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The dilogarithm funct ion, de“ ned in the “ rst sentence of Chapter I, is
a funct ion which has been known for more than 250 years, but which for
a long t ime was familiar only to a few enthusiasts. In recent years it has
become much bet ter known, due to its appearance in hyperbolic geometry
and in algebraic K -theory on the one hand and in mathemat ical physics (in
part icular, in conformal “ eld theory) on the other. I was therefore asked to
give two lectures at the Les Houches meet ing int roducing this funct ion and
explaining some of its most important propert ies and applicat ions, and to
write up these lectures for the Proceedings.

The “ rst task was relat ively st raight forward, but the second posed a prob-
lem since I had already writ ten and published an expository art icle on the
dilogarithm some 15 years earlier. (In fact , that paper, originally writ ten as
a lecture in honor of Friedrich Hirzebruch•s 60th birthday, had appeared in
two di� erent Indian publicat ions during the Ramanujan centennial year„ see
footnote to Chapter I). It seemed to make lit t le sense to t ry to repeat in
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di� erent words the contents of that earlier art icle. On the other hand, just
reprint ing the original art icle would mean omit t ing several topics which were
either developed since it was writ ten or which were omit ted then but are of
more interest now in the context of the appearances of the dilogarithm in
mathemat ical physics.

The solut ion I “ nally decided on was to write a text consist ing of two
chapters of di� erent natures. The “ rst is simply an unchanged copy of the
1988 art icle, with its original t it le, footnotes, and bibliography, reprinted by
permission from the book Number Theory and Related Topics (Tata Inst itute
of Fundamental Research, Bombay, January 1988). In this chapter we de“ ne
the dilogarithm funct ion and describe some of its more st riking propert ies:
its known special values which can be expressed in terms of ordinary log-
arithms, its many funct ional equat ions, its connect ion with the volumes of
ideal tet rahedra in hyperbolic 3-space and with the special values at s = 2
of the Dedekind zeta funct ions of algebraic number “ elds, and its appearance
in algebraic K -theory; the higher polylogarithms are also t reated brie” y. The
second, new, chapter gives further informat ion as well as some more recent
developments of the theory. Four main topics are discussed here. Three of
them„ funct ional equat ions, modi“ cat ions of the dilogarithm funct ion, and
higher polylogarithms„ are cont inuat ions of themes which were already be-
gun in Chapter I. The fourth topic, Nahm•s conjectural connect ion between
(torsion in) the Bloch group and modular funct ions, is new and especially fas-
cinat ing. We discuss only some elementary aspects concerning the asymptot ic
propert ies of Nahm•s q-expansions, referring the reader for the deeper parts of
the theory, concerning the (in general conjectural) interpretat ion of these q-
series as characters of rat ional conformal “ eld theories, to the beaut iful art icle
by Nahm in this volume.

As well as the two original footnotes to Chapter I, which are indicated by
asterisks in the text and placed at the bot tom of the page in the t radit ional
manner, there are also some further footnotes, indicated by boxed capital
let ters in the margin and placed at the end of the chapter, which give updates
or comments on the text of the older art icle or else refer the reader to the
sect ions of Chapter I I where the topic in quest ion is developed further. Each of
the two chapters has its own bibliography, that of Chapter I being a reprint of
the original one and that of Chapter I I giving a few references to more recent
literature. I apologize to the reader for this somewhat art i“ cial const ruct ion,
but hope that the two parts of the paper can st ill be read without too much
confusion and perhaps even with some enjoyment . My own enthusiasm for this
marvelous funct ion as expressed in the 1988 paper has certainly not lessened
in the intervening years, and I hope that the reader will be able to share at
least some of it .

The reader interested in knowing more about dilogarithms should also
consult the long art icle [K i] of A.N. Kirillov, which is both a survey paper
t reat ing most or all of the topics discussed here and also contains many new
results of interest from the point of view of both mathemat ics and physics.
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Chapt er I . T he di logar i t hm funct ion
in geomet ry and number t heory1

The dilogarithm funct ion is the funct ion de“ ned by the power series

Li2(z) =
��

n = 1

zn

n2 for |z| < 1.

Thede“ nit ion and thename, of course, come from theanalogy with theTaylor
series of the ordinary logarithm around 1,

Š log(1 Š z) =
��

n = 1

zn

n
for |z| < 1,

which leads similarly to the de“ nit ion of the polylogarithm

Lim (z) =
��

n = 1

zn

nm for |z| < 1, m = 1, 2, . . . .

The relat ion
d
dz

Lim (z) =
1
z

Lim Š 1(z) (m � 2)

is obvious and leads by induct ion to the extension of the domain of de“ nit ion
of Lim to the cut plane C � [1, � ); in part icular, the analyt ic cont inuat ion of
the dilogarithm is given by

Li2(z) = Š
� z

0
log(1 Š u)

du
u

for z � C � [1, � ) .

