Topology (Math 3281)
Solutions to Problem Set 3 21.11.14

1. Define g : C3 — C by g(21, 29,23) = 2} + 25 + 23, which is continuous.
Therefore Y = g~1({0}) is closed. Note that Y is unbounded. However,
S5 C C3 is bounded, and also closed. Therefore X = Y NS is closed as
an intersection of closed sets and also bounded. Since we can identify C3
with R, the Heine-Borel Theorem applies and we can conclude that X is
compact.

2. To check continuity, let C' C Y be closed. Then
7o)y = (fFHONnAu(fH(C)nB)
= (fly~HC) U (fls)H(O),

where f|4 and f|p are the restrictions to A and B, respectively. By conti-
nuity of f|4 and f|p we get that (f|4)~1(C) is closed in A and (f|g)~1(C)
is closed in B. As A and B are closed, the sets (f|4)~*(C) and (f|g)~'(C)
are closed in X, and so f~1(C) is closed as the union of two closed sets.
Therefore f is continuous.

3. Assume that Z is not connected. Then there exists a continuous surjective
map f: Z — {0,1}. Now, as Z NY is connected, we get that f(ZNY) is

only one point. Without loss of generality, we may assume the image is {0}.
Now define F': ZUY — {0,1} by

0 =ze€VY

Fz) = { flz) z€Z
Notice that F' is a well defined function, because if x € YNZ, then f(z) =0,
so both defining lines agree.
Now F'|y is continuous, and F|z = f is continuous, so F' is continuous by
Question 2, as Z and Y are closed subsets of Y U Z. But if f is surjective,
then so is F, contradicting the fact that Z UY is connected. Therefore Z
has to be connected as well.
An entirely symmetrical argument shows that Y is connected.
4. (a) If I C J are ideals, then J C P implies I C P. So if P € Z(J), then
P € Z(I) which means Z(J) C Z(I).
(b) Recall that I-.J are the finite sums of elements of the form i-j with ¢ € T

and j € J. Hence [-J C I and I-J, as I and J are ideals. By part (a) we get
Z(I) C Z(I-J) and Z(J) C Z(I-J), that is, we have Z(I)UZ(J) C Z(I-J).



Now assume that P € Z([ - J), but P ¢ Z(I). This means that there is
an element x € [ with ¢ P. As I -J C P, we get that z -y € P for all
y € J. By the prime ideal property of P, we have either x € P or y € P.
As z ¢ P, this means y € P for all y € J, or in other words, J C P. This
means P € Z(J). Hence Z(I-J) C Z(I)U Z(J).

(c) Note that a prime ideal is never the full ring R, so Z(R) = (). Hence
Spec(R) = Spec(R) — Z(R) € 7. Also, Z({0}) = Spec(R), so b € 7. To
show that finite intersections of open sets are open, it is enough to show
that finite unions of the Z(I;) are also of the form Z(J). But this follows
directly from part (b). Finally, if I; is an ideal for all j € J, we need to show

that (;cy Z(L;) = Z(I) for some ideal I. For this, define

1= Z:Uj xj € I; with only finitely many z; #0 » ,
JEJ

which is easily seen to be an ideal, and I; C I for all j € J. By part (a) we
get
Z(I) c () 2(1y).
JEJ

Now let P € (;c5 Z(;), that is, I; C P for all j € J. Then any finite sum of
elements of the I; is contained in P, which means that I C P, or P € Z(I).
The proves the required other inclusion. Therefore arbitrary unions of open
sets are open and 7 is a topology.

(d) Note that the prime ideals of Z are ideals pZ with p a prime number,
and {0}. Arbitrary ideals are of the form nZ with n € Z, and we can assume
n > 0. As any such n is the product of finitely many prime numbers, Z(nZ)
only contains pZ if p divides n. In particular, Z(nZ) is finite for n > 1.
So if we are given an open covering of Spec(Z), then one of these open sets
Spec(Z) — Z(nZ) covers 2Z, and the complement Z(nZ) only has finitely
many points left. Hence Spec(Z) is compact by the same argument that
gave compactness in Example 5.2 (3).



