
CONTROLLED CONNECTIVITY OF CLOSED 1-FORMS

D. SCHÜTZ

Abstract. We discuss controlled connectivity properties of closed 1-forms and their
cohomology classes and relate them to the simple homotopy type of the Novikov com-
plex. The degree of controlled connectivity of a closed 1-form depends only on positive
multiples of its cohomology class and is related to the Bieri-Neumann-Strebel-Renz in-
variant. It is also related to the Morse theory of closed 1-forms. Given a controlled
0-connected cohomology class on a manifold M with n = dim M ≥ 5 we can realize it
by a closed 1-form which is Morse without critical points of index 0, 1, n − 1 and n.
If n = dim M ≥ 6 and the cohomology class is controlled 1-connected we can approx-
imately realize any chain complex D∗ with the simple homotopy type of the Novikov
complex and with Di = 0 for i ≤ 1 and i ≥ n − 1 as the Novikov complex of a closed
1-form. This reduces the problem of finding a closed 1-form with a minimal number of
critical points to a purely algebraic problem.

1. Introduction

Given a finitely generated group G, Bieri, Neumann and Strebel [4] and Bieri and Renz
[5] define subsets Σk(G) of equivalence classes of Hom(G,R)−{0}, where two homomor-
phisms G→ R are identified if they differ only by a positive multiple. These sets reflect
certain group theoretic properties of G like finiteness properties of kernels of homomor-
phisms to R. In these papers Σk(G) is defined in terms of homological algebra but a more
topological approach is outlined as well. This topological approach has become more im-
portant in recent years. Bieri and Geoghegan [2] extend this theory to isometry actions
of a group G on a CAT(0) space M . Although we will restrict ourselves to the classical
case, we will use this more modern approach for our definitions. This way a property of
a homomorphism χ : G→ R being controlled (k − 1)-connected (CCk−1) is defined such
that χ being CCk−1 is equivalent to ±[χ] ∈ Σk(G). A refinement which distinguishes
between χ and −χ is also discussed.

In the case where G is the fundamental group of a closed connected smooth manifold M
the vector space Hom(G,R) can be identified with H1(M ; R) via de Rham cohomology.
Now the controlled connectivity properties have applications in the Morse-Novikov the-
ory of closed 1-forms. Given a cohomology class α ∈ H1(M ; R) we can represent it by
a closed 1-form ω whose critical points are all nondegenerate. We will call such 1-forms
Morse forms. In particular there are only finitely many critical points and every critical
point has an index just as in ordinary Morse theory. A natural question is whether there
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is a closed 1-form without critical points. This question was answered by Latour in [18].
A similar problem is to find bounds for the number of critical points of Morse forms rep-
resenting α and whether these bounds are exact. Special cases of this have been solved
by Farber [11] and Pajitnov [22].

To attack these problems one introduces the Novikov complex C∗(ω, v) which first ap-

peared in Novikov [21]. This chain complex is a free ẐGχ complex generated by the

critical points of ω and graded by their indices. Here ẐGχ is a completion of the group
ring ZG which is discussed in Section 5. To define the boundary in C∗(ω, v) one needs the
vector field v to be gradient to ω and to satisfy a transversality condition. This complex

turns out to be simple chain homotopy equivalent to ẐGχ ⊗ZG C∆
∗ (M̃) where M̃ is the

universal cover of M and a triangulation of M̃ is obtained by lifting a smooth triangula-
tion of M . Therefore a closed 1-form has to have at least as many critical points as any

chain complex D∗ has generators which is simple chain homotopic to ẐGχ ⊗ZG C
∆
∗ (M̃).

Latour’s theorem [18, Th.1’] now reads as

Theorem 1.1. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and
α ∈ H1(M ; R). Then α can be represented by a closed 1-form without critical points if and

only if α is CC1, ẐGχ ⊗ZG C
∆
∗ (M̃) is acyclic and τ(ẐGχ ⊗ZG C

∆
∗ (M̃)) = 0 ∈Wh(G;χ).

Here Wh(G;χ) is an appropriate quotient of K1(ẐGχ). The condition that α be CC1 can
be described as follows: a closed 1-form ω representing α pulls back to an exact form df
on the universal cover. For α to be CC1 we require that for every interval (a, b) ⊂ R there
is a λ ≥ 0 such that every 0- or 1-sphere in f−1((a, b)) bounds in f−1((a− λ, a+ λ)).

To prove this theorem one has to face the typical problems of the classical h- and s-
cobordism theorems. It turns out that the controlled connectivity conditions mentioned
above are exactly what we need for this. We get that α can be represented by a closed 1-
form without critical points of index 0 and n = dimM if and only if α is CC−1. Of course
this is equivalent to α being nonzero and the corresponding fact that such a cohomology
class can be represented without critical points of index 0 and n has been known for a
long time. If n ≥ 5 removing critical points of index 0, 1, n−1 and n is equivalent to CC0,
see Section 4. Finally CC1 allows us to perform the Whitney trick to reduce the number
of trajectories between critical points, provided n ≥ 6. This is basically already contained
in Latour [18, §4-5], but we think that our approach is easier. Also the connection to the
Bieri-Neumann-Strebel-Renz theory in [18] is not mentioned. Recently this connection
was made more clear by Damian [9], who also shows that the condition CC1 in Theorem
1.1 cannot be removed.

We deduce Latour’s theorem by showing that for α CC1 and dimM ≥ 6 we can realize a

given chain complex D∗ simple homotopy equivalent to ẐGχ ⊗ZG C
∆
∗ (M̃) approximately

as the Novikov complex of a closed 1-form, provided D∗ is concentrated in dimensions 2
to n− 2. To be more precise, our main theorem is

Theorem 1.2. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and

let α ∈ H1(M ; R) be CC1. Let D∗ be a finitely generated free ẐGχ complex with Di = 0

for i ≤ 1 and i ≥ n− 1 which is simple chain homotopy equivalent to ẐGχ ⊗ZG C
∆
∗ (M̃).
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Given L < 0 there is a Morse form ω representing α, a transverse ω-gradient v and a
simple chain isomorphism ϕ : D∗ → C∗(ω, v) where each ϕi is of the form I − Ai with
‖Ai‖ < expL.

The negative real number L comes from the fact that we do not actually realize the com-
plex D∗ perfectly, but we can only approximate it arbitrarily closely.

A similar theorem has been proven by Pajitnov [24, Th.0.12] in the case of a circle valued
Morse function f : M → S1. The condition CC1 is replaced there by the condition that
ker(f# : π1(M) → Z) is finitely presented. This is in fact equivalent to CC1 for rational
closed 1-forms, i.e. pullbacks of circle valued functions. See Theorem 6.9 for a comparison
to Pajitnov’s theorem.

In the exact case a similar theorem has been shown by Sharko [35] which is in the same
way a generalization of the s-cobordism theorem as Theorem 1.2 is a generalization of
Latour’s theorem.

Using Theorem 1.2 it is now easy to see that under the conditions that α is CC1 and
n ≥ 6 the minimal number of critical points of a closed 1-form within the cohomology
class α is equal to the minimal number of generators of a chain complex D∗ of the simple
homotopy type of the Novikov complex. Thus the problem is reduced to a purely algebraic

problem involving the Novikov ring ẐGχ. Using the work of Farber and Ranicki [13] and
Farber [12] this problem can also be shifted to a different ring, a certain noncommutative
localization of the group ring, see Theorem 6.10 for more details.

As an application of Theorem 1.2 we can approximately predescribe the torsion of a natu-

ral chain homotopy equivalence ϕv : ẐGχ⊗C∆
∗ (M̃)→ C∗(ω, v) inK1(ẐGχ)/〈[±g] | g ∈ G〉.

The result we obtain is

Theorem 1.3. Let G be a finitely presented group, χ : G → R be CC1, b ∈ ẐGχ satisfy
‖b‖ < 1 and ε > 0. Then for any closed connected smooth manifold M with π1(M) = G
and dimM ≥ 6 there is a Morse form ω realizing χ, a transverse ω-gradient v and a

b′ ∈ ẐGχ with ‖b− b′‖ < ε such that τ(ϕv) = τ(1− b′) ∈ K1(ẐGχ)/〈[±g] | g ∈ G〉.
By [32, Th.1.1] τ(ϕv) detects the zeta function of −v, a geometrically defined object car-
rying information about the closed orbit structure of −v. Therefore Theorem 1.3 allows
us to realize vector fields whose zeta function is arbitrarily close to a predescribed possible
zeta function.

To prove Theorem 1.2 we have to realize certain elementary steps between simple chain
homotopic complexes for the geometric Novikov complexes. The techniques of cancelling
critical points, adding critical points and approximating an elementary change of basis
are all contained in Milnor [19], but we have to make minor adjustments to be able to use
these methods in our situation. Most of these techniques in Milnor [19] are technically
quite involved, in order to not get hung up in technical difficulties we mainly just write
down the changes that need to be done in the original proofs of [19].

The results above suggest that vanishing of Novikov homology groups is related to con-
trolled connectivity conditions in general. To make this more precise one has to introduce
a weaker notion called controlled acyclicity. The precise relation can be found in Bieri
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[1] or Bieri and Geoghegan [3], but we discuss these results in Section 9 for the sake of
completeness.

The statement that the Novikov complex is chain homotopy equivalent to ẐGχ⊗ZGC
∆
∗ (M̃)

was already announced in Novikov [21], but detailed proofs did not appear until much
later, see Latour [18] or Pajitnov [23]. Easier proofs have since then appeared which are
based on concrete chain homotopy equivalences, but they are scattered through the liter-
ature and are not very well connected to each other. In Appendix A we describe some of
these equivalences and show how they are related to each other.

I would like to thank Ross Geoghegan for suggesting this topic and for several valuable
discussions. I would also like to thank Andrew Ranicki for inviting me to Edinburgh
where parts of this paper were written.

Notation. Given a closed 1-form ω on a closed connected smooth manifold M we denote
the cohomology class by [ω] ∈ H1(M ; R). A cohomology class α ∈ H1(M ; R) induces a
homomorphism χ = χα : π1(M) → R. We set G = π1(M). For a given closed 1-form ω
there is a minimal covering space such that ω pulls back to an exact form, namely the one
corresponding to kerχ[ω]. We denote it by ρ : M[ω] →M . The universal covering space is

denoted by ρ : M̃ →M . Given a vector field v on M , we can lift it to covering spaces of
M . We denote the lifting to M̃ by ṽ and the lifting to M[ω] by v̄. If the critical points of
ω are nondegenerate, we say ω is a Morse form. The set of critical points is denoted by
critω.

Given a smooth function f : N → R on a smooth manifold N with nondegenerate critical
points only we define an f -gradient as in Milnor [19, Df.3.1], i.e. we have

(1) df(v) > 0 outside of critical points.
(2) if p is a critical point of f , there is a neighborhood of p such that f = f(p) −∑i

j=1 x
2
j+

∑n
j=i+1 x

2
j . In these coordinates we require v = (−x1, . . . ,−xi, xi+1, . . . , xn).

This notion of gradient extends in the obvious way to Morse forms. It is more restrictive
than e.g. Pajitnov [26] or [31], but is used to avoid further technicalities in cancelling
critical points.