1 This paper is a revised version of a lecture which was given in Bonn on the
occasion of F. Hirzebruch•s 60th birthday (October 1987) and has also appeared
under the t it le • The remarkable dilogarithmŽ in the Journal of Mathemat ical and
Physical Sciences, 22 (1988).
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Thus the dilogarithm is one of the simplest non-elementary funct ions one
can imagine. It is also one of the st rangest . It occurs not quite often enough,
and in not quite an important enough way, to be included in the Valhalla of
the great t ranscendental funct ions„ the gamma funct ion, Bessel and Legen-
dre- funct ions, hypergeometric series, or Riemann•s zeta funct ion. And yet
it occurs too often, and in far too varied contexts, to be dismissed as a mere
curiosity. First de“ ned by Euler, it has been studied by some of the great
mathemat icians of the past „ Abel, Lobachevsky, Kummer, and Ramanujan,
to name just a few„ and there is a whole book devoted to it [4]. Almost all
of its appearances in mathemat ics, and almost all the formulas relat ing to it ,
have something of the fantast ical in them, as if this funct ion alone among all
others possessed a sense of humor. In this paper we wish to discuss some of
these appearances and some of these formulas, to give at least an idea of this
remarkable and too lit t le-known funct ion.A

1 Special values

Let us start with the quest ion of special values. Most funct ions have either
no exact ly computable special values (Bessel funct ions, for instance) or else a
countable, easily describable set of them; thus, for the gamma funct ion

� (n) = (n Š 1)! , �
�
n +

1
2

�
=

(2n)!
4n n!

�
� ,

and for the Riemann zeta funct ion

� (2) =
� 2

6
, � (4) =

� 4

90
, � (6) =

� 6

945
, . . . ,

� (0) = Š
1
2

, � (Š2) = 0, � (Š4) = 0, . . . ,

� (Š1) = Š
1
12

, � (Š3) =
1

120
, � (Š5) = Š

1
252

, . . . .

Not so the dilogarithm. As far as anyone knows, there are exact ly eight
values of z for which z and Li2(z) can both be given in closed form:B

Li2(0) = 0,

Li2(1) =
� 2

6
,

Li2(Š1) = Š
� 2

12
,

Li2

�
1
2

�
=

� 2

12
Š

1
2

log2(2),
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Li2

�
3 Š

�
5

2

�

=
� 2

15
Š log2

�
1 +

�
5

2

�

,

Li2

�
Š1 +

�
5

2

�

=
� 2

10
Š log2

�
1 +

�
5

2

�

,

Li2

�
1 Š

�
5

2

�

= Š
� 2

15
+

1
2

log2

�
1 +

�
5

2

�

,

Li2

�
Š1 Š

�
5

2

�

= Š
� 2

10
+

1
2

log2

�
1 +

�
5

2

�

.

Let me describe a recent experience where these special values “ gured, and
which admirably illust rates what I said about the bizarreness of the occur-
rencesof thedilogarithm in mathemat ics. From BruceBerndt via Henri Cohen
I learned of a st ill unproved assert ion in the Notebooks of Srinivasa Ramanu-
jan (Vol. 2, p. 289, formula (3.3)): Ramanujan says that , for q and x between
0 and 1,

q

x +
q4

x +
q8

x +
q12

x + · · ·

= 1 Š
qx

1 +
q2

1 Š
q3x

1 +
q4

1 Š
q5x

1 + · · ·

• very nearly.Ž He does not explain what this means, but a lit t le experimen-
tat ion shows that what is meant is that the two expressions are numerically
very close when q is near 1; thus for q = 0.9 and x = 0.5 one has

LHS = 0.7767340194· · · , RHS = 0.7767340180· · · ,

A graphical illust rat ion of this is also shown.
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The quant itat ive interpretat ion turned out as follows [9] : The di� erence

between the left and right sides of Ramanujan•s equat ion is O
�
exp

� � 2 / 5
log q

� �
for

x = 1, q � 1. (The proof of this used the ident it ies

1

1 +
q

1 +
q2

1 +
q3

1 + · · ·

=
�	

n = 1

�
1 Š qn � ( n

5 )
=



(Š1)r q

5r 2 + 3r
2



(Š1)r q

5r 2 + r
2

,

which are consequences of the Rogers-Ramanujan ident it ies and are surely
among the most beaut iful formulas in mathemat ics.) For x � 0 and q � 1

the di� erence in quest ion is O
�
exp

� � 2 / 4
log q

� �
, and for 0 < x < 1 and q � 1 it

is O
�
exp

� c(x)
logq

� �
where c� (x) = Š

1
x

argsinh
x
2

= Š
1
x

log
� �

1 + x2/ 4 + x/ 2
�
.

For these three formulas to be compat ible, one needs

� 1

0

1
x

log(
�

1 + x2/ 4 + x/ 2) dx = c(0) Š c(1) =
� 2

4
Š

� 2

5
=

� 2

20
.

Using integrat ion by parts and formula A.3.1 (3.5) of [1] one “ nds
�

1
x

log
� �

1 + x2/ 4 + x/ 2
�

dx = Š
1
2

Li2
� � �

1 + x2/ 4 Š x/ 2
� 2�

Š
1
2

log2(
�

1 + x2/ 4 + x/ 2) + (logx) log(
�

1 + x2/ 4 + x/ 2) + C ,

so
� 1

0

1
x

log(
�

1 + x2/ 4 + x/ 2) dx =
1
2

Li2(1) Š
1
2

�
Li2

� 3 Š
�

5
2

�
+ log2� 1 +

�
5

2

� �

=
� 2

12
Š

� 2

30
=

� 2

20
!

