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The dilogarithm function, de*ned in the “rst sentence of Chapter I, is
a function which has been known for more than 250 years, but which for
a long time was familiar only to a few enthusiasts. In recent years it has
become much better known, due to its appearance in hyperbolic geometry
and in algebraic K -theory on the one hand and in mathematical physics (in
particular, in conformal “eld theory) on the other. | was therefore asked to
give two lectures at the Les Houches meeting introducing this function and
explaining some of its most important properties and applications, and to
write up these lectures for the Proceedings.

The“rst task was relatively straightforward, but the second posed a prob-
lem since | had already written and published an expository article on the
dilogarithm some 15 years earlier. (In fact, that paper, originally written as
a lecture in honor of Friedrich Hirzebruches 60th birthday, had appeared in
two di erent Indian publications during the Ramanujan centennial year, see
footnote to Chapter ). It seemed to make little sense to try to repeat in
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di erent words the contents of that earlier article. On the other hand, just
reprinting the original article would mean omitting several topics which were
either developed since it was written or which were omitted then but are of
more interest now in the context of the appearances of the dilogarithm in
mathematical physics.

The solution | “nally decided on was to write a text consisting of two
chapters of di erent natures. The “rst is simply an unchanged copy of the
1988 article, with its original title, footnotes, and bibliography, reprinted by
permission from the book Number Theory and Related Topics (Tata Institute
of Fundamental Research, Bombay, January 1988). In this chapter we de" ne
the dilogarithm function and describe some of its more striking properties:
its known special values which can be expressed in terms of ordinary log-
arithms, its many functional equations, its connection with the volumes of
ideal tetrahedra in hyperbolic 3-space and with the special values at s = 2
of the Dedekind zeta functions of algebraic number “ elds, and its appearance
in algebraic K -theory; the higher polylogarithms are also treated brie’y. The
second, new, chapter gives further information as well as some more recent
developments of the theory. Four main topics are discussed here. Three of
them, functional equations, modi“ cations of the dilogarithm function, and
higher polylogarithms, are continuations of themes which were already be-
gun in Chapter I. The fourth topic, Nahmes conjectural connection between
(torsion in) the Bloch group and modular functions, is new and especially fas-
cinating. We discuss only some elementary aspects concerning the asymptotic
properties of Nahmes g-expansions, referring the reader for the deeper parts of
the theory, concerning the (in general conjectural) interpretation of these g-
series as characters of rational conformal “ eld theories, to the beautiful article
by Nahm in this volume.

As well as the two original footnotesto Chapter |, which are indicated by
asterisks in the text and placed at the bottom of the page in the traditional
manner, there are also some further footnotes, indicated by boxed capital
lettersin the margin and placed at the end of the chapter, which give updates
or comments on the text of the older article or else refer the reader to the
sections of Chapter || wherethetopicin question isdeveloped further. Each of
the two chapters hasits own bibliography, that of Chapter | being a reprint of
the original one and that of Chapter Il giving a few references to more recent
literature. | apologize to the reader for this somewhat arti“ cial construction,
but hope that the two parts of the paper can still be read without too much
confusion and perhaps even with some enjoyment. My own enthusiasm for this
marvelous function as expressed in the 1988 paper has certainly not lessened
in the intervening years, and | hope that the reader will be able to share at
least some of it.

The reader interested in knowing more about dilogarithms should also
consult the long article [Ki] of A.N. Kirillov, which is both a survey paper
treating most or all of the topics discussed here and also contains many new
results of interest from the point of view of both mathematics and physics.
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Chapter |I. The dilogarithm function
in geometry and number theory?

The dilogarithm function is the function de‘ ned by the power series

n

: z
Liy(2) = 2 for |z| < 1.

n=1

The de" nition and the name, of course, come from the analogy with the Taylor
series of the ordinary logarithm around 1,

n
Slog(1S z) = ZF for |z| < 1,

n=1

which leads similarly to the de" nition of the polylogarithm

n
Lim(z) = =  for |z|<1 m=12....
nm
n=1
The relation q 1
El—im(z) = ELimél(Z) (m 2)

is obvious and leads by induction to the extension of the domain of de" nition
of Lim tothecut planeC [1, ); in particular, the analytic continuation of
the dilogarithm is given by