Choose a Riemannian metric on N . If p is a critical point and δ > 0, let Bδ(p), resp.Dδ(p),
be the image of the Euclidean open, resp. closed, ball of radius δ under the exponential
map. Here δ is understood to be so small that exp restricts to a diffeomorphism of these
balls and so that for different critical points p, q we get Dδ(p) ∩Dδ(q) = ∅.
If Φ denotes the flow of an f -gradient v, we set

W s(p, v) = {x ∈ N | lim
t→∞

Φ(x, t) = p}

W u(p, v) = {x ∈ N | lim
t→−∞

Φ(x, t) = p}

Bδ(p, v) = {x ∈ N | ∃t ≥ 0 Φ(x, t) ∈ Bδ(p)}
Dδ(p, v) = {x ∈ N | ∃t ≥ 0 Φ(x, t) ∈ Dδ(p)}

The set W s(p, v) is called the stable and W u(p, v) the unstable manifold at p. Notice that
W s(p, v) ⊂ Bδ(p, v) ⊂ Dδ(p, v), W

u(p, v) ⊂ Bδ(p,−v) ⊂ Dδ(p,−v) and the Bδ sets are
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open. The sets Dδ(p, v) do not have to be closed as other critical points might be in their
closure.

A gradient v is called transverse, if all stable and unstable manifolds intersect transversely.
The set of transverse gradients is generic, see Pajitnov [26, §5].

Let R be a ring with unit and η : ZG→ R a ring homomorphism. Then define

C∆
∗ (M ;R) = R⊗ZG C

∆
∗ (M̃) and C∗∆(M ;R) = HomR(C∆

∗ (M ;R), R).

Notice that C∆
∗ (M ;R) is a free left R module and C∗∆(M ;R) a free right R module.

Furthermore we denote the homology and cohomology by H∗(M ;R) and H∗(M ;R).

2. Controlled connectivity

Let k be a nonnegative integer and G a group of type Fk, i.e. there exists a K(G, 1) CW-
complex with finite k-skeleton. Given a homomorphism χ : G → R we want to define
statements ”χ is controlled (k−1)-connected” and ”χ is controlled (k−1)-connected over
±∞”. To do this let X be the k-skeleton of the universal cover of a K(G, 1) CW-complex
with finite k-skeleton. Then X is (k − 1)-connected and G acts freely and cocompactly
on X by covering translations. The homomorphism χ induces an action of G on R by
translations, i.e. for r ∈ R we set g · r = r + χ(g). An equivariant function h : X → R
is called a control function for χ. They exist because G acts freely on X and R is
contractible. For s ∈ R and r ≥ 0 denote Xs,r(h) = {x ∈ X | s− r ≤ h(x) ≤ s + r}. We
will write Xs,r if the control function is clear.

Definition 2.1. The homomorphism χ : G → R is called controlled (k − 1)-connected
(CCk−1), if for every r > 0 and p ≤ k− 1 there is a λ ≥ 0 such that for every s ∈ R every
g : Sp → Xs,r extends to ḡ : Dp+1 → Xs,r+λ.

This definition uses a choice of X and h, but it turns out that controlled connectivity is
a property of G and χ alone. To see that it does not depend on h we have the following

Lemma 2.2. Let h1, h2 : X → R be two control functions of χ. Then there is a t ≥ 0
such that Xs,r(h1) ⊂ Xs,r+t(h2) ⊂ Xs,r+2t(h1) for every s ∈ R, r ≥ 0.

Proof. Choose t = sup{|h1(x)− h2(x)| | x ∈ X}, which is finite by cocompactness. �

Lemma 2.3. The condition CCk−1 does not depend on X.

Proof. Let Y1, Y2 be two K(G, 1) CW-complexes with finite k-skeleton. Let α : Y1 → Y2

and β : Y2 → Y1 be cellular homotopy equivalences mutually inverse to each other. For
i = 1, 2 let Xi be the k-skeleton of the universal cover of Yi. α and β lift to maps
α̃ : X1 → X2 and β̃ : X2 → X1 and we get a homotopy between α̃ ◦ β̃|

X
(k−1)
2

and

the inclusion X
(k−1)
2 ⊂ X2, where X

(k−1)
2 denotes the (k − 1)-skeleton. Given a control

function h : X2 → R we get that h ◦ α̃ : X1 → R is also a control function. Now α̃
induces a map (X1)s,r(h ◦ α̃) → (X2)s,r(h). There is also a t ≥ 0 such that β̃ induces a
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map (X2)s,r(h)→ (X1)s,r+t(h ◦ α̃) and we get a diagram

(X1)s,r(h ◦ α̃) −→ (X2)s,r(h) −→ (X1)s,r+t(h ◦ α̃)y y y
(X1)s,r+λ(h ◦ α̃) −→ (X2)s,r+λ(h) −→ (X1)s,r+t+λ(h ◦ α̃)

It follows that χ being CCk−1 with respect to X2 implies χ being CCk−1 with respect to
X1. �

It is clear that we can attach cells of dimension ≥ k+ 1 to X and still use X to check for
CCk−1. We also have χ is CCk−1 if and only if r · χ is CCk−1 for r 6= 0.

Let us look at the case k = 0. A (−1)-connected space is a nonempty space. Given a
homomorphism χ : G → R, let us check for CC−1. Choose X and h. For r > 0 we need
λ ≥ 0 such that for every s ∈ R the empty map ∅ → Xs,r extends to ḡ : {∗} → Xs,r+λ.
So we need a λ such that Xs,r+λ is nonempty for all s ∈ R. This is clearly equivalent to
χ being a nonzero homomorphism. A nonzero homomorphism χ : G→ R is also called a
character.

In the case where imχ is infinite cyclic, CC0 is equivalent to kerχ being finitely generated
and CC1 is equivalent to kerχ being finitely presented. This follows from Brown [6,
Th.2.2,Th.3.2] or Bieri and Geoghegan [2, Th.A].

Controlled connectivity over end points. To draw a closer connection to the work of
Bieri, Neumann and Strebel [4] and Bieri and Renz [5] let us define controlled connectivity
over end points of R. Let X and h be as before. For s ∈ R define Xs = {x ∈ X |h(x) ≤ s}.

Definition 2.4. (1) The homomorphism χ : G → R is called controlled (k − 1)-
connected (CCk−1) over −∞, if for every s ∈ R and p ≤ k− 1 there is a λ(s) ≥ 0
such that every map g : Sp → Xs extends to a map ḡ : Dp+1 → Xs+λ(s) and
s+ λ(s)→ −∞ as s→ −∞.

(2) The homomorphism χ : G → R is called controlled (k − 1)-connected (CCk−1)
over +∞, if −χ is CCk−1 over −∞.

As before we get that these conditions only depend on G and χ, in fact they only depend
on positive multiples of χ.

It is shown in Bieri and Geoghegan [2, Th.H] that χ : G→ R being CCk−1 is equivalent
to χ being CCk−1 at −∞ and +∞. This is also contained in Renz [30]. Furthermore χ
being CCk−1 at −∞ corresponds to [χ] ∈ Σk(G), the homotopical geometric invariant of
Bieri and Renz [5, §6].

Cohomology classes and manifolds. Now let M be a closed connected smooth man-
ifold and let G = π1(M). By de Rham’s theorem we have Hom(G,R) = H1(M ; R) and
we can represent cohomology classes by closed 1-forms ω. Now ω pulls back to an exact
form on M̃ , i.e. ρ∗ω = df with f : M̃ → R smooth.

Lemma 2.5. The map f : M̃ → R is equivariant.
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Proof. Let x ∈ M̃ , g ∈ G and γ̃ a path from x to gx. Then ρ ◦ γ̃ represents the conjugacy
class of g ∈ G and we have

χ(g) =

∫
ρ∗γ̃

ω =

∫
γ̃

ρ∗ω =

∫
γ̃

df = f(gx)− f(x),

so f(gx) = f(x) + χ(g) = g · f(x). �

Therefore we can check for the controlled connectivity of χ by looking at a closed 1-form
ω which represents χ and use the pullback f as control function. Of course we need
M̃ to be (k − 1)-connected to ask for CCk−1, but we can always check for controlled
connectivity up to CC1. In the special case of an aspherical M on the other hand we can
check for CCk−1 for any k. We will say α ∈ H1(M ; R) is CCk−1, if the corresponding
homomorphism is. A control function of α will always refer to the pullback of a closed
1-form representing α.

Now assume that χ can be represented by a nonsingular closed 1-form ω. Then f : M̃ → R
is a submersion. An ω-gradient v lifts to an f -gradient ṽ and we can use the flowlines of
ṽ to push every map ḡ : Dp → M̃ into the subspace Xs,r. So we can arrange CCk−1 as

long as M̃ is (k − 1)-connected.

If we represent α by an arbitrary Morse form ω the critical points will represent an obstacle
to this approach. But if there exist no critical points of index less than k, a generic map
ḡ : Dp → M̃ with p < k will miss the unstable manifolds of the critical points of f and we
can use the negative flow to get a map ḡr : Dp → Xs homotopic to ḡ for every r ∈ R. So
given a Morse form with no critical points of index < k and > n− k we again get CCk−1

as long as M̃ is (k − 1)-connected.

3. Changing a closed 1-form within a cohomology class

The purpose of this section is to provide tools to modify a Morse form within its co-
homology class. We need to move the critical values of the control function in a useful
way. This is achieved by starting with a Morse form ω and a transverse ω-gradient v and
modifying ω to a cohomologous form ω′ which agrees with ω near the critical points and
such that v is also an ω′-gradient. Then we need a tool to cancel critical points of ω in a
nice geometric situation. Both tools are described in Milnor [19], but we need to sharpen
the results to apply them to irrational Morse forms, i.e. where the action induced by the
form is not discrete. Compare also Latour [18, §3].

Lemma 3.1. Let N be a smooth manifold, f : N → R a smooth function with nonde-
generate critical points only and v an f -gradient. Let p be a critical point of f , δ > 0
and a < b such that f(Bδ(p)) ⊂ (a, b) and (Dδ(p, v)∪Dδ(p,−v))∩ f−1([a, b]) contains no
critical points except p. Then given c ∈ (a, b) there is a g : N → R which agrees with f
outside of (Dδ(p, v) ∪Dδ(p,−v)) ∩ f−1([a, b]) such that g(p) = c and v is a g-gradient.

Proof. LetW = (Dδ(p, v)∪Dδ(p,−v))∩f−1([a, b]), V = f−1({a})∩W and 0 < δ1 < δ2 < δ.
Define µ : V → [0, 1] to be 0 on Dδ1(p, v)∩V and bigger than 1

2
on V −Dδ2(p, v). Extend µ

to µ̄ : W → [0, 1] by setting it constant on trajectories. Now define G : [a, b]×[0, 1]→ [a, b]
with the properties
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(1) ∂G
∂x

(x, y) > 0 and G(x, y) increases from a to b as x increases from a to b.

(2) G(f(p), 0) = c and ∂G
∂x

(x, 0) = 1 for x in a neighborhood of f(p).

(3) G(x, y) = x for all x if y > 1
2

and for x near 0 and 1 for all y.

Now g : W → [a, b] defined by g(q) = G(f(q), µ̄(q)) extends to the desired function as in
Milnor [19, Th.4.1] �

Let ω be a Morse form, v a transverse ω-gradient and f : Mω → R satisfy df = ρ∗ω. If
p ∈ M is a critical point of ω, it lifts to a critical point p̄ ∈ Mω of f . Let a < f(p) < b
such that A = (W s(p̄) ∪W u(p̄)) ∩ f−1([a, b]) is a positive distance away from all other
critical points. Then A is a compact set and since v is transverse we get that A is disjoint
from all translations of A in Mω. Then there is a δ > 0 such that this is also true for
(Dδ(p̄, v̄) ∪Dδ(p̄,−v̄)) ∩ f−1([a, b]). So we can apply Lemma 3.1 equivariantly on Mω to
get

Lemma 3.2. Let ω be a Morse form, v a transverse ω-gradient and f : Mω → R the
pullback of ω. If p̄ ∈Mω is a critical point of f and a < f(p̄) < b such that the closure of
A = (W s(p̄) ∪W u(p̄)) ∩ f−1([a, b]) contains no other critical points, then given c ∈ (a, b)
and a neighborhood U of A, there exists a Morse form ω′ cohomologous to ω such that v
is an ω′-gradient and a pullback f ′ : Mω → R that agrees with f outside the translates of
U and satisfies f ′(p̄) = c.