2 Funct ional equat ions

In cont rast to the paucity of special values, the dilogarithm funct ion sat is“ es
a plethora of funct ional equat ions. To begin with, there are the two re” ect ion
propert ies

Li2
� 1

z

�
= Š Li2(z) Š

� 2

6
Š

1
2

log2(Šz) ,

Li2(1 Š z) = Š Li2(z) +
� 2

6
Š log(z) log(1 Š z) .
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Together they say that the six funct ions

Li2(z), Li2
� 1

1 Š z

�
, Li2

� z Š 1
z

�
, Š Li2

� 1
z

�
, ŠLi2(1 Š z), ŠLi2

� z
z Š 1

�

are equal modulo elementary funct ions, Then there is the duplicat ion formula

Li2(z2) = 2
�
Li2(z) + Li2(Šz)

�

and more generally the • dist ribut ion propertyŽ

Li2(x) = n
�

zn = x

Li2(z) (n = 1, 2, 3, . . . ).

Next , there is the two-variable, “ ve-term relat ion

Li2(x) + Li2(y) + Li2

�
1 Š x
1 Š xy

�
+ Li2 (1 Š xy) + Li2

�
1 Š y

1 Š xy

�

=
� 2

6
Š log(x) log(1 Š x) Š log(y) log(1 Š y) + log

�
1 Š x
1 Š xy

�
log

�
1 Š y

1 Š xy

�

which (in this or one of the many equivalent forms obtained by applying
the symmetry propert ies given above) was discovered and rediscovered by
Spence (1809), Abel (1827), Hill (1828), Kummer (1840), Schae� er (1846),
and doubt less others. (Despite appearances, this relat ion is symmetric in the
“ ve arguments: if these are numbered cyclically as zn with n � Z/ 5Z, then
1Š zn =

�
zŠ 1

n Š 1 Š 1
� �

zŠ 1
n + 1 Š 1

�
= zn Š 2zn + 2.) There is also the six-term relat ion

1
x

+
1
y

+
1
z

= 1 � Li2(x) + Li2(y) + Li2(z)

=
1
2

�
Li2

�
Š

xy
z

�
+ Li2

�
Š

yz
x

�
+ Li2

�
Š

zx
y

� 


discovered by Kummer (1840) and Newman (1892). Finally, there is the
st range many-variable equat ion

Li2(z) =
�

f ( x ) = z
f ( a ) = 1

Li2
� x

a

�
+ C(f ) , (2.1)

where f (x) isany polynomial without constant term and C(f ) a (complicated)
constant depending on f . For f quadrat ic, this reduces to the “ ve-term rela-
t ion, while for f of degree n it involves n2 + 1 values of the dilogarithm.

All of the funct ional equat ions of Li2 are easily proved by di� erent iat ion, C
while the special values given in the previous sect ion are obtained by combin-
ing suitable funct ional equat ions. See [4].
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3 T he B loch-W igner funct ion D (z)
and it s general izat ions

D
The funct ion Li2(z), extended as above to C � [1, � ), jumps by 2� i log |z| as
z crosses the cut . Thus the funct ion Li2(z) + i arg(1 Š z) log |z|, where arg
denotes the branch of the argument lying between Š� and � , is cont inuous.
Surprisingly, its imaginary part

D (z) = � (Li2(z)) + arg(1 Š z) log |z|

is not only cont inuous, but sat is“ es

(I) D (z) is real analyt ic on C except at the two points 0 and 1, where it is
cont inuous but not di� erent iable (it has singularit ies of type r log r there).

The above graph shows the behaviour of D (z). We have plot ted the level
curves D(z) = 0, 0.2, 0.4, 0.6, 0.8, 0.9, 1.0 in the upper half-plane. The val-
ues in the lower half-plane are obtained from D(z̄) = ŠD(z). The maximum
of D is 1.0149 . . . , at tained at the point (1 + i

�
3)/ 2.

The funct ion D(z), which was discovered by D. Wigner and S. Bloch
(cf. [1]), has many other beaut iful propert ies. In part icular:

(I I) D (z), which is a real-valued funct ion on C, can be expressed in terms of
a funct ion of a single real variable, namely

D(z) =
1
2

�
D

� z
z̄

�
+ D

�
1 Š 1/ z
1 Š 1/ z̄

�
+ D

�
1/ (1 Š z)
1/ (1 Š z̄)

� �
(3.1)
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which expresses D(z) for arbit rary complex z in terms of the funct ion

D(ei � ) = � [Li2(ei � )] =
��

n = 1

sin n�
n2 .

(Note that the real part of Li2 on the unit circle is elementary:
�


n = 1

cosn�
n2 =

� 2

6
Š

� (2� Š � )
4

for 0 � � � 2� .) Formula (3.1) is due to

Kummer.
(I I I) All of the funct ional equat ions sat is“ ed by Li2(z) lose the elementary

correct ion terms (constants and products of logarithms) when expressed
in terms of D(z). In part icular, one has the 6-fold symmetry

D(z) = D
�
1 Š 1

z

�
= D

�
1

1Š z

�

= ŠD
�

1
z

�
= ŠD(1 Š z) = ŠD

�
Š z

1Š z

�

and the “ ve-term relat ion

D(x) + D(y) + D
�

1 Š x
1 Š xy

�
+ D(1 Š xy) + D

�
1 Š y

1 Š xy

�
= 0, (3.2)

while replacing Li2 by D in the many-term relat ion (2.1) makes the
constant C(f ) disappear.

