
Elementary Number Theory and Cryptography,
Michaelmas 2011, Problem Sheet 3. (Primes and Factorization)
1. Show that there are arbitrarily long sequences of composite integers. In

other words: for any k ∈ Z, k > 1, show that there is an n ∈ Z such that
none of n+ 2, n+ 3, . . . , n+ k is prime.
[Hint: You may want to choose n to have many divisors... (the seemingly
strange beginning of the sequence (i.e. n+ 2) may give you another hint)]

2. (a) Show that a prime of the form 3n+ 1 is necessarily of the form 6n+ 1.
(b) Prove that any positive integer of the form 3n+2 has a prime factor of

that same form. Using this, or otherwise, show that there are infinitely
many primes of the form 3n+ 2.

3. (a) Find an integer n for which n/2 is a square and n/3 is a cube.
[Hint: Characterise a square/cube via its prime factorization exponents.]

(b) Among the integers n satisfying the conditions of (a), find one for
which n/5 is a fifth power (of some integer, of course).

4. (The Sieve of Eratosthenes)
Obtain a complete list of all the primes between 1 and n with n = 200,
by the following method: by a proper multiple of the integer k we un-
derstand the positive multiples of k except k itself. First write down all
numbers from 2 to 200 (or let the computer do it for you), in a conveniently
tabled form. Then cross out all the proper multiples of 2, then cross out all
the proper multiples of the next prime 3, then the proper multiples of 5,
etc. Note that at each stage the next remaining number is a prime (why?).
Repeat this process up to the proper multiples of 13.

(i) What is the next remaining number (> 13) in the list?
(ii) Why are all the remaining numbers in the list primes? (A lemma from

the lectures may be helpful here.)
5∗. (a) Show that n4 + 4 is composite for all n > 1. [Look for a “unifying”

reason.]
(b) Show that if 2n − 1 is a prime then necessarily n is prime as well.

[Primes of the form 2n − 1 are called Mersenne primes.]
(c) A number is called perfect if it equals the sum of all its (positive)

divisors other than itself. For example, the number 6 is perfect (its
divisors other than itself are 1, 2 and 3, and 6 = 1 + 2 + 3).
Show that a(a+1)

2 is a perfect number if a is a Mersenne prime (cf. (b)).
[Hint: It may help to group its divisors into two suitable sets.]
Using this, give two other perfect numbers.

6. (Problems involving computers:)
(a) Check that n2−81n+ 1681 is a prime for n = 1, 2, . . . , 60. Is it always

prime? Give a proof or find a counterexample. [Note that this shows
again that one needs to be cautious with too rash statements about
primes.]

(b) Using GP-PARI or MAPLE (or otherwise), compare the (number of)
primes in the intervals [107−100, 107] and [107, 107 + 100]. How many
primes are there below 107? What number would you (roughly) expect
from the Prime Number Theorem? (Here are some useful commands:)

GP-PARI MAPLE functionality
isprime(n) isprime(n); checks if n is prime;
nextprime(n+1) nextprime(n); gives the next prime after n;
prime(n) ithprime(n); gives the nth prime;
primepi(x) numtheory[pi](x); prime counting function π(x)
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