1. (a) By definition we have

\[
\delta^2 \varphi(x_0, \ldots, x_{p+2}) = \sum_{i=0}^{p+2} (-1)^i \delta \varphi(x_0, \ldots, \hat{x}_i, \ldots, x_{p+2})
\]

\[
= \sum_{i=0}^{p+2} (-1)^i \left(\sum_{j=0}^{i-1} (-1)^j \varphi(x_0, \ldots, \hat{x}_j, \ldots, \hat{x}_i, \ldots, x_{p+2}) + \sum_{j=i+1}^{p+2} (-1)^{j-1} \varphi(x_0, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{p+2}) \right)
\]

Now notice that every summand \(\varphi(x_0, \ldots, \hat{x}_i, \ldots, \hat{x}_j, \ldots, x_{p+2})\) with \(i < j\) appears exactly twice, but with opposite sign. Hence the sum is 0.

(b) We have

\[
\delta D \varphi(x_0, \ldots, x_p) = \sum_{i=0}^{p} (-1)^i \varphi(\bar{x}, x_0, \ldots, \hat{x}_i, \ldots, x_p)
\]

and

\[
D \delta \varphi(x_0, \ldots, x_p) = \varphi(x_0, \ldots, x_p) + \sum_{i=0}^{p} (-1)^{i+1} \varphi(\bar{x}, x_0, \ldots, \hat{x}_i, \ldots, x_p)
\]

so \(\delta D + D \delta = \text{id}: C^p(X; G) \to C^p(X; G)\) for \(p \geq 1\). So if \(\varphi \in C^p(X; G)\) is a cocycle with \(p \geq 1\), we get \(\varphi = \delta(D \varphi)\) which means it is also a coboundary. Therefore \(H^p(C^*(X; G)) = 0\) for \(p \geq 1\). Now if \(\varphi \in C^0(X; G)\) is a cocycle, then \(\varphi(x) = \varphi(\bar{x})\) for all \(x \in X\). This means that \(\varphi: X \to G\) is constant. As there are no coboundaries, we get \(H^0(C^*(X; G)) = G\) identifying \(g \in G\) with the cocycle given by the constant function \(\varphi(x) = g\).

(c) Let \(\varphi \in C^p(X; G)\) be locally zero and \((U_i)_{i \in I}\) the corresponding open cover of \(X\). Then \(\delta \varphi\) is locally zero using the same open
cover. If \(\psi \in C^p(X;G) \) is locally zero with respect to the open cover \((V_j)_{j \in J}\), form a third open cover \(W_{i,j} = U_i \cap V_j\). Then \(\varphi + \psi \) is locally zero with respect to this cover. Hence \(C^*_p(X;G) \) is a subcomplex.

(d) Note that \(C^p(\ast;G) \equiv G \) and the only locally zero function is the zero function. Hence \(\overline{C}(\ast;G) = C^p(\ast;G) \), and we can use the calculation from part (b) to get \(H^0(\ast;G) = G \) and \(H^p(\ast;G) = 0 \) for \(p \neq 0 \).

(e) Note that \(\overline{C}^0(X;G) = C^0(X;G) \) as only the zero function is locally zero. Let \(\varphi: X \to G \) represent a cocycle. This means that \(\delta \varphi \) is locally zero. Let \((U_i)_{i \in I}\) be the open cover such that \(\delta \varphi(x_0, x_1) = \varphi(x_1) - \varphi(x_0) = 0 \) for all \(x_0, x_1 \in U_i \), any \(i \in I \). This means that \(\varphi: X \to G \) is continuous when \(G \) is given the discrete topology. But if \(X \) is connected, then \(\varphi \) is constant. As \(\varphi \) could be any value, and there are no coboundaries, we get \(H^0(X;G) = G \).

(f) We need a space that is connected, but not path connected. Take the closure of \(X = \{(x, \sin(\pi/x)) | x \in (0,1)\} \) in \(\mathbb{R}^2 \). Then \(H^0(X;\mathbb{Z}) = \mathbb{Z} \oplus \mathbb{Z} \neq \mathbb{Z} = H^0(X;\mathbb{Z}) \).

(g) Any function \(f: X \to Y \) induces a cochain map \(f^*: C^p(Y;G) \to C^p(X;G) \) by

\[
f^*(\varphi)(x_0, \ldots, x_p) = \varphi(f(x_0), \ldots, f(x_p))
\]

which behaves well with composition and identities. And if \(f \) is continuous and \(\varphi \in C^p(Y;G) \) is locally zero with respect to the open cover \((U_i)_{i \in I}\) of \(Y \), then \((f^{-1}(U_i))_{i \in I}\) is an open cover of \(X \) showing that \(f^*(\varphi) \) is locally zero. Hence we get an induced cochain map \(f^*: C^p(Y;G) \to C^p(X;G) \), leading to the required homomorphisms on cohomology.

(h) Consider the cochain map \(i^*: \overline{C}^\ast(X;G) \to \overline{C}^\ast(A;G) \) induced by the inclusion \(i: A \to X \). This is surjective: let \(\varphi + C^0_p(A;G) \in \overline{C}^p(A;G) \), with \(\varphi: A^{p+1} \to G \). Extend \(\varphi \) somehow to \(\tilde{\varphi}: X^{p+1} \to G \) (e.g. using 0 on points not in \(A^{p+1} \)). Then \(i^*(\tilde{\varphi} + C^0_p(X;G)) = \varphi + C^0_p(A;G) \). Now let \(\overline{C}^\ast(X, A;G) = \ker i^* \) which gives rise to a short exact sequence of cochain complexes. By the Snake Lemma we get the required long exact sequence with \(\overline{H}^\ast(X, A;G) \) the cohomology of \(\overline{C}^\ast(X, A;G) \).
(i) For \(\varphi \in C^p(X; \mathbb{K}) \) and \(\psi \in C^q(X; \mathbb{K}) \), define \(\varphi \cup \psi \in C^{p+q}(X; \mathbb{K}) \) by

\[
\varphi \cup \psi(x_0, \ldots, x_{p+q}) = \varphi(x_0, \ldots, x_p) \cdot \psi(x_p, \ldots, x_{p+q}).
\]

We get \(\delta(\varphi \cup \psi) = \delta \varphi \cup \psi + (-1)^q \varphi \cup \delta \psi \) by a calculation as for the cup-product in singular cohomology.

Now assume that \(\varphi \) is locally zero with respect to the open cover \((U_i)_{i \in I} \). Then \(\varphi \cup \psi \) is also locally zero with respect to this cover. It follows that the cup-product induces a product \(\cup : H^p(X; \mathbb{K}) \times H^q(X; \mathbb{K}) \to H^{p+q}(X; \mathbb{K}) \) which turns cohomology into a ring.

The identity is defined by using \(1 \in C^0(X; \mathbb{K}) \) given by \(1(x) = 1_\mathbb{K} \) for all \(x \in X \).