The funct ional equat ions become even cleaner if we think of D as being
a funct ion not of a single complex number but of the cross-rat io of four such
numbers, i.e., if we de“ ne

�D (z0, z1, z2, z3) = D
�

z0 Š z2

z0 Š z3

z1 Š z3

z1 Š z2

�
(z0, z1, z2, z3 � C). (3.3)

Then the symmetry propert ies (3.2) say that �D is invariant under even and
ant i-invariant under odd permutat ions of its four variables, the “ ve-term re-
lat ion (3.3) takes on the at t ract ive form

4�

i = 0

(Š1) i �D (z0, . . . , �zi , . . . , z4) = 0 (z0, . . . , z4 � P1(C)) (3.4)

(we will see the geometric interpretat ion of this later), and the mult i-variable
formula (2.1) generalizes to the following beaut iful formula:

�

z 1 � f Š 1 ( a 1 )

z 2 � f Š 1 ( a 2 )

z 3 � f Š 1 ( a 3 )

�D (z0, z1, z2, z3) = n �D (a0, a1, a2, a3) (z0, a1, a2, a3 � P1(C)) ,
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where f : P1(C) � P1(C) is a funct ion of degree n and a0 = f (z0). (Equa-
t ion (2.1) is the special case when f is a polynomial, so f Š 1(� ) is � with
mult iplicity n.)

Finally, we ment ion that a real-analyt ic funct ion on P1(C) � { 0, 1, � } ,
built up out of the polylogarithms in the same way as D(z) was const ructed
from the dilogarithm, has been de“ ned by Ramakrishnan [6]. His funct ion
(slight ly modi“ ed) is given by

Dm (z) = 	

�

i m + 1

�
m�

k= 1

(Š log |z|)m Š k

(m Š k)!
Lik (z) Š

(Š log |z|)m

2m!

� �

(so D1(z) = log |z1/ 2 Š zŠ 1/ 2|, D2(z) = D(z)) and sat is“ es

Dm

�
1
z

�
= (Š1)m Š 1Dm (z) ,

�
� z

Dm (z) =
i

2z

�
Dm Š 1(z) +

i
2

(Ši log |z|)m Š 1

(m Š 1)!
1 + z
1 Š z

�
.

However, it does not seem to have analogues of the propert ies (I I) and (I I I):
for example, it isapparent ly impossible to expressD3(z) for arbit rary complex
z in terms of only the funct ion D3(ei � ) =


 �
n = 1(cosn� )/ n3, and passing from

Li3 to D3 removes many but not all of the numerous lower-order terms in the
various funct ional equat ions of the t rilogarithm, e.g.:

D3(x) + D3(1 Š x) + D3

�
x

x Š 1

�

= D3(1) +
1
12

log
�
�x(1 Š x)

�
� log

�
�
�
�

x
(1 Š x)2

�
�
�
� log

�
�
�
�

x2

1 Š x

�
�
�
� ,

D3

�
x(1 Š y)2

y(1 Š x)2

�
+ D3(xy) + D3

� x
y

�
Š 2D3

�
x(1 Š y)
y(1 Š x)

�
Š 2D3

�
1 Š y
1 Š x

�

Š2D3

�
x(1 Š y)

x Š 1

�
Š 2D3

�
y(1 Š x)

y Š 1

�
Š 2D3(x) Š 2D3(y)

= 2D3(1) Š
1
4

log
�
�xy

�
� log

�
�
�
�
x
y

�
�
�
� log

�
�
�
�
x(1 Š y)2

y(1 Š x)2

�
�
�
� .

Nevertheless, these higher Bloch-Wigner funct ions do occur. In studying the
so-called • Heegner pointsŽ on modular curves, B. Gross and I had to study
for n = 2, 3, . . . • higher weight Green•s funct ionsŽ for H/ � (H = complex
upper half-plane, � = SL 2(Z) or a congruence subgroup). These are func-
t ions Gn (z1, z2) = GH/ �

n (z1, z2) de“ ned on H/ � × H/ � , real analyt ic in both
variables except for a logarithmic singularity along the diagonal z1 = z2, and
sat isfying � z1 Gn = � z2 Gn = n(n Š 1)Gn , where � z = y2(� 2/ � x2 + � 2/ � y2)
is the hyperbolic Laplace operator with respect to z = x + iy � H. They are
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obtained as
GH/ �

n (z1, z2) =
�

� � �

GH
n (z1, � z2)

where GH
n is de“ ned analogously to GH/ �

n but with H/ � replaced by H. The
funct ions GH

n (n = 2, 3, . . . ) are elementary, e.g.,

GH
2 (z1, z2) =

�
1 +

|z1 Š z2|2

2y1y2

�
log

|z1 Š z2|2

|z1 Š z̄2|2
+ 2.

In between GH
n and GH/ �

n are the funct ions GH/ Z
n =



r � Z GH

n (z1, z2 + r ). It
turns out [10] that they are expressible in terms of the Dm (m = 1, 3, . . . ,
2n Š 1), e.g.,

GH/ Z
2 (z1, z2) =

1
4� 2y1y2

�
D3(e2� i (z1 Š z2 ) ) + D3(e2� i (z1 Š z̄2 ) )

�

+
y2

1 + y2
2

2y1y2

�
D1(e2� i (z1 Š z2 ) ) + D1(e2� i (z1 Š z̄2 ) )

�
.

I do not know the reason for this connect ion.

