Chapter 2

Finding the Correct Number is
Simplicity Itself

Simplicity, simplicity, simplicity. | say let your affairs be

as two or three, and not a hundred or a thousand; instead of a
million count half a dozen and keep your accounts

on your thumbnail.

Henry David Thoreau, Walden.

And calculate the stars.
John Milton, Paradise Lost, VI, 80.

We have seen that positions in Hackenbush and Ski-Jumps are often composed of several
non-interacting parts, and that then the proper thing to do is to add up the values of these parts,
measured in terms of free moves for Left. We have also seen that halves and quarters of moves can

arise. So plainly we’ll have to decide exactly what it means to add games together, and work out
how to compute their values.

WHICH NUMBERS ARE WHICH?

Let’s summarize what we already know, using the notation

{abig..ldet. .

for a position in which the options for Left are to positions of values a,b,c.. . . and those for Right
to positions of values d,ef.. ... In this notation, the whole numbers are

O={ |3 1=l a o) ),

for from a zero position, neither player has a move, and from a position with n+ 1 free moves for
Left, he can move so as to leave himself just n moves, whereas Right cannot move at all.
The negative integers are similarly

~1={0 -2={ISi =3={]-2, .., —(+1)={ |-n}.
We also found values invol Sl o
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Figure 1. A Blue-Red Hackenbush Position Worth Five-Eighths of a Move.

What are the moves from the position 14+1 thatis from the position
e pnih Lk
which we write

{o[1} + {03}
in the new notation?
Each player can move in either the first or second component, but must then leave the
other component untouched, so Left’s options are the positions

0+% (if he moves in the first), and

140 (if he moves in the second).
I!e should obviously prefer the latter, which leaves a total value of half a move, rather than one-
eighth of a move, to him. Right’s options are similarly

R /
es Left only three-quarters of a move, rather than
m ) 4 (Left) and 3 (Right). or
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or in words, that each fraction with denominator a power of two has as its Left and Right options
the two fractions nearest to it on the left and right that have smaller denominator which is again
a power of two. For example g

3i3s = (353 = (3534

SIMPLICITY’S THE ANSWER!

The equations we’vg just discussed are the easy ones. What number is the game X = {1}2}?
We have already seen in our discussion of Ski-Jumps that we should not necessarily expect the
ahnswer to be the mean of 1} and 2, that is, 13. Why not? We can test this question by playing
the sum

X+(—13 = {142} +{-13| - 13}

since we already know that — 13 = {—13|—13}. Only if neither player has a winning move in
this sum will we have X = 13.

The two moves from the component X are certainly losing ones, because 13 is strictly between
}ﬁ and 2, so that Left’s move leaves the total value 1} — 15 which is negative, while Right’s leaves
it 2— 13 which is positive. But Right nevertheless has a good move, namely that from — 13 to —13.
Why is this?

The answer is that in the new game

X+(-13) = {12} +{-2|-1}

it is still true that neither player will want to move in the component X, for essentially the same
reason as before, since 15 still lies strictly between 14 and 2. So Left’s only hope for a reply is to
replace — 14 by —2 which Rightcan neatly counter by moving from X to 2, leaving a zero position.

So the reason that {11|2} is not 13 is that 1% is not the simplest number strictly between 13
and 2, because it has the Left option 14 with the same property, and we therefore find ourselves
needing to discuss X +(— 13) before we can evaluate X+(—-13).

Now 14 must be the simplest number between 11 and 2, because the immediately simpler
numbers are its options 1 and 2, which don’t fit. We shall use this to prove that in fact X = 13.

It is still true for the position
X+(-13) = {142} +{-2-1}
that neither player has a good move from the component X, so that we need only consider their
moves from — 13. After Right's move the total is X +(— 1), to which Left can reply by moving
from the component X so as to leave the positive total 14— 1, because 1 is not strictly between
11 and 2, but less than 13. After Left's move from — 14, the total is X +(—2) and Right's response

is to the zero position 2 — 2, because 2 is no longer strictly between 14 and 2, but this time equal to

Z

The argument can be used in general to prove plicity Rule, which we shall use over and

over again:

