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Abstract. In this paper, the assembly maps in algebraic K- and L-theory

for the family of finite subgroups are proven to be split injections for word
hyperbolic groups. This is done by analyzing the compactification of the Rips

complex by the boundary of a word hyperbolic group.

1. Introduction

In [10, 11], conditions were given for discrete groups Γ under which the assembly
maps in algebraic K- and L-theory are split injective. For such groups, a portion
of the K- and L-theory of a group ring RΓ is then described by an appropriate
equivariant homology theory evaluated on the universal space for proper Γ-actions.
Tools such as spectral sequences and Chern characters can then be used to calculate
the homology groups, so that a piece of the geometrically important K- and L-
groups of RΓ can be understood. In this note, we show that word hyperbolic groups
satisfy the conditions of [10, 11], thus proving the following theorem:

Theorem 1.1. Let Γ be a word hyperbolic group. Then,

(1) the assembly map HΓ
∗ (EΓ; K−∞(RΓx)) → K∗(RΓ), in algebraic K-theory,

is a split injection for any ring with unit R;
(2) the assembly map HΓ

∗ (EΓ; L−∞(RΓx)) →L
〈−∞〉
∗ (RΓ), in algebraic L-theory,

is a split injection for any ring with involution R such that for sufficiently
large i, K−i(RH) = 0 for every finite subgroup H of Γ.

Theorem 1.1 implies the classical Novikov conjecture for word hyperbolic groups
(see for example Lück and Reich [7]). This, however, also follows from the injectivity
of the Baum-Connes assembly map, which was proved by Higson [6]. More recently,
Mineyev and Yu [9] have shown that the Baum-Connes assembly map is in fact an
isomorphism for these groups. It is also important to note that in the case of torsion-
free word hyperbolic groups, Theorem 1.1 follows from Carlsson and Pedersen [3].
It is proved in [10, 11] that a discrete group Γ will satisfy statements (1) and (2)
of Theorem 1.1 if there is a finite Γ-CW model for the universal space for proper
Γ-actions that admits a compactification X such that

• the Γ-action extends to X;
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• X is metrizable;
• EΓH is dense in XH for every finite subgroup H of Γ;
• XH is contractible for every finite subgroup H of Γ;
• compact subsets of EΓ become small near X − EΓ. That is, for every

compact subset K ⊂ EΓ and for every neighborhood U ⊂ X of y ∈ X−EΓ,
there exists a neighborhood V ⊂ X of y such that g ∈ Γ and gK ∩ V 6= ∅
implies gK ⊂ U .

This result generalized work of Carlsson and Pedersen [3], who proved it for torsion-
free groups. In this note, Theorem 1.1 is proved by showing that word hyperbolic
groups satisfy the above conditions.
Meintrup and Schick [8] proved that for word hyperbolic groups Γ, the Rips com-
plex, Pd(Γ), with d sufficiently large, is a finite Γ-CW model for the universal space
for proper Γ-actions. The desired boundary, ∂Γ, was introduced by Gromov [5] and
is defined as follows. For x, y ∈ Γ, let (x · y) = 1

2 (d(x, 1) + d(y, 1)− d(x, y)). A
sequence {xi} in Γ is convergent at infinity if (xi · xj) →∞ as i, j →∞. Two such
sequences {xi} and {yi} are equivalent if (xi · yj) →∞ as i, j →∞. The boundary,
∂Γ, can then be defined as the set of equivalence classes of sequences that are con-
vergent at infinity. We topologize Pd(Γ) ∪ ∂Γ by defining a typical neighborhood
of a ∈ ∂Γ to be the set of points y ∈ Γ ∪ ∂Γ with (a · y) ≥ R, along with the
simplices of Pd(Γ) that they span. By [4, 5], Pd(Γ) ∪ ∂Γ is a compact, metrizable,
finite-dimensional space, so we choose it as our candidate for X. It turns out that
the most delicate part of the proof is showing that the fixed sets XH , for the finite
subgroups H of Γ, are contractible. The case when H is the trivial group was done
by Bestvina and Mess [1]. The general case can be handled similarly but requires a
careful analysis of the contractibility of Pd(Γ)H , given in Meintrup and Schick [8].