4 Volumes of hyperbol ic 3-manifolds . . .

The dilogarithm occurs in connect ion with measurement of volumes in euclid-
ean, spherical, and hyperbolic geometry. We will be concerned with the last of
these. Let H3 be the Lobachevsky space (space of non-euclidean solid geome-
t ry). We will use the half-space model, in which H3 is represented by C × R+

with the standard hyperbolic metric in which the geodesics are either vert i-
cal lines or semicircles in vert ical planes with endpoints in C × { 0} and the
geodesic planes are either vert ical planes or else hemispheres with boundary
in C × { 0} . An ideal tetrahedron is a tet rahedron whose vert ices are all in
� H3 = C 
 { � } = P1(C). Let � be such a tet rahedron. Although the vert ices
are at in“ nity, the (hyperbolic) volume is “ nite. It is given by

Vol(� ) = �D (z0, z1, z2, z3), (4.1)

where z0, . . . , z3 � C are the vert ices of � and �D is the funct ion de“ ned in
(3.4). In the special case that three of the vert ices of � are � , 0, and 1,
equat ion (4.1) reduces to the formula (due essent ially to Lobachevsky)

Vol(� ) = D(z). (4.2)
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In fact , equat ions (4.1) and (4.2) are equivalent , since any 4-tuple of points
z0, . . . , z3 can be brought into the form { � , 0, 1, z} by the act ion of some
element of SL 2(C) on P1(C), and the group SL 2(C) acts on H3 by isometries.

The (ant i-)symmetry propert ies of �D under permutat ions of the zi are
obvious from thegeometric interpretat ion (4.1), sincerenumbering thevert ices
leaves � unchanged but may reverse its orientat ion. Formula (3.5) is also an
immediate consequence of (4.1), since the “ ve tet rahedra spanned by four at
a t ime of z0, . . . , z4 � P1(C), counted posit ively or negat ively as in (3.5), add
up algebraically to the zero 3-cycle.

The reason that we are interested in hyperbolic tet rahedra is that these
are the building blocks of hyperbolic 3-manifolds, which in turn (according to
Thurston) are the key objects for understanding three-dimensional geometry
and topology. A hyperbolic 3-manifold is a 3-dimensional riemannian mani-
fold M which is locally modelled on (i.e., isometric to port ions of) hyperbolic
3-space H3; equivalent ly, it has constant negat ive curvature Š1. We are in-
terested in complete oriented hyperbolic 3-manifolds that have “ nite volume
(they are then either compact or have “ nitely many • cuspsŽ di� eomorphic
to S1 × S1 × R+ ). Such a manifold can obviously be t riangulated into small
geodesic simplices which will be hyperbolic tet rahedra. Less obvious is that
(possibly after removing from M a “ nite number of closed geodesics) there is
always a triangulat ion into ideal tet rahedra (the part of such a tet rahedron
going out towards a vertex at in“ nity will then either tend to a cusp of M
or else spiral in around one of the deleted curves). Let these tet rahedra be
numbered � 1, . . . , � n and assume (after an isometry of H3 if necessary) that
the vert ices of � � are at � , 0, 1 and z� . Then

Vol(M ) =
n�

� = 1

Vol(� � ) =
n�

� = 1

D(z� ) . (4.3)

Of course, the numbers z� are not uniquely determined by � � since they
depend on the order in which the vert ices were sent to { � , 0, 1, z� } , but the
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non-uniqueness consists (since everything is oriented) only in replacing z� by
1 Š 1/ z� or 1/ (1 Š z� ) and hence does not a� ect the value of D(z� ).

One of the objects of interest in the study of hyperbolic 3-manifolds is the
• volume spect rumŽ

Vol = { Vol(M ) | M a hyperbolic 3-manifold} � R+ .

From the work of Jørgensen and Thurston one knows that Vol is a countable
and well-ordered subset of R+ (i.e., every subset has a smallest element), and
itsexact nature isof considerable interest both in topology and number theory.
Equat ion (4.3) as it stands says nothing about this set since any real number
can be writ ten as a “ nite sum of values D(z), z � C. However, the parameters
z� of the tet rahedra t riangulat ing a complete hyperbolic 3-manifold sat isfy an
ext ra relat ion, namely

n�

� = 1

z� � (1 Š z� ) = 0, (4.4)

where the sum is taken in the abelian group � 2C× (the set of all formal linear
combinat ions x � y, x, y � C× , subject to the relat ions x � x = 0 and (x1x2) �
y = x1 � y + x2 � y). (This follows from assert ions in [3] or from Corollary 2.4
of [5] applied to suitable x and y.) Now (4.3) does give informat ion about Vol
because the set of numbers


 n
� = 1 D(z� ) with z� sat isfying (4.4) is countable.

