corresponding cosets with respect to m, we get

1R + m = ba+ cm+ m = ba+ m = (b+ m)(a+ m) .

Conclusion: for a /∈ m, we have found an inverse b+ m in R/p.
“⇐”: Suppose R/m is a field. Take an ideal n such that m ( n ⊂ R.

Need to show: n = R. [[ Then we can conclude that m has to be maximal. ]]
Choose a ∈ n \ m [[ this is possible, as our assumption on n implies

n \m 6= ∅ ]] . Then a+ m 6= m, so it must have an inverse, say b+ m. [[ Note
that necessarily b + m 6= m, i.e., b /∈ m. ]] Thus ab + m = 11R + m and in
particular 11R ∈ (a)R + m ⊂ n, which implies that n = R. �

Corollary 3.25. Every maximal ideal is also a prime ideal.
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3.3. Principal ideal domains and Euclidean domains. We have seen above
that it is preferable to work in a unique factorisation domain. But it is not clear
how to make sure that a given ring is indeed a UFD. If we could actually argue
with ideals as we are used to do for the integers, say, then we should be in a good
position to prove a statement like unique factorisation. A “nice” ring R in this
respect would be one in which any ideal came from a single element in R.

Definition 3.26. An integral domain R is called a principal ideal domain
(PID) if all its ideals are principal ideals (i.e., can be written with a single gener-
ator).

Examples:
1) In Z, every ideal has the form (m)Z, for some m ∈ Z. Thus Z is a PID.
2) In Q[X], every ideal has the form (f(X))Q[X], for some polynomial f(X) ∈

Q[X], and so Q[X] is a PID.
3) Z[ 1+

√
−163
2 ] is a principal ideal domain.

4) Z[ζp] for p 6 19 prime, where ζp = e2πi/p, is a PID.

Non-Examples:
1) The rings Z[

√
−5] and Z[

√
−6] are not PIDs (see our examples above).

2) The ring Z[X] is not a PID: e.g., the ideal (2, X)Z[X] cannot be written
with a single generator.

3) Z[ζp] for p > 23 prime, where ζp = e2πi/p, is not a PID.
4) C[X1, . . . , Xn] for n > 2 is not a PID.

Theorem 3.27. Every PID is a UFD.

An important step in the proof of the theorem is the following

Proposition 3.28. In a PID R, every irreducible element is prime.

Proof. Let π be irreducible in R, and suppose that π | αβ for some α, β ∈ R.
We have to show: π | α or π | β .
Consider the ideal generated by π and α, denote it by I = (π, α)R. Since R is a

PID, there is a γ ∈ R such that I = (γ)R, in particular γ | π (and γ | α).
But π is irreducible, so either I) γ ∼ π or II) γ ∼ 1 [[ i.e., γ is a unit ]] .
Case I) implies π | α [[ as γ | α ]] , while Case II) implies 1 = λπ + µα, and

multiplying both sides by β gives

β = βλπ + µαβ .

Now since π divides the RHS, we have that π | LHS as well i.e., π | β.
Conclusion: in either case the claim is shown. �

The rest of the proof of the theorem involves claims like

Proposition 3.29. In a PID R, each element can be factored into (a finite number
of) irreducibles.

The proof of the latter is somewhat more involved, one typically introduces the
notion of a Noetherian ring: a ring in which every ideal is finitely generated. The
rings that we consider in the course will typically be of that type. (An example
of a non-Noetherian ring is the polynomial ring over Q in infinitely many variables
Q[X1, X2, X3, . . . ].) One shows that the above condition (that every ideal is finitely
generated) can be equivalently stated as saying that each ascending chain of ideals
I1 ⊆ I2 ⊆ · · · ⊆ In ⊆ . . . becomes stationary, i.e. Im = Im+1 for all large enough
m ∈ N. Yet another equivalent condition is that every (non-empty) set of ideals
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has a maximal element, i.e., an element which is not properly contained in any
other element of that set. (Cf., e.g., Proposition 4.5 in Stewart-Tall.) The above
proposition then is a corollary of the fact that the corresponding statement indeed
holds for any Noetherian ring (cf. Theorem 4.6 in Stewart–Tall). [[ Note that a PID
is (rather obviously) a Noetherian ring. ]]

Finally one shows that, granted one can factor into irreducibles, a ring is a
UFD if (and only if) every irreducible element is prime (cf., e.g., Theorem 4.13 in
Stewart-Tall.) Putting this together with the two propositions above then provides
a proof of the Theorem.

What have we won so far? Instead of checking whether an integral domain is a
UFD, we are now left with the task of checking whether it is a PID. Now if we had
a way to always replace, in an ideal I = (a1, . . . , an)R, two generators by a single
one, then we would succeed—since after a finite number of steps we are left with a
single generator only, i.e., I would indeed turn out to be a principal ideal.

Recall how this is achieved for Z: (m,n)Z = (d)Z, where d = gcd(m,n); and the
gcd can be obtained by the Euclidean algorithm, the basis of which is division with
remainder.

Examples:
1) In Z, divide a by b: we can find q and r such that a = q · b + r and with

the crucial condition on r being 0 6 r < b.
2) In Q[X], divide similarly two polynomials, say, a(X) by b(X). This time

there is no “smaller” relation among the elements in Q[X], but still we can
introduce some notion of size: the degree of the polynomial. Then there
are q(X) and r(X) such that a(X) = q(X)b(X)+r(X) and with the crucial
condition on r(X) being: either r = 0 or deg(r(X)) < deg(b(X)).

This suggests the following: whenever we have a “good” way to measure the size
of elements in R, there is a chance that a gcd can be taken [[ and then R has a chance
to be a PID, and in particular a UFD ]] . Some consistencies should be kept in mind,
though: the size should be measured by, say, numbers in N ∪ {0} (it is not enough
to take Z, otherwise there may not be a stopping criterion); furthermore, the size
should somehow be compatible with divisibilities (if a | b then size(a) 6 size(b)).

Definition 3.30. Let R be an integral domain. A Euclidean function (or norm)
for R is a function ϕ : R \ {0} → N such that

(i) for a, b ∈ R \ {0}, one has a | b ⇒ ϕ(a) 6 ϕ(b);
(ii) ∀a, b ∈ R \ {0} ∃ q, r ∈ R : a = b · q + r with either r = 0 or ϕ(r) < ϕ(b).

Examples:
1) For Z, consider ϕ : Z \ {0} → N given by a 7→ |a| (and extend by 0 7→ 0).
2) For Q[X], consider ϕ : Q[X] \ {0} → N given by a(X) 7→ deg(a(X)) (and

we can extend it by putting ϕ(0) = −∞).
3) For Z[i], consider ϕ : Z[i] \ {0} → N given by a+ bi 7→ N(a+ bi) = a2 + b2.

Definition 3.31. An integral domain for which a Euclidean function exists is called
a Euclidean domain.

Geometric idea to prove 3) above, i.e., that Z[i] is Euclidean: consider the el-
ements in Z[i] ⊂ C as lattice points ((a, b) with a, b ∈ Z) in the plane (where a
complex number x+ iy is identified as usual with the point (x, y) ∈ R2). To visu-
alise the division with remainder for two elements α, β in Z[i], take the point in the
plane corresponding to their quotient α/β (which certainly lies in Q[i] ⊂ C) and
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choose a nearest lattice point (s, t) to approximate it (this need not be unique!).
Then the corresponding point γ = s+ it satisfies∣∣∣α

β
− γ
∣∣∣ 6 1

2

√
2 < 1 ,

and putting r := α− βγ, we get |r| = |α− βγ| < |β|.

Theorem 3.32. A Euclidean domain R is also a PID.

Proof. Let I be an ideal in the Eculidean domain R, and let ϕ be a Euclidean
function for R.

To show: I is principal.
We can assume that I 6= (0)R [[ I = (0)R is principal ]] and so we can choose an

x 6= 0 in I.
Main point: We can choose x such that ϕ(x) is minimal.
Now take any y ∈ I and show that it is a multiple of x: division with remainder

of y by x gives y = qx+ r for some q, r ∈ R, with r = 0 or ϕ(r) < ϕ(x).
Both y and x are in I, so r, as a linear combination of the two, must also be.

Due to the minimality of ϕ(x) we have in fact r = 0, whence y = qx, a multiple of
x.

Conclusion: since any y ∈ I is a multiple of x ∈ I, it follows that I is principal
(with generator x). �

It is clear now how to define a gcd for elements in a Euclidean domain R: as the
last “divisee” in the Euclidean algorithm which results from a Euclidean function
on R.

Lemma 3.33. Let α, β, γ ∈ R, a Euclidean domain. Then

gcds(α, β) = gcds(α, β − γα) ,

where “gcds” denotes the set of all possible gcd’s.

[[ Pf: Common divisors on the left are also common divisors on the right and vice
versa. ]]

On the plus side, we can now solve a larger class of Diophantine equations than
before. In particular we give

Theorem 3.34. (Stewart-Tall, Thm 4.20) The equation

y2 + 4 = z3 (4)

has precisely 4 integer solutions.

Proof: Write (4) as y2 + 22 = z3; on the left, we see a sum of two squares,
which is closely related to the “arithmetic” of the ring Z[i]. We write the LHS as
(y + 2i)(y − 2i) = z3.
The simplest case would be if y+ 2i and y− 2i were coprime, since then by unique
factorisation (which we know to hold in Z[i]) both factors would have to be cubes
themselves (up to multiplication by a unit).
Case 1: y odd. Then indeed y + 2i and y − 2i are coprime. [[ Pf: any common
factor a+ ib of y + 2i and y − 2i also divides their sum 2y and their difference 4i;
taking norms we find that a2 + b2|4y2 and a2 + b2| − 16, hence with y odd we get
a2 + b2|4, and one quickly checks that neither possibility gives a proper factor of
y+2i. ]] Hence y+2i = u1α

3 and y−2i = u2β
3 for some units u1, u2 and α, β ∈ Z[i].