2. Basic definitions

Let Γ be a finitely generated group and d(·, ·) the word metric with respect to some
finite symmetric set of generators.

Definition 2.1. Let d be a positive integer. The Rips complex, Pd(Γ), is the sim-
plicial complex whose k-simplices are (k +1)-tuples (g0, . . . , gk) of pairwise distinct
elements of Γ with max{d(gi, gj)} ≤ d.

In particular, the 0-skeleton of Pd(Γ) coincides with Γ. Because of the left in-
variance of the word metric, there is a simplicial action of Γ on Pd(Γ) given by
g · (g0, . . . , gk) = (gg0, . . . , ggk).
Following Meintrup and Schick [8], we write d(K, L) = max{d(k, l) | k ∈ K, l ∈ L}
for the maximal distance between finite subsets K and L of Γ. We also call d(K) =
d(K, K) the diameter of the finite subset K of Γ.

Definition 2.2. Let Γ be a finitely generated group and δ ≥ 0. Then Γ is δ-
hyperbolic if for any four points x, y, z, w ∈ Γ,

d(x, y) + d(z, w) ≤ max{d(x, z) + d(y, w), d(x,w) + d(y, z)}+ 2δ.

A group Γ is called word hyperbolic if there is a δ ≥ 0 such that Γ is δ-hyperbolic.

We remark that being δ-hyperbolic for a specific δ is a property of Γ and a chosen
word metric, while being word hyperbolic does not depend on the word metric.
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We want to define a boundary for a word hyperbolic group. For this, let

(x · y) =
1
2

(d(x, 1) + d(y, 1)− d(x, y))

be the overlap function, where x, y ∈ Γ. The following lemma is easy to see.

Lemma 2.3. Let Γ be a finitely generated group and δ ≥ 0. Then Γ is δ-hyperbolic
if and only if

(x · y) ≥ min{(x · z), (y · z)} − δ

for all x, y, z ∈ Γ. �

From now on we assume that Γ is δ-hyperbolic for some δ ≥ 0. A sequence {xi} in
Γ is convergent at infinity if (xi · xj) → ∞ as i, j → ∞. Two such sequences {xi}
and {yi} are equivalent if (xi · yj) →∞ as i, j →∞. Define the boundary of Γ, ∂Γ,
to be the set of equivalence classes of sequences that are convergent at infinity. We
will denote the equivalence class of a sequence {xi} by [{xi}]. If a ∈ ∂Γ and y ∈ Γ,
define

(a · y) = sup
{

lim inf
i→∞

(xi · y)
∣∣∣ [{xi}] = a

}
.

Notice that (xi · y) ≤ d(y, 1) and that there is a sequence {zi} representing a with
(a · y) = (zi · y) for large i. Furthermore, for any sequence {xi} representing a,

lim inf
i→∞

(xi · y) ≥ (a · y)− δ,

by Lemma 2.3. The overlap function extends to a, b ∈ ∂Γ by setting

(a · b) = sup
{

lim inf
i,j→∞

(xi · yj)
∣∣∣ [{xi}] = a, [{yj}] = b

}
.

Because of the supremum in the definition, we get

(x · y) ≥ min{(x · z), (y · z)} − 2δ(1)

for all x, y, z ∈ Γ ∪ ∂Γ. (Compare Bridson and Haefliger [2, p.433].)
Now we can put a topology on Γ ∪ ∂Γ in which Γ is a discrete subset. A typical
neighborhood of a ∈ ∂Γ is defined to be {y ∈ Γ ∪ ∂Γ | (a · y) ≥ R}, where R > 0.
This gives a compactification of Γ by [4, 5]. Similarly, we can topologize Pd(Γ) =
Pd(Γ) ∪ ∂Γ by defining a typical neighborhood of a ∈ ∂Γ, UR(a), to be the set of
points y ∈ Γ ∪ ∂Γ with (a · y) ≥ R, along with the simplices of Pd(Γ) that they
span. By [4, 5], Pd(Γ) is a compact, metrizable, finite-dimensional space.