This fact was proved by Bloch [1]. To make a more precise statement , we
int roduce the Bloch group. Consider the abelian group of formal sums [z1] +
· · · + [zn ] with z1, . . . , zn � C× � { 1} sat isfying (4.4). As one easily checks, it
contains the elements

[x] +
� 1
x



, [x] + [1 Š x], [x] + [y] +

� 1 Š x
1 Š xy



+ [1 Š xy] +

� 1 Š y
1 Š xy



(4.5)

for all x and y in C× Š { 1} with xy 
= 1, corresponding to the symmetry
propert ies and “ ve-term relat ion sat is“ ed by D( · ). The Bloch group is de“ ned
as

BC = { [z1]+ · · · + [zn ] sat isfying (4.4)} / (subgroup generated by
the elements (4.5))

(this is slight ly di� erent from the usual de“ nit ion). The de“ nit ion of the Bloch
group in terms of the relat ions sat is“ ed by D( · ) makes it obvious that D
extends to a linear map D : BC � R by [z1] + · · · + [zn ] �� D (z1) + · · · +
D(zn ), and Bloch•s result (related to Mostow rigidity) says that the set D(BC)
coincides with D(BQ), where BQ is de“ ned by (4.6) but with the z� lying in

Q
×

� { 1} . Thus D(BC) is countable, and (4.3) and (4.4) imply that Vol is
contained in this countable set . The st ructure of BQ , which is very subt le,
will be discussed below.
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We give an example of a non-t rivial element of the Bloch group. For con-

venience, set 	 =
1 Š

�
Š7

2
, 
 =

Š1 Š
�

Š7
2

. Then

2 ·
� 1 +

�
Š7

2

�
�

� 1 Š
�

Š7
2

�
+

� Š1 +
�

Š7
4

�
�

� 5 Š
�

Š7
4

�

= 2 · (Š
 ) � 	 +
� 1




�
�

� 	 2




�
= 
 2 � 	 Š 
 � 	 2 = 2 · 
 � 	 Š 2 · 
 � 	 = 0,

so

2
� 1 +

�
Š7

2



+

� Š1 +
�

Š7
4



� BC . (4.6)

This example should make it clear why non-t rivial elements of BC can only
arise from algebraic numbers: the key relat ions 1+ 
 = 	 and 1Š 
 Š 1 = 	 2/ 

in the calculat ion above forced 	 and 
 to be algebraic.

5 . . . and values of D edekind zet a funct ions

Let F be an algebraic number “ eld, say of degree N over Q. Among its most
important invariants are the discriminant d, the numbers r 1 and r 2 of real and
imaginary archimedean valuat ions, and the Dedekind zeta-funct ion � F (s). For
the non-number-theorist we recall the (approximate) de“ nit ions. The “ eld
F can be represented as Q(	 ) where 	 is a root of an irreducible monic
polynomial f � Z[x] of degree N . The discriminant of f is an integer df and
d is given by cŠ 2df for some natural number c with c2 | df . The polynomial f ,
which is irreducibleover Q, in general becomesreducibleover R, where it splits
into r 1 linear and r 2 quadrat ic factors (thus r 1 � 0, r 2 � 0, r 1 + 2r 2 = N ). It
also in general becomes reducible when it is reduced modulo a prime p, but
if p � df then its irreducible factors modulo p are all dist inct , say r 1,p linear
factors, r 2,p quadrat ic ones, etc. (so r 1,p + 2r 2,p + · · · = N ). Then � F (s) is
the Dirichlet series given by an Euler product

�
p Zp(pŠ s)Š 1 where Zp(t) for

p � df is the monic polynomial (1Š t)r 1 , p (1Š t2)r 2 , p · · · of degree N and Zp(t)
for p | df is a certain monic polynomial of degree � N . Thus (r 1, r 2) and � F (s)
encode the informat ion about the behaviour of f (and hence F ) over the real
and p-adic numbers, respect ively.

As an example, let F be an imaginary quadrat ic “ eld Q(
�

Ša) with a � 1
squarefree. Here N = 2, d = Ša or Š4a, r 1 = 0, r 2 = 1. The Dedekind
zeta funct ion has the form



n � 1 r (n)nŠ s where r (n) counts representat ions

of n by certain quadrat ic forms of discriminant d; it can also be represented
as the product of the Riemann zeta funct ion � (s) = � Q(s) with an L-series

L(s) =



n � 1

� d
n

�
nŠ s where

� d
n

�
is a symbol taking the values ± 1 or 0 and

which is periodic of period |d| in n. Thus for a = 7
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� Q(
�

Š 7) (s) =
1
2

�

(x ,y ) �= (0,0)

1
(x2 + xy + 2y2)s

=
� ��

n = 1

nŠ s
� � ��

n = 1

� Š7
n

�
nŠ s

�

where
� Š7

n

�
is + 1 for n � 1, 2, 4 (mod 7), Š1 for n � 3, 5, 6 (mod 7), and 0

for n � 0 (mod 7).
One of the quest ions of interest is the evaluat ion of the Dedekind zeta

funct ion at suitable integer arguments. For theRiemann zeta funct ion wehave
the special values cited at the beginning of this paper. More generally, if F is
totally real (i.e., r 1 = N , r 2 = 0), then a theorem of Siegel and Klingen implies
that � F (m) for m = 2, 4, . . . equals � m N /

�
|d| t imes a rat ional number. If

r 2 > 0, then no such simple result holds. However, in the case F = Q(
�

Ša),
by using the representat ion � F (s) = � (s)L (s) and the formula � (2) = � 2/ 6

and writ ing the periodic funct ion
� d

n

�
as a “ nite linear combinat ion of terms

e2� i kn / |d| we obtain

� F (2) =
� 2

6
�

|d|

|d|Š 1�

n = 1

� d
n

�
D (e2� i n / |d| ) (F imaginary quadrat ic),

e.g.,

� Q(
�

Š 7) (2) =
� 2

3
�

7

�
D

�
e2� i / 7�

+ D
�
e4� i / 7�

Š D
�
e6� i / 7� �

.