Moreover, each unit ik (k = 0, . . . , 3) in Z[i] is itself a third power as ik = (i3k)3.
So we can assume u1 = u2 = 1.
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But then y+2i = (c+di)3 for some c, d ∈ Z and, by conjugation, y−2i = (c−di)3.
Subtracting the latter from the former gives

4i = 2(3c2di+ d3i3) = 2d(3c2 − d2)i (5)

and both d and (3c2 − d2) have to divide 2, i.e. (i) d = ±1 and 3c2 − d2 = ±2 or
(ii) d = ±2 and 3c2 − d2 = ±1. One quickly sees that d = −1 implies 3c2 − 1 = −2
by (5) and similarly d = 2 implies 3c2 − 4 = 1, both of which are impossible.
Hence we are left with two possibilities, leading to c = ±1 and either d = 1 or
d = −2.
In the former case, y+2i = (±1+i)3 and hence (y+2i)(y−2i) = (1+i)3(1−i)3 = 23

[[ note that the ambiguity of ±1 evaporates when taking the product ]] while in the
latter case we have similarly y + 2i = (±1 − 2i)3 and hence (y + 2i)(y − 2i) =
(1− 2i)3(1 + 2i)3 = 53.
Conclusion: the only possible solutions for (4) with y odd have z = 2 (whence
y = ±2) or z = 5 (whence y = ±11).
But as we had assumed y to be odd, the former solution does not follow from this
argument—nevertheless we are led fortuitously to this further candidate (±2, 2)
which is indeed a solution as we can easily check. What we do not know is whether
there are other solutions with y even.

Case 2: y even, say y = 2Y , then clearly z must be even as well, say z = 2Z,
and we get, after cancelling a “4”:

Y 2 + 1 = 2Z3 (6)

What can we say about the parity of Y and Z? It turns out that both must be
odd. [[Y 2 must be odd, hence Y must be, and viewing (6) mod 4 we get that Z
must be odd. ]] This time we need to control the common factors of y+ 2i and y− 2i
as well. In fact, p|Y ± i implies p|2i = (1 + i)2, so the divisor has norm dividing 4.
Now the irreducible element 1 + i (its norm being a prime) divides both Y + i and
Y − i in Z[i], but its square (1 + i)2 divides neither. In particular, Y+i

1+i and Y−i
1−i

are coprime (note that 1 + i ∼ 1− i), so we get

Z3 =
Y + i

1 + i

Y − i
1− i

and so each factor on the RHS now indeed is a cube itself, i.e. Y+i
1+i = (a+ ib)3 (*)

and, by conjugation, Y−i1−i = (a− ib)3.
Equating imaginary parts on both sides of (*) gives

1 = 3a2b− b3 + a3 − 3ab2 = (a− b)(a2 + 4ab+ b2) .

Since both factors on the right have to equal ±1, we get b = a ± 1 and hence
±1 = a2 + 4a(a ± 1) + (a ± 1)2 = 6a2 ± 6a + 1 = 6a(a ± 1) + 1 we find the only
solutions having a = 1, b = 0 or a = 0, b = −1, which then translates back into
Z = a2 + b2 = 1 and hence Y = ±1, hence z = 2 and y = ±2.
Conclusion: We find the only solutions of (4) with y even are indeed the ones we
had encountered earlier.

Remark 3.35. 1) There are comparatively few Euclidean domains known;
e.g. one knows around two dozens among Z[

√
m] or, if m ≡ 1(4), among

the Z
[ 1+
√
m

2

]
.

2) One can weaken the condition on the Euclidean function somewhat, and
still deduce that the corresponding ring is a UFD. With that generalization,
we may produce a few more examples.

The remark makes it clear that this approach (i.e., trying to find UFDs by es-
tablishing a Euclidean function on them) is not really the way to go if we want to
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develop a general theory. Instead, we will find a weaker version of unique factor-
ization, not of numbers but of ideals, into prime ideals, in particular for so-called
“number rings” (like Z[

√
m] or Z[ζn], to be defined more precisely below) which

naturally lie inside “number fields” (like Z inside Q, or Z[i] inside Q[i]). This
will dramatically increase the class of workable domains (the key notion being
“Dedekind domain”).

3.4. Number fields. We have already encountered fields like Q or Q(
√
m). They

can be viewed as subfields of C. [[ Not all fields are subfields of C: for example,
the finite fields Z/prZ (p prime, r > 1) cannot be embedded into C—where
“embedded” means via a homomorphism, not just as a set; other example: C(X),
the field of rational functions in one variable X. ]]

There is an obvious (ring) homomorphism Q → Q(
√
m), sending q ∈ Q to

q + 0 ·
√
m. Thus we can view Q as a subfield of Q(

√
m) or, conversely, Q(

√
m) as

an “overfield” or as a “field extension” of Q. More generally:

Definition 3.36. Let K and L be fields. If K is contained in L, then K is a
subfield of L; conversely, L is a field extension of F .

Here “contained” means “contained as a subring” (i.e. 0 and 1 agree, and F is
closed under + and ·.)

Remark 3.37. If L is a field extension of F , then L is in particular a vector
space over F [[ recall: F -vector space = abelian group with scalar multiplication by
elements of F ]] .

Example: Q(
√
−2) = {a+ b

√
−2 | a, b,∈ Q} is isomorphic, as a vector space only,

to {(a, b) |, b ∈ Q} ' Q⊕Q, a 2-dimensional vector space over Q.
We have the following correspondence (+R denotes ring addition, +v denotes

vector addition)

addition:
a1 + b1

√
−2 ↔ (a1, b1) ,

+R (a2 + b2
√
−2) ↔ +v (a2, b2) ,

= (a1 + a2) + (b1 + b2)
√
−2 ↔ = (a1 + a2, b1 + b2) ,

scalar multiplication:
r(a1 + b1

√
−2), r ∈ Q ↔ r(a1, b1) ,

= ra1 + rb1
√
−2, ↔ (ra1, rb1) .

Think of 1 and
√
−2 as basis vectors in Q(

√
−2) corresponding to (1, 0) and (0, 1)

in Q + Q, respectively.

Definition 3.38. Let L be a field extension of K. Then the degree [L : K] of L
over K is given by the dimension dimK(L) of L as a vector space over K.

Example:
1) [C : R] = 2, with standard basis {1, i};
2) Similarly, for m a non-square in Z, we have

[Q(
√
m) : Q] = 2 ,

with basis, e.g., {1,
√
m}.

3)

Q( 3
√

2) = {a+ b
3
√

2 +
( 3
√

2
)2 | a, b, c ∈ Q}

' Q⊕Q⊕Q = Q3 ,
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a 3-dimensional vector space over Q (the sign ' here denotes isomorphism
of vector spaces). Here 3

√
2 is a root of the (by Eisenstein irreducible)

polynomial x3 − 2. [[ An elementary way to see that 1, 3
√

2 and ( 3
√

2)2 are
linearly independent: suppose they were linearly dependent, i.e., for some
a, b, c in Z with gcd 1 we have a + b 3

√
2 = c( 3

√
2)2. Taking cubes on both

sides gives a3 + 2b3 + 6abc = 4c3, and now considering successively mod 2,
mod 4 and mod 8 we can conclude that 2 | a, 2 | b and 2 | c, respectively,
contradicting the gcd 1 condition on a, b and c. ]]

Definition 3.39. Let L be a field extension of F . An element α ∈ L is algebraic
over F if it satisfies f(α) = 0 for some polynomial f(X) ∈ F [X]. If all elements
of L are algebraic over F , then L is called an algebraic extension of F (or simply
“is algebraic over F”)

Examples:
1) C is algebraic over R with standard basis {1, i}, but it is not algebraic over

Q [[ e.g., the famous number π =
√

6
∑∞
n=1 n

−2 = 3.1415 . . . is not ]] .
2) Q( m

√
n) is algebraic over Q, for any m > 2.

3) Q( 2
√

5)(X) is algebraic over Q(X).

Proposition 3.40. If [L : F ] = d <∞, then L is algebraic over F .

Proof. Take any α ∈ L and form the set {1, α, α2, . . . , , αd} of cardinality d + 1,
the elements of which lie in L. They are linearly dependent (since dimF (L) = d),
i.e. for some ri ∈ F one has

∑d
i=0 riα

i = 0, i.e., α is root of f(X) =
∑d
i=0 riX

i; in
particular, α is algebraic over F . �

Definition 3.41. A number α ∈ C which is algebraic over Q is called an
algebraic number. A field with Q ⊂ F ⊂ C and [F : Q] < ∞ is called an
(algebraic) number field.

Examples:

• 17
√

13−
√

3
√
−5 + 1

3√−7
5 is algebraic.

• One can show: e (Euler’s number) and π are not algebraic (instead they
are called “transcendental”).
• Q( n

√
m), n > 2, m ∈ Z, defines a number field.

• In fact, any number field is isomorphic to a quotient ring

Q[X]
/(
f(X)

)
Q[X]

for some irreducible polynomial f(X). [[ Since f(X) is irreducible in the Eu-
clidean domain Q[X], it follows that

(
f(X)

)
is a maximal ideal (cf. Problem

Sheet 4, 4(i)); therefore the above quotient ring is indeed a field. ]]

Definition 3.42. Let α be algebraic over a field F . The minimum polynomial
of α is the monic polynomial of smallest degree in Q[X] \ {0} such that f(α) = 0.

[[ This is unique, and in fact irreducible. ]]

Examples:
• The minimum polynomial of i =

√
−1 and

√
3 over Q are given by X2 + 1

and X2 − 3, respectively.
• The minimum polynomial of n

√
m over Q is not always given by Xn −m:

e.g., the minimum polynomial of 7
√

1 is not X7− 1 (which is reducible) but
rather

∑6
j=0X

j .
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• The minimum polynomial of α = 3 + i over Q is given by X2 − 6 + 10,
since α satisfies (α− 3)2 = i2 = −1 (and it obviously cannot have a linear
(i.e. degree 1) minimum polynomial over Q).

• What is the minimum polynomial of α =
√

3 + i over Q? We square both
sides of the equation α − i =

√
3, thus getting rid of at least one square

root: (α− i)2 = 3, and the resulting identity α2− 2 = 2αi (we again try to
separate one of the square roots from the rest) gets squared a second time,
yielding that α is a root of the polynomial X4 − 4X2 + 16. Note that α2

satisfies the quadratic equation X2 − 4X + 16, so we can first solve for α2

and then take the square root, which gives the degree 2 · 2 = 4 for α. This
is an instance of the following

3.5. Structural Theorems on Number Fields. We have used the notations
Q[α] (for the polynomial ring of all polynomials in α) and Q(α) (for the function
field, i.e. all quotients of polynomials in α). If α is algebraic, then we have sometimes
used them interchangeably as it turns out that both indeed agree in this case.