—
o

If there’s an
the answer’s the s

THE SIMPIL
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are all numbers, we'll say that the number x fits just if it’s

strictly greater than each of a,‘b,c, i) and
strictly less than each of de,f, -

number that fits, if none of its options fit. For the options of y %
nes we found in the previous section. 3y u

For example, if the best Left move from some game G is to a position of vglue 23 and the ek
Right move to one of value 5, we can show that G 1tself_ must have value 3, whlcfh we found beoe
in the form {2| }, for in this form 3 has only one optlon, 2, which does not lie strictly between
23and 5, while 3 does. Note that the simplicity rule still works when one of the players, here Right
has no move from the number c. It also works for games of the form {a| }or { |b} i whick agaix;
one of the two players is deprived of a move. For example, {a| } is a number ¢ which is greater
than a, but has no option with this property. This is in fact the smallest whole number () or |
or 2 or ... which is greater than a. Thus {23| } = 3,{-2}| } = 0.

and x will be the simplest
should use the particular o

SIMPLEST FORMS FOR NUMBERS

Figure 2 displays most of what we've learnt so far. The central ruler is the ordinary real
number line with bigger marks for simpler numbers, while below it are the corresponding Hack-
enbush strings; the simpler the number, the shorter the string.

Tl_xe binary tree of numbers appears upside-down above the ruler, although we can’t draw
l all of it on our finite page with finite type—for more details see ONAG, pp. 3-14.7 Each fork of
| the tree is a number whose best options are the nearest numbers left and right of it that are higher
} up the tree. For example 1 and 2 are the best options for 11. For 2 we find 2 and Z so
|

i . =GR
f ::! asa T ¥ | b iy v A
R i ok G‘he\numbem,m the leftmost branch have no Left options and those on the rightmost

W canonical or simplest form. Here
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CUTCAKE
Mother has just made the oatmeal cookies shown in Fig. 3. She hasn’t yet b
into little squares, scored them along the lines indicated. Rita roke
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Figur g
iﬂg@ 3. mady for a Game of Cutcake.

Tl Np




L

CUTCAKE 27

The 2 X 2 square is the zero position { —2|2}, for when Lefty starts, he leaves two moves for
Rita. and if she starts, she must leave two moves for him. So let’s consider the 2 x 3 rectangle

. Since this has more vertical lines than horizontal ones, it should perhaps be a win for

Lefty? No! If he starts, t}e must leave a 2 x 1 rectangle, which is one move in favor of Rita, together
witha 2 x.2 square, v_vhlch we can ignore as having value zero. But Rita can’t win either, for her
only opening move gives Lefty four free moves. So the 2 x 3 rectangle is the zero position { — 1|4}.

But the 2 x 4 rectangle

is long enough to favour Lefty, for if he chops it into two 2 x 2

squares at his first move, he wins, and he plainly wins if Rita is made to start. In fact, we have

0 =i

= + . + +
i

=f{=1+ 0 , 0 +. 6 | 3+3

= {-1,0]6},

which the Simplicity Rule tells us is worth one move for Lefty.

Breadth
1 345678910111213141516
i [0 234567891011.12131415
2 |—1
0 1 2 3 4
31|1-2
4 |-3
-1
5|14
0 1
6 (-5 G
Depth =
7 (-6
8|7
-3
9 (—8
-1
10 |-9
—4
11 |—-10
0
12 |-11
-5
13 |-12
-2

