ALGEBRA II Problems: Week 13 (Orders, homomorphisms, cosets, cycles)

Epiphany Term 2014

Hwk: Q1, Q7, due Thu Feb 13. Tutorials: Q2 (2nd, 3rd), Q3, Q5, Q6

1. (a) Show that a k-cycle can be written as a product of transpositions:

 $(i_1 i_2 \dots i_k) = (i_1 i_k)(i_1 i_{k-1}) \dots (i_1 i_2) \qquad (k \ge 2).$

- For k > 2, find a different such product of transpositions.
- (b) Using (a), or otherwise, find the inverse of the cycle $(i_1 i_2 \ldots i_k)$.
- 2. Express each of the following three permutations as (i) a product of disjoint cycles and (ii) a product of transpositions:

 $\begin{pmatrix} 1 & 2 & 3 & 4 & 5 & 6 & 7 & 8 \\ 7 & 6 & 4 & 1 & 8 & 2 & 3 & 5 \end{pmatrix}; (4568)(1245); (624)(253)(876)(45).$

- 3. Let *H* be a subgroup of *G*. Show that gHg^{-1} is also a subgroup of *G* for any $g \in G$. Then show that every left coset of *H* is equal to a right coset of *some* subgroup (not necessarily *H*) of *G*.
- 4. How many different 5-cycles are there in S_5 ? [Justify your answer.]
- 5. Consider the subset $W = \{e, (12)(34), (13)(24), (14)(23)\}$ of S_4 .
 - (a) Show that W forms a subgroup of S_4 .
 - (b) Is W isomorphic to \mathbf{Z}_4 or to $\mathbf{Z}_2 \times \mathbf{Z}_2$? [Justify your answer.]
 - (c) Show that W is isomorphic to the group of plane symmetries of a chess board.

[Hint: label four distinguished points on the board by $1, \ldots, 4$, resp.]

- 6. Find the centre of S_n for $n \ge 3$.
- 7. (a) Show that the order of each element g of a group G divides the order of G.
 - (b)* Show that there can only be two types of group of order 6, up to isomorphism. [Hint: one of them is abelian, the other one is not.]
 (Possible tools: What are the possible orders of elements—how many can there be each? How do possible normal subgroups look like? A multiplication table has to list each element in each row and column. You might even want to use the Chinese Remainder Theorem to identify two candidates.)
- 8. Find a subgroup of S_4 which contains six elements. How many subgroups of order six are there in S_4 ? (You may use that a group of order six is isomorphic to either \mathbf{Z}_6 or S_3 . What are the orders of elements in each?)
- 9. For each of the groups \mathbf{Z}_6 , S_3 , D_4 , $\mathbf{Z}_2 \times \mathbf{Z}_2$ either find a subgroup of D_6 that is isomorphic to it, together with a specific isomorphism between the two, or explain why no such subgroup exists.