. < ~ . du
Lio(z) = S log(1S u)j foo z C [1, ).
0

path of integration

0 | cut

! This paper is a revised version of a lecture which was given in Bonn on the
occasion of F. Hirzebruches 60th birthday (October 1987) and has also appeared
under thetitle » The remarkable dilogarithmZ in the Journal of Mathematical and
Physical Sciences, 22 (1988).
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Thus the dilogarithm is one of the simplest non-elementary functions one
can imagine. It is also one of the strangest. It occurs not quite often enough,
and in not quite an important enough way, to be included in the Valhalla of
the great transcendental functions, the gamma function, Bessel and Legen-
dre- functions, hypergeometric series, or Riemannes zeta function. And yet
it occurs too often, and in far too varied contexts, to be dismissed as a mere
curiosity. First dened by Euler, it has been studied by some of the great
mathematicians of the past, Abel, Lobachevsky, Kummer, and Ramanujan,
to name just a few, and there is a whole book devoted to it [4]. Almost all
of its appearances in mathematics, and almost all the formulas relating to it,
have something of the fantastical in them, asif this function alone among all
others possessed a sense of humor. In this paper we wish to discuss some of
these appearances and some of these formulas, to give at least an idea of this
remarkable and too little-known function.

1 Special values

Let us start with the question of special values. Most functions have either
no exactly computable special values (Bessel functions, for instance) or else a
countable, easily describable set of them; thus, for the gamma function

= 1 2n)! _
(n)=(nS 1!, n+é :(4nn)! ,
and for the Riemann zeta function
2 4 6

(2)=€, (4):%, (6):%, e

0) = % $2=0,  (S4=0 ..,

o .1 - 1 - . 1
(S1 = SE' (83) = 130" (S5) = 82—52,

Not so the dilogarithm. As far as anyone knows, there are exactly eight
values of z for which z and Li,(z) can both be given in closed form:

Li»(0) = 0,
2
. . 2
Lio($) = S 5,
1 2.1,
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Liy 3S2 5 . 1—;élogz 1+2 5 :
Liz él; 5 :1—(2)Slog2 1+2 5 :
L, 1§2 5 _ §£+ %Iogz 1+2 5 ,
G SIS 5 L5t 1 1

Let me describe a recent experience where these special values “gured, and
which admirably illustrates what | said about the bizarreness of the occur-
rences of the dilogarithm in mathematics. From Bruce Berndt via Henri Cohen
| learned of a still unproved assertion in the Notebooks of Srinivasa Ramanu-
jan (Vol. 2, p. 289, formula (3.3)): Ramanujan says that, for g and x between
0and 1,

qq4 = 18 *_
X+ 5 1+ q3
X + 1+ =
X+ - lg qX
1+ ---

«very nearly.Z He does not explain what this means, but a little experimen-
tation shows that what is meant is that the two expressions are numerically
very close when qisnear 1; thus for g= 0.9 and x = 0.5 one has

LHS= 0.7767340194 - - -, RHS = 0.7767340180- - -,

A graphical illustration of thisis also shown.
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The quantitative interpretation turned out as follows [9]: The di erence
2
between the left and right sides of Ramanujanes equation isO exp |0é§ for
x=1q9 1 (Theproof of thisused the identities

(%) S
g = 1Sq" % = PPN
1+ — n=1 (Sh'g =

1+

1+ ---

which are consequences of the Rogers-Ramanujan identities and are surely
among the most beautiful formulas in mathematics.) For x Oandq 1

the di erence in question is O exp ik ,andforO< x< landq 1it

Togq
: c(x) _ a1 X x1 Rt
isO exp@ wherec(x)—SXargsth—SXIog 1+ x%/4+ x/2.
For these three formulas to be compatible, one needs
11 . 2 2 2
. ;Iog( 1+x2/4+x/2)dx:c(0)Sc(1):ngzz—o.

Using integration by parts and formula A.3.1 (3.5) of [1] one “ nds

%Iog 1+ x2/4+x/2 dx= S-Li, 1+x248x/2°

NI

é%logz( 1+ x2/4+ x/2) + (logx)log( 1+ x2/4+ x/2)+ C,

SO
1 = — _
S - +
Liog T x@a+ xi9ax= Sl & L Li, 223 42 1H°
. X > > 2
2 2 2
= — = — 1
2°3%0 2"

2 Functional equations

In contrast to the paucity of special values, the dilogarithm function satis* es
a plethora of functional equations. To begin with, there are the two re” ection
properties