Table 1. Values of Rectangles in Cutcake.
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s‘mga‘g . Cutcake. we see that there 1S an interesting patiern the border of Anglee -
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dl'\:;(tjlfdl “l;ut then there’s second border of 5 x 2 squares which is a bit harder to expla?tn of Rita
“;11 the four rectangles of breadth 2 0T 3 and depth 4 Of 5 have the same value, — 1, meaniI; s so th
?he count as one move for Rita. (We glready ol e the 2x 2 and 2 x 3 rectangles . i hT
san{e value, namely 0.) Then the table continues with a third border qf 4 x 4 squares, follo ad n hi
2 fourth of 88 squares, and so on. S0 a}l rectgngles whose depth is 4, 5, 6, or 7, and b“r’ed
8.9, 10, or 11 have value 1, and behave like a single free move for Lefty, despite their Va:;(::le
shapes. s
Let’s consider & fairly complicated example, the 5 % 10 rectangle. Lefty can split 10 into |
2+8,3+7,4+6 01 5. 5 and we can read the values of the corresponding rectangles §x | =
59, etc. from Table 1 to see that Lefty’s options have values and
B 1 140,050, 040 ‘gfgz,
Rita can split 5 into 1+4 or 2+ 3 yielding pairs of breadth 10 rectangles of val
So the 5 x 10 rectangle has value nos 5 R A
(~30,-100[10.8} = {08} =1,
and Table 1 is continued in this way. 0
2 MAUNDY CAKE
Every Maundy Thursday Le . ;
I Lefty’s move is to divide one Zake?zoa;‘: Rltabl:e,lay . dlffeFent ake-cutting gumne, i ¥
_ y number of equal pieces, using only vertical cuts, while
| ’ fia 9 g0 1) 12 13 14 15 16 17 18 P
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Rita does likewise, but with horizontal cuts. Once again the cuts must follow Mother’s scorings

so that all dimensions will be whole numbers.
This game was proposed and solved by Patrick Mauhin—can you see the general pattern

in his table of values (Table 2)? We worked them out as follows:

value of _ (twelve of sixof fourof threeof twoof | five of
Gy T 5x2 % USRI L Ghed SLESISOn ] 1 %

S 10"
g twelve of . six of four of three of two of | five of|
-1 0 e R 10
L S, MR SEG ST T ST T

If you haven't guessed a general rule, you'll find ours in the Extras. If you have, try it out on the
999 x 1000 cake, or the 1000 x 1001 one.

A FEW MORE APPLICATIONS OF THE SIMPLICITY RULE

The more questionable values for Ski-Jumps and Hackenbush positions are easily understood
in terms of the Simplicity Rule. For example the Ski-Jumps position

e S i ¥

R =

|

21|43} which the Simplicity Rule requires to be 3, just as we said. The last Hackenbush

( |
< k ) A , prin :: ,
\-—-- 9t Qe --J o 3 LA 4 ¥ gt

of Fig. 18 in the Extras to Chapter 1 can be seen to have {352} =1 by anothe
of the Rule. Values of more complicated positions such as the horse of Fig. 4 ¢z
repeated applications. We have followed the recommended practice of writi

position which would result if that edge were

edge the value of the
will either be found later in the figure or are sums of the simple positions discu

-

has value {
position
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Figure 4. Working Out a Horse. t

l PQSITIVE, NEGATIVE, ZERO AND FUZZY POSITIONS

'player who starts is
starts is the winner,
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A handy way of remembering these four cases is just to describe the player who has the winnin g
strategy—this is either Left, Right, or the first, or the second player to move from the start. In
symbols, we have

G > 0 or G is positive if player L (Left) can always win
G < 0 or G is negative if player R (Right) can always win
G =0 or Giszero if player 2 (second) can always win
G 11 0 or Gisfuzzy if player 1 (first) can always win.

In Blue-Red Hackenbush we’ve already seen that a picture with only blue edges is positive
(if there are any), and one with only red edges is negative. A picture having no edges is zero, but
there are al§o other zero pictures, for example any picture with as many red edges as blue in which
each edge is connected to the ground by its own color, or the rather simple picture of Fig. 6(c)
in Chapter 1, which has two blue edges and three red.

There are no fuzzy positions in Blue-Red Hackenbush, which makes it rather unusual, because
in most games it is some advantage to be the first player. So to get more varied behavior, we intro-

duce a new kind of edge.

e

HACKENBUSH HOTCHPOTCH

This game is played as before except that there may also be some green edges, which either
player may chop. But blue edges are still reserved for Left, and red ones for Right and we continue
to use the normal play rule, that when you can’t move, you lose.

The pretty flower of Fig. 5(a) is an example of a fuzzy position in Hackenbush Hotchpotch,
for since its stalk is green, either player may win the game at the first move by chopping this edge.