3. Proof of the main theorem

Lemma 3.1. Let x1, x2, g ∈ Γ. Then |(x1 · x2)− (gx1 · gx2)| ≤ d(g, 1).

Proof. Since the metric is left-invariant,

d(xi, 1) ≤ d(xi, g
−1) + d(g−1, 1) = d(gxi, 1) + d(g−1, 1).
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Therefore,

(x1 · x2) =
1
2

(d(x1, 1) + d(x2, 1)− d(x1, x2))

≤ 1
2

(d(gx1, 1) + d(gx2, 1)− d(gx1, gx2)) + d(g−1, 1)

= (gx1 · gx2) + d(g−1, 1).

The same argument gives (gx1·gx2) ≤ (x1·x2)+d(g, 1), which proves the lemma. �

Lemma 3.1 allows us to define an action on ∂Γ by setting g · a = [{gxi}], where
{xi} is a sequence representing a ∈ ∂Γ. This gives a well defined action of Γ on
Pd(Γ).
The next lemma is an observation of Bestvina and Mess in the proof of [1, Theorem
1.2].

Lemma 3.2. Let a ∈ ∂Γ, and let x, y ∈ Γ with (a · x), (a · y) ≥ 2R + 6δ. If z ∈ Γ
is a point on a geodesic in Pd(Γ) between x and y, then (a · z) ≥ R.

Proof. Since d(x, z) + d(z, y) = d(x, y), we have (x · z) + (y · z) = (x · y) + d(z, 1) ≥
(x · y). Thus, (x · z) ≥ 1

2 (x · y) or (y · z) ≥ 1
2 (x · y). Assume (x · z) ≥ 1

2 (x · y).
Using (1), (x · y) ≥ min{(a · x), (a · y)} − 2δ ≥ 2R + 4δ. Therefore (x · z) ≥ R + 2δ.
This implies (a · z) ≥ min{(a · x), (x · z)} − 2δ ≥ R. �

Lemma 3.3. Let H be a finite subgroup of Γ, a ∈ (∂Γ)H , and R > 0. If y ∈ Γ
such that (a · y) ≥ R + d(H), then Hy ⊂ UR(a). That is, (a · hy) ≥ R for every
h ∈ H.

Proof. Choose a representative {xi} of a such that (a · y) = (xi · y) for large i. Let
h ∈ H. Since ha = a, {hxi} is also a representative of a. Thus,

(a · hy) ≥ lim inf
i→∞

(hxi · hy) ≥ lim inf
i→∞

(xi · y)− d(H) = (a · y)− d(H) ≥ R,

by Lemma 3.1. �

The next lemma is essentially taken from Meintrup and Schick [8, Lemma 6] but
with a slight variation that will become important.

Lemma 3.4. Let H be a finite subgroup of Γ, let y0 be a vertex of Pd(Γ) with
d(Hy0) = R, and let h ∈ H such that d(y0, hy0) = R.

(1) Then there is an x ∈ Γ on a geodesic between y0 and hy0 such that

d(Hx,Hy0) ≤
[
R

2

]
+ 2δ + 1, and d(Hx) ≤ 8δ + 4.

(2) If, in addition, R ≥ 8δ + 2 and x0 is a vertex of Pd(Γ), then

d(Hx, x0) ≤ d(x0, y0) + d(Hx0).

Proof. By Meintrup and Schick [8, Lemma 6(a)], there is an x ∈ Γ satisfying the
inequalities of (1). An inspection their proof verifies that x is indeed chosen on
a geodesic between y0 and hy0. Assume R ≥ 8δ + 2. Choose h′ ∈ H such that
d(h′y0, x0) = d(Hy0, x0). By [8, Lemma 6(b)], d(Hx, x0) ≤ d(x0, h

′y0). Therefore,

d(Hx, x0) ≤ d(x0, h
′y0) ≤ d(x0, h

′x0) + d(h′x0, h
′y0) ≤ d(x0, y0) + d(Hx0),
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which finishes the proof. �

Lemma 3.5. Let H be a finite subgroup of Γ, and let d ≥ 8δ + 4. Then Pd(Γ)H is

dense in Pd(Γ)
H

.