Li, SLix(z) S - sl 2(Sz)
25 = 2 6 > g )
2
Li(1Sz) = SLix(z) + — S log(z) log(1S z).
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Together they say that the six functions

. . . zS1
Lix(z), Liz , Lis z

?12 . S Lip % . SLiy(15 7), SLis ﬁ
are equal modulo elementary functions, Then thereisthe duplication formula
Li2(z%) = 2 Lix(z) + Lix(S2)

and more generally the «distribution propertyZ

Lix(x) = n Li(z) (n=123...).

zn=x

Next, there is the two-variable, “ ve-term relation

1Sy
1S xy

S x 1Sy
1S xy log 1S xy

Lio(x) + Lia(y) + Liz + Liz (1S xy) + Li,

2oX
1S xy

= g S log(x) log(1S x) S log(y) log(1S y) + log

which (in this or one of the many equivalent forms obtained by applying
the symmetry properties given above) was discovered and rediscovered by
Spence (1809), Abel (1827), Hill (1828), Kummer (1840), Schae er (1846),
and doubtless others. (Despite appearances, this relation is symmetric in the
“ve arguments: if these are numbered cyclically as z, with n  Z/5Z, then
1Sz, = 274,81 z21,S1 = 2,5,2q+2.) Thereisalso the six-term relation

+ $+ }: 1 L|2(X) + le(Y) + LIZ(Z)

z
1 . <xy . =Yz

= - Lip S— + Lip S=—

2 '2 z '2 X

X |

. = ZX
+ Li, S—
y

discovered by Kummer (1840) and Newman (1892). Finally, there is the
strange many-variable equation

Lis(2) = Li, g + C(f), 2.1

(x)=1z
(a)=1

wheref (x) isany polynomial without constant term and C(f ) a (complicated)
constant depending on f. For f quadratic, this reduces to the “ ve-term rela-
tion, while for f of degree n it involves n? + 1 values of the dilogarithm.

All of the functional equations of Li, are easily proved by di erentiation,
while the special values given in the previous section are obtained by combin-
ing suitable functional equations. See [4].
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3 The Bloch-Wigner function D (z)
and its generalizations

The function Liy(z), extended asaboveto C [1, ), jumpsby 2 ilog|z| as
z crosses the cut. Thus the function Liy(z) + iarg(1S z)log|z|, where arg
denotes the branch of the argument lying between S and , is continuous.
Surprisingly, its imaginary part

D(z) = (Liz(2)) + arg(1S z)log|z|

is not only continuous, but satis‘es

(1) D(2) isreal analytic on C except at the two points O and 1, where it is
continuous but not di erentiable (it has singularities of type r logr there).

Level Curves
of D(z)

0.6

The above graph shows the behaviour of D(z). We have plotted the level
curvesD(z) = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0 in the upper half-plane. The val-
ues in the lower half-plane are obtained from D(z) = SD(z). The maximum
of D is1.0149 ..., attained at the point (1+ i 3)/2.

The function D(z), which was discovered by D. Wigner and S. Bloch
(cf. [1]), has many other beautiful properties. In particular:

(1) D(z), which isareal-valued function on C, can be expressed in terms of
a function of a single real variable, namely

_ 1S 1z 1/ (1S 2)
D(z) = D + D 18513 + U183 (3.

NI =
NN
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which expresses D(z) for arbitrary complex z in terms of the function
i R snn
D(e )= [Liz(¢ )]= “nz

n=1

(Note that the real part of Li, on the unit circle is elementary:

n=1
cosn _ 24 (2 S) '
2 T 6 S 1 for O 2 ) Formula (3.1) is due to
Kummer.

(I11) All of the functional equations satis‘ed by Li,(z) lose the elementary
correction terms (constants and products of logarithms) when expressed
in terms of D(z). In particular, one has the 6-fold symmetry

1

D(z)=D 151 =D &
=8p ! =8p(182)=3D L
and the “ ve-term relation
D(X)+D(y)+D —ox +D(13xy)+D 1Sy _, (3.2)
¥ 1S xy y 1Sxy

while replacing Lio by D in the many-term relation (2.1) makes the
constant C(f) disappear.