Cancellation of critical points. Theorem 5.4 of Milnor [19] shows how to cancel two
critical points of adjacent index if there are no other critical points around and there is
exactly one trajectory between them. To apply this to our situation we have to modify the
result so that the function will only be changed in a neighborhood of the critical points
and part of the stable manifolds. More precisely we have

Lemma 3.3. Let f : N → R be smooth with nondegenerate critical points only and v a
transverse f -gradient. Let p, q be critical points with ind p = ind q + 1. Assume there is
exactly one trajectory T of −v from p to q and an ε > 0 such that for any other trajectory
of −v starting at p and ending in a critical point p′, we have f(p′) < f(q) − ε. Then
there is an arbitrarily small neighborhood V of (W s(p) ∪ {q}) ∩ f−1([f(q), f(p)]) and a
smooth function f ′ : N → R which agrees with f outside V and has no critical points in
V . Furthermore there is an f ′-gradient v′ which agrees with v outside an arbitrarily small
neighborhood of T .

Proof. Using Lemma 3.1 we can change f near Dδ(p, v) such that there is no trajectory
of v starting at q and ending at a critical point q′ 6= p with f(q′) > f(p) + ε, i.e. we
can get the images of p and q arbitrarily close together. So it is good enough to look at
neighborhoods of the form Uδ = (Bδ(q,−v) ∪ Bδ(p, v)) ∩ f−1((f(q) − ε, f(p) + ε)) with
δ > 0 satisfying δ < ε.

We can assume the Preliminary Hypothesis 5.5 of Milnor [19]. Using the first assertions of
the proof of Milnor [19, Th.5.4] we can alter the vector field v in U δ

2
to a vector field v′ such

that every trajectory starting in U δ
2
∩ f−1({f(q)− δ

2
}) reaches f−1({f(p) + δ

2
}) and stays

within U δ
2
. Since v′ agrees with v outside U δ

2
we get that Uδ is invariant for trajectories of

v′ within f−1((f(q)−ε, f(p)+ε)). The closure of U δ
2
∩f−1({f(q)− δ

2
}) is compact, so we get
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a product neighborhood V ×[0, 1] ⊂ Uδ of T where V = V ×{0} = Uδ∩f−1({f(q)− δ
2
}) and

V ×{1} ⊂ f−1({f(p)+ δ
2
}). After rescaling we can assume f(q)− δ

2
= 0 and f(p)+ δ

2
= 1.

Consider V × [0, 1]as a subset of N and define g : V × [0, 1]→ R by

g(x, u) =

u∫
0

λ(x, t)
∂f

∂t
(x, t) + (1− λ(x, t))

∫ 1

0
λ(x, s)∂f

∂t
(x, s) ds∫ 1

0
1− λ(x, s) ds

dt

where λ : V × [0, 1]→ [0, 1] is a smooth function which is constant 1 outside of U 3
4
δ ∩V ×

[0, 1] and in a small neighborhood of V × {0, 1} and 0 in U δ
2
∩ V × [ε′, 1 − ε′] for ε′ > 0

so small that the function is 0 where v′ differs from v. Notice that g is smooth even for
x ∈ V with λ(x, s) = 1 for all s.

As in Milnor [19, p.54] it follows that g extends to f ′ : N → R with the required
properties. �

For a Morse form ω the covering space Mω has G/ kerχ as covering transformation group
and so there is a well defined homomorphism χ̄ : G/ kerχ → R. The desired Lemma to
cancel critical points of a Morse form now reads as

Lemma 3.4. Let ω be a Morse form on the closed manifold M , v a transverse ω-gradient,
p, q critical points with ind p = ind q+ 1. Let p̄, q̄ ∈Mω be lifts of p and q such that there
is exactly one trajectory T between q̄ and p̄ and that there are no trajectories between
translates Dq̄ and p̄ with χ̄(D) > 0. Then there is a Morse form ω′ cohomologous to ω
such that critω′ = critω − {p, q} and an ω′-gradient v′ which agrees with v outside an
arbitrarily small neighborhood of ρ(T ).

Proof. Let f : Mω → R satisfy df = ρ∗ω. Use Lemma 3.2 to move the images of the lifts
of all critical points other than q of index less than ind p by f(p̄)− f(q̄) into the negative
direction. To do this start with critical points of index 0, then critical points of index
1 and so on. This way we obtain a Morse form ω′′ with ρ∗ω′′ = df ′′ and the same set
of critical points as ω which still has v as a gradient. But now there are no trajectories
between p̄ and critical points in (f ′′)−1([f ′′(q̄), f ′′(p̄)]) other than T . By choosing the
neighborhood Uδ in Lemma 3.3 small enough, we get that all translates of Uδ in Mω are
disjoint. Now use Lemma 3.3 equivariantly on f ′′. �

4. Relations between controlled connectivity and cancellation of
critical points

We show that controlled connectivity in low degrees of a cohomology class leads to the
existence of a Morse form without critical points of low indices. This way we recover some
well known results of Latour [18, §4] in a slightly different setting.

Proposition 4.1. Let α ∈ H1(M ; R). Then the following are equivalent:

(1) α 6= 0.
(2) α is CC−1.
(3) α can be represented by a Morse form ω without critical points of index 0, n.
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Proof. 1. ⇔ 2. is clear.

1. ⇒ 3.: Choose an arbitrary Morse form ω and a transverse ω-gradient v and let p be a
critical point of index 0. Lift p to a critical point p̄ ∈ Mα and choose an ε > 0 such that
the component of p̄ in A = f−1((−∞, f(p̄+ ε]) is just a small disc. Since α 6= 0 there are
other components in A or otherwise p̄ would be an absolute minimum of f : Mα → R.

Claim: There is a critical point q of ω of index 1 and a lift q̄ ∈ Mα such that one of the
flowlines of W s(q̄, v̄) ends in p̄ while the other does not.

Since we know thatMα is connected there is a path between p̄ and a point of A which lies in
a different component of A. This path sits inside of some set A′ = f−1((−∞, f(p̄)+R]) for
some big enough R. But if there is no critical point q̄ as in the claim in f−1([f(p̄), f(p̄)+R])
the component of p̄ in A′ remains isolated by ordinary Morse theory.

Now the other trajectory of q̄ can flow to

(1) −∞
(2) a critical point p̄′ of index 0 with f(p̄′) < f(p̄).
(3) a critical point p̄′ of index 0 with f(p̄′) > f(p̄).
(4) a critical point p̄′ of index 0 with f(p̄′) = f(p̄).

In the cases 1. and 2. we can cancel p with q by Lemma 3.4. In case 3. we cancel q with
ρ(p̄′). In case 4. note that p̄′ cannot be a translate of p̄ because we are in Mα, so we can
push the image of p̄ slightly to a bigger number by Lemma 3.2 and then cancel p and q.
A dual argument holds for critical points of index n.

3. ⇒ 2.: Let ω be a Morse form without critical points of index 0, n, v a transverse ω-
gradient and f : M̃ → R a control function. We claim that given r > 0 and x ∈ R there is
a map ḡ : {∗} → f−1((x− r, x+ r)), i.e. we choose λ = 0. We know that M̃ is nonempty
so let y ∈ M̃ . Since there are no critical points of index 0 and n, any neighborhood of
y contains a dense subset of points that do not lie in any stable or unstable manifold by
Sard’s theorem. Choose such a point. Using the flow of ṽ we can flow this point to a
point y′ with f(y′) = x for any x ∈ R. �

Let α ∈ H1(M ; R) and f : M̃ → R a control function of α. If t ∈ R is a regular value we
define

Ñ(f, t) = f−1({t}).

Lemma 4.2. Let ω be a Morse form and v a transverse ω-gradient. Let t be a regular
value of f : M̃ → R where df = ρ∗ω. Let t0 > 0 and C a compact subset of Ñ(f, t). Then
C intersects only finitely many unstable discs W u(p̃, ṽ) with p̃ ∈ f−1([t− t0, t]).

Proof. For i ≥ 0 define W i =
⋃
W u(p̃, ṽ)∩f−1([t− t0, t]) where the union is taken over all

critical points p̃ ∈ f−1([t−t0, t]) with ind p̃ ≥ i. Then W i is closed. To see this notice that
we can change f on f−1((−∞, t]) to a function g such that W i ⊂ g−1([t− t0, t]) and g has
no critical points of index ≤ i−1 in g−1([t−t0, t]) and ṽ is a g-gradient. This is done using
Lemma 3.1 on every critical point in f−1([t− t0, t]) of index ≤ i− 1 unequivariantly. So if
x ∈ g−1([t− t0, t])−W i, then x is on a trajectory going all the way to g−1({t}) = Ñ(f, t).
By continuity points near x do the same.
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Therefore W i ∩C is compact. Now assume that C intersects infinitely many discs. Since
ω has only finitely many critical points, there is a critical point q such that C intersects
infinitely many translates of W u(q̃, ṽ) in W i, where q̃ is a lifting of q with f(q̃) ∈ (t−t0, t).
Choose a point xk for every such translate. Since C is compact there is an accumulation
point x ∈ C. Choose a small neighborhood U of x that gets mapped homeomorphically
intoM under the covering projection. Then there are infinitely many points yk ∈ W u(q̃, ṽ)
and pairwise different gk ∈ G such that gkyk ∈ U and {χ(gk)} is bounded. But the yk also
have to have an accumulation point since W u(q̃, ṽ) ∩ f−1([f(q̃), f(q̃) + t0]) has compact
closure by the well definedness of the Novikov complex. But this contradicts gkyk ∈ U for
infinitely many k. �

Proposition 4.3. Let α ∈ H1(M ; R). Assume that α 6= 0 and dimM ≥ 3. Then the
following are equivalent:

(1) α is CC0.
(2) There is a control function f of α without critical points of index 0, n and with

connected Ñ(f, t) ⊂ M̃ .
(3) There is a control function f of α with connected Ñ(f, t) ⊂ M̃ .

Proof. 1. ⇒ 2.: Choose ω′ without critical points of index 0, n by Proposition 4.1 and
a transverse ω′-gradient v. Let Ñ ′ = Ñ(f ′, t) where t is a regular value of f̃ ′ with
df ′ = ρ∗ω′. Since α is CC0 there is a λ > 0 such that any two points in Ñ ′ can be
connected in W̃ := (f ′)−1((t− λ, t+ λ)). Use Lemma 3.2 to get a new Morse form ω and
control function f such that f(p̃) = f ′(p̃) − λ for every critical point p̃ of index 1 and
f(q̃) = f ′(q̃) + λ for every critical point of index n − 1. Notice that since there are no
critical points of index 0 and v is transverse, every critical point of index 1 can be pushed
arbitrarily far to the negative side, similar for critical points of index n− 1.

Let Ñ = Ñ(f, t). We claim that Ñ is connected.

Let x, y ∈ Ñ . Since there are no critical points of index 0 and n we can assume that x
and y do not lie on any stable or unstable manifold of ṽ. So there are points x′, y′ ∈ Ñ ′
and paths from x to x′ and y to y′ using flowlines. But x′ and y′ can be connected in
W̃ . Using transversality we can find a smooth path between x′ and y′ in W̃ that does
not meet any stable or unstable manifolds of critical points q̃ with 2 ≤ ind q̃ ≤ n − 2,
the stable manifolds of critical points with index 1 and the unstable manifolds of critical
points with index n− 1.