Thus the values of � F (2) for imaginary quadrat ic “ elds can be expressed in
closed form in terms of values of the Bloch-Wigner funct ion D(z) at algebraic
arguments z.

By using the ideas of the last sect ion we can prove a much st ronger state-
ment . Let O denote the ring of integers of F (this is the Z-lat t ice in C spanned
by 1 and

�
Ša or (1+

�
Ša)/ 2, depending whether d = Š4a or d = Ša). Then

the group � = SL 2(O) is a discrete subgroup of SL 2(C) and therefore acts
on hyperbolic space H3 by isometries. A classical result of Humbert gives the
volume of the quot ient space H3/ � as |d|3/ 2 � F (2)/ 4� 2. On the other hand,
H3/ � (or, more precisely, a certain covering of it of low degree) can be trian-
gulated into ideal tet rahedra with vert ices belonging to P1(F ) � P1(C), and
this leads to a representat ion

� F (2) =
� 2

3|d|3/ 2

�

�

n� D(z� )

with n� in Z and z� in F itself rather than in themuch larger “ eld Q(e2� i n / |d| )
([8], Theorem 3). For instance, in our example F = Q(

�
Š7) we “ nd

� F (2) =
4� 2

21
�

7

�
2D

� 1 +
�

Š7
2

�
+ D

� Š1 +
�

Š7
4

�
�

.



18 Don Zagier

This equat ion together with the fact that � F (2) = 1.89484144897· · · 
= 0
implies that the element (4.7) has in“ nite order in BC.

In [8], it was pointed out that the same kind of argument works for all
number “ elds, not just imaginary quadrat ic ones. If r 2 = 1 but N > 2 then
one can again associate to F (in many di� erent ways) a discrete subgroup � �
SL 2(C) such that Vol(H3/ � ) is a rat ional mult iple of |d|1/ 2� F (2)/ � 2N Š 2. This
manifold H3/ � is now compact , so the decomposit ion into ideal tet rahedra
is a lit t le less obvious than in the case of imaginary quadrat ic F , but by
decomposing into non-ideal tet rahedra (tet rahedra with vert ices in the interior
of H3) and writ ing these as di� erences of ideal ones, it was shown that the
volume is an integral linear combinat ion of values of D(z) with z of degree at
most 4 over F . For F completely arbit rary there is st ill a similar statement ,
except that now one gets discrete groups � act ing on Hr 2

3 ; the “ nal result ([8],
Theorem 1) is that |d|1/ 2 × � F (2)/ � 2(r 1 + r 2 ) is a rat ional linear combinat ion
of r 2-fold products D(z(1) ) · · · D (z( r 2 ) ) with each z( i ) of degree � 4 over F
(moreprecisely, over the i t h complex embedding F ( i ) of F , i.e. over thesub“ eld
Q(	 ( i ) ) of C, where 	 ( i ) is one of the two roots of the i t h quadrat ic factor of
f (x) over R).

But in fact much more is t rue: the z( i ) can be chosen in F ( i ) itself (rather
than of degree 4 over this “ eld), and the phrase • rat ional linear combinat ion
of r 2-fold productsŽ can be replaced by • rat ional mult iple of an r 2 × r 2 de-
terminant .Ž We will not at tempt to give more than a very sketchy account
of why this is t rue, lumping together work of Wigner, Bloch, Dupont , Sah,
Levine, Merkuriev, Suslin, . . . for the purpose (references are [1], [3], and the
survey paper [7]). This work connects the Bloch group de“ ned in the last
sect ion with the algebraic K -theory of the underlying “ eld; speci“ cally, the
group2 BF is equal, at least after tensoring it with Q, to a certain quot ient
K ind

3 (F ) of K 3(F ). The exact de“ nit ion of K ind
3 (F ) is not relevant here. What

is relevant is that this group has been studied by Borel [2], who showed that
it is isomorphic (modulo torsion) to Zr 2 and that there is a canonical homo-
morphism, the • regulator mapping,Ž from it into Rr 2 such that the co-volume
of the image is a non-zero rat ional mult iple of |d|1/ 2� F (2)/ � 2r 1 + 2r 2 ; moreover,
it is known that under the ident i“ cat ion of K ind

3 (F ) with BF this mapping

corresponds to the composit ion BF � (BC)r 2
D� Rr 2 , where the “ rst arrow

comes from using the r 2 embeddings F � C (	 �� 	 ( i ) ). Put t ing all this
together gives the following beaut iful picture. The group BF / { torsion} is iso-
morphic to Zr 2 . Let � 1, . . . , � r 2 be any r 2 linearly independent elements of it ,
and form the matrix with ent ries D(� ( i )

j ), (i , j = 1, . . . , r 2). Then the deter-
minant of this matrix is a non-zero rat ional mult iple of |d|1/ 2� F (2)/ � 2r 1 + 2r 2 .
If instead of taking any r 2 linearly independent elements we choose the � j to

2 I t should be ment ioned that the de“ nit ion of B F which we gave for F = C or
Q must be modi“ ed slight ly when F is a number “ eld because F × is no longer
divisible; however, this is a minor point , a� ect ing only the torsion in the Bloch
group, and will be ignored here.
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be a basis of BF / { torsion} , then this rat ional mult iple (chosen posit ively) is
an invariant of F , independent of the choice of � j . This rat ional mult iple is
then conjecturally related to the quot ient of the order of K 3(F )t orsion by the
order of the “ nite group K 2(OF ), where OF denotes the ring of integers of F
(Lichtenbaum conjectures).