(a)

Figure 5. Two Fuzzy Fl
It might be thought that, like a zero gan

either player,and so shoulq alsobesaid to ha
because often a fuzzy game can be more:
player can win starting first. For exampl
ones, and this favors Left by just enough tc
is positive. For no matter who starts in
Right is first to take a stalk, whereupon
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The turn then passes to bis opponent, who plays in a similar manner. The game ends as usual
when some player finds himself unable to move (this will only happen when there is no component

in which he has a legal move) and that player loses.
Symbolically we shall write G* for the typical Left option (i.e., a position Left can move t0)

from G. and G for the typical Right option, so that

G = {GYG"] J

We use this notation even when a player has more than one option, or none at all, so that the
symbol G" need not have a unique value. Thus if G = {a,b,c, .. |d.eyf.. ..}, G* means a or borc
or...and G meansdoreor f or....In the game2 = (1| }, G* has only the value 1, but G* has

no value. In this notation the definition of sum is written

G+H = {G*+H,G+H"*|G*+H,G+H"}

since Left’s options from G+ H are exactly the sums G+ H or G+ H* in which he las moved in
just one component, and Right’s are the similar sums G® +H, G+ H".

It should be made clear that there is no restriction on the component a player moves in at any
time other than his ability to move in that component. You need not follow your opponent’s
move with another move in the same component, nor need you switch components unless you
want to. Indeed in many games (€.g. Blue-Red Hackenbush and Cutcake) a move may produce

more than one component.

THE OUTCOME OF Q SUM
The major topic of the problem of finding ways of determining the outcome of a
sum of games given 1r 1 nly a the separate components, SO we cannot expect to
answer this question instan ' at least expect that if both G and H are in favor of
: out to be the In fact we can strengthen the assertion a little,

Left, so is G+ H and
by allowing zero games

j

What does it mean for
the two cases in whi
it is also true of G
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Any Hackenbush picture in which only blue edges touch the ground is positive, for plainly
the last move will be Left’s. In particular the house of Fig. 8 is positive. But the garden is also
positive for it is made from two of the positive flower beds of Fig. 5(b). So the whole picture can

be won by Left, no matter who starts.

Figure 8. A Positive House and Garden.

THE NEGATIVE OF A GAME

In our examples of Blue-Red Hackenbush we found that whenever we interchanged the colors
red and blue throughout, the number representing the value changed sign. This suggests that in
general we define the negative of a game by interchanging the roles of Left and Right throughout.
So, from no matter what position of G, the moves that once were legal for Left now become legal

for Right, and vice versa. If G is the position
G = {A,BC,..|DEF,...},

then — G will be the position
—G={-D,—E,—F,..|-4,-B,-C,...}.

For the general game G = {G"|G*} we have

-G = {-GR-G"}.

This definition works even when applied to fuzzy positions. Let’s see what it means in practice.
The negative of any Hackenbush position is obtained by interchanging the colors red and blue.
Any green edges are unaltered. So for example the negative of the flower of Fig. 5(a) is a similar
flower, but with three red and two blue petals instead of three blue and two red. A Hackenbush
picture made entirely of green edges will therefore be its own negative. This means in particular
that the little forest of Fig. 9 is a zero game, for it consists of the sum of two trees and their negatives

(which have the same shape).
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e 9. Under the Greenwood Trees.

Figur

But no single tree of this forest 1S Z€T0 (the first player could win by chopping its trunk)
11 tree from Fig. 9 is also non-zero (chop the larger ;)and
ne's

in fact the sum of one large and one sma
horizontal branch). So G+ G can be zero without G’s being sero. In fact we’ll meet the commo
nest

such game, Star, in just a few pages- Star is its own negative.

CANCELLING A GAME WITH ITS NEGATIVE

Is the negative of a game properly defined? Is it reall
the ? y true that the sum .
negative is a Zero game? How does the second player win the compound gam: fGa+g(a mg)&;nd e
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The answers are fairly obvious. The first player must move in some component—let’s suppose
he moves from G to H, making the total position H +(— G). Then by the definition of — G, the
move from —G to —H will be legal for his opponent, who can therefore convert the whole
position to H +(— H). The first player might then move to H +(— K), but this the second player
can convert to K+ (—K), and so on. In other words, the second player can always mimic his
opponent’s previous move by making an exactly corresponding move in the other component.
If he does this, he will never be lost for a move, and so will win the game. This is, of course, simply
the Tweedledum and Tweedledee Argument, which we learned in Chapter 1.

'7 For any game G, the game G+ (— G) is a zero game.