We already know that for deg(α) = 2 the ring Q[α] agrees with its quotient
field Q(α): by using the corresponding norm map we can invert each element in a
quadratic field
[[ if β = a+ b

√
D, then 1/β = (a− b

√
D)/N(β) = a/N(β)− b/N(β)

√
D ∈ Q[α]. ]]

For number fields of higher degree this is somewhat less obvious.

Theorem 3.43. Let L be algebraic over K. Then for any α ∈ L we have

K[α] = K(α) .

Proof: We only need to check that any polynomial in α can be inverted. We
will use that the polynomial ring K[X] over a field K is a domain.
Let α ∈ L, hence α is algebraic over K and has a minimal polynomial pα(X) =
pα,K(X) of degree m, say. Then we can write

K[α] = K +Kα+Kα2 + · · ·+Kαm−1 ,

as any power αk with k > m can be written (using pα,K(X), possibly iteratively)
as a K-linear combination of 1, α, . . . , αm−1.
Now consider any non-zero element in K[α], say v =

∑m−1
j=0 njα

j for certain nj ∈ K
(not all being zero). Then clearly v = h(α) for h(X) =

∑m−1
j=0 njX

j .
But then deg(h(X)) < deg(pα,K(X)) and so h(X) and pα,K(X) are coprime (the
latter being irreducible). In particular we can write, for certain f(X), g(X) in
K[X]:

1 = f(X)pα,K(X) + g(X)h(X) .
Specialising X = α gives 1 = g(α)h(α) and hence we have found v−1 = g(α). �

Theorem 3.44. (The Tower Theorem) Let L ⊃ K ⊃ F be algebraic field exten-
sions. Then

[L : F ] = [L : K] · [K : F ] .
More precisely, if {α1, . . . , αr} is a basis for K over F and {β1, . . . , βs} is a basis
for L over K, then B := {αjβk | 1 6 j 6 r, 1 6 k 6 s} is a basis for L over F .

Proof. Let γ ∈ L, then γ =
∑s
k=1 λkβk for some λk ∈ K, and each λk can be

written as λk =
∑r
j=1 µjkαj for some µjk ∈ F , whence γ =

∑
k

∑
j µjkαjβk. Thus

B spans L over F .
We still need to show the linear independence of the vectors αjβk, in order

to establish the basis property of B: so suppose
∑
j

∑
k µjkαjβk= 0. Regrouping

terms gives ∑
k

(∑
j

µjkαj
)
βk = 0 ,
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but the βk are a basis of K over F , thus necessarily µjkαj = 0 for all k = 1, . . . , s.
Now use that the αj in turn form a basis of L over K, so that necessarily all µjk = 0.

This establishes the linear independence of B. �

Example: Let L = Q
(√

2, 3
√

5
)
⊃ K = Q(

√
2) ⊃ F = Q. (By 3

√
5 we understand

the real root of the (Eisenstein-)irreducible polynomial X3 − 5.)
We first note that α = 3

√
5 /∈ K [[α has degree 3, while any element a+ b

√
2 ∈ K

(a, b ∈ Q) has degree 6 2 ]] . The other (non-real) roots of X3 − 5 are also not in
Q(
√

2), from which we deduce that α has the same minimum polynomial over K.
But L = Q

(√
2, 3
√

5
)

=
(
Q(
√

2)
)

( 3
√

5) = K( 3
√

5) and so [L : K] = 3. Further-
more, we have of course [K : Q] = 2, and so the Tower Theorem gives [L : Q] = 6,
a basis of L/Q can e.g. be given by {1,

√
2, 3
√

5, 3
√

5
√

2, ( 3
√

5)2, ( 3
√

5)2
√

2}.

Can we perhaps generate L by a single element? A typical candidate is
√

2+ 3
√

5
(or also the product of the two generators, as a member of the audience suggested
in the lecture) [[ squaring still leaves us with a cube root, while taking cubes still
leaves us with a square root, the smallest conceivable power which would make
both terms rational thus being 6 ]] . Indeed, we have more generally the

Theorem 3.45. (Simple Extension Theorem) Every algebraic number field K (i.e.
[K : Q] <∞) has the form K = Q(θ) for some θ ∈ K.

[[ Idea of proof: reduce the number of generators successively, a typical reduction
step being—with α and β generating algebraic elements over Q—the following:
Q(α)(β) = Q(α, β) !=Q(α + λβ) for some λ ∈ Q, in fact, most λ do the trick, but
one needs to perform this carefully (see, e.g., Theorem 2.2 in Stewart–Tall). ]]

We still need to justify the notation Q(α) (which indicates a quotient field) for
the ring Q[α], if α is an algebraic number.

[[ Aside: recall that one can obtain Q as a quotient field Q = frac(Z) of the
ring of integers. One introduces pairs (a, b) which correspond to rational numbers
a
b , defines a multiplication on those pairs which exactly mirrors the one for rational
numbers (simply put (a, b)∗(a′, b′) := (aa′, bb′)). Inversion corresponds to swapping
the two members of such a pair, addition is defined as (a, b)+(a′, b′) = (ab′+a′b, bb′),
and finally one identifies two such pairs if the corresponding rational expressions
represent the same fraction

(
i.e., (a, b) ∼ (a′, b′) if there are c, d ∈ Z such that

(ac, bc) = (a′d, b′d)
)
. Analogously we can form the fraction field frac(R) of any

integral domain R. ]]

3.6. Norms and traces of algebraic numbers. We can think of a “hierarchy
of structures” for a number field K; we illustrate this first in the case [K : Q] = 2.

as a field ⇒ as a ring ⇒ as a Q-vector space

Q(
√
D) Q[

√
D] Q + Q ·

√
D ∼= Q⊕Q ∼= Q2

addition and addition and addition and
multipl. in K + inverses multipl. by elts. in K multipl. by scalars (elts. in Q)

(forget mult. inverses) (forget ring multiplication)

How would the ring multiplication in Q[
√
D] look like on the underlying vector

space Q2? We compute it on the obvious (ordered) basis {β1 := 1, β2 :=
√
D}:

β1 = 1 ·a+b
√
D7→ a+ b

√
D = a · β1 + b · β2 ,

β2 =
√
D

·a+b
√
D7→ a

√
D + bD = bD · β1 + a · β2 ,
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and we obtain, after identifying β1 with (1, 0) and β2 with (0, 1) in Q + Q that(
1
0

)
7→
(
a ∗
b ∗

)(
1
0

)
,

(
0
1

)
7→
(
∗ bD
∗ a

)(
0
1

)
,

which together produces the matrix

A =
(
a bD
b a

)
.

Therefore we can view α = a + b
√
D ∈ Q[

√
D] as producing a linear map with

the above matrix A. [[ Furthermore, we know that α 6= 0 has an inverse in Q[
√
D],

and we can check that the group Q[
√
D]∗ (=the units) acts on the vector space

Q + Q ·
√
D in the sense of representation theory. ]]

Example: Consider a field K = Q[θ] of degree 3 over Q, where θ3− θ+ 2 = 0 (i.e.,
the minimum polynomial pθ(X) = X3 −X + 2, which obviously is irreducible). In
this case we get

β1 = 1 ·a+bθ+cθ27→ a · β1 + b · β2 + c · β3 ,

β2 = θ
·a+bθ+cθ27→ aθ + bθ2 + cθ3︸︷︷︸

=cθ−2c

= −2c · β1 + (a+ c) · β2 + b · β3 ,

β3 = θ2 ·a+bθ+cθ27→ aθ2 + bθ3︸︷︷︸
=bθ−2b

+ cθ4︸︷︷︸
=cθ2−2cθ

= −2b · β1 + (b− 2c) · β2 + (a+ c) · β3 .

The corresponding matrix therefore has the form

A =

a −2c −2b
b a+ c b− 2c
c b a+ c

 .

Any α = a+ bθ + cθ2 thus defines the multiplication-by-α map

α̂ : Q[θ] → Q[θ] ,
λ 7→ α · λ ,

which is linear (i.e., α̂(rλ) = rα̂(λ) if r ∈ Q and α̂(λ + µ) = α̂(λ) + α̂(µ) for
λ, µ ∈ Q[θ]), and this in turn gives a map of vector spaces of Q + Qθ+ Qθ2 to itself
which on our standard basis {1, θ, θ2} is given by the above matrix.

Recall from linear algebra that the matrix associated to a linear map of vector
spaces depends on the choice of a basis, but we can derive from it basis invari-
ant information: its determinant and its trace, or better even its characteristic
polynomial.

Definition 3.46. Let K be a number field. The (absolute) norm and trace of
α ∈ K from K to Q are defined as

NK(α) = NK/Q(α) = det(A) ,
TrK(α) = TrK/Q(α) = trace(A) ,

where A denotes the matrix representing the Q-linear map α̂ associated to α.

Note: Both NK(α) and TrK(α) lie in Q [[ since the entries in the corresponding
matrix A do ]] .

Examples:
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1) Let α := a+ b
√
D ∈ K = Q[

√
D], then NK(α) = det

(
a bD
b a

)
= a2− b2D,

which fittingly coincides with our old norm map (for fields of degree 2 over
Q).

2) Let K = Q[θ], where θ3 = θ − 2 (as in one of the examples above). Then

NK(α) = a3 − 2b3 + 4c3 + 2a2c+ ac2 − ab2 + 2bc2 + 6abc
and TrK(α) = 3a+ 2c .

Proposition 3.47. Let K be a number field, Then

(i) for α ∈ K, we have: NK(α) = 0 ⇔ α = 0;
(ii) multiplicativity of the norm (certainly the most important property of the

“old” norm that we have used so far):

∀α, β ∈ K : NK(αβ) = NK(α)NK(β) ;

(iii) Q-linearity of the trace:

∀α, β ∈ K , ∀λ, µ ∈ Q : TrK(λα+ µβ) = λTrK(α) + µTrK(β) ,

i.e., TrK : K → Q is a Q-linear map;
(iv) for α ∈ Q, we have

NK(α) = α[K:Q] , TrK(α) = [K : Q]α .