By following flowlines this path can be pulled back into Ñ giving a path in Ñ between
x and y. Assume not: let z be a point on the path that lies on a trajectory that does
not intersect Ñ . Without loss of generality assume f(z) < t, so z would have to flow
into the positive direction to reach Ñ . That the trajectory does not intersect Ñ means
it converges to a critical point p̃ with f(p̃) < r and ind p̃ = n − 1 by the transversality
properties of the path. Now f ′(z) < f ′(p̃) = f(p̃) − λ < t − λ, contradicting z ∈ W̃ . So
every point on the path can flow into Ñ giving a path between x and y.

2. ⇒ 3. is trivial.

3. ⇒ 1.: Let Ñ = Ñ(f, t) be connected. Choose λ ≥ 0 such that f−1([0, λ]) contains
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two copies of Ñ , note that gÑ is a copy of Ñ in M̃ for every g ∈ G. Let g : S0 →
f−1((x−r, x+r)) be a map. Since M̃ is connected, we can extend g to a map g′ : D1 → M̃ .
If g′(D1) ⊂ f−1((x− r − λ, x+ r + λ)), we are done. If not observe that by the choice of
λ both f−1((x − r − λ, x − r]) and f−1([x + r, x + r + λ)) contain a copy of Ñ . Denote
them by Ñ− and Ñ+. We can arrange that g′(D1) intersects Ñ− ∪ Ñ+ transversely.
Then (g′)−1(Ñ− ∪ Ñ+) ⊂ D1 is a finite set. Order them as −1 < t1 < . . . < tj < 1. If
g′(ti) 6= g′(ti+1), then the restriction of g′ to [ti, ti+1] is a path in f−1((x−r−λ, x+r+λ)). If
g′(ti) = g′(ti+1) we can change g′ on [ti, ti+1] to a path in Ñ∓. This way we get an extension
ḡ : D1 → f−1((x− r − λ, x+ r + λ)) of g. �

Proposition 4.4. Let α ∈ H1(M ; R). Assume that α 6= 0 and dimM ≥ 5. Then α is
CC0 if and only if α can be represented by a Morse form ω without critical points of index
0, 1, n− 1, n.

Proof. Assume α is CC0. Choose a Morse form ω without critical points of index 0, n and
such that there is a regular value t ∈ R with Ñ(f, t) connected by Proposition 4.3. Let v
be a transverse ω-gradient.

Let p ∈ M be a critical point of index 1 and choose a lift p̃ ∈ M̃ with f(p̃) > t. Let
r > f(p̃) such that Ñ(f, r) ∩W u(p̃, ṽ) is an (n − 2)-sphere S. Denote the piece of the
unstable manifold with boundary S by B. Choose a small arc in Ñ(f, r) that intersects S
transversely in one point and so that the endpoints do not lie in any unstable manifold.
Both endpoints can then flow into the negative direction until they reach Ñ(f, t). Since
Ñ(f, t) is connected we can choose a path between them. Now we have a loop in f−1([t, r])
which intersects S transversely in exactly one point. We want to flow this loop back to
Ñ(f, r). By transversality we can change the loop so it avoids stable manifolds of critical
points with index ≤ n − 2. But we can change ω by Lemma 3.2 by increasing the value
of critical points of index n − 1 by (r − t). By abuse of notation denote the resulting
Morse form still by ω and f for the control function. Then the loop can flow back to
Ñ(f, r). Since M̃ is simply connected, the loop bounds in M̃ . By transversality we can
embed a disc D2 that avoids stable manifolds of critical points of index ≤ n − 3. We
can also arrange that D2 embeds into M , not just in M̃ . Notice that ∂D2 ⊂ Ñ(f, r) and
intersects S in exactly one point. Choose a ≤ b such that f(D2) ⊂ [a, b]. Use Lemma
3.2 to increase the value of critical points of index n − 1 and n − 2 by (b − a). Denote
the resulting Morse form again by ω and the control function by f . Note that this can
be done so that ∂D2 and S are still in Ñ(f, r). We can assume that b is a regular value.
Now we can use the flow of ṽ to push D2 into Ñ(f, b). Denote the boundary of that disc
by S1. We have that S1 intersects W u(p̃, ṽ) transversal in exactly one point, S1 embeds
into M and S1 bounds a disc D2

1 in Ñ(f, b). Since the vector field will be changed in a
small neighborhood of D2

1, we need to make sure that D2
1 is nice. Since S1 is obtained

from ∂D2 by flowing we get a 2-dimensional surface S1 × I between S1 and ∂D2. Use
transversality to modify D2

1 such that it does not intersect any translates of that surface.
We do not want to change the vector field on B. Since B is (n − 1)-dimensional and
D2

1 ⊂ Ñ(f, b), D2
1 can intersect translates of B in finitely many circles. But whenever we

have such a circle, we can change D2
1 to remove the intersection since the normal bundle

of B is trivial.
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Now we can proceed as in Milnor [19, p.105]. Insert two critical points q̃, q̃′ of index 2
and 3 equivariantly near the right of S1. Adjust ṽ to ṽ′ so that W s(q̃, ṽ) ∩ Ñ(f, b) = S1.
Then there is exactly one flowline from q̃ to p̃ and all other trajectories from q̃ go to the
left of p̃. Hence we can cancel p̃ and q̃. This way we can trade all critical points of index
1 for critical points of index 3. A dual argument works for critical points of index n− 1.

Now assume we have a control function f without critical points of index 0, 1, n − 1, n.
Given g : S0 → f−1((x − r, x + r)) it extends to a map D1 → M̃ . By transversality we
can change this map so that it avoids stable and unstable manifolds in the interior of D1.
Then we can use the flow to push it into f−1((x− r, x+ r)). �

Proposition 4.5. Let α ∈ H1(M ; R). Assume that α 6= 0 and dimM ≥ 5. Then the
following are equivalent:

(1) α is CC1.
(2) There is a control function f of α without critical points of index 0, 1, n− 1, n and

with simply connected Ñ(f, t) ⊂ M̃ .
(3) There is a control function f of α with simply connected Ñ(f, t) ⊂ M̃ .

Proof. 1. ⇒ 2.: The proof is analogous to the proof of Proposition 4.3. Choose a Morse
form ω′ representing α without critical points of index 0, 1, n−1, n by Proposition 4.4, let
v be a transverse ω′-gradient and let f ′ : M̃ → R be a control function. Let Ñ ′ = Ñ(f ′, t)
where t ∈ R is a regular value. Since α is CC1 there is a λ > 0 such that every loop in Ñ ′

bounds in W̃ := (f ′)−1((t−λ, t+λ)). Change ω′ to a Morse form ω with control function
f such that f(p̃) = f ′(p̃)−λ for critical points of index 2 and f(q̃) = f ′(q̃) +λ for critical
points of index n− 2.

Let Ñ = Ñ(f, t) and γ a loop in Ñ . Using transversality we can assume that γ does not
intersect any stable or unstable manifolds of ṽ. So we can use the flow of ṽ to flow γ into
Ñ ′. This loop bounds in W̃ . Choose the disc so that it intersects stable and unstable
manifolds transversely. This disc now flows back into Ñ as in the proof of Proposition
4.3. Therefore Ñ is simply connected.

2. ⇒ 3. is trivial.

3.⇒ 1.: Let Ñ = Ñ(f, t) be simply connected. Then α is CC0 by Proposition 4.3. Choose
λ ≥ 0 such that f−1([0, λ]) contains two copies of Ñ . Let g : S1 → f−1((x− r, x+ r)) be a
map. This extends to a map g′ : D2 → M̃ . Let Ñ− be a copy of Ñ in f−1((x−r−λ, x−r])
and Ñ+ a copy of Ñ in f−1([x+ r, x+ r+λ)). We can assume that g′ intersects Ñ− ∪ Ñ+

transversely, i.e. in a finite set of circles. Since these circles bound in Ñ∓ we can change
g′ away from the boundary to a map ḡ : D2 → f−1((x− r − λ, x+ r + λ)). �

5. The Novikov complex

Let G be a group and χ : G → R be a homomorphism. We denote by
̂̂ZG the abelian

group of all functions G → Z. For λ ∈ ̂̂ZG let supp λ = {g ∈ G |λ(g) 6= 0}. Then we
define

ẐGχ = {λ ∈ ̂̂ZG | ∀r ∈ R # supp λ ∩ χ−1([r,∞)) <∞}
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For λ1, λ2 ∈ ẐGχ we set (λ1 · λ2)(g) =
∑

h1,h2∈G
h1h2=g

λ1(h1)λ2(h2), then λ1 · λ2 is a well defined

element of ẐGχ and turns ẐGχ into a ring, the Novikov ring. It contains the usual group

ring ZG as a subring and we have ZG = ẐGχ if and only if χ is the zero homomorphism.

Definition 5.1. The norm of λ ∈ ẐGχ is defined to be

‖λ‖ = ‖λ‖χ = inf{t ∈ (0,∞)| supp λ ⊂ χ−1((−∞, log t])}.

For L ∈ R define pL : ẐGχ → ẐGχ by pL(λ)(g) =

{
λ(g) χ(g) ≥ L

0 otherwise
. Notice that pL

factors through ZG and is a homomorphism of abelian groups, but not of rings. It also

extends to free ẐGχ modules.

Given a ∈ ẐGχ with ‖a‖ < 1, the series
∑∞

k=0 a
k is a well defined element of ẐGχ and

hence the inverse of 1− a. Therefore {1− a ∈ ẐGχ | ‖a‖ < 1} is a subgroup of the group

of units. Let Wh(G;χ) be the quotient of K1(ẐGχ) by these units and units of the form
±g with g ∈ G.

Given a Morse form ω and a transverse ω-gradient v we can define the Novikov complex

C∗(ω, v) which is in each dimension i a free ẐGχ complex with one generator for every
critical point of index i. Here χ is the homomorphism induced by ω. To define the
boundary homomorphism choose an orientation for the stable manifolds of every critical
point. Now coorient the unstable manifolds, i.e. choose an orientation of the normal
bundle so that the coorientation at W u(p, v) projects to the chosen orientation of W s(p, v)
at p. If p, q are critical points with ind p = ind q + 1 = i, then W s(p, v) ∩W u(q, v) is 1-
dimensional which means it consists of isolated trajectories. Given a trajectory T between
p and q we want to define a sign for T . If x ∈ T let X ∈ TxM be a vector with ω(X) < 0.
Also let X1, . . . , Xi−1 ∈ TxM represent the coorientation of W u(q, v). If the projection
of X,X1, . . . , Xi−1 into the tangent space of W s(p, v) at x represents the orientation of
W s(p, v), set ε(T ) = 1, otherwise set ε(T ) = −1. Note that these projections do represent
a basis for TxW

s(p, v) by the transversality assumption.

Now lift the orientations to M̃ and choose for every critical point of ω exactly one lift in

M̃ . For critical points p, q with ind p = ind q + 1 define [p : q] ∈ ẐGχ by

[p : q] (g) =
∑

ε(T )

where the sum is taken over the set of all trajectories between p̃ and gq̃, where p̃ and q̃
are the chosen liftings of p and q. Then define ∂ : C∗(ω, v)→ C∗−1(ω, v) by

∂(p) =
∑

q, ind q=ind p−1

[p : q] q.

That [p : q] is indeed an element of ẐGχ and ∂2 = 0 is shown in the exact case in Milnor
[19, §7]. The case of a circle valued Morse function can be reduced to the exact case by
inverse limit arguments, compare Pajitnov [23] or Ranicki [29]. Finally the irrational case
can be reduced to the rational case by approximation, see Pajitnov [25] or the author [31,
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§4.2].

Since [p : q] depends on the gradient v, we also write [p : q]v when we deal with different
gradients.