This all sounds very abst ract , but is in fact not . There is a reasonably
e� cient algorithm to produce many elements in BF for any number “ eld F .
If we do this, for instance, for F an imaginary quadrat ic “ eld, and compute
D(� ) for each element � � BF which we “ nd, then after a while we are
at least morally certain of having ident i“ ed the lat t ice D(BF ) � R exact ly
(after “ nding k elements at random, we have only about one chance in 2k of
having landed in the same non-t rivial sublat t ice each t ime). By the results
just quoted, this lat t ice is generated by a number of the form � |d|3/ 2� F (2)/ � 2

with � rat ional, and the conjecture referred to above says that � should have
the form 3/ 2T where T is the order of the “ nite group K 2(OF ), at least for
d < Š4 (in this case the order of K 3(F )t orsion is always 24). Calculat ions done
by H. Gangl in Bonn for several hundred imaginary quadrat ic “ elds support
this; the � he found all have the form 3/ 2T for some integer T and this integer
agrees with the order of K 2(OF ) in the few cases where the lat ter is known. E
Here is a small excerpt from his tables:

|d| 7 8 11 15 19 20 23 24 31 35 39 40 · · · 303 472 479 491 555 583
T 2 1 1 2 1 1 2 1 2 2 6 1 · · · 22 5 14 13 28 34

(the omit ted values contain only the primes 2 and 3; 3 occurs whenever d � 3
mod 9 and there is also some regularity in the powers of 2 occurring). Thus
one of the many virtues of the mysterious dilogarithm is that it gives, at least
conjecturally, an e� ect ive way of calculat ing the orders of certain groups in
algebraic K -theory!

To conclude, we ment ion that Borel•s work connects not only K ind
3 (F ) and

� F (2) but more generally K ind
2m Š 1(F ) and � F (m) for any integer m > 1. No

elementary descript ion of the higher K -groups analogous to the descript ion of
K 3 in terms of B is known, but one can at least speculate that these groups
and their regulator mappings may be related to the higher polylogarithms
and that , more speci“ cally, the value of � F (m) is always a simple mult iple
of a determinant (r 2 × r 2 or (r 1 + r 2) × (r 1 + r 2) depending whether m is
even or odd) whose entries are linear combinat ions of values of the Bloch-
Wigner-Ramakrishnan funct ion Dm (z) with argumentsz � F . As thesimplest
case, one can guess that for a real quadrat ic “ eld F the value of � F (3)/ � (3)
(= L(3), where L(s) is the Dirichlet L -funct ion of a real quadrat ic character
of period d) is equal to d5/ 2 t imes a simple rat ional linear combinat ion of
di� erences D3(x) Š D3(x � ) with x � F , where x � denotes the conjugate of x
over Q. Here is one (numerical) example of this:
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2Š 555/ 2� Q(
�

5) (3)/ � (3) = D3
� 1 +

�
5

2

�
Š D3

� 1 Š
�

5
2

�

Š
1
3

�
D3(2 +

�
5) Š D3(2 Š

�
5)




(both sides are equal approximately to 1.493317411778544726). I have found
many other examples, but the general picture is not yet clear.F
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N ot es on Chapt er I .

A The comment about • too lit t le-knownŽ is now no longer applicable, since
the dilogarithm has become very popular in both mathemat ics and mathe-
mat ical physics, due to its appearance in algebraic K -theory on the one hand
and in conformal “ eld theory on the other. Today one needs no apology for
devot ing a paper to this funct ion.

B From the point of view of the modern theory, the arguments of the
dilogarithm occurring in these eight formulas are easy to recognize: they are
the totally real algebraic numbers x (o� the cut ) for which x and 1 Š x,
if non-zero, belong to the same rank 1 subgroup of Q

×
, or equivalent ly, for

which [x] is a torsion element of the Bloch group. The same values reappear in
connect ion with Nahm•s conjecture in thecase of rank 1 (see§3 of Chapter I I).

C Wojtkowiak proved the general theorem that any funct ional equat ion of
the form


 J
j = 1 cj Li2(
 j (z)) = C with constants c1, . . . , cJ and C and rat ional

” unct ions 
 1(z), . . . , 
 J (z) is a consequence of the “ ve-term equat ion. (It is
not known whether this is t rue with • rat ionalŽ replaced by • algebraicŽ.) The
proof is given in §2 of Chapter I I.

D As well as the Bloch-Wigner funct ion t reated in this sect ion, there are
several other modi“ cat ions of the • nakedŽ dilogarithm Li2(z) which have nice
propert ies. These are discussed in §1 of Chapter I I.

E Now much more informat ion about the actual order of K 2(OF ) is avail-
able, thanks to the work of Browkin, Gangl, Belabas and others. Cf. [7], [3]
of the bibliography to Chapter I I.

F The statement • the general picture is not yet clearŽ no longer holds, since
after writ ing it I found hundreds of further numerical examples of ident it ies
between special values of polylogarithms and of Dedekind zeta funct ions and
was able to formulate a fairly precise conjecture describing when such iden-
t it ies occur. A statement of this conjecture and a descript ion of the known
results can be found in §4 of Chapter I I and in the literature cited there.

G This paper is st ill in preparat ion!