Proof. (i) The statement is easy to see on the level of rings, i.e., by considering
the multiplication-by-α map α̂ : Q[θ] → Q[θ], λ 7→ αλ (instead of α itself). This
map is bijective if and only α 6= 0. [[ Note that in Q[θ] there are no zero divisors. ]]

(ii) Follows from the corresponding properties for the determinant:

NK(αβ) = det(α̂β) = det(α̂β̂) = det(α̂) det(β̂) = NK(α)NK(β) .

(iii) Obvious since trace(A) equals the sum of all the diagonal elements of A.
(iv) The corresponding matrix is simply the diagonal matrix α · Id.
Any α ∈ K = Q[

√
D] divides its own norm NK(α) = (a+ b

√
D)(a− b

√
D) ∈ Q,

since we just multiply by its “conjugate” a− b
√
D [[ for D < 0, this coincides with

the “complex conjugate” for the complex numbers ]] .
In general, consider Q[θ], where the minimum polynomial pθ(X) of θ is of degree

n, say; then we will see that any α = a0 + a1θ + · · · + αn−1θ
n−1 divides its own

norm NQ[θ](α) = α · β ∈ Q , for some β ∈ Q[θ] , which then allows us to invert,
since 1/α = β/NQ[θ](α) ∈ Q[θ]. In order to figure out what that β looks like (in
terms of α), it is useful to consider the minimum polynomial again.

Proposition 3.48. The minimum polynomial pα(X) ∈ Q[X] of an algebraic num-
ber α has no repeated roots.

Proof. Note first that gcd(pα(X), p′α(X)) = 1. [[ We have p′α(X) 6= 0 and
deg(p′α(X)) < deg(pα(X)); so a common factor must be different from pα(X) itself
and cannot have positive degree, otherwise pα(X) would be reducible. ]]

Therefore we can write

q(X)pα(X) + r(X)p′α(X) = 1 , (7)

with some q(X), r(X) ∈ Q[X]. A repeated root ρ of pα(X) would also be a root
of p′α(X) [[ since then pα(X) = (X − ρ)2 · s(X) for some s(X) ∈ C[X], and so
p′α(X) = 2(X−ρ) s(X)+(X−ρ)2 s′(X) ]] . Plugging in ρ into (7) would give 0 = 1,
a contradiction.

Conclusion: pα(X) cannot have a repeated root. �
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Definition 3.49. For an algebraic number α, the roots in C of its minimum poly-
nomial pα(X) (over Q) are called the conjugates of α (over Q). [[ We can replace
here Q by any more general fields, in particular by a number field, K and some
algebraic number α over K. ]]

Depending on the shape of pα(X), there may be hidden symmetries among the
roots—they were already used by Lagrange but understood only in the context
of what now are called groups by Galois when he tried to solve the general quin-
tic equation. Nowadays those symmetries are usually made apparent using “field
homomorphisms”, studied in detail in Galois theory.

Proposition 3.50. For all the conjugates αi, i = 1, . . . , n, of an algebraic integer
α of degree n, one has

Q[αi] ' Q[α] .

Idea of proof: One has pα(X) = pαi(X) ∀i, now Q[α] ' Q[X]
(pα(X)) by the first

isomorphism theorem for rings. . .

In the proposition, we should think of the quotient ring Q[X]
(pα(X)) as being an “ab-

stract” polynomial ring. Now we can try to view it more “concretely” by mapping
(embedding) it into C:

σi :
Q[X](
pα(X)

) −→ C (i = 1, . . . , n)

g(X) 7→ g(αi)

in n different ways.

Examples: 1. For n = 2, consider Q[λ] := Q[X]
(X2+1) , with the two embeddings

σ1 : g(λ) 7→ g(i) ,
σ2 : g(λ) 7→ g(−i)

for any polynomial g(λ).
2. For n = 3, consider Q[λ] := Q[X]

(X3−5) , with the embeddings

σi : g(λ) 7→ g(αi)

with α1 = 3
√

5, α2 = 3
√

5 · ω, α3 = 3
√

5 · ω2, where ω = −1+
√
−3

2 . Note that α2 and
α3 are in C \ R.

Thus we obtain 3 different field homomorphisms Q[λ]→ C, and also among the
Q[αi]: Q[αi] ' Q[αj ] 1 6 i, j 6 3.

Better even: consider L = Q[αi, ω] (here we can take any of the three in-
dices i = 1, 2, 3), which can be also written as L = Q[α1, α2, α3, ω] or also as
L = Q[α1, α2, α3]. This is a field of degree 6 over Q, and, e.g., the map sending
g(α1, α2, α3, ω) to g(α2, α3, α1, ω) [[ cyclic shift of the elements αi ]] is an isomorphism
of the field with itself.

Definition 3.51. An isomorphism ϕ of a field L with itself is a (field) au-
tomorphism. If ϕ leaves a subfield K fixed pairwise, then ϕ is called a K-
automorphism.

The key point of the above discussion in our context is the following: for an
algebraic number α as above, the conjugates are precisely the roots of pα(X) ∈
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Q[X], so over C we have

pα(X) =
n∏
i=1

(X−αi) = Xn−
( n∑

i=1

αi︸ ︷︷ ︸
=TrQ[α](αj)

)
Xn−1 ± . . .+(−1)n

n∏
i=1

αi︸ ︷︷ ︸
=NQ[α](αj)

, (any j)

which is invariant under permutations of the αi, and since the coefficients are in Q,
we get

1
αi

=

∏
j 6=i αj∏
all j αj

∈ Q[α] ,

since the denominator, being a norm, lies in Q.

3.7. Algebraic integers. An algebraic number is a root of a polynomial in Q[X],
in fact, in Z[X]. After clearing denominators, we see that for m

n ∈ Q (m ∈ Z, n ∈ N)
we can take the polynomial x − m

n ∈ Q[X] or nx −m ∈ Z[X], and for m ∈ Z we
can simply take x−m ∈ Z[X]. The integers are thus characterized as satisfying a
monic (linear) polynomial ∈ Z[X]. In general, one defines

Definition 3.52. An algebraic integer is the root of a monic polynomial in Z[X].

Examples: 1. m
√
D (m ∈ N, D ∈ Z) is a root of xm −D and thus is an algebraic

integer (note that we do not require the monic polynomial to be irreducible).
2. A surprise, maybe: 1+

√
−3

2 is a root of X6 − 1 (or also of the irreducible
polynomial X2 − X + 1), so is—despite appearances—an algebraic integer. More
generally, for m ≡ 1 (mod 4), we have that α = 1+

√
m

2 is an algebraic integer. Note
that α2 = m+1

4 +
√
m
2 has only denominator 2, since m is odd, and α2 − α = m−1

4

lies in Z by our assumption on m. Thus α is a root of X2 −X − m−1
4 ∈ Z[X].

Our next aim is to see that sums and products of algebraic integers are again
algebraic integers, i.e., the algebraic integers form a ring. This is not obvious (try
to check directly, say, that 3

√
5 + 1+

√
17

2 − 3i is an algebraic number...).

The idea is the following: in the above example, α = 1+
√
m

2 was found to be
“okay” since α2 still had bounded denominator (6 2). For instance, β =

√
m
2 would

not work: β2 has “worse” denominator, and in general βn has denominator 2n.
Thus the denominators of these powers are unbounded as n grows, so the set of all
powers of β cannot be captured by linear combinations of a finite set of numbers.

This idea is made more precise in the following

Theorem 3.53. Let α be an algebraic number with minimum polynomial pα(X) ∈
Q[X]. Then the following are equivalent (=“TFAE”)

(i) α is an algebraic integer,
(ii) pα(X) is in Z[X],
(iii) Z[α] is a finitely generated abelian group [[ whence ∃n ∈ N such that Z[α] =

Z + Zα+ Zα2 + · · ·+ Zαn−1 ]] ,
(iv) there is a finitely generated abelian subgroup G ⊂ Q[α], G 6= 0, such that

αG ⊆ G .

Proof. (i)⇒(ii): Let f(X) be a monic polynomial in Z[X] of smallest degree such
that f(α) = 0 [[ this exists by definition of an algebraic integer ]] .

Then f(X) is irreducible in Z[X] [[ otherwise we can find a decomposition f(X) =
q(X) · r(X) in Z[X] with deg(q(X)), deg(r(X)) < deg(f(X)), and since f(α) = 0
in the integral domain Q[α], it follows that q(α) or r(α) must vanish, contradicting
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the minimality of deg f(X) ]] . By the Gauss lemma, f(X) is irreducible in Q[X] as
well, which is a Euclidean domain.

Note that f(X) lies in the ideal

I := {g(X) ∈ Q[X] | g(α) = 0} .

[[ Check that this is indeed an ideal! ]] Now in a Euclidean domain any ideal is
principal and generated by an element of smallest (non-zero) Euclidean norm [[ we’ve
seen this argument before ]] , which here is the degree.

Certainly pα(X) ∈ I and it is of smallest degree, i.e. generates I, and so f(X)
must be a multiple of pα(X). But both are irreducible and monic, so must coincide.

(ii)⇒(iii): Let pα(X) be of degree n, i.e., = Xn + an−1X
n−1 + · · ·+ a0, ai ∈ Z.

Then

αn = −an−1α
n−1−· · ·−a0 ∈ 〈1, α, α2, . . . , αn−1〉gp

(
= Z+Zα+Zα2+· · ·+Zαn−1

)
.

Inductively, let m > n, and assume we know αk ∈ 〈1, α, . . . , αn−1〉gp for k =
0, 1, . . . ,m− 1, then

αm = αm−n · αn ∈ 〈αm−n αm−n+1, . . . , αm−1〉gp ⊆ 〈1, α, α2, . . . , αn−1〉gp .

Thus any power of α lies in the finitely generated abelian group 〈1, α, α2, . . . , αn−1〉gp.

(iii)⇒(iv): Take G = Z[α], then
αG = αZ[α] = 〈α, α2, . . . , αn〉gp ⊆ 〈1, α, α2, . . . , αn−1〉gp = Z[α] = G.