The functional equations become even cleaner if we think of D as being
a function not of a single complex number but of the cross-ratio of four such
numbers, i.e., if we de"ne

ZoéZz Z]_éZ3

D(zo,21,22,23) = D = =
(20,721,272, 23) 20582, 2,52,

(20,21,22,23 C). (3.3

Then the symmetry properties (3.2) say that D is invariant under even and
anti-invariant under odd permutations of its four variables, the “ve-term re-
lation (3.3) takes on the attractive form

4
($1)' D(z0,...,2i,...,24) = 0 (20,...,2z4 PYC)) (3.4)
i=0

(we will see the geometric interpretation of thislater), and the multi-variable
formula (2.1) generalizes to the following beautiful formula:

D(20,21,22,23) = nD(ag,a1,a,a3) (20,a1,8,a3 PYC)),
z; 51y
2, 15 1(ay)
z3  fS1(ag)
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wheref @ PY(C)  P(C) is a function of degree n and ag = f (z0). (Equa-
tion (2.1) is the special case when f is a polynomial, so fS1( ) is  with
multiplicity n.)

Finally, we mention that a real-analytic function on P}(C) {0,1, },
built up out of the polylogarithms in the same way as D (z) was constructed
from the dilogarithm, has been de‘ned by Ramakrishnan [6]. His function
(dightly modi“ ed) is given by

me1 (Sloglzm ek

_ (Slog|z|)™
Dm(@) =i (m 3 K)! T oml

Lik(2) S o]

k=1

(so D1(2) = log|z¥2 S z5V2|, D,(z) = D(2)) and satis‘ es

D % = (S)™SD(2),

i (Silog|z))"St1+ z
2 (mS1! 1Sz

i
7Dm(z): > Dms1(2) +

However, it does not seem to have analogues of the properties (1) and (111):
for example, it isapparently impossibleto express D 3(z) for arbitrary complex
z in terms of only the function D3(€ ) = ,=1(cosn )/n3, and passing from
Liz to D3 removes many but not all of the numerous lower-order termsin the
various functional equations of the trilogarithm, e.g.:

Ds(x) + Ds(18X) + D3 o
= D3(1) + 1—12Iog x(1S x) log (1§XX)2 log 1)(;)( ,
o1 g *Dum) e 0 8203 Jocl S 1oy
$2D, Xiléély) $ 2D, Y(yléglx) 3§ 2D4(x) § 2D (y)
= 2D3(1)S%1log Xy Iog§ log ;Ejl_ggxy;z

Nevertheless, these higher Bloch-Wigner functions do occur. In studying the
so-called «Heegner pointsZ on modular curves, B. Gross and | had to study
for n = 2,3,... <higher weight Greenss functionsZ for H/  (H = complex
upper half-plane, = SL(Z) or a congruence subgroup). These are func-
tions Gy (z1,22) = GE” (z1,22) de'ned on H/  x H/ , real analytic in both
variables except for a logarithmic singularity along the diagonal z; = z,, and
satisfying  ;,Gn = ,Gn = n(n S 1)G,, where , = y?( 2/ x?>+ 2/ y?)
is the hyperbolic Laplace operator with respect toz= x+ iy H. They are
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obtained as

G (z1,22) = Gil(z1, 2)

where G! is de" ned analogously to G but with H/ replaced by H. The
functions GH (n = 2,3,...) are elementary, eg.,

|Z]_ S Zz|2 |Zl S Zzl2
GH 21,Z2) = 1+ — 2.
2 ) 2y1Y2 |21 S 2,/?
In between G and G’ are the functions Gi’“ =, ,GH(z1,2, + ). It

turns out [10] that they are expressible in terms of the D, (m = 1,3, ...,
2n S 1), eg.,

Gg/Z(ZLZZ) = D3(62 i(zlézz)) + D3(e2 i(zléz_z))

4 2y1y;

2 2 o o
+ Yit+ys Dl(eZ |(21522)) + Dl(EZ |(zlszz))
2y1y2

| do not know the reason for this connection.

4 Volumes of hyperbolic 3-manifolds ...

The dilogarithm occursin connection with measurement of volumesin euclid-
ean, spherical, and hyperbolic geometry. We will be concerned with the last of
these. Let Hz be the Lobachevsky space (space of non-euclidean solid geome-
try). We will use the half-space model, in which Hz isrepresented by C x R.
with the standard hyperbolic metric in which the geodesics are either verti-
cal lines or semicircles in vertical planes with endpointsin C x {0} and the
geodesic planes are either vertical planes or else hemispheres with boundary
in C x {0}. An ideal tetrahedron is a tetrahedron whose vertices are all in

H;=C { }=PYC).Let besuchatetrahedron. Although the vertices
are at in“ nity, the (hyperbolic) volume is “ nite. It is given by

Vol( ) = D(z0,21,22,23), (4.1

where zg,...,zz C arethe verticesof and D is the function de’ ned in
(3.4). In the special case that three of the vertices of are , 0, and 1,
equation (4.1) reduces to the formula (due essentially to Lobachevsky)

Vol( ) = D(2). (4.2)
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In fact, equations (4.1) and (4.2) are equivalent, since any 4-tuple of points
Zo,...,23 can be brought into the form { ,0,1,z} by the action of some
element of SL,(C) on P1(C), and the group SL»(C) acts on Hs by isometries.