The appendix describes simple chain homotopy equivalences ϕv : C∆
∗ (M ; ẐGχ)→ C∗(ω, v)

and ψv1,v2 : C∗(ω1, v1) → C∗(ω2, v2) with ψv1,v2 ◦ ϕv1 ' ϕv2 , ψv2,v3 ◦ ψv1,v2 ' ψv1,v3 and
ψv1,v1 ' id, where ' means chain homotopic and ω, ω1, ω2, ω3 are cohomologous.

To define the Novikov complex, we made a choice of liftings of critical points. Let B ⊂
crit(f) be this choice. Set AB = sup{|f(p̃)− f(q̃)| | p̃, q̃ ∈ B}.

Proposition 5.2. Let ω be a Morse form without critical points of index 0, 1, n−1, n, v a
transverse ω-gradient, B a choice of liftings of the critical points of ω and p1 6= p2 critical
points of ω having index i. Let g ∈ G be such that f(p̃1) > f(p̃2) +χ(g), where p̃1, p̃2 ∈ B
are liftings of p1, p2 and L < min{0, χ(g)}. Then there is a transverse ω-gradient v′ such
that

(1) pL(ψv′,v(p1)) = p1 + gp2.
(2) pL(ψv′,v(q)) = q for critical points q 6= p1.
(3) pL([p : q]v′) = pL([p : q]v) for p 6= p1, ind q = ind p− 1.
(4) pL([p1 : q]v′) = pL([p1 : q]v) + gpL([p2 : q]v) for ind q = i− 1.

We can think of the statement as performing an elementary change of basis, but we can
only approximate the elementary change. The proof is based on Milnor [19, Th.7.6]. The
condition f(p̃1) > f(p̃2) + χ(g) can always be achieved by changing ω using Lemma 3.2.

Proof. Choose a regular value t0 with f(p̃1) > t0 > f(p̃2) + χ(g) and set V0 = f−1({t0}).
We have SL := W s(p̃1, ṽ)∩V0 is (i−1)-dimensional and SR := W u(gp̃2, ṽ∩V0 is (n−i−1)-
dimensional. Since there are no critical points of index 0, 1, n−1, n, both are nonempty and
V0 is connected. Hence we can embed a path ϕ : [0, 3]→ V0 that intersects SL transversely
at ϕ(1), SR transversely at ϕ(2) and that misses all other stable and unstable manifolds.
Using Milnor [19, Lm.7.7] we get a nice product neighborhood U of this arc. By choosing
it small enough and Lemma 4.2 we can assume that it misses the unstable and stable
manifolds of critical points of f other than p̃1 and gp̃2 in f−1((t0−AB +L, t0 +AB −L)).
To see this notice that for every critical point of ω there are only finitely many liftings in
f−1((t0 − AB + L, t0 + AB − L)) whose stable or unstable manifolds can get close to the
arc. So they stay away a positive distance.

Now using the flow of ṽ we can find a small product neighborhood of U in M̃ and change
the vector field ṽ to a vector field ṽ′′ equivariantly as in Milnor [19, p.96]. The stable
and unstable manifolds of critical points of f other than p̃1 and p̃2 do not get changed
within a range of ±(AB − L). The ω-gradient v′′ need not be transverse, but we can find
a transverse ω-gradient v′ as close as we like to v in the smooth topology. Choose one so
close that the intersection numbers of stable and unstable manifolds within the ±(AB−L)
range are as with v′′. Then the properties 1.-4. of ψv′,v follow by the definition of ψv′,v

and the fact that we can use v′′ for pL([p : q]v′). �

For the next proposition the controlled 1-connectivity is crucial.
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Proposition 5.3. Let ω be a Morse form without critical points of index 0, 1, n − 1, n
which is CC1 and v a transverse ω-gradient. Assume that n = dimM ≥ 6. Let q be a
critical point of index i with 2 ≤ i ≤ n − 3 and p be a critical point of index i + 1. Let
p̃, q̃ be liftings of p and q to M̃ such that there exist two trajectories T1, T2 between p̃ and
q̃ with ε(T1) = −ε(T2) and there exist no trajectories between p̃ and gq̃ with χ(g) > 0.
Let L < 0. Then there is a Morse form ω′ cohomologous to ω which agrees with ω at
the common set of critical points, a transverse ω′-gradient v′ such that there are two less
trajectories between p̃ and q̃, no new trajectories between p̃ and gq̃ with χ(g) > L and we
have pL ◦ ψv′,v = pL and pL([r : s]v′) = pL([r : s]v) for ind r = ind s+ 1.

Proof. Let us assume that 2 ≤ i ≤ n− 4, if i = n− 3, look at −ω and −v.
We can alter ω as in the proof of Proposition 4.5 such that there is a simply connected
Ñ(f, t). In the irrational case we can assume that t satisfies f(q̃) > t > f(p̃) and that t is so
close to f(q̃) such that Ñ(f, t)∩W u(q̃, ṽ) is a sphere of dimension (n−i−1). In the rational
case we can change ω so that f orders the critical points in f−1([t, t+ χ(g)]), where χ(g)
generates imχ and then we also get a simply connected Ñ(f, t) with f(q̃) < t < f(p̃) and
Ñ(f, t)∩W u(q̃, ṽ) is a sphere of dimension (n− i−1). We now want Ñ(f, t)∩W s(p̃, ṽ) to
be a sphere of dimension i. Since there are no trajectories between p̃ and gq̃ with χ(g) > 0
we can achieve this by changing ω to a Morse form ω′ such that f ′(r̃) = f(r̃)− (f(p̃)− t)
for every critical point r 6= q with ind r ≤ i.

Let Ñ = Ñ(f ′, t). Then Ñ ∩W u(q̃, ṽ) = SR and Ñ ∩W s(p̃, ṽ) = SL are spheres.

We need that Ñ is still simply connected. But a loop in Ñ is homotopic to one that
can be flown into Ñ(f, t) since there are no critical points of index 0 and 1. Now this
loop bounds in the simply connected Ñ(f, t). But a generic 2-disc can flow back into Ñ ,
since we only moved critical points of index ≤ n − 4. This shows that Ñ is also simply
connected.

We want to apply Milnor [19, Th.6.6]. To see that Ñ − SR is simply connected the same
argument as in Milnor [19, p.72] works. Notice that the isotopy in [19, Th.6.6] is fixed
outside a neighborhood of a 2-disc which bounds two arcs between T1 ∩ Ñ and T2 ∩ Ñ .
By transversality arguments we can assume that this disc does not intersect any unstable
manifolds W u(r̃, ṽ) and stable manifolds W s(s̃, ṽ) for r̃, s̃ ∈ (f ′)−1((t−AB+L, t+AB−L))
with ind r̃ ≥ i + 1 and ind s̃ ≤ i. Here AB is defined as before with respect to f ′.
We can also assume the disc embeds into M . By choosing the neighborhood of the
disc small enough we can change the ω′-gradient v to an ω′-gradient v′′ with two fewer
trajectories between p̃ and q̃. Choose a transversal ω′-gradient v′ so close to v′′ such
that the intersection numbers in the ±(AB − L)-range are the same. By the way the
neighborhood of the disc was chosen we now get pL ◦ ∂′ = pL ◦ ∂ and pL ◦ ψv′,v = pL. �

Proposition 5.4. Let ω be a Morse form without critical points of index 0, 1, n−1, n and
v a transverse ω-gradient. Let x ∈ M be a regular point, i an integer with 2 ≤ i ≤ n− 3
and L < 0. Given any neighborhood U of x there is a Morse form ω′ and a transverse ω′-
gradient v′ such that ω′ agrees with ω outside U and critω′ = critω∪{p, q} with p, q ∈ U
and ind p = i+ 1, ind q = i such that

(1) [p : q]v′ = 1− a with ‖a‖ < 1.
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(2) max{‖[p : q′]v′‖, ‖[r : p]v′‖, ‖[p′ : q]v′‖, ‖[q : s]v′‖} < expL, where ind q′ = i,
ind p′ = i+ 1, ind r = i+ 2, ind s = i− 1, q′ 6= q and p′ 6= p.

(3) pL([p′ : q′]v′) = pL([p′ : q′]v) for p′ 6= p and q′ 6= q.
(4) pL(ψv,v′(p

′)) = p′ for p′ ∈ critω.

Proof. Since there are no critical points of index 0 and n there is a y ∈ U which does not
lie on any stable or unstable manifold. Let ỹ ∈ M̃ be a lift of y. We can find a small
neighborhood V of y with V ⊂ U such that Ṽ ∩W s,u(r̃, ṽ) = ∅, if r is a critical point of
ω and |f(r̃)− f(ỹ)| < 2AB − L. Here Ṽ is a lift of V with ỹ ∈ Ṽ .

We can insert two critical points p, q of adjacent indices as in Milnor [19, p.105]. This
way we obtain a Morse form ω′ and a ω′-gradient v′′. Choose a transverse ω′-gradient v′

so close to v′′ the intersection numbers do not change in a range of ±(AB − L). Choose
the liftings for the basis of the corresponding Novikov complex in a translate of Ṽ such
that AB does not increase by more than |f(p̃) − f(q̃)|. Orient the discs so that there is
one positive trajectory between p̃ and q̃. Hence [p : q]v′ = 1− a with ‖a‖ < 1. We get the
term a because there might be trajectories between p̃ and gq̃ with χ(g) < 0.

Conditions 2. 3. and 4. follow because the stable and unstable manifolds W s,u(r̃, ṽ′′) did
not change in f−1([f(r̃)−AB +L, f(r̃) +AB +L]) for critical points r 6= p or q and since
v′ is close enough to v′′. �

Theorem 5.5. Let ω be a Morse form without critical points of index 0, 1, n− 1, n which
is CC1. Let v be a transverse ω-gradient and L < 0. Let p, q be critical points with
ind p = ind q + 1 such that [p : q] = ±g(1− a) with g ∈ G and ‖a‖ < 1. Assume that n =
dimM ≥ 6. Then there is a Morse form ω′ cohomologous to ω with critω′ = critω−{p, q}
and a transverse ω′-gradient v′ such that

(1) pL([p′ : q′]v′) = pL([p′ : q′]v) for all p′, q′ ∈ critω′ with ind p′ = ind q′ + 1 6= i+ 1.
(2) pL(ψv′,v(p

′)) = p′ for all p′ ∈ critω′.

Proof. Let p̃ and q̃ be the lifts of p and q used for the Novikov complex. By replacing
q̃ by gq̃ we can assume [p : q] = ±1 − a. There exist only finitely many trajectories
between p̃ and all hq̃ with χ(h) ≥ 0. Furthermore, for every trajectory T1 between p̃

and h̃q with χ(h) ≥ 0 and h 6= 1 there is another trajectory T2 between p̃ and h̃q with
ε(T2) = −ε(T1) since [p : q](h) = 0. So we can cancel such trajectories using Proposition
5.3 provided there are no trajectories between p̃ and h′q̃ with χ(h′) > χ(h). Start with
the biggest χ(h) and cancel all trajectories between p̃ and hq̃ with χ(h) ≥ 0 and h 6= 1.
Since [p : q](1) = ±1 we can cancel all trajectories between p̃ and q̃ except one. Now we
can cancel p and q using Lemma 3.4. The new transverse ω′-gradient v′ can be arbitrarily
close to v outside a small neighborhood of the trajectory so we can achieve conditions 1.
and 2. since the stable manifolds of critical points of index ≤ i with respect to v stay away
from the trajectory and so do the unstable manifolds of critical points of index ≥ i+1. �

Remark 5.6. We do not obtain condition 1. of Theorem 5.5 in dimension i+ 1 as there
can be trajectories of −v from a critical point p′ of index i + 1 to q. After cancelling q
with p these trajectories flow towards p under −v′ and from there to other critical points
of index i which appear in the boundary of p under v.
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6. The simple homotopy type of the Novikov complex

In this section we assume that M is a closed connected smooth manifold with n =
dimM ≥ 6 and α ∈ H1(M ; R) is CC1. Given a finitely generated free ẐGχ complex
D∗ with Di = 0 for i ≤ 1 and i ≥ n − 1 which is simple chain homotopy equivalent to

C∆
∗ (M ; ẐGχ) we want to realize it as the Novikov complex of a Morse form representing

α. We will not be quite able to do this, but we can approximate this in a reasonable
sense. Notice that such complexes exist by Proposition 4.4.

