Algebraic Topology (Math 4161)

Problem Class 3 16.02.15

This set of problems will be discussed in the Problem Class on 19.02.15, along with homework problems.

1. Let \(0 \rightarrow A \overset{i}{\rightarrow} B \overset{j}{\rightarrow} C \) be an exact sequence of abelian groups and \(G \) an abelian group.

 (a) Show that there is an exact sequence
 \[
 0 \rightarrow \text{Hom}(G, A) \overset{i^*}{\rightarrow} \text{Hom}(G, B) \overset{j^*}{\rightarrow} \text{Hom}(G, C)
 \]

 (b) Assume that \(j \) is surjective. Show that there is an exact sequence
 \[
 0 \rightarrow \text{Hom}(G, A) \overset{i^*}{\rightarrow} \text{Hom}(G, B) \overset{j^*}{\rightarrow} \text{Hom}(G, C) \rightarrow 0
 \]
 \[
 \quad \text{Ext}(G, A) \overset{i^*}{\rightarrow} \text{Ext}(G, B) \overset{j^*}{\rightarrow} \text{Ext}(G, C) \rightarrow 0
 \]

 (c) Assume that \(j \) is surjective. Show that there is an exact sequence
 \[
 0 \rightarrow \text{Hom}(C, G) \overset{j^*}{\rightarrow} \text{Hom}(B, G) \overset{i^*}{\rightarrow} \text{Hom}(A, G) \rightarrow 0
 \]
 \[
 \quad \text{Ext}(C, G) \overset{j^*}{\rightarrow} \text{Ext}(B, G) \overset{i^*}{\rightarrow} \text{Ext}(A, G) \rightarrow 0
 \]

2. Let \(X \) be a topological space, and \(\varphi, \psi \in C^1(X; \mathbb{K}) \) be cocycles. Show that \(\varphi \cup \psi + \psi \cup \varphi = \delta \chi \) for some \(\chi \in C^1(X; \mathbb{K}) \).