The (anti-)symmetry properties of D under permutations of the z; are
obviousfrom the geometricinterpretation (4.1), since renumbering the vertices
leaves unchanged but may reverse its orientation. Formula (3.5) is also an
immediate consequence of (4.1), since the “ ve tetrahedra spanned by four at
atimeof zo,...,z4 PY(C), counted positively or negatively asin (3.5), add
up algebraically to the zero 3-cycle.

The reason that we are interested in hyperbolic tetrahedra is that these
are the building blocks of hyperbolic 3-manifolds, which in turn (according to
Thurston) are the key objects for understanding three-dimensional geometry
and topology. A hyperbolic 3-manifold is a 3-dimensional riemannian mani-
fold M which islocally modelled on (i.e., isometric to portions of) hyperbolic
3-space Hs; equivalently, it has constant negative curvature S1. We are in-
terested in complete oriented hyperbolic 3-manifolds that have “ nite volume
(they are then either compact or have “nitely many «cuspsZ di eomorphic
to S x S! x R, ). Such a manifold can obviously be triangulated into small
geodesic simplices which will be hyperbolic tetrahedra. Less obvious is that
(possibly after removing from M a “ nite number of closed geodesics) thereis
always a triangulation into ideal tetrahedra (the part of such a tetrahedron
going out towards a vertex at in“nity will then either tend to a cusp of M
or else spiral in around one of the deleted curves). Let these tetrahedra be
numbered 1,..., , and assume (after an isometry of Hs if necessary) that
the vertices of areat ,0,1andz . Then

Vo(M) = Vol( )= D(z). (4.3)
=1 =1

Of course, the numbers z are not uniquely determined by since they
depend on the order in which the verticeswere sent to{ ,0,1,z }, but the
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non-uniqueness consists (since everything is oriented) only in replacing z by
1S 1z or ¥(1S z ) and hence does not a ect the value of D(z ).

One of the objects of interest in the study of hyperbolic 3-manifoldsisthe
«volume spectrumZ

Vol = {Vol(M) | M ahyperbolic 3-manifold} R, .

From the work of Jgrgensen and T hurston one knows that Vol is a countable
and well-ordered subset of R; (i.e., every subset has a smallest element), and
itsexact natureisof considerableinterest both in topology and number theory.
Equation (4.3) asit stands says nothing about this set since any real number
can bewritten asa“nitesum of valuesD (z), z C. However, the parameters
z of thetetrahedra triangulating a complete hyperbolic 3-manifold satisfy an
extra relation, namely

z (1Sz) =0, (4.4)
=1

where the sum istaken in the abelian group 2C* (the set of all formal linear
combinationsx y, X,y C*,subject tothereationsx x = 0and (X1X>)
y= X1 Y+ Xz V). (Thisfollowsfrom assertionsin [3] or from Corollary 2.4
of [5] applied to suitable x and y.) Now (4.3) does give information about Vol
because the set of numbers ”:1 D(z ) with z satisfying (4.4) is countable.
This fact was proved by Bloch [1]. To make a more precise statement, we
introduce the Bloch group. Consider the abelian group of formal sums [z;] +

<o+ [za] with zq,...,z, C* {1} satisfying (4.4). As one easily checks, it
contains the elements

1Sy
1S xy

1S x
1S xy

b+ - S, K+ ]+ + 18 xy]+ (45)
for all x and y in C* S {1} with xy = 1, corresponding to the symmetry
propertiesand “ ve-term relation satis* ed by D( -). The Bloch group is de* ned
as

Bc = {[z1]+ - +[zn] satisfying (4.4)}/ (subgroup generated by
the elements (4.5))

