NUMBER THEORY CHALLENGE

Matthew Palmer

Set 1/2/11

Show that

20z + 1) =yly+1)

has infinitely many solutions (z,y) € Z2.

Rewrite the equation as

v +y— (222 +22) = 0.
Then we have (by the quadratic formula)
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So for y to be an integer, it is certainly necessary that 8x2 4+ 8x + 1 is a perfect square. It is also sufficient,
as 8x2 + 8z + 1 will always be odd — so if it is a perfect square, then its square root will be odd, implying
that —1 + +/822 + 8x + 1 is even and hence that y is an integer.

So we need

8z +8x+1=2°

for some integer z. Write w = 2 + 1 — then we have

22— 2w? = —1.

This is an equation that we have already shown to have infinitely many solutions. The solutions are
parametrised by
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for r € Z, where u = 1 + v/2 is the fundamental unit of Z[\/i] We have

w—1 z—1
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— so we need to show that z and w are both odd for all r.

We have
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and hence w, z are odd (in each series, every term but the first is even, and the first is odd). So there are
infinitely many solutions, and we have a parametrisation
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and

where € N.