If A is a matrix over ẐGχ, denote ‖A‖ = max{‖Aij‖} to be the norm of A. This

norm has similar properties as the norm for elements of ẐGχ, in particular we have
‖A+B‖ ≤ max{‖A‖, ‖B‖} and ‖AB‖ ≤ ‖A‖ ‖B‖.

Definition 6.1. An invertible matrix A over ẐGχ is called simple if τ(A) = 0 ∈Wh(G;χ).

Being a simple matrix is an open condition in the following sense:

Lemma 6.2. If A is invertible, there is an RA > 0 such that A−B is also invertible and

τ(A − B) = τ(A) for ‖B‖ < RA. If A is simple, then A = X(I − D) ∈ GL(ẐGχ) with

‖D‖ ≤ 1 and τ(X) = 0 ∈ K1(ẐGχ)/〈±[g] | g ∈ G〉.

Proof. We have A − B = A(I − A−1B), so choosing RA = ‖A−1‖−1 gives the first part.

If A is simple, we have

(
A 0
0 I

)
= E1 · · ·Ek with Ei either an elementary matrix or a

stabilization of ±g or 1− c with ‖c‖ < 1. We can move matrices of the form 1− c to the

right of the product to get

(
A 0
0 I

)
= X · (I −D) with ‖D‖ < 1 and X a product of

elementary matrices and stabilizations of ±g. �

Given a chain map ϕ : D∗ → E∗ between finitely generated free ẐGχ complexes with
given basis we can express each ϕi : Di → Ei by a matrix which we also denote by ϕi.

Finitely generated free ẐGχ complexes are assumed to have a basis, in case of a Novikov
complex the basis comes from liftings of critical points.

Theorem 6.3. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and

let α ∈ H1(M ; R) be CC1. Let D∗ be a finitely generated free ẐGχ complex with Di = 0

for i ≤ 1 and i ≥ n − 1 which is simple chain homotopy equivalent to C∆
∗ (M ; ẐGχ).

Given L < 0 there is a Morse form ω representing α, a transverse ω-gradient v and a
simple chain isomorphism ϕ : D∗ → C∗(ω, v) where each ϕi is of the form I − Ai with
‖Ai‖ < expL.

The condition that α be CC1 cannot be removed as is shown in Damian [9], where for
every n ≥ 8 a manifold M of dimension n and a cohomology class α ∈ H1(M ; R) is
constructed such that the Novikov complex is simple chain homotopy equivalent to the
trivial complex, but α cannot be realized by a nonsingular 1-form.

Let us first outline the idea of the proof. Given D∗, we choose any Novikov complex
corresponding to a closed 1-form ω. Then we introduce for every generator of D2 a pair
of critical points of index 2 and 3. The new critical points of index 2 do not carry any
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information, but we can change the chain equivalence between D∗ and the new Novikov
complex so that the part between D2 and the new critical points of index 2 approximates
the identity. Then we change the stable discs of these new critical points so that they
carry the information of the old critical points. Then the old critical points do not carry
any relevant information and can be traded against critical points of index 4. This way
we can work our way up inductively until the Novikov complex looks like D∗ except in
dimensions n− 3 and n− 2.

Now we introduce for every generator of Dn−3 and Dn−2 pairs of critical points of index
n− 3 and n− 2, one which will carry the information of the complex D∗ and one which is
useless. Then we are left with the old critical points of index n− 3 and n− 2 and the new
useless critical points. The fact that D∗ has the simple homotopy type of the Novikov
complex now allows us to cancel these unnecessary critical points and we are left with a
Novikov complex which approximates D∗. In fact the boundary between the unnecessary
critical points forms a simple matrix which can be transformed to a matrix of the form
I−B with ‖B‖ < 1. by elementary steps. But this is good enough to cancel these critical
points.

Before we start with the proof we need two algebraic lemmas first.

Lemma 6.4. Let D∗, E∗ be chain complexes, ϕ : D∗ → E∗ a chain map and j an integer.
Assume that Ej = Cj ⊕Dj and Ej+1 = Cj+1 ⊕Dj. Denote

∂E
j+1 =

(
∂11 ∂12

∂21 ∂22

)
ϕj =

(
A1

A2

)
ϕj+1 =

(
B1

B2

)
and assume that ∂22 : Dj → Dj is invertible. Define ψ : D∗ → E∗ by ψi = ϕi for
i 6= j, j + 1 and

ψj =

(
A1 + ∂12∂

−1
22

I + A2

)
ψj+1 =

(
B1

∂−1
22 ∂

D
j+1 +B2

)
where I : Dj → Dj denotes the identity. Then ψ is chain homotopic to ϕ.

Proof. Define H : D∗ → E∗+1 by Hi = 0 for i 6= j and Hj =

(
0
−∂−1

22

)
. Then

∂E
j+1Hj +Hj−1∂

D
j = ∂E

j+1Hj =

(
−∂12∂

−1
22

−I

)
= ϕj − ψj

and

∂E
j+2Hj+1 +Hj∂

D
j+1 = Hj∂

D
j+1 =

(
0

−∂−1
22 ∂

D
j+1

)
= ϕj+1 − ψj+1.

Hence H is the required chain homotopy. �

Lemma 6.5. Let D∗, E∗ be chain complexes, j an integer and ϕ : D∗ → E∗ a chain
homotopy equivalence such that ϕi : Di → Ei is an isomorphism for i ≤ j−1. Then there
is an inverse equivalence ψ : E∗ → D∗ such that ψi = ϕ−1

i for i ≤ j − 1.

Proof. Let ψ′ : E∗ → D∗ be a chain equivalence with id ' ψ′ϕ and id ' ϕψ′. Let
H : D∗ → D∗+1 be a chain homotopy H : id ' ψ′ϕ. Define ψ : E∗ → D∗ by ψi = ϕ−1

i for
i ≤ j − 1, ψj = ψ′j +Hj−1ϕ

−1
j−1∂

E
j and ψi = ψ′i for i ≥ j + 1. Now define K : E∗ → D∗+1
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by Ki = Hiϕ
−1
i for i ≤ j − 1 and Ki = 0 for i ≥ j. Then it is easy to see that

∂D
i+1Ki +Ki−1∂

E
i = ψi − ψ′i. for all i. �

Proof of Theorem 6.3. By Proposition 4.4 there is a Morse form ω representing α without
critical points of index 0, 1, n − 1, n. Choose any transverse ω-gradient v. The Novikov

complex C∗(ω, v) is simple chain homotopy equivalent to C∆
∗ (M ; ẐGχ), so there is a simple

chain homotopy equivalence ϕ : D∗ → C∗(ω, v). Denote C∗ = C∗(ω, v).

Assume we have j ≤ n − 4 such that we have a simple chain homotopy equivalence
ϕ : D∗ → C∗ such that ϕi = I − Ai with ‖Ai‖ < expL for i ≤ j − 1. Note that this is
true for j = 2. We want to find a new Morse form such that this is also true for j + 1.

Step 1: Introduction of new critical points of index j. Let qj
1, . . . , q

j
kj

be the

critical points of ω with index j and let dj
1, . . . , d

j
lj

be the generators of Dj. Denote the

chain inverse of ϕ by ϕ̄. By Lemma 6.5 we can assume that ϕ̄i = ϕ−1
i for i ≤ j − 1. Also

let H : C∗ → C∗+1 be a chain homotopy H : id ' ϕ ◦ ϕ̄. Since C∗ is free, we can assume
that Hi = 0 for i ≤ j − 1, compare Dold [10, Ex.VI.1.12.4].

For every dj
l we introduce a pair of critical points pj

l and pj+1
l of index j and j + 1

by Proposition 5.4, thus getting a new Morse form ω′ and a transverse ω′-gradient v′.

Also, we can achieve this so that (ψv,v′)j =

(
I − Ej

E ′j

)
, (ψv,v′)j+1 =

(
I − Ej+1

E ′j+1

)
and (ψv,v′)i = I − Ei for i 6= j, j + 1 with ‖Ei‖, ‖E ′i‖ < min{1, ‖ϕ‖−1} · expL. Also
∂′j+1 : Cj+1(ω

′, v′)→ Cj(ω
′, v′) is of the form

∂′j+1 =

(
∂j+1 − F1 F2

F3 I − A

)
with ∂j+1 : Cj+1(ω, v) → Cj(ω, v) the boundary, ‖A‖ < 1 and ‖Fi‖ < min{1, ‖ϕ‖} ·
min{1, ‖H‖−1, ‖ϕ̄‖−1}. The composition of ϕ and ψv,v′ gives a simple chain homo-

topy equivalence ϕ′ with ‖ϕ′i − ϕi‖ < expL for i 6= j, j + 1 and ϕ′j =

(
ϕj − Fj

F ′j

)
,

ϕ′j+1 =

(
ϕj+1 − Fj+1

F ′j+1

)
, where ‖Fi‖, ‖F ′i‖ < expL. So by Lemma 6.4 we have a sim-

ple chain homotopy equivalence ψ : D∗ → C∗(ω
′, v′) with ψj =

(
ϕj − F ′′j
I + F ′j

)
, ψj+1 =(

ϕj+1 − Fj+1

X

)
with ‖F ′′j ‖ < expL and ψi = ϕ′i for i 6= j, j + 1. Since L < 0, I + F ′j is

invertible.

Let E∗ = C∗(ω
′, v′). Then Ej = Cj ⊕Dj. Perform an elementary change of basis on Ej of

the form

(
I −(ϕj − F ′′j )(I + F ′j)

−1

0 I

)
. With this change of basis the matrix of ψj is of

the form

(
0

I + F ′j

)
. Using Proposition 5.2, we can approximate this elementary change

of basis arbitrary well. So approximate the elementary change of basis so that we get a
Morse form ω′′, a transverse ω′′-gradient v′′ and a simple chain homotopy equivalence ψ′ :
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D∗ → C∗(ω
′′, v′′) with ψ′j =

(
Y

I −Gj

)
, ψ′j+1 =

(
ϕj+1 −Gj+1

Z

)
, and ‖ψ′i−ϕi‖ < expL

for i 6= j, j + 1 with ‖Gi‖ < expL and the boundary ∂′′j+1 : Cj+1(ω
′′, v′′) → Cj(ω

′′, v′′) is
of the form

∂′′j+1 =

(
∂j+1 −K1 −ϕj −K2

−K3 I − A′
)

with ‖Ki‖ < min{1, ‖H‖−1, ‖ϕ̄‖−1} and ‖A′‖ < 1.

Define Lj : Cj(ω
′′, v′′)→ Cj+1(ω

′′, v′′) by Lj =

(
Hj 0
−ϕ̄j 0

)
. Then

∂′′j+1 ◦ Lj =

(
∂j+1Hj −K1H + ϕjϕ̄j +K2ϕ̄j 0

−K3Hj − ϕ̄j − A′ϕ̄j 0

)
=

(
I − S 0
∗ 0

)
with ‖S‖ < 1. So for every critical point qj

k there exists a uk ∈ Cj+1(ω
′′, v′′) with ∂′′j+1uk =

(1−ak)q
j
k+r with ‖ak‖ < 1 and pq,k(r) = 0, where pq,k : Cj(ω

′′, v′′)→ C ′′ω, v
′′) is projection

to the span of qj
k.

Rename ω = ω′′, v = v′′ and ϕ = ψ′.