(thisisdlightly di erent from the usual de” nition). The de" nition of the Bloch
group in terms of the relations satis‘ed by D(-) makes it obvious that D
extends to a linear map D : B¢ R by [z:]+ -+ [zn] D(zy) + -+
D(z,), and Blochesresult (related to Mostow rigidity) saysthat theset D(Bc)
coincides with D (Bg), where B is de” ned by (4.6) but with thez lyingin
GX {1}. Thus D(B¢) is countable, and (4.3) and (4.4) imply that Vol is
contained in this countable set. The structure of Bg. which is very subtle,
will be discussed below.
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We give an example of a non-trivial element of the Bloch group. For con-
1§ 87 818 §7

venience, set = 5 5 . Then
) 1+ 87 18 §7 N S1+ §7 58 S7

2 2 4 4

N 1 2 . .
=2(8) + = — =2 8 2=2 S$2 =0,
SO

+ S7 S1+ S7
p 1t ST, Si+ ST g (4.6)

2 4

This example should make it clear why non-trivial elements of B¢ can only
arise from algebraic numbers: thekey relations1+ = and1S S'= 2/
in the calculation above forced and to be algebraic.

5 ... and values of Dedekind zeta functions

Let F be an algebraic number “ eld, say of degree N over Q. Among its most
important invariants are the discriminant d, the numbersr, and r, of real and
imaginary archimedean valuations, and the Dedekind zeta-function ¢ (s). For
the non-number-theorist we recall the (approximate) de nitions. The “ed
F can be represented as Q( ) where is a root of an irreducible monic
polynomial f  Z[x] of degree N. The discriminant of f is an integer d; and
d is given by ¢>2d; for some natural number ¢ with ¢? | d; . The polynomial f,
which isirreducible over Q, in general becomesreducible over R, whereit splits
into ry linear and r, quadratic factors (thusr;  0,r, O, ri+ 2rp = N). It
also in general becomes reducible when it is reduced modulo a prime p, but
if p dr then itsirreducible factors modulo p are all distinct, say ry  linear
factors, rp , quadratic ones, etc. (so ryp+ 2rpp+ --- = N). Then g(s) is
the Dirichlet series given by an Euler product |, Z,(p°°)>* where Z(t) for
p d isthe monic polynomial (1S t)"+» (1S t?)"2» - of degree N and Zp(t)
for p| di isacertain monic polynomial of degree  N. Thus(rq,r2) and ¢(S)
encode the information about the behaviour of f (and hence F) over the real
and p-adic numbers, respectively.

Asan example, let F be an imaginary quadratic “eld Q( Sa) witha 1
squarefree. Heore N = 2, d = Saor S4a, r; = 0, r, = 1. The Dedekind
zeta function has the form | , r(n)n®s where r(n) counts representations
of n by certain quadratic forms of discriminant d; it can also be represented
as the product of the Riemann zeta function (s) = o(s) with an L-series

L(s)= , 1 o nSs where o is a symbol taking the values +1 or 0 and
which is periodic of period |d| in n. Thusfor a= 7
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1 1

o 59(8) = 3 2 2ys
(x,y)=(0,0) (x4 xy + 2y%)
- nés g nés
n=1 n=1 N

where S7 is+1forn 1,2 4 (mod7),S1forn 3,5 6 (mod7),and0

for n On(mod 7).

One of the questions of interest is the evaluation of the Dedekind zeta
function at suitableinteger arguments. For the Riemann zeta function we have
the special values cited at the beginning of this paper. More generally, if F is
totally real (i.e,ry = N, ry = 0), then atheorem of Siegel and Klingen implies
that g(m) for m = 2,4,... equals ™N/ |d| times a rational number. If
r, > 0, then no such simple result holds. However, in thecase F = Q( Sa),
by using the representation (s) = (s)L(s) and the formula (2) = 2/6

and writing the periodic function g as a “nite linear combination of terms
e? 'kn/1dl we obtain
5 lds1 d _
F(2) = s T - D(e? "y (F imaginary quadratic),
n=1

eg.,
o ﬁ)(2)23? De2i/7 +De4i/7 SDeﬁi/7

Thus the values of ¢ (2) for imaginary quadratic “elds can be expressed in
closed form in terms of values of the Bloch-Wigner function D (z) at algebraic
arguments z.

