
NUMBER THEORY CHALLENGE

Matthew Palmer

Set 1/2/11

Show that

2x(x + 1) = y(y + 1)

has infinitely many solutions (x, y) ∈ Z2.

Rewrite the equation as

y2 + y − (2x2 + 2x) = 0.

Then we have (by the quadratic formula)

y =
−1 +

√
1 + 4(2x2 + 2x)

2
=
−1 +

√
8x2 + 8x + 1

2
.

So for y to be an integer, it is certainly necessary that 8x2 + 8x + 1 is a perfect square. It is also sufficient,
as 8x2 + 8x + 1 will always be odd — so if it is a perfect square, then its square root will be odd, implying
that −1 +

√
8x2 + 8x + 1 is even and hence that y is an integer.

So we need

8x2 + 8x + 1 = z2

for some integer z. Write w = 2x + 1 — then we have

z2 − 2w2 = −1.

This is an equation that we have already shown to have infinitely many solutions. The solutions are
parametrised by

z =
u2r+1 + ũ2r+1

2
, w =

u2r+1 − ũ2r+1

2
√

2

for r ∈ Z, where u = 1 +
√

2 is the fundamental unit of Z[
√

2]. We have

x =
w − 1

2
, y =

z − 1
2

— so we need to show that z and w are both odd for all r.

We have

u2r+1 = (1 +
√
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(

2r + 1
1

)√
2 +

(
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2

)
2 + · · ·+

(
2r + 1

2r

)√
2
2r

+
√

2
2r+1

,

ũ2r+1 = 1−
(
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1

)
+
(

2r + 1
2

)
2− · · ·+

(
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2r

)√
2
2r

+
√

2
2r+1

1



— so

z = 1 + 2
(

2r + 1
2

)
+ 4
(

2r + 1
4

)
+ · · ·+ 2i

(
2r + 1

2i

)
+ · · ·+ 2r

(
2r + 1

2r

)
and

w =
(

2r + 1
1

)
+ 2
(

2r + 1
3

)
+ 4
(

2r + 1
5

)
+ · · ·+ 2i

(
2r + 1
2i + 1

)
+ · · ·+ 2r

(
2r + 1
2r + 1

)
,

and hence w, z are odd (in each series, every term but the first is even, and the first is odd). So there are
infinitely many solutions, and we have a parametrisation

x = r +
r∑

i=1

2i−1

(
2r + 1
2i + 1

)
, y =

r∑
i=1

2i−1

(
2r + 1

2i

)
,

where r ∈ N.
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