Proof. Let a ∈ (∂Γ)H and R > 0 be given. We must find a point in UR(a) − ∂Γ
that is fixed by H. Choose a representative {xi} of a. Since (xi · xj) → ∞ as
i, j →∞, there is an N such that (xi ·xj) ≥ (2R+6δ)+d(H) for all i, j ≥ N . Then
(a · xN ) ≥ lim inf(xi · xN ) ≥ (2R + 6δ) + d(H). By Lemma 3.3, HxN ⊂ U2R+6δ(a).
By Lemma 3.2, any element of Γ on a geodesic between two points of HxN is
contained in UR(a). By Lemma 3.4, there is an x ∈ Γ on such a geodesic with
d(Hx) ≤ 8δ + 4. Notice that Hx is contained in the union of all geodesics between
points of HxN . Therefore Hx ⊂ UR(a). The elements of Hx form a simplex in the
Rips complex since d ≥ 8δ + 4 ≥ d(Hx). Since this simplex is invariant under H,
it has a fixed point. �

Proposition 3.6. Let H be a finite subgroup of Γ, and let d ≥ 40δ + 20. Let a ∈
(∂Γ)H and U a neighborhood of a in Pd(Γ)

H
be given. Then there is a neighborhood

V of a in Pd(Γ)
H

such that every compact subset C of V − (∂Γ)H is contractible
in U − (∂Γ)H .

Proof. We can assume that U = U ′ ∩ Pd(Γ)
H

, where U ′ is a typical neighborhood
of a in Pd(Γ). That is, there is an R > 0 such that U ′ contains the vertices x of
Pd(Γ) with (a · x) > R and the simplices in Pd(Γ) that they span. By Lemma 3.3,
there exists an H-equivariant neighborhood V ′ of a in Pd(Γ) such that for every

vertex x ∈ V ′, (a · x) > 2R + 6δ. Let V = V ′ ∩ Pd(Γ)
H

.
Let F be the subcomplex of Pd(Γ) consisting of all simplices of Pd(Γ) that contain
an H-fixed point and their faces. This subcomplex is the same complex as the one
defined by Meintrup and Schick in the proof of [8, Proposition 7]. Note that if x is
a vertex of F , then d(Hx) ≤ d.
Now let C be a compact subset of V − (∂Γ)H . Define the subcomplex D of F by
setting D = F ∩ U ′. Notice that U − (∂Γ)H ⊂ D. Let K ′ be a finite subcomplex
of D ∩ V ′ containing C, and let K = H · K ′. Since V ′ is H-invariant, K ⊂
V ′. Following Meintrup-Schick, we will show that the inclusion K ↪→ D is H-
equivariantly homotopic to a constant map. By passing to fixed sets, this will
imply the statement of the proposition. We do this by modifying the construction
of the H-equivariant homotopy in the proof of [8, Proposition 7], making sure that
it is in fact a map into D.
By Lemma 3.4, there is a vertex x0 ∈ Γ∩V ′ with d(Hx0) ≤ 8δ +4. Without loss of
generality, we can assume x0 ∈ K. Let K0 be the 0-skeleton of K. If d(x0, y) ≤ d

2

for all y ∈ K0, then K is contained in a simplex of D. Thus, it can be contracted
H-equivariantly.
Now suppose that there exists a y ∈ K0 with d(x0, y) > d

2 . For every orbit Hy ⊂ K0

with d(x0,Hy) > d
2 , choose a representative y and a geodesic segment cy from x0

to y. Note that cy ⊂ U ′ for all such y by Lemma 3.2. Pick y0 ∈ K0 to be a
representative of an orbit Hy0 with d(x0,Hy0) maximal. Notice that we do not
require d(x0, y0) = d(x0,Hy0) as in the proof of [8, Proposition 7]. This will result
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in slightly different inequalities along the way. Let y′0 be the vertex on cy0 with
d(y0, y