By using the ideas of the last section we can prove a much stronger state-
ment. Let O denotethering of integersof F (thisisthe Z-lattice in C spanned
by 1and Saor (1+ $a)/2, depending whether d= S4aord= Sa). Then
the group = SL,(O) is a discrete subgroup of SL,(C) and therefore acts
on hyperbolic space Hz by isometries. A classical result of Humbert givesthe
volume of the quotient space Hz/ as |d|¥? £(2)/4 2. On the other hand,
Hs/  (or, more precisely, a certain covering of it of low degree) can be trian-
gulated into ideal tetrahedra with vertices belonging to P*(F)  P%(C), and
this leads to a representation

2

"3 = a2

n D(z)

withn inZandz inF itself rather thanin themuch larger “ eld Q(e? '"/1dl)
([8], Theorem 3). For instance, in our example F = Q( S7) we“nd

5 — - —
4,2D1+ S7+D81+ S7

F(2 = o1 7 2 4
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This equation together with the fact that £(2) = 1.89484144897--- = 0
implies that the element (4.7) has in“ nite order in Bc.

In [8], it was pointed out that the same kind of argument works for all
number “ elds, not just imaginary quadratic ones. If ro = 1 but N > 2 then
onecan again associateto F (in many di erent ways) a discrete subgroup
SL,(C) such that Vol(Hs/ ) isarational multiple of |d|¥? ¢ (2)/ 2NS2. This
manifold Hs/ is now compact, so the decomposition into ideal tetrahedra
is a little less obvious than in the case of imaginary quadratic F, but by
decomposing into non-ideal tetrahedra (tetrahedra with verticesin theinterior
of H3) and writing these as di erences of ideal ones, it was shown that the
volumeis an integral linear combination of values of D (z) with z of degree at
most 4 over F. For F completely arbitrary there is still a similar statement,
except that now one gets discrete groups — acting on H3?; the “ nal result ([8],
Theorem 1) is that |d|Y2 x ¢ (2)/ 2("+*T2) js a rational linear combination
of rp-fold products D(z(Y) ---D(z("?)) with each z() of degree 4 over F
(more precisely, over theit" complex embedding F () of F, i.e. over the sub* eld
Q( M) of C, where () isone of the two roots of the it" quadratic factor of
f (x) over R).

But in fact much moreistrue: the z{1) can be chosen in F() itself (rather
than of degree 4 over this “eld), and the phrase ¢rational linear combination
of r,-fold productsZ can be replaced by erational multiple of an ry x r, de-
terminant.Z We will not attempt to give more than a very sketchy account
of why this is true, lumping together work of Wigner, Bloch, Dupont, Sah,
Levine, Merkuriev, Sudlin, ... for the purpose (references are [1], [3], and the
survey paper [7]). This work connects the Bloch group de'ned in the last
section with the algebraic K -theory of the underlying “ eld; speci“ cally, the
group? B is equal, at least after tensoring it with Q, to a certain quotient
KI'(F) of K3(F). The exact de' nition of Ki"9(F) isnot relevant here. What
isrelevant is that this group has been studied by Bore [2], who showed that
it is isomorphic (modulo torsion) to Z'2 and that there is a canonical homo-
morphism, the regulator mapping,Z from it into R"2 such that the co-volume
of the image is a non-zero rational multiple of [d|¥2 ¢ (2)/ 27*2"z: moreover,
it is known that under the identi“ cation of K'9(F) with B this mapping

corresponds to the composition Bg (Bc)'2 b R"2, where the “rst arrow
comes from using the r, embeddings F C ( ). Putting all this
together gives the following beautiful picture. The group Bg/{torsion} isiso-
morphicto Z"2. Let 4,..., , beany r; linearly independent elements of it,
and form the matrix with entries D( ("), (i,j = 1,...,r2). Then the deter-

minant of this matrix is a non-zero rational multiple of |d|Y2 ¢ (2)/ 2r1*2'2,
If instead of taking any r, linearly independent elements we choose the ; to

2 It should be mentioned that the de“ nition of B which we gave for F = C or
Q must be modi“ ed slightly when F is a number “eld because F* is no longer
divisible; however, thisis a minor point, a ecting only the torsion in the Bloch
group, and will be ignored here.
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be a basis of B /{torsion}, then this rational multiple (chosen positively) is
an invariant of F, independent of the choice of ;. This rational multiple is
then conjecturally related to the quotient of the order of K3(F)iorsion by the
order of the “nite group K,(Of ), where O denotes the ring of integers of F
(Lichtenbaum conjectures).