(iv)⇒(i): Let G ⊆ Q[α] be a finitely generated abelian subgroup, generated, say,
by γ1, . . . , γr, i.e., G = Zγ1 + · · · + Zγr [[ over Z! ]] . By assumption on G, we can
express

αγi =
r∑
j=1

µijγj , i = 1, . . . , r with µij ∈ Z .

We can combine this and state it in terms of matrices as

α

γ1

...
γr

 =

µ11 . . . µ1r

...
µr1 . . . µrr


︸ ︷︷ ︸

=:M

γ1

...
γr

 .

In other words, α is an eigenvalue (to the eigenvector (γ1, . . . , γr)t), in particular α
is a root of the characteristic polynomial of M , given by det(Id ·X −M) which is
monic with coefficients in Z. �

Corollary 3.54. The algebraic integers form a ring, sometimes denoted Z (in
analogy with Q, the field of algebraic numbers).

Definition 3.55. For a number field K, denote

OK := {α ∈ K | α is an algebraic integer} ,

the ring of integers in K or number ring of K.

Note that OK is indeed a ring [[ it is equal to the intersections of the two rings Z
and K ]] .

As expected, the algebraic integers among the rational numbers are precisely the
integers:

Proposition 3.56. OQ = Z.
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Remark 3.57. (cf. Problem Sheet 6)
(1) We can write

K = {α
β
| α, β ∈ OK} ,

in fact somewhat better

K = {α
n
| α ∈ OK , n ∈ N} .

(2) Let S be a subring of a field K and suppose there are α, β ∈ S \{0} such that
(i) α

β /∈ S, yet
(ii) α

β is a root of a monic polynomial in S[X].

Then S cannot be a UFD.

4. Quadratic fields and their rings of integers

Definition 4.1. Let d ∈ Z\{0}. We call d squarefree if there is no integer m > 1
such that m2 | d.

Note: If n ∈ Z \ {0} and s is the largest integer such that s2 | n, then n
s2 , the

squarefree part of n is indeed squarefree. [[ Check! ]]

Theorem 4.2. Let K be an extension of Q of degree 2. Then K = Q(
√
d) for

some squarefree d ∈ Z \ {0, 1}.

Definition 4.3. A field as in the theorem is called a quadratic field. More

precisely, it is called

{
real quadratic
imaginary quadratic

}
if

{
d > 0
d < 0

}
.

Proof. Choose an α ∈ K \ Q [[ this exists since K = Q would be an extension
of Q of degree 1 ]] . As a vector space, K is 2–dimensional, so 1, α, α2 are linearly
dependent over Q, i.e.,

Rα2 + Sα+ T = 0 for some R,S, T ∈ Q , R 6= 0 .

Solving the quadratic equation, we get α = A ±
√
D, for some A,D ∈ Q, D 6= 0.

Now “pull out” the squarefree integer part of D = B
C , where B,C ∈ Z, so

√
D =

√
BC

C2
=

√
n2d

C2
= ±n

c

√
d ,

where d is the squarefree part of BC. Solving α = A ± n
c

√
d for

√
d gives

√
d =

∓(α−A)Cn ∈ K , i.e., Q(
√
d) ⊆ K.

But both fields also have the same dimension (= 2) over Q, so must coincide. �

In the following we want to determine its ring of integers.

Lemma 4.4. Let K = Q(
√
d), with d ≡ 1(4) squarefree ( 6= 1). Then

(i) Z
[

1+
√
d

2

]
⊆ OK ;

(ii) Z
[1 +

√
d

2
]

= {r + s
√
d

2

∣∣ r, s ∈ Z, r ≡ s (mod 2)}.

Proof. (i) has been checked before.
(ii) Put θ = 1+

√
d

2 . If β ∈LHS, then it can be written as x+yθ for some x, y ∈ Z,

i.e., as 2x+y+y
√
d

2 and indeed 2x+ y ≡ y (mod 2), as required [[ i.e., β ∈RHS ]] .
Conversely, if β ∈RHS, then β = r−s

2 + s
(

1+
√
d

2

)
∈ Z + Zθ =LHS. �
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Theorem 4.5. Let K = Q(
√
d), d squarefree ( 6= 0, 1). Then

OK =

{
Z[
√
d] if d ≡ 2, 3 (mod 4) ,

Z[ 1+
√
d

2 ] if d ≡ 1 (mod 4) .

Proof. RHS⊂ OK is clear from our previous considerations.
Conversely, put α = a+b

√
d

c , with a, b, c ∈ Z, gcd(a, b, c) = 1. Then

pα(X) =
(
X − a+ b

√
d

c

)(
X − a− b

√
d

c

)
= X2 − 2

a

c
X +

a2 − b2d
c2

.

Now a and c are coprime [[ if a prime p divides gcd(a, c), then p2 divides b2d, but d is
squarefree, so necessarily p | b, a contradiction to the assumption gcd(a, b, c) = 1 ]] .

• The case c = 1 is okay, as then α = a+ b
√
d ∈ Z[

√
d].

• The case c = 2 implies a, b odd, and furthermore a2−b2d
4 ∈ Z, i.e., a2−bd2 ≡

0 (mod 4) with a2 ≡ b2 ≡ 1 (mod 4). This entails d ≡ 1 (mod 4).

Conversely, d ≡ 1 (mod 4) gives for a, b odd that a+b
√
d

2 is an algebraic integer.
Conclusion: if d 6≡ 1 (mod 4), then c = 1 and OK ⊆ Z[

√
d], while if d ≡ 1

(mod 4), then either c = 1 or c = 2 and a, b odd, so in this case we get OK ⊆
Z[ 1+

√
d

2 ].
Hence equality must hold in both cases.

Notation 4.6. For squarefree d ∈ Z, d 6= 0, 1¡ we put

Od := OQ(
√
d) .

We already know that we cannot expect Od in general to have unique factorisa-
tion; nevertheless, we can still say something about its irreducibles.

Proposition 4.7. Od := OQ(
√
d) is a factorization domain (not necessarily a

unique factorization domain, though), i.e., each element can be decomposed into
finitely many irreducibles.

[[ Idea of proof: Use ψ(α) := |NQ(
√
d)(α)| which satisfies the condition of Problem

Sheet 3, Q2, hence by Q2c) Od is a factorization domain. ]]

More important than dealing with irreducibles is actually to control the primes
in Od. A good way of thinking about the latter is in relation to primes in Z: it has
proved convenient to view Q(

√
d) and Od lying above Q and Z, respectively—then

what can we say about primes in Od lying above primes in Z?

Lemma 4.8. Let α ∈ OK be prime. Then

1) α | p for some prime p in Z, and then p factorises in three possible ways
into irreducibles:

(i) p is prime also in OK , so p ∼ α; p is then called inert;
(ii) p = ±αα̃ and α 6∼ α̃; p is then called split;
(iii) p = ±αα̃ and α ∼ α̃; p is then called ramified.
Note that α̃ is also prime in Od.

2) If Od is a UFD, then any prime p ∈ Z has a prime factorization of one of
the above types. Moreover,

p is not inert ⇔

{
p = ±(a2 − b2d) if d ≡ 2, 3 (mod 4) ,
4p = ±(a2 − b2d) if d ≡ 1 (mod 4)

for some a, b ∈ Z.
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Proof. 1) We know that α divides its norm NK(α) = ±(product of primes in Z).
Hence α, being prime itself, divides (at least) one of these primes; denote one of
those by p. Then NK(α) | NK(p) = p2.

Thus either NK(α) = ±p2 and so necessarily α ∼ p [[ as p = αβ for some β ∈ Od it
follows that NK(β) = ±1, hence β is a unit. ]] , leading to case (i), or NK(α) = ±p,
leading to one of the other two possibilities.

2) In a UFD, the above factorization into irreducibles is also a factorization into
primes [[ since then “irreducible ⇔ prime” ]] .

Moreover, p is not inert⇔ p = ±αα̃ and α is of the form α = a+b
√
d (if d ≡ 2, 3

(mod 4)) or α = a+b
√
d

2 (if d ≡ 1 (mod 4)), for some a, b in Z.

Examples:

1) d = −1: Od = Z[i]. We have
• 2 = (1+i)(1−i) and we have 1+i = i(1−i) ∼ 1−i, whence 2 ∼ (1−i)2

is ramified in Z[i];
• 3 6= a2 + b2 for a, b ∈ Z, thus 3 is inert in Z[i];
• 5 = 12 + 22 = (1 + 2i)(1 − 2i) and 1 + 2i 6∼ 1 − 2i [[ the units in Z[i]

are {±1,±i} ]] , thus 5 splits in Z[i].
More generally, we have seen that all primes p ≡ 1 (mod 4) can be written
as a sum of two integer squares, and thus are split in Z[i] [[ p = a2 + b2 =
(a + ib)(a − ib) ]] , and all primes ≡ 3 (mod 4) cannot be written as such a
sum, hence are inert [[ reduce modulo 4 ]] .

2) d = 3: O3 = Z[
√

3].
• 3 = (

√
3)2 is ramified;

• 2 = (
√

3 + 1)(
√

3− 1) is not inert. But
√

3+1√
3−1

= 2 +
√

3 ∈ O3
∗, so

√
3 + 1 ∼

√
3− 1. Hence 2 is ramified in O3.

• Is 5 = a2− 3b2 possible with a, b ∈ Z? If so, then 5 6 | b [[ otherwise 5 | a and
in fact 52 would divide the RHS, but not the LHS, a contradiction ]] .

So choose c (mod 5) such that bc ≡ 1 (mod 5). Since a2 ≡ 3b2 (mod 5),
we get (ac)2 ≡ 3(bc)2 ≡ 3 (mod 5), a contradiction.

Hence 5 is inert in O3.
In general, it turns out that precisely the primes ≡ ±1 (mod 12) are

split, and the primes ≡ ±5 (mod 12) are inert in O3.

The above analysis allows us to solve certain Diophantine equations in a straight-
forward manner.

Examples:

(i) How many solutions in integers a, b are there to

a2 + 2b2 = M , where M = 29 · 115 · 132 · 19 ?

Recognize the left hand side as the “norm form” on the UFD O2 = Z[
√
−2]:

α = a+ b
√
−2 has norm N(α) = a2 + 2b2.