We are only discussing finite games, so the ending condition prevents draws by infinite play.

COMPARING TWO GAMES

We shall say that G is greater than or equal to H, and write G > H, to mean that G is at
least as favorable to Left as H is. What exactly does this mean? We can get a hint from ordinary
arithmetic, when x > y if and only if the number x— y is positive or zero. Let’s take this as the
definition for games:

G > H means that G+(—H) > 0.

Then it’s easy to see thatif G > H and H > K, we have G > K. For G +(— K) has the same
outcome as G + (H+(—K)) + (— H), since H+(—H) is a zero game, and this can be written
as the sum of G+ (—H) and H +(— K), which are both >0. Appealing to our results on sums of
games, we see that G+ (— K) = 0, thatis, G > K. In a similar way, from Table 4 we derive Table
5, showing what we can deduce about the order relation between G and K from those between
G and H and H and K. '

Hies
G=H|G=K G-
G>H|G> K
G < G <K
GIHIG I K

Here G = H means that G and H .
G > H means that G is better t
G < H means that G is wo
G I H means that G is som,

Once again “i>" means “>" or “ Il ”,
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The same kind of argument proves a much more general result, that any Hackenbush picture
in which all the ground edges are green has a value which lies strictly between all negative and
all positive numbers. Right can win when we subtract 133 from such a picture by giving first
priority to chopping any ground edge of the picture, and removing his free move allowance only
when the rest of the picture has vanished. So the house of Fig. 13 is less than every positive number.

Figure 13. A Small but Positive House.

But Left can win in this picture by itself, so although the house is small, it’s quite definitely positive
(compare Fig. 5(b)). (The fight is about who first chops one of the walls, for his opponent will
win by chopping the other. If Left works down the edges available to him from the chimney,
he can make at least 5 moves to Right’s at most 4 before a wall need be chopped.)

THE GAME OF COL

Colin Vout has invented the following map-coloring game. Each player, when it is his turn
to move, paints one region of the map, Left using the color blue and Right using red. No two regions
having a common frontier edge may be painted the same color. Whoever is unable to paint a
region loses. Let us suppose that Right has made the first move in the very simple map with three
regions shown in Fig. 14(a). What is the value of the resulting position?

The effect of Right’s move has been to reserve the central region for Left so that we can think
of it as being already tinted blue (Fig. 14(b)). In general any unpainted region next to a painted
one automatically acquires a tint of the opposite color, indicating that only one player may use
it thereafter. In the figures tinting is represented by hatching. Figure 14(c) shows the results of
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Figure 15. A Startling Value.

In Fig. 15(a) the only available region is not restricted in any way. Either player may therefore
paint it and so move to a position of value zero. The value of Fig. 15(a) is therefore {0/0}. How
should we interpret this? The Simplicity Rule will not help us, for there is no number stri
between 0 and 0, but we should expect the value to be less than or equal to each of

. {ol1}, {olk}, {ol3}, ...
since Right's option 0 is less than or equal to each of
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& COL CONTAINS SUCH VALUES 41

More generally, we consider positions of value {x|x} for any number x. This is strictly greater
than every number y < x and strictly less than every number z > x, but neither greater than, less
than nor equal to x itself. We can also add such values to other values of the same kind or to
numbers.

Let us add § to *, that is {3|/1} + {00}. Left has two options 1 +* (moving from 3)and 2+0
(moving from ), and Right has the two options 1+x, 2+0. Since * < 1, Left’s best option is
3> and this is also Right’s best option for the same reason. So we have

3 = 313y
g el 1
and more generally

x+* = {x|x}

for any number x.

THE VALUE xx

This type of value occurs so often that we’ll use an abbreviated notation
X* for X+ %

just as people write 23 for 2+1. You must learn not to confuse x* with x times *, just as you
don’t confuse 25 with 2 times 1.

COL CONTAINS SUCH VALUES

For example, in the position of Fig. 16(a), which has tints as in Fig. 16(b), the players have the
options shown in Fig. 16(c). It therefore has the value {*,—1,1|1}. Since the values * and — 1
are both less than 1, this simplifies to {1|1} = 1+.

You’ll find more about Col in the Extras.

s ———TT
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Figure 17. Latet anguis in herba (Virgil, Eclogue, Ill, 93).