′
0) = [d

4 ]. We claim y′0 ∈ D. That is, d(Hy′0) ≤ d. If d(Hy0) ≤ d
2 this

follows from the triangle inequality. So assume d(Hy0) > d
2 . By Lemma 3.4, we

can find a vertex x with d(Hx) ≤ 8δ + 4, d(Hx, y0) ≤ d
2 + 2δ + 1, and d(Hx, x0) ≤

d(x0, y0)+8δ+4. Since we assumed d ≥ 40δ+20, hyperbolicity yields the following.

d(hx, y′0) ≤ max {d(hx, y0) + d(y′0, x0), d(hx, x0) + d(y′0, y0)} − d(y0, x0) + 2δ

≤ max
{

d

2
+ 4δ + 1−

[
d

4

]
,

[
d

4

]
+ 10δ + 4

}
≤ d

2
The triangle inequality now gives d(Hy′0) ≤ d.
Define f0 : (K0, x0) → (D,x0) by f0(hy0) = hy′0, and f0(y) = y if y ∈ K0 −Hy0.
To see that f0 extends to a simplicial map, f : (K, x0) → (D,x0), we must show
that d(f0(x), f0(y)) ≤ d whenever d(x, y) ≤ d and x, y ∈ K0. As in the proof
of [8, Proposition 7], it suffices to show that d(y, y0) ≤ d implies d(y, y′0) ≤ d for
y ∈ K0 − Hy0. Choose h ∈ H so that d(hy0, x0) = d(Hy0, x0). By maximality,
d(hy0, x0) ≥ d(y, x0). Thus, using hyperbolicity,

d(y, y′0) ≤ max {d(y, y0) + d(y′0, x0), d(y, x0) + d(y′0, y0)} − d(y0, x0) + 2δ

≤ max
{

d−
[
d

4

]
+ 2δ, d(y, x0) +

[
d

4

]
− d(hy0, x0) + d(hx0, x0) + 2δ

}
≤ max

{
d−

[
d

4

]
+ 2δ,

[
d

4

]
+ 10δ + 4

}
≤ d.

Note that by the definition of U ′, the image of f is contained in D. Next, Meintrup
and Schick [8, p.6] observe that for every simplex σ of K, the set f(σ) ∪ σ is
contained in a simplex of D. Thus, there is an H-equivariant homotopy between f
and the inclusion K ↪→ D. Notice that f(K) is a finite subcomplex of D and that
f(K0) = Hy′0 ∪ (K0 − Hy0). We claim that d(Hy′0, x0) < d(Hy0, x0). For every
h ∈ H,

d(hy′0, x0) ≤ d(hy′0, hx0) + d(hx0, x0) ≤ d(x0, y0)−
[
d

4

]
+ 8δ + 4

≤ d(x0,Hy0)−
[
d

4

]
+ 8δ + 4 < d(x0,Hy0),

since d ≥ 40δ + 20.
We wish to repeat this process with the finite subcomplex f(K). If d(Hy′0, x0) > d

2

and if y′0 was not in the original K0, choose y′0 as the representative of its orbit,
and choose the geodesic cy′

0
to be a subset of cy0 . This ensures that the subsequent

homotopies will remain in U ′. After finitely many steps every vertex will have
distance from x0 less than or equal to d

2 . Then they will span a simplex of D that
can be equivariantly contracted. �

Recall that a separable metric space X is an absolute retract (AR) if whenever it is
embedded in a separable metric space Y as a closed subset, it is a retract of Y . It is
called an absolute neighborhood retract (ANR) if whenever such a closed embedding
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is given, it is a retract of a neighborhood in Y . A closed subset W of a compact
ANR X, is called a Z-set if for every open set U in X, the inclusion U −W → U
is a homotopy equivalence. In particular, the inclusion X −W → X is a homotopy
equivalence.

Theorem 3.7. Let Γ be a δ-hyperbolic group and let d ≥ 40δ +20. For every finite
subgroup H of Γ, Pd(Γ)

H
is an absolute retract, and (∂Γ)H ⊂ Pd(Γ)

H
is a Z-set.