This all sounds very abstract, but is in fact not. There is a reasonably
e cient algorithm to produce many elementsin Bg for any number “eld F.
If we do this, for instance, for F an imaginary quadratic “eld, and compute
D( ) for each element Br which we “nd, then after a while we are
at least morally certain of having identi“ed the lattice D(Bg) R exactly
(after “nding k elements at random, we have only about one chance in 2% of
having landed in the same non-trivial sublattice each time). By the results
just quoted, thislattice is generated by a number of the form [d|¥? ¢ (2)/ 2
with rational, and the conjecture referred to above saysthat  should have
the form 3/ 2T where T is the order of the “nite group K,(Of), at least for
d < S4 (in thiscase the order of K 3(F )orsion 1S always 24). Calculations done
by H. Gangl in Bonn for several hundred imaginary quadratic “ elds support
this; the hefound all havetheform 3/ 2T for someinteger T and thisinteger
agrees with the order of K,(Og) in the few cases where the latter is known.
Here is a small excerpt from his tables:

|d] ‘ 78111519202324 31353940 --- 303 472 479 491 555 583
T‘211211212261---22 5 14 13 28 34

(the omitted values contain only the primes 2 and 3; 3 occurswhenever d 3
mod 9 and there is also some regularity in the powers of 2 occurring). Thus
one of the many virtues of the mysterious dilogarithm is that it gives, at least
conjecturally, an e ective way of calculating the orders of certain groups in
algebraic K -theory!

To conclude, we mention that Borelss work connects not only K J'9(F) and
F (2) but more generally K< (F) and ¢ (m) for any integer m > 1. No
elementary description of the higher K -groups analogous to the description of
K3 in terms of B is known, but one can at least speculate that these groups
and their regulator mappings may be related to the higher polylogarithms
and that, more speci“ cally, the value of ¢ (m) is always a simple multiple
of a determinant (rp X rp or (ry + rp) x (ry + rp) depending whether m is
even or odd) whose entries are linear combinations of values of the Bloch-
Wigner-Ramakrishnan function D, (z) with argumentsz  F. Asthesimplest
case, one can guess that for a real quadratic “eld F the value of ¢ (3)/ (3)
(= L(3), where L(s) isthe Dirichlet L-function of a real quadratic character
of period d) is equal to d®?2 times a simple rational linear combination of
di erences D3(x) S D3(x ) with x  F, where x denotes the conjugate of x
over Q. Here is one (numerical) example of this:
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1+ 5 18 5
S Dj; 5

s% D3(2+ 5)SD3(2S 5)

(both sides are equal approximately to 1.493317411778544726). | have found
many other examples, but the general pictureis not yet clear.

2°%5°2 53/ (3) = D3
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Notes on Chapter I.

A Thecomment about *too little-knownZ is now no longer applicable, since
the dilogarithm has become very popular in both mathematics and mathe-
matical physics, dueto its appearance in algebraic K -theory on the one hand
and in conformal “eld theory on the other. Today one needs no apology for
devoting a paper to this function.

B  From the point of view of the modern theory, the arguments of the
dilogarithm occurring in these eight formulas are easy to recognize: they are
the totally real algebraic numbers x (o the cut) for which x and 1S x,
if non-zero, belong to the same rank 1 subgroup of Gx , or equivalently, for
which [x] isatorsion element of the Bloch group. The same values reappear in
connection with Nahmes conjecturein the case of rank 1 (see §3 of Chapter I1).

C Wojtkowiak proved the general theorem that any functional equation of
theform leq Li>( j(z)) = C with constantscy, ... ,c; and C and rational
"unctions 1(z),..., 3(2) is a consequence of the “ve-term equation. (It is
not known whether thisis true with «rationalZ replaced by «algebraicZ) The
proof is given in 8 of Chapter II.

D Aswell as the Bloch-Wigner function treated in this section, there are
several other modi“ cations of the » nakedZ dilogarithm Li»(z) which have nice
properties. These are discussed in 81 of Chapter I1.

E  Now much more information about the actual order of K,(Or) is avail-
able, thanks to the work of Browkin, Gangl, Belabas and others. Cf. [7], [3]
of the bibliography to Chapter II.

F Thestatement »the general pictureisnot yet clearZ no longer holds, since
after writing it |1 found hundreds of further numerical examples of identities
between special values of polylogarithms and of Dedekind zeta functions and
was able to formulate a fairly precise conjecture describing when such iden-
tities occur. A statement of this conjecture and a description of the known
results can be found in &4 of Chapter |l and in the literature cited there.

G This paper is still in preparation!