Plainly any move will affect just one snake, and will replace that snake by a strictly shorter

one. This means that if we write *n for the value of a snake with n edges (counting the head loop,
if present), then we have

«0={]}=0,

*1 = {x0|*x0} = {0[0}, the game we called ,
%2 = {%0,x1|*0,x1} = {0,¢(0,%},...,

*n = {(x0x1,%2,.. . x(n—1)[%0,%1,%2,... ,x(n—1)}.

These special values are called nimbers and you’ll hear about them incessantly from now on.
The fact that the same options appear on both sides of the | emphasizes the impartiality of the
game.

It might be safer to play the game with heaps of counters instead of snakes. In this form, the
general position has a number of heaps, and the move is to remove any positive number of
counters from any one heap. In the normal play version, the winner is the person who takes the

last counter. So this is the same as the snake game, with an n-edge snake replaced by a heap of
n counters, and Fig. 17 becomes Fig. 18. ' ’

T .
5 1 1 i| i 1

Figure 18. A Simple Nit
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evel-y' move of the first player loses for one of these reasons. and so #1 +*2+ 3 = 0. Since il

are their own negatives this can also be written in any of the forms

x1422 = #3, +1 +23 = #2, *2 +x3 = *1,

which are very useful in simplifying positions. For example, any situation in which there is one
heap of size 2 and another of size 3 may be simplified by regarding these as a single heap of size 1.
From the position #1 + *4 + *5, if either player reduces one of the larger heaps to 2 or 3,
the other player can reduce the other to 3 or 2 respectively. Since all other moves are fatal for one
of our two reasons, t_his shows that #1 + *4+ %5 = 0, enabling us in general to replace two heaps

of a'ﬁ two uills;nnct sizes from 1,4,5 by one heap of the third size.
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CHILDISH HACKENBUSH

Figure 19. Childish and Grown-Up Pictures.

We call a Hackenbush picture childish because every edge is connected to the ground, perhaps
via other edges. For example, the house of Fig. 19(a) s childish, but that of Fig. 19(b) is not, because
the window will fall down and no longer be part of the position. The rule in ordinary Hackenbush
is that edges which might make a picture non-childish are deleted as soon as they arise. However,
in Childish Blue-Red Hackenbush (J. Schaer) you are only allowed to take edges which leave
all the others connected to the ground; nothing may fall off. It might be thought that this is not
a very interesting game. However Childish Blue-Red Hackenbush is far from trivial and the reader

may like to verify the values of the positions in Fig. 20, and to compare them with the values of
ordinary Blue-Red Hackenbush in Fig. 16 of Chapter 1.

R )
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Figure 21. A Dinner to Celebrate the End of Chapter 2.

Figure 21 shows the dining table around which Left and Right are taking turns to seat cz:t}l)ll:
for a dinner to celebrate the end of this chapter. Left prefers to seat a lady to the left of her p tto;
while Right thinks it proper only to seat her to the right. No gentleman may be seated ;le: i
lady other than his own partner. The player, Left or Right, who first finds himself unable o'dto
a couple, has the embarrassing task of turning away the remaining guests, and so may be sal

lose.
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LnL = {LaL + LbL|LaR + RbL}
RnR = {RaL + LbR|RaR + RbR} (= —LnL)
LnR = {LaL + LbR |LaR + RbR} (= RnL)

where a and b range over all pairs of numbers adding to n—2, but excluding the disallowed posi-

tions LOL and ROR. Of course this is because whenever a player seats a couple they occupy 2
of the n seats.

As an example, we have

R3L + LOR x40

R5R = R2L + LIR|R2R + R1R(_J0+0[1+0
RIL + L2R|RIR + R2R [ )0+0|0+1
ROL + L3R 0+ *

which simplifies to {0,#[1}. What value is this? To find out, we use the inequalities —} < * < 4,
which tells us that

{0.—4[1} < RSR < {041},
and so we must have RSR = 1

3, since the Simplicity Rule tells us that this is the value of both
{0.— 1|1} and {0,4/1}. Verify in like manner the first few entries of Table 6. Who wins Fig. 21?7
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Table 6. Values of Positions in Seating Couples.