Step 2: Removal of unnecessary critical points of index j The critical points of ω
of index j are qj

1, . . . , q
j
kj

and pj
1, . . . , p

j
lj

where the qj
k are the critical points of the original

ω and the pj
k correspond to the generators dj

k of Dj. For qj
k introduce a pair of critical

points rj+1
k and rj+2

k of index j + 1 and j + 2 with Proposition 5.4 to get a new Morse
form ω′ and a transverse ω′-gradient v′ so that ϕ′ = ψv,v′ ◦ ϕ satisfies ϕ′i = ϕi − Ei for

i 6= j + 1, j + 2, ϕ′j+1 =

(
ϕj+1

Ej+1

)
and ϕ′j+2 =

(
ϕj+2

Ej+2

)
with ‖Ei‖ < expL for all i. In

particular we have pq,k(∂r
j+1
k ) = aqj

k with ‖a‖ < expL.

With the elementary change of basis on Cj+1(ω
′, v′) of the form r̄j+1

k = rj+1
k + uk we get

pq,k(∂r̄
j+1
k ) = (1 − ak + a)qj

k. So use Proposition 5.2 to get a new Morse form ω′′ and

transverse ω′′-gradient v′′ such that for the critical point rj+1
k we now have pq,k(∂r

j+1
k ) =

(1 − b)qj
k with ‖b‖ < 1. Therefore we can cancel the critical points rj+1

k and qj
k for all k

using Theorem 5.5. Remember we have ϕj =

(
Y

I −Gj

)
with ‖Gj‖ < expL. We can

cancel so that for the new Morse form without the critical points qj
1, . . . , q

j
kj

we now have

ϕ′′i = I − G′i with ‖G′i‖ < expL for all i ≤ j. Therefore we have finished the induction
step.

So we can assume that we have a simple chain homotopy equivalence ϕ : D∗ → C∗(ω, v)
such that ϕi = I − Ai with ‖Ai‖ < expL for i ≤ n − 4. Notice also that everything
we have done so far would have worked if D∗ was just chain homotopy equivalent to the
Novikov complex. But to get the result in the final two dimensions, we need the same
simple homotopy type. Denote C∗ = C∗(ω, v).
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Step 3: Introduction of new critical points in dimension n − 3 and n − 2.
We want to introduce new critical points of index n − 3 and n − 2 for every generator
of Dn−3 and Dn−2. Let us do this on an algebraic level first. We have a simple chain
homotopy equivalence ϕ : D∗ → C∗ such that ϕi : Di → Ci is a simple isomorphism for
i ≤ n − 4. Define a new chain complex E∗ by Ei = Ci and ∂E

i = ∂C
i for i ≤ n − 4,

En−3 = Cn−3 ⊕Dn−2 ⊕Dn−3, En−2 = Cn−2 ⊕Dn−3 ⊕Dn−2 and

∂E
n−2 =

 ∂C
n−2 0 0
0 0 I − An−2

0 I − An−3 0

 ∂E
n−3 =

(
∂C

n−3 0 0
)

with ‖An−2‖, ‖An−3‖ < 1. It is easy to see that E∗ is simple homotopy equivalent to C∗

and ψ : D∗ → E∗ defined by ψi = ϕi for i ≤ n− 4, ψn−3 =

 ϕn−3

0
0

, ψn−2 =

 ϕn−2

0
0


is a simple chain homotopy equivalence.

By Lemma 6.4 ψ is chain homotopic to ψ′ with ψ′i = ψi for i ≤ n− 4, ψ′n−3 =

 ϕn−3

0
I

,

ψ′n−2 =

 ϕn−2

(I − An−3)
−1∂D

n−2

0

. Let ϕ̄ be a chain inverse to ϕ such that ϕ̄i = ϕ−1 for

i ≤ n − 4 and K : D∗ → D∗+1 a chain homotopy K : id ' ϕ̄ ◦ ϕ such that Ki = 0 for
i 6= n− 3.

Now define a chain homotopy H∗ : D∗ → E∗+1 by Hi = 0 for i 6= n − 3 and Hn−3 = 0
0

Kn−3

. Then H : ψ′ ' ψ′′ with ψ′′i = ψ′i for i ≤ n− 4 and

ψ′′n−3 =

 ϕn−3

(I − An−2)Kn−3

I

, ψ′′n−2 =

 ϕn−2

(I − An−3)
−1∂D

n−2

I − ϕ̄n−2ϕn−2

. Perform a change of basis

on En−2 of the form

 I 0 0
0 I 0

ϕ̄n−2 0 I

, then the matrix of ψ′′n−2 is

 ϕn−2

(I − An−3)
−1∂D

n−2

I


and the boundary matrix is

∂E
n−2 =

 ∂C
n−2 0 0

−(I − An−2)ϕ̄n−2 0 I − An−2

0 I − An−3 0


Define Fi = 0 for i ≤ n − 4, Fn−3 = Cn−3 ⊕Dn−2 and Fn−2 : Cn−2 ⊕Dn−3. Now ψ′′ is a

chain map ψ′′ =

(
ψ′′F
ψ′′D

)
: Di → Fi⊕Di with ψ′′D a simple automorphism for every i. By

Ranicki [29, Prop.1.8] we have that coker(ψ′′) is isomorphic to a chain complex F̂∗ with
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F̂i = Fi and

∂F̂
n−2 =

(
∂C

n−2 0
−(I − An−2)ϕ̄n−2 0

)
−

(
ϕn−3

(I − An−2)Kn−3

) (
0 I − An−3

)
=

(
I 0
0 I − An−2

) (
∂C

n−2 −ϕn−3

−ϕ̄n−2 −Kn−3

) (
I 0
0 I − An−3

)
Furthermore, again by Ranicki [29, Prop.1.8] the natural projection p : C(ψ′′)→ coker(ψ′′)

= F̂ is a chain homotopy equivalence with torsion

τ(p) =
n−2∑
i=2

(−1)i+1τ(ψ′′D : Di → Di) ∈Wh(G;χ),

so τ(p) = 0 and we have τ(F̂ ) = τ(ψ′′) = 0. Therefore D :=

(
∂C

n−2 −ϕn−3

−ϕ̄n−2 −Kn−3

)
is

a simple matrix. By Lemma 6.2 there is an R > 0 such that D − B is also simple for

‖B‖ < R. Also ∂F̂
n−2 −B is simple for ‖B‖ < R and ‖An−2‖, ‖An−3‖ < 1.

Now perform a change of basis on En−3 of the form

 I 0 −ϕn−3

0 I −(I − An−2)Kn−3

0 0 I

. Then

the matrix of ∂E
n−2 is

∂E
n−2 =

 ∂C
n−2 −ϕn−3(I − An−3) 0

−(I − An−2)ϕ̄n−2 −(I − An−2)Kn−3(I − An−3) I − An−2

0 I − An−3 0

 =: D̄

Now introduce as in Step 1 new critical points pn−3
t and rn−2

t of index n − 3 and n − 2
for every generator of Dn−3 and critical points pn−2

k and rn−3
k of index n − 2 and n − 3

for every generator of Dn−2 to get a new Morse form ω′ and transverse ω′-gradient v′.
We can approximate the described change of basis on C∗(ω

′, v′) to end up with a Morse
form ω′′ and a Novikov complex C∗(ω

′′, v′′) such that ∂n−2 = D̄ −X with ‖X‖ arbitrary
small. In particular we can make it so small that the submatrix, denoted ∂̄, corresponding
to the critical points {qn−2

s , rn−2
t } and {qn−3

l , rn−3
k } is simple and ψi = I − Ai, ψn−3 = ∗

∗
I − An−3

 and ψn−2 =

 ∗
∗

I − An−2

 with ‖Ai‖ < expL for all i.

Step 4: Elimination of critical points in dimension n−3 and n−2 Using Lemma
6.2 we can change ∂̄ into a matrix of the form I−B with ‖B‖ < 1 by elementary changes
of basis and stabilizing. Approximate these changes of basis and add critical points so
that for the Novikov complex we have

∂n−2 =

(
I −B′ ∗
∗ ∗

)
with ‖B′‖ < 1. Now we can cancel all critical points {qn−3

l , rn−3
k } against the critical

points {qn−2
s , rn−2

t } to get the required Morse form. �
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As a corollary we get Latour’s theorem [18]. If the chain complex C∆
∗ (M ; ẐGχ) is acyclic,

define the Latour obstruction to be τ(M,α) = τ(C∆
∗ (M ; ẐGχ)) ∈Wh(G;χ).

Theorem 6.6. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and
α ∈ H1(M ; R). Then α can be represented by a closed 1-form without critical points if

and only if α is CC1, C∆
∗ (M ; ẐGχ) is acyclic and τ(M,α) = 0 ∈Wh(G;χ).

Remark 6.7. To proof Theorem 6.6 directly, notice that the fairly involved steps 1 and
3 are not needed for this.

To compare Theorem 6.3 to Pajitnov [24] we need a new notion.

Definition 6.8. Let N ∈ R. Two finitely generated free ẐGχ chain complexes with basis
and rankDi = rankEi for all i are called N-equivalent if ‖∂D − ∂E‖ ≤ expN .

The analogue of Pajitnov [24, Th.0.12] is

Theorem 6.9. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and

α ∈ H1(M ; R) be CC1. Let D∗ be a finitely generated free ẐGχ complex with Di = 0 for

i ≤ 1 and i ≥ n − 1 which is simple chain homotopy equivalent to C∆
∗ (M ; ẐGχ). Given

N ∈ R there is a Morse form ω representing α and a transverse ω-gradient v such that
D∗ and C∗(ω, v) are N-equivalent.

Proof. By Theorem 6.3 there is a Morse form ω, a transverse ω-gradient v and a simple
chain isomorphism ϕ : D∗ → C∗(ω, v) with ϕi = I − Ai and ‖Ai‖ < ‖∂‖−1 expN . Then,
since ϕ is a chain map, we have ϕi−1∂

D
i ϕ
−1
i = ∂C

i . As matrices we get

‖∂D
i − ∂C

i ‖ = ‖∂D
i − (I − Ai−1)∂

D
i (I − Ai)

−1‖
≤ max{‖Ai−1∂

D
i ‖, ‖∂D

i Ai‖}
≤ ‖∂D

i ‖max{‖Ai−1‖, ‖Ai‖}
≤ ‖∂D

i ‖ · ‖∂D
i ‖−1 · expN.

�

Instead of the Novikov ring we can look at a certain noncommutative Cohn localization.
Let Σχ be the set of diagonal matrices over ZG of the form I−A with ‖A‖χ < 1. By Cohn
[7] there is a unique ring Σ−1

χ ZG and a natural ring homomorphism i : ZG → Σ−1
χ ZG

with i(Σχ) ⊂ GL(Σ−1
χ ZG) such that for every ring homomorphism η : ZG → R with

η(Σχ) ⊂ GL(R) there is a unique ring homomorphism ε : Σ−1
χ ZG→ R with ε ◦ i = η.

Notice that the inclusion j : ZG → ẐGχ satisfies j(Σχ) ⊂ GL(ẐGχ), so there is a ring

homomorphism ε : Σ−1
χ ZG → ẐGχ with j = ε ◦ i. In particular i : ZG → Σ−1

χ ZG is

injective. Define Wh(G; Σχ) = K1(Σ
−1
χ ZG)/〈[±g], [i(Σχ)]〉.