So try to find α such that αᾱ = M .
Possible prime factors for α must also occur in M , where M is viewed

as a number in O2. Hence we check the prime factorizations of 2, 11, 13
and 19 in O2:
(a) • 2 = −(

√
−2)2 is ramified;

(b) • 11 = (3 +
√
−2)(3−

√
−2) is split (the two factors are not associate

since the only units in O2 are ±1);
(c) • 13 = 13 is prime in O2;
(d) • 19 = (1 + 3

√
−2)(1− 3

√
−2) is also split.
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Altogether: every prime in O2 dividing α is associated to
√
−2, 3 ±

√
−2,

13 or 1± 3
√
−2, and α has the prime power decomposition

α = unit× (
√
−2)r(3 +

√
−2)s(3−

√
−2)t13u(1 + 3

√
−2)v(1− 3

√
−2)w . (8)

This decomposition is unique, as O2 is a UFD. The factor “unit” here rep-
resents ±1. [[ Note that for other number rings there may be more choices,
e.g. for O−1 it would represent the four units in, n = 0, . . . , 3. ]]

Now N(α) = M precisely if

2r · 11s+t · 132u · 19v+w = 29 · 115 · 132 · 19 ,

i.e., precisely if r = 9, s + t = 5, u = 1 and v + w = 1 (r, s, t, u, w > 0).
Hence we get 1 · 6 · 1 · 2 · 2 = 24 possibilities, where the last ·2 comes from
the number of units in O2.

(ii) How many of these solutions are in positive integers?
To each solution (a, b) there correspond four solutions (±a,±b) in (i),

where all four are different since a = 0 and b = 0 cannot occur for a2+2b2 =
M with M as above. Hence the solutions come in packets of four, and we
get 24/4 = 6 solutions in positive integers.

(iii) Note that there would be no solutions for M = · · · · 13odd · . . . , since then
u above would have had to be a half-integer. . .

We have seen above that the decomposition behaviour of a prime p in a quadratic
field Q(

√
d) depends on whether d is a square modulo p or not, and more precisely

the case when d is a square mod p is further subdivided into d being 0 modulo p
or not. It is convenient to recall/introduce the following concept:

Definition 4.9. The Legendre symbol
(n
p

)
of an integer n with respect to a

prime p is defined as

(n
p

)
=


1 if n (mod p) is a square, p 6 | n,
0 if p|n,
−1 if n (mod p) is not a square.

An important property of the Legendre symbol is its multiplicativity:(m
p

)(n
p

)
=
(mn
p

)
, m, n ∈ Z .

[[ Note that (Z/pZ)∗ consists of p−1
2 squares mod p and p−1

2 non-squares mod p,
and “square·square = non-square·non-square = square” . ]]

Using this notion, we can rewrite our criterion to distinguish the three possible
cases how a prime in Z decomposes in a quadratic field.

Theorem 4.10. Suppose Od is a UFD and p an odd prime integer. Then

(i) if
(
d
p

)
= −1, then p is also prime in Od, and we call p inert in Od;

(ii) if
(
d
p

)
= 1, then p = ±αpα̃p, αp 6∼ α̃p, is a prime decomposition of p, and

p splits in Od;
(iii) if

(
d
p

)
= 0, then p = ±αpα̃p, αp ∼ α̃p is a prime decomposition of p, and

p is ramified in Od.

Proof. Claim: If p is not prime in Od, then d is a square mod p.
Proof of claim: Since Od is a UFD, p is divisible by a prime αp = 1

2 (r + s
√
d)

with r, s in Z. Then, by the lemma,

p = ±αpα̃p = ±1
4

(r2 − ds2) , i.e., 4p = ±(r2 − ds2) . (∗)
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But p 6 | s [[ otherwise p|r2 hence p|r hence p2|(r2−ds2) = ±4p, p odd, contradiction ]] ,
hence has an inverse t mod p. Now (*) implies r2 ≡ ds2 (mod p), hence d = (rt)2

(mod p), which proves the claim.
The contrapositive of the claim gives:

If
(
d
p

)
= −1, i.e., d is not a square mod p, then p must be prime in Od.

This is part (i) of the Theorem.
Converse claim: if d is a square mod p, then p is not prime in Od.

[[ Proof of “converse claim”: Suppose d ≡ x2 (mod p), for some x ∈ Z. Then
p|(d− x2) = (

√
d− x)(

√
d+ x), but

√
d±x
p /∈ Od (as p 6= 2), so p is not prime in Od.

This proves the “converse claim”. ]]

Hence for
(
d
p

)
6= −1, (i.e., for d a square mod p) we have by the lemma p =

±αpα̃p.
Note that αp ∼ α̃p implies d ≡ 0 (mod p).

[[ Since then p|αpα̃p, p|α2
p, p|α̃p

2, and hence p|(αp− α̃p)2 = αp−2αpα̃p+ α̃p
2, hence

p|d by the above, as we had seen that p 6 | s. ]]
Contrapositive again gives:

(
d
p

)
= 1 implies αp 6∼ α̃p

This is part (ii) of the Theorem.
For part (iii) of the Theorem, we have to show: if d ≡ 0 (mod p), then αp ∼ α̃p.

Suppose
(
d
p

)
= 0, then p|d|ds2 = (αp − α̃p)2, and so αp|p|(αp − α̃p)2, hence since

αp is prime also αp|(αp − α̃p) and then also αp|α̃p. Similarly αp|α̃p, so αp ∼ α̃p.
Altogether we have shown the Theorem. �

What happens to the even prime?

Theorem 4.11. Suppose Od is a UFD. Then
(i) if d ≡ 5 (mod 8), then 2 is prime in Od (and 2 is inert);
(ii) if d ≡ 1 (mod 8), then 2 = ±α2α̃2, α2 6∼ α̃2, is a prime decomposition in
Od (and 2 is split);

(iii) if d ≡ 2, 3 (mod 4), then 2 = ±α2α̃2, α2 ∼ α̃2, is a prime decomposition
in Od (and 2 is ramified).

Proof. Claim: If 2 is not prime in Od, then d ≡ 1 (mod 8) or d ≡ 2, 3(4).
[[ Proof of Claim: Since Od is a UFD, 2 is divisible by a prime α2 = 1

2 (r+ s
√
d),

say, with r, s ∈ Z. Then, by the lemma,

2 = ±α2α̃2 = ±1
4

(r2 − s2d) , i.e. r2 − s2d = ±8 .

Case r ≡ s ≡ 1(2) then implies r2 ≡ s2 ≡ 1(8), and so 1 − d ≡ 0(8). Case
r ≡ s ≡ 0(2) implies a = r

2 , b = s
2 ∈ Z and

a2 − db2 = ±2 ,

which cannot hold for d ≡ 1(4). ]]
Therefore we get (i) by taking the contrapositive:
(i) if d ≡ 5(8) then 2 must be prime in Od.

Now for the other two cases.
(ii) Suppose d ≡ 1(8), then 2|d−1

4 =
(

1−
√
d

2

)
·
(

1+
√
d

2

)
, but 2 does not divide

any of the factors [[ 1±
√
d

4 /∈ Od ]] , hence 2 is not prime and so

2 = ±α2α̃2 , and again r2 − s2d = ±8 for α2 =
r + s

√
d

2
.
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From the proof of the Claim above, we must have r ≡ s ≡ 1(2), as d ≡ 1(8), hence
in particular d ≡ 1(4). Therefore α2 6∼ α̃2 [[ otherwise 2|(α2 − α̃2)2 = s2d and 2|d,
a contradiction ]] .

(iii) Suppose d ≡ 2 or 3(4). Then Od = Z[
√
d].

2 is not prime, since 2|d(d − 1) = (d −
√
d)(d +

√
d) and d±

√
d

2 /∈ Z[
√
d], hence

2 = ±α2α̃2, where α2 = a+ b
√
d (a, b ∈ Z).

But then α2|2 and, since (α2 − α̃2)2 = 4b2d, also 2|(α2 − α̃2)2. Putting this
together gives

α2|(α2 − α̃2)2 ,

but α2 is prime, so we also get

α2|(α2 − α̃2) .

Hence α2|α̃2 and similarly α̃2|α2, so we get α2 ∼ α̃2.
Conclusion: for d ≡ 2, 3(4) we have 2 = unit · α2

2. �

We can rephrase the above in terms of factorisations of ideals as follows: if Od
is a UFD, we get 

(
d
p

)
= −1 ⇒ (p) is prime(

d
p

)
= 1 ⇒ (p) = (αp)(α̃p)(

d
p

)
= 0 ⇒ (p) = (αp)2.

We will see later, that we get a similar statement for anyOd, except the fact that the
prime ideals into which (p) factors, need not be principal: i.e., one has (p) = ℘1 ·℘2

(with two prime ideals ℘i).
Again, we get a glimpse of how ideals make up for the lack of unique factorization.

Motivating the next step: We have seen that it can be very hard to find solutions
(in Z or in Q) to Diophantine equations. When we were able to solve them, it
typically involved intricate divisibility properties, and in fact the interrelationship
of such divisibilities. As a prominent example, Fermat’s method of infinite descent
comes to mind.

By extending Z to somewhat larger rings (i.e., number rings), we obtain a bit
more “wiggle room” for refined divisibility arguments, e.g., for proving impossibility
(in case there is no solution), for counting numbers of solutions (in case there are
finitely many), and sometimes even parametrizing the solutions (in case there are
infinitely many).

We encountered obstacles in those larger rings: we often run into non-UFDs
whose building blocks (=irreducibles) need no longer be prime. As a remedy, we saw
“ideal numbers” appear, whose crucial (divisibility) properties then were captured
by the notion of an ideal; in the context of ideals, the building blocks (=the prime
ideals) will indeed have the property of being prime, and the factorization into these
will turn out to be essentially unique (one of the topics of next term).

So far, we have made the passage from Z to UFD’s which are quadratic extensions
Z→ Od (= Z[

√
d] or, if d ≡ 1(4), = Z[ 1+

√
d

2 ]), under which a prime ideal (p)Z = pZ
goes into (p)Od and factors in Od in three possible ways: either it stays prime or it
ramifies into the square ℘2 of a principal ideal ℘ in Od or it splits into a principal
ideal ℘ and its “conjugate” ℘. (In non-UFD’s we will have a similar behaviour but
need to replace “principal” by “prime”)

Although this clearly shows that we have made progress, we still haven’t yet
established the “full arithmetic” for Q(

√
d): ideals “ignore” units, e.g. (ux)R =

(x)R for u ∈ R∗ in a ring R. Hence we need to treat them separately.
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[[ Note that once prime ideals and units are understood, we are closer to this
“full arithmetic”, but we will still be missing an important point: a measure for
the ambiguity in a non-UFD, which is reflected by a group that is concocted from
ideals (or more precisely classes of ideals, modulo principal ideals). ]]

Our next goal is therefore to understand the units in Od.