This theorem generalizes Theorem 1.2 of Bestvina and Mess [1], which gives the
result for the trivial group H = {1}. Because of Proposition 3.6, we can follow
their line of proof which rests on the following proposition proven in [1].

Proposition 3.8. ([1, Proposition 2.1]) Suppose that X is a compact metric space,
and W ⊂ X is a closed subset such that

(1) int W = ∅;
(2) dim X = n < ∞;
(3) for every k = 0, . . . , n, every point z ∈ W , and every neighborhood U of

z, there is a neighborhood V of z such that every map α : Sk → V − W
extends to α̃ : Bk+1 → U −W ;

(4) X −W is an ANR.

Then X is an ANR, and W ⊂ X is a Z-set. �

Proof of Theorem 3.7. We want to apply Proposition 3.8 with X = Pd(Γ)
H

and
W = (∂Γ)H . By Lemma 3.5, condition (1) is satisfied. Both X and W are
closed subsets of Pd(Γ) and ∂Γ respectively, so condition (2) follows from Gro-
mov [5]. Condition (3) follows from Proposition 3.6. Finally, condition (4) is
satisfied since Pd(Γ)H is a subcomplex of the second barycentric subdivision of

Pd(Γ). Thus, Pd(Γ)
H

is an ANR, and (∂Γ)H is a Z-set in Pd(Γ)
H

. Since Pd(Γ)H =

Pd(Γ)
H
− (∂Γ)H is contractible by Meintrup and Schick [8, Proposition 7], Pd(Γ)

H

is contractible. It follows that Pd(Γ)
H

is an AR. �

Proof of Theorem 1.1. Let δ ≥ 0 be given so that Γ is δ-hyperbolic. Choose EΓ
to be the second barycentric subdivision of the Rips complex, Pd(Γ), with d ≥
40δ+20. Meintrup and Schick [8] have shown that this is a finite Γ-CW model for the
universal space for proper Γ-actions. We proceed by showing that X = Pd(Γ)∪∂Γ,
with the Γ-action defined above, satisfies the following properties.

1. X is metrizable.
2. EΓH is dense in XH for every finite subgroup H.
3. XH is contractible for every finite subgroup H.
4. Compact subsets of EΓ become small near ∂Γ. That is, for every compact

subset K ⊂ EΓ and for every neighborhood U ⊂ X of a ∈ ∂Γ, there exists
a neighborhood V ⊂ X of a such that g ∈ Γ and gK ∩ V 6= ∅ implies
gK ⊂ U .

By [10, 11], this implies the theorem.
Property 1 is proved in [4] and can also be found in [2]. Property 2 is satisfied by
Lemma 3.5, and property 3 follows immediately from Theorem 3.7.
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Let {y1, . . . , yn} ⊂ Γ, a ∈ ∂Γ, and R > 0 be given. We must find an R′ > 0 such
that if gyj ∈ UR′(a) for some g ∈ Γ and some j ∈ {1, . . . , n}, then {gy1, . . . , gyn} ⊂
UR(a). This will imply property 4. Let R′ = R + A, where A = max{d(yk, yl)}.
Without loss of generality we can assume j = 1. That is, (a · gy1) ≥ R′. Choose a
representative {xi} of a such that (a · gy1) = (xi · gy1) for large i. For each i and k
we have

d(xi, gyk) ≤ d(xi, gy1) + d(gy1, gyk) ≤ d(xi, gy1) + A,

and

d(gy1, 1) ≤ d(gy1, gyk) + d(gyk, 1) ≤ d(gyk, 1) + A.

Therefore,

(xi · gyk) =
1
2

(d(xi, 1) + d(gyk, 1)− d(xi, gyk)) ≥ (xi · gy1)−A.

Thus, for every k,

(a · gyk) ≥ lim inf
i→∞

(xi · gyk) ≥ lim inf
i→∞

(xi · gy1)−A = (a · gy1)−A ≥ R.

This completes the proof of the theorem. �
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