A result of Farber [12] says that given a Morse form ω there is a finitely generated free
Σ−1

χ ZG complex D∗ simple chain homotopy equivalent to C∆
∗ (M ; Σ−1

χ ZG) with rankDi =
ci(ω) = |{p ∈ M |ωp = 0 and ind p = i}|. Notice that Farber [12, Lm.8.12] points
out that D∗ need not be simple chain homotopic to C∆

∗ (M ; Σ−1
χ ZG) when viewed over

K1(Σ
−1
χ ZG)/〈[±g]〉. But by comparing the proof of [12, Lm.8.12] with [12, Lm.7.1] and
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Ranicki [29, Prop.1.8] one sees that the torsion of the last collapse in [12, Lm.8.12] vanishes
in Wh(G; Σχ). Combining this with Theorem 6.3 we get

Theorem 6.10. Let M be a closed connected smooth manifold with n = dimM ≥ 6 and
α ∈ H1(M ; R) be CC1.

(1) Given a finitely generated free Σ−1
χ ZG complex D∗ with Di = 0 for i ≤ 1 and

i ≥ n − 1 simple chain homotopy equivalent to C∆
∗ (M ; Σ−1

χ ZG) there is a Morse
form ω with ci(ω) = rankDi.

(2) Given a finitely generated free ẐGχ complex E∗ with Ei = 0 for i ≤ 1 and i ≥ n−1

simple chain homotopy equivalent to C∆
∗ (M ; ẐGχ) there is a finitely generated

free Σ−1
χ ZG complex D∗ with rankΣ−1

χ ZGDi = rank cZGχ
Ei simple chain homotopy

equivalent to C∆
∗ (M ; Σ−1

χ ZG).

In particular the Latour obstruction for the existence of a closed 1-form without critical
points pulls back to an obstruction in Wh(G; Σχ). In the rational case the obstruction
actually pulls back to Wh(G), see the original fibering obstructions of Farrell [14, 15] or
Siebenmann [36] and their comparison to the Latour obstruction in Ranicki [28]. This
raises the question whether the Latour obstruction can be pulled back to an obstruction
in Wh(G) in general.

Remark 6.11. Theorem 6.3 reduces the problem of finding a Morse form with a minimal
number of critical points in a CC1 cohomology class α on a manifold M with dimension

≥ 6 to the algebraic problem of finding a finitely generated free ẐGχ complex D∗ simple

homotopy equivalent to C∆
∗ (M ; ẐGχ) with a minimal number of generators and with

Di = 0 for i ≤ 1 and i ≥ n − 1. The last condition that Di = 0 for i ≤ 1 and i ≥ n − 1
can be removed using Pajitnov [24, Prop.7.14]. By Theorem 6.10 we can furthermore use

Σ−1
χ ZG instead of ẐGχ.

7. Realization of torsion

In this section we analyze the impact of Theorem 6.3 on the torsion of the chain homo-

topy equivalence ϕv : C∆
∗ (M ; ẐGχ) → C∗(ω, v) described in the appendix. We know by

Theorem A.4 that the torsion vanishes in Wh(G;χ), but it is known that τ(ϕv) is a well

defined element of the subgroup W of K1(ẐGχ)/〈[±g] | g ∈ G〉 generated by units of the
form 1 − a with ‖a‖ < 1. This torsion also carries information about the closed orbit
structure of v in form of a zeta function, see [32, Th.1.1]. So realizing a given element of
W as the torsion of ϕv for some combination of ω and v implies the realization of a zeta
function. The result we can prove now reads

Theorem 7.1. Let G be a finitely presented group, χ : G → R be CC1, b ∈ ẐGχ satisfy
‖b‖ < 1 and ε > 0. Then for any closed connected smooth manifold M with π1(M) = G
and dimM ≥ 6 there is a Morse form ω realizing χ, a transverse ω-gradient v and a

b′ ∈ ẐGχ with ‖b− b′‖ < ε such that τ(ϕv) = τ(1− b′) ∈ K1(ẐGχ)/〈[±g] | g ∈ G〉.

Proof. Choose a Morse form ω′ representing χ and a transverse ω′-gradient v′. Let 1−c ∈
ẐGχ represent τ(1−b)−τ(ϕv′) ∈ W . Let C∗ = C∗(ω

′, v′). Denote by C(1−c)∗ the finitely
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generated free ẐGχ complex with C(1− c)j = 0 for j 6= n− 3, n− 2, where n = dimM ,

C(1− c)j = ẐGχ for j = n− 3, n− 2 and d : C(1− c)n−2 → C(1− c)n−3 is multiplication

by (1 − c)(−1)n−1
. Then C(1 − c)∗ is acyclic with τ(C(1 − c)∗) = τ(1 − b) − τ(ϕv′). Also

D∗ = C∗ ⊕ C(1 − c)∗ is simple homotopy equivalent to C∗. By Theorem 6.3 D∗ can
be approximately realized as the Novikov complex of a Morse form ω and a transverse
ω-gradient v. Note that in the proof of Theorem 6.3 we can start directly with Step 3 and
we only have to introduce critical points for the generators of C(1 − c)∗. By analyzing
the proof using Section 5 we see that there is a sequence of Morse forms ωi, i = 1, . . . , k
with ω1 = ω′, ωk = ω and ωi agrees with ω′ in a neighborhood of the critical points of
ω′. Furthermore there are homotopy equivalences ϕi : C∗(ωi, vi) → C∗(ωi+1, vi+1) chain
homotopic to ψvi,vi+1

and the matrix of ϕi restricted to the subgroup generated by the
critical points of ω′ is of the form I − A with ‖A‖ < ε. Denote ϕ = ϕk−1 ◦ · · · ◦ ϕ1, then
τ(ψv′,v) = τ(ϕ) by Proposition A.2. We have Cj(ω, v) = Cj for j 6= n − 3, n − 2 and

Cj(ω, v) = Cj ⊕ ẐGχ for j = n − 3, n − 2. Since all ϕj restricted to Cj are of the form
I −Aj with ‖Aj‖ < ε we get that ϕj is a split injection and that C(ϕ) is chain homotopy
equivalent to coker(ϕ) by the projection p : C(ϕ)→ coker(ϕ), see Ranicki [29, Prop.1.8].
Furthermore τ(p) =

∑n−2
j=2 (−1)j+1τ(ϕj : Cj → Cj). Also coker(ϕ) is an approximation of

C(1−c)∗, i.e. τ(coker(ϕ)) = τ(1−c)+τ(1−e) where e ∈ ẐGχ satisfies ‖e‖ < ε. Therefore

τ(ψv′,v) = τ(ϕ) = τ(coker(ϕ))− τ(p) = τ(1− c)− τ(1− e′)

with ‖e′‖ < ε. By Proposition A.2 we now get

τ(ϕv) = τ(ψv′,v) + τ(ϕv′) = τ(1− b)− τ(ϕv′)− τ(1− e′) + τ(ϕv′)

This gives the result. �

8. Poincaré duality

Let M be a closed connected smooth manifold, ω a Morse form and v a transverse
ω-gradient. Then −ω is a Morse form as well and −v a transverse (−ω)-gradient.
To define the Novikov complex C∗(ω, v) we need to choose orientations of W s(p, v)
which induce coorientations of W u(p, v) and liftings p̃ ∈ M̃ for all critical points p
of ω. These orientations lift to orientations of W s(gp̃, ṽ) for all g ∈ G. To define
C∗(−ω,−v) we need orientations for W s(p,−v) = W u(p, v). The universal cover M̃
is orientable, so fix an orientation. Denote chosen orientations by o(N) for orientable
manifolds N . Now choose for every critical point p an orientation of W s(p̃,−ṽ) such
that o(W s(p̃, ṽ))∧ o(W s(p̃,−ṽ)) = o(M̃), where the wedge means ”followed by”. Use the
covering transformations to orient W s(gp̃,−ṽ) for all g ∈ G and the projection to orient
W s(p,−v). Then o(W s(gp̃, ṽ)) ∧ o(W s(gp̃,−ṽ)) = w(g) · o(M̃) where w : G → {±1} is
the orientation homomorphism of M .

Let p, q be critical points of ω with ind p = ind q + 1 = i. Let T be a trajectory between
p̃ and gq̃, where p̃ and q̃ are the chosen liftings of p and q. Then g−1(−T ) is a trajectory
between q̃ and g−1p̃. With the choice of orientations we now get

ε(g−1(−T )) = w(g)(−1)iε(T )(1)
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where ε(T ) and ε(g−1(−T )) are defined as in Section 5.

The involution¯: ZG→ ZG given by λ̄(g) = w(g) ·λ(g−1) extends to an antiisomorphism

¯: ẐGχ → ẐG−χ. By (1) we now get

[p : q]v = (−1)i[q : p]−v.(2)

If A is a left ẐG−χ module, we can turn Hom cZG−χ
(A, ẐG−χ) into a left ẐGχ module by

setting λ · ϕ : a 7→ ϕ(a) · λ̄ ∈ ẐG−χ.

Let C∗(−ω,−v) = Hom cZG−χ
(C∗(−ω,−v), ẐG−χ). Using (2) it is easy to see that

P : C∗(ω, v) −→ Cn−∗(−ω,−v)
p 7→ (−1)i(i+1)/2p̄

is a simple isomorphism of free ẐGχ chain complexes, where p̄ : C∗(−ω,−v) → ẐG−χ is
defined by p̄(p) = 1 and 0 for all other critical points. This induces the Poincaré duality

isomorphism Pi : Hi(M ; ẐGχ)→ Hn−i(M, ẐG−χ).

To get a duality isomorphism for the noncommutative localization Σ−1
χ ZG we need the

following

Lemma 8.1. Let R be a ring with unit, ¯ : R → R an involution, Σ a set of diagonal
matrices over R which is closed under transpose. Then the involution extends to an
antiisomorphism¯: Σ−1R→ Σ̄−1R.

Proof. For any ring S denote So the opposite ring, i.e. multiplication is given by (x, y) 7→
y · x. Hence we can think of the involution as a ring homomorphism ϕ : Ro → R. Let
ε̄ : R → Σ̄−1R be the natural map. Now ε̄ ◦ ϕ(Σ) ⊂ GL(Σ̄−1R). Note that A ∈ Σ
can be thought of as a matrix over Ro and then ϕ(A) is a matrix over R contained in
Σ̄. Therefore we have a unique map θ1 : Σ−1Ro → Σ̄−1R such that θ1 ◦ ε′ = ε̄ ◦ ϕ with
ε′ : Ro → Σ−1Ro the natural map. Similarly we get a unique map θ2 : Σ̄−1R → Σ−1Ro

such that ε′ ◦ ϕo = θ2 ◦ ε̄ : R → Σ−1Ro. It follows that θ1 and θ2 are mutually inverse
isomorphisms.

We have ε′(Ro) ⊂ Σ−1Ro, so (ε′)o(R) ⊂ (Σ−1Ro)o. Also if A ∈ Σ, then AT ∈ Σ and
ε′(AT ) is invertible in Σ−1Ro. But if a matrix is invertible over a ring S, its transpose
is invertible over So. Therefore (ε′)o(A) is invertible in (Σ−1Ro)o. Thus there is a ring
homomorphism ψ1 : Σ−1R→ (Σ−1Ro)o such that (ε′)o = ψ1◦ε where ε : R→ Σ−1R is the
natural map. Similarly we get a unique ring homomorphism ψ2 : Σ−1Ro → (Σ−1R)o with
ψ2◦ε′ = εo : Ro → (Σ−1R)o. It follows that ψ1 and ψo

2 are mutually inverse isomorphisms.
Now θ1 ◦ ψo

1 : (Σ−1R)o → Σ̄−1R induces the desired antiisomorphism. �

Now let P : C∆
∗ (M̃) → Cn−∗

∆ (M̃) be a Poincaré duality simple chain homotopy equiva-
lence, e.g. induced by an exact Morse form df . Let i : ZG → Σ−1

χ ZG be the inclusion.
Then we get a simple chain homotopy equivalence

id⊗ P : C∆
∗ (M ; Σ−1

χ ZG)→ Σ−1
χ ZG⊗ZG C

n