5. Units in Quadratic fields

The general assumption for this section is the following: unless mentioned other-
wise, let d ∈ Z\{0}, d not a square, K = Q(

√
d). We will consider either S = Z[

√
d]

(for any such d) or possibly S = Z[ 1+
√
d

2 ] (only in the case d ≡ 1(4)).
Note that we do not suppose d to be squarefree!
We recapitulate our state of knowledge about the units in S, first in the imaginary

quadratic case.

Theorem 5.1. (i) S∗ = {α ∈ S | N(α) = ±1}.
(ii) (a) For d < −1 get

Z[
√
d]∗ = {±1} .

(b) Z[
√
−1]∗ = {±1,±i}.

(iii) (a) For d ≡ 1 (mod 4), d < −3, get

Z[
1 +
√
d

2
]∗ = {±1} .

(b) Z[ 1+
√
−3

2 ]∗ = {±1,±ω,±ω2}, ω = 1+
√
−3

2 .

Proof. Items (i), (ii) have been dealt with earlier.
(iii) If α ∈ Z[ 1+

√
d

2 ], then α = r+s
√
d

2 with r ≡ s (mod 2).

(a) We have d ≡ 1 (mod 4), d 6 −7.
Furthermore, α ∈ O∗d ⇔ αα = +1, i.e. r2 + s2|d| = 4.
But |d| > 7 then implies s = 0, hence r = ±2, so α = ±1.

(b) α ∈ O∗−3 ⇔ r2 + s2 · 3 = 4, hence (s = 0 and r = ±2), i.e. α = ±1, or else
(s = ±1 and r = ±1), i.e. α = ±1±

√
−3

2 . �

Notation: If d > 1 and α = a+ b
√
d, put α̃ := a− b

√
d.

Also note that we write
√
d for the positive root of x2 − d (this agrees with the

usual conventions in analysis, say) and often think of it as embedded in R. With
this identification we can (and will) use the ordering in R.
But note that algebraically we cannot favour any of the two roots (cf. Galois theory).

Main Theorem 5.1. (the real quadratic case) Let d > 1. Then

(i) S has a least unit u > 1.
(ii) S∗ = {±ur | r ∈ Z} = 〈u,−1〉.

Examples:

(i) d = 3: u = 2 +
√

3.
(ii) d = 94: u = 2143295 + 221064

√
94 (it is indeed the smallest unit > 1 in

this case!).

Definition 5.2. A unit u as in the main theorem is called the fundamental unit
of S. If furthermore S = Od, then is it also called the fundamental unit of the
field Q(

√
d).
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Strategy of proof: units in S give better “approximations” to
√
d than the average

element in S; we will find a unit > 1 using a set of “positive elements with small
conjugates”.
Note that for convenience we will be working in the following with S = Z[

√
d]

mainly, but that the same proofs, slightly adapted, will go through essentially
verbatim for the case S = Z[ 1+

√
d

2 ].

Preconsideration: Given n ∈ Z>0, denote by m the nearest integer to n
√
d, such

that |m− n
√
d| < 1

2 . Then

|
√
d− m

n
| < 1

2n
, (9)

so m
n is the best approximation with denominator n.
But now take a unit α = a + b

√
d ∈ S∗ with a, b > 0. [[ One of the four units

{±α,±α̃} has both coefficients > 0. ]]
Then

|b
√
d− a| = |α̃| = 1

|α|
=

1
α
<

1
b
√
d
. as α = a+ b

√
d > b

√
d)

Hence

|
√
d− a

b
| < 1

b2
√
d
.

This is a far better (quadratic rather than linear) approximation than (9).
Now define the set of “positive elements in S with small conjugates” as

A = {α = a+ b
√
d | a, b ∈ Z>0 and |α̃| < 1

b
} .

[[ Note that approximately a quarter of all units in S lie in here. ]]

Lemma 5.3. |A| =∞.

Proof. Suppose |A| were finite, then we could choose n ∈ Z>0 such that

1
n
< |α̃| ∀α ∈ A . (10)

We prepare for applying the pigeonhole principle.

• Consider the n + 1 multiples r
√
d (r = 0, . . . , n) and take their fractional

parts λr := r
√
d− br

√
dc ∈ [0, 1).

• Divide [0, 1) into n subintervals [ in ,
i+1
n ) of length 1

n .
By the pigeonhole principle, there are two of the λr, say λs and λt (s < t), in one
subinterval, i.e. ∣∣∣s√d− bs√dc − t√d+ bt

√
dc
∣∣∣ = |λs − λt| <

1
n
.

Put a := bt
√
dc − bs

√
dc and b := t− s, so that |a− b

√
d| < 1

n .
Furthermore, a > 0, b > 0 [[ t > s and

√
d > 1 ]] and also b 6 n [[ s, t ∈ {0, . . . , n} ]] .

From this we deduce that α := a+ b
√
d lies in A, since

|α̃| = |a− b
√
d| < 1

n
6

1
b
.

But this contradicts our assumption (10). �

We cannot claim that all elements in A are units, but at least we can bound
their norm:

Lemma 5.4. If α ∈ A, then |N(α)| < 1 + 2
√
d.
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[[ Pf: α = a+ b
√
d implies α̃ = a− b

√
d hence α̃ = (α− b

√
d)− b

√
d = α−2b

√
d and,

since α ∈ A, also |α̃| < 1
b . Hence |N(α)| = |αα̃| = α · |α̃| < (2b

√
d+ 1

b ) 1
b 6 2

√
d+1 . ]]

The idea is now to use that there must be two elements of the same norm in A,
hence whose quotient is of norm ±1. But we still need to ensure that this quotient
will be an algebraic integer rather than just an algebraic number. For this we break
up the set A into finitely many appropriately chosen subsets and form that quotient
in a given such subset.

Lemma 5.5. There are two elements α = a+b
√
d, α′ = a′+b′

√
d in A with α > α′

and |N(α)| = |N(α′)| =: n and such that

a ≡ a′ (mod n) , b ≡ b′ (mod n) .

Proof. As foreshadowed in the above remark, we partition A into classes (r, s,
n ∈ Z)

An,r,s := {a ∈ A | |N(α)| = n, a ≡ r(n), b ≡ s(n)}.
By the previous lemma, there are only finitely many non-empty such classes, as
these sets are empty except possibly for 1 6 n 6 1 + 2

√
d and 0 6 r, s < n.

By the pigeonhole principle, we obtain that at least one of the An,r,s has at least
two (in fact infinitely many) different elements α, α′ of A. �

From this lemma we can concoct a unit by dividing two such elements.

Theorem 5.6. There is a unit in Z[d]∗ such that u > 1.

Proof. We take α = a+ b
√
d, α′ = a′ + b′

√
d as in Lemma 5.5, with α > α′, say.

Then we put u := α
α′ ∈ Q(

√
d).

Clearly u > 1 by our assumption α > α′.
Furthermore, u ∈ Z[

√
d]: here we use the congruences a ≡ a′(n) and b ≡ b′(n),

which guarantee that γ := 1
n (α− α′) = a−a′

n + b−b′
n

√
d lies in Z[

√
d].

Hence the proof is complete after realising that

u =
α

α′
=
α′ + nγ

α′
= 1 +

n

α′
γ = 1 + (±α̃′)γ ∈ Z[

√
d] ,

where the last equality stems from n = N(α′) = ±α′α̃′. �

Before proving the main theorem, we give a convenient way to rephrase the
“positivity condition” a > 0, b > 0 in the definition of A.

Lemma 5.7. Let α = a+ b
√
d ∈ Q(

√
d). Then

α >
√
|N(α)| ⇔ a > 0, b > 0 .

Proof. Note that a =
α+ α̃

2
, b =

α− α̃
2
√
d

.

“⇒ ”: Suppose that α >
√
|N(α)|, so in particular α > 0.

Then α2 > |N(α)| = |αα̃| = α|α̃| ⇒ α > |α̃| = ±α̃, hence α ± α̃ > 0 and so
a > 0, b > 0.
“ ⇐ ”: Suppose that a > 0, b > 0. Then α = a + b

√
d > |a − b

√
d| = |α̃| and so

α2 > α|α̃| = |N(α)|. �

We are now ready to prove our Main Theorem 5.1.

Proof. (i) From the above, we get a unit v > 1 in S.
Now form

Uv = {α ∈ S∗ | 1 < α 6 v} .
Clearly Uv 6= ∅, as v ∈ Uv.
Moreover, any α ∈ Uv satisfies α >

√
|N(α)|(= 1). But then α = a+b

√
d

2 (note that
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S here can stand for Z[
√
d] and Z[ 1+

√
d

2 ]) satisfies a > 0, b > 0 by the above lemma.
Furthermore, we know from α 6 v and a, b > 0 that a

2 , b
2 < v.

Hence #Uv 6 (2v)2 <∞.
Therefore there exists a least element u in (the finite set) Uv, and hence also a least
element > 1 in S∗.
Conclusion: this latter element is the fundamental unit in S.

(ii) Clearly S∗ ⊃ {±um | m ∈ Z}, since u ∈ S∗ and the norm is multiplicative.
Now we show the other inclusion by reducing any unit x in S to one of the above
form. First we can assume, up to replacing x by its negative, that x > 0. Next
there is a (unique!) r ∈ Z such that ur 6 x < ur+1. (Explicitly, we can write
r =

⌊
log x
log u

⌋
.)

Therefore we can write 1 6 xu−r < u and the unit xu−r must be = 1, since u is
the fundamental unit, i.e. x = ur.
Conclusion: S∗ = {±um | m ∈ Z} . �

Examples: We will verify below the following examples:
(1) For d = 2, a rather obvious unit is 1+

√
2 (its norm is −1). Indeed, it turns

out to be the fundamental unit in Z[
√

2], hence

Z[
√

2]∗ = {±(1 +
√

2)m | m ∈ Z} .

(2) For d = 5, a unit (of infinite order) is u5 = 2 +
√

5, which is a fundamental
unit in Z[

√
5], but not a fundamental unit in O5 = Z[ 1+

√
5

2 ]; for the latter
one, we have

Z[
1 +
√

5
2

]∗ = {±
(1 +

√
5

2
)m | m ∈ Z} ,

and u5 = ( 1+
√

5
2

)3.

These two examples arise very easily, once we have established the following

Theorem 5.8. Let d > 1, d not a square.
(i) If S = Z[

√
d] and a > 0, b > 0 be a solution of

a2 − db2 = ±1

with b least possible. Then a+ b
√
d is a fundamental unit of S.

(ii) If S = Z[ 1+
√
d

2 ], and in particular d ≡ 1 (mod 4), then we have the follow-
ing cases:
(a) For S = Z[ 1+

√
5

2 ], the fundamental unit is 1+
√

5
2 .

(b) For S = Z[ 1+
√
d

2 ], with d > 5, the fundamental unit is s+t
√
d

2 where
s2 − t2d = ±4 with s, t > 0 and t least possible.

Proof. We only prove part (ii), as part (i) is rather similar (and easier).
(a) Let d = 5 and u = 1+

√
5

2 , which is a unit such that u > 1.
By our previous lemma [[α = a+ b

√
5 >

√
|N(α)| ⇔ a, b > 0 ]] we have, for any unit

w = s+t
√

5
2 with w > 1 that s, t > 0.

But then also s+ t
√

5 > 1 +
√

5 hence w > u.
We conclude that u is the least unit > 1, i.e., u is the fundamental unit of S.
(b) Let d 6= 5 and m+n

√
d

2 =: v, the fundamental unit in S. By definition v > 1 and
hence (again by the previous lemma) m,n > 0.
We now compare this to the unit as in the statement, i.e. w := s+t

√
d

2 with s, t > 0
and t least possible.
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• First we need to verify that w ∈ S∗ [[ it is in S since s2−dt2 = ±4 implies s ≡ t(2),
and the equality moreover implies that w is a unit ]] .
• Furthermore, w > 1 [[ again, we can invoke the lemma ]] .
• Clearly m2 − n2d = ±4 (as v is a unit), so by our choice of w we have n > t.
By assumption v is the fundamental unit, and so w > v, more precisely w = vr for
some r > 0. To show: r = 1.
We now use positivity of each term in the following (binomial) expansion:

s+ t
√
d

2
=
(m+ n

√
d

2

)r
=
mr +

(
r
1

)
mr−1n

√
d+ . . .

2r

and compare the coefficients of
√
d on both sides to get

t

2
=
rmr−1n+ . . .

2r
>
rmr−1n

2r
⇒ 2r−1t > rmr−1n > rmr−1t ,

and so r = 1 (in which case we are done) or m = 1, implying ±4 = m2 − n2d =
1 − n2d which is only possible (still assuming d, n positive) for n = 1 and d = 5,
contradicting our choice of d.
Conclusion: r = 1, from which we deduce w = v. �

Examples: Now the above examples are easily verified:

(1) For d = 2, the smallest possible s, t > 0 (i.e. s = t = 1) already give a unit
which by the Theorem must be a fundamental unit in Z[

√
2].

(2) For d = 5, the solution a = 2, b = 1 of a2 − 5b2 = −1 has the smallest
possible b and hence gives a fundamental unit for Z[

√
5].

The case Z[ 1+
√

5
2 ] is treated in the Theorem. Note that both u = 1+

√
5

2 and
u2 = 3+

√
5

2 have the smallest possible least coefficient for
√

5 which is why
we had to differentiate between the cases in the proof.

(3) For d = 11 we find the following table:
for successive b we solve for a2 − 11b2 = ±1 and obtain

b 1 2 3
11b2 − 1 10 43 98
11b2 + 1 12 45 100

and the latter entry 100 is indeed a square (note that not both 11b2 ± 1
can be squares), so the smallest b to give a solution is b = 3, accompanied
by a =

√
100 = 10.

Conclusion: the fundamental unit in Z[
√

11] is 10 + 3
√

11.

We can now apply our new insight to solve—in fact completely—many more
Diophantine equations than before, most prominently

Pell’s equation (for d > 1 not a square): x2 − y2d = ±1 .

Examples.

(1) For d = 2 we consider S = Z[
√

2] with fraction field Q(
√

2), and with
fundamental unit u = 1 +

√
2, of norm −1.

A solution of the equation

x2 − 2y2 = 1

corresponds to N(x + y
√

2) = +1, and hence to all even powers of u, and
we can conclude that the possibilities are precisely given by the norms of
±u2n, for n ∈ Z.
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Moreover, we can reconstruct from u the coefficients x and y, since we
have

x+ y
√

2 = ±u2n ,

x− y
√

2 = ±ũ2n ,

from which we get x and y from u2n and its conjugate via

x = ±
(u2n + ũ2n

2

)
, y = ±

(u2n − ũ2n

2
√

2

)
,

so we find, using u2 = 3 + 2
√

2, that

x = ± (3 + 2
√

2)n + (3− 2
√

2)n

2
, y = ± (3 + 2

√
2)n − (3− 2

√
2)n

2
√

2
.

(2) In a similar way, since the fundamental unit 2 +
√

5 in Z[
√

5] has norm −1
we can “parametrise” the solutions to Pell’s equation for d = 5 by invoking
u2 = 9 + 4

√
5 as

x = ± (9 + 4
√

5)n + (9− 4
√

5)n

2
, y = ± (9 + 4

√
5)n − (9− 4

√
5)n

2
√

5
.

(3) A slightly more subtle case arises when d is not squarefree.
For d = 75, say, the quotient field of S = Z[

√
75] is Q(

√
75) = Q(

√
3), but

S ( Z[
√

3] = O3.
The fundamental unit in S is of course also a unit in Z[

√
3] and must be

a power of the fundamental unit u = 2 +
√

3 of the latter ring (both are
positive).
In fact, the third power of u is v := u3 = 26 + 15

√
3 = 26 + 3

√
75 ∈ S.

Hence the solutions of x2 − 75y2 = 1 are given by

x = ±v
n + ṽn

2
, y = ±v

n − ṽn

2
√

75
.

We can in fact combine the method with a previous one to treat even more equa-
tions.

Examples:

(1) Find the solutions (x, y) ∈ Z2 to
(i) x2 − 14y2 = 5 ,
(ii) x2 − 14y2 = −5 .

In order to treat those cases, we will need to invoke prime factorisation for
the right hand side. So we first need to know that Z[

√
14] is a UFD–which

is indeed the case, so let us assume it for now.
Then we determine the fundamental unit which is u = 15 + 4

√
14, of norm

+1.
(i) the prime factorisation of 5 in Z[

√
14] is given by 5 = −ββ̃, where

β = 3 +
√

14, so any α with N(α) = +5 (those correspond bijectively
to the solutions of (i)) is associate to either β or β̃ (here we use unique
factorisation), i.e. α = ±urβ or α = ±urβ̃.
But since all units have positive norm and β has a negative norm,
there cannot be any such α (of norm 5).
Conclusion: (i) has no solution (in integers).

(ii) On the other hand, we can indeed solve N(α) = −5, e.g. with α = β as
above. Moreover, since the norm of all units are +1, we get N(±urβ) =
−5 for any r ∈ Z; similarly for β̃. So the general solution of (ii) is given
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by using a similar “trick” as above to express the coefficients in terms
of umβ and its conjugate via

x = ±u
mβ + ũmβ̃

2
, y = ±u

mβ − ũmβ̃
2
√

14
, m ∈ Z ,

so e.g. x = ± 1
2

(
(15 + 4

√
14)m(3 +

√
14) + (15 − 4

√
14)m(3 −

√
14)
)
,

and a similar expression for y.
(2) Find all integer solutions of

x2 − 126y2 = −5 .

Now Z[
√

126] is not a UFD, but the slightly larger ring Z[
√

14] is, as we
have used above: the non-squarefree number 126 satisfies 126 = 32 · 14.
So we rewrite the equation as

x2 − 14(3y)2 = −5 , (11)

and we can reduce the problem to the previous one (i.e. to solutions (a, b)
of a2 − 14b2 = −5), with the extra condition that 3 | b.
We can rephrase the latter: any such solution (a, b) corresponds to an
α = a+ b

√
14 such that α ≡ a (mod 3Z[

√
14]).

So we work “modulo 3”, keeping in mind that this means we can add any
3x′ + 3y′

√
14 with x′, y′ ∈ Z.

In particular, we get, with u = 15 + 4
√

14, as determined above,

u±1 ≡ 15± 4
√

14 ≡ ±
√

14 (mod 3) ,

u±m ≡ (±
√

14)m (mod 3) .

Moreover, we have

β = 3 +
√

14 ≡
√

14 (mod 3) .

The upshot now is that we get a solution (a, b) of (11) precisely if α =
a+ b

√
14 is congruent to an integer modulo 3Z[

√
14]. Using the above, we

find
α = ±umβ ≡ ±

√
14
m+1

(mod 3) ,
which is an integer exactly if m is odd.
Conclusion: the set of solutions of (11) is given by

x = ±u
2k−1β + ũ2k−1β̃

2
, y = ±u

2k−1β − ũ2k−1β̃

3 · 2
√

14
.

As an example, take k = 1 and compute
x = 1

2

(
(15 + 4

√
14) · (3 +

√
14) + (15− 4

√
14) · (3−

√
14)
)

= 101,
y = 1

6
√

14

(
(15 + 4

√
14) · (3 +

√
14)− (15− 4

√
14) · (3−

√
14)
)

= 9,
for which we verify

1012 − 126 · 92 = −5 .

Similarly, k = 2 gives
x = 1

2

(
(15 + 4

√
14)3 · (3 +

√
14) + (15− 4

√
14)3 · (3−

√
14)
)

= 90709,
y = 1

6
√

14

(
(15 + 4

√
14)3 · (3 +

√
14)− (15− 4

√
14)3 · (3−

√
14)
)

= 8081,
and indeed

907092 − 126 · 80812 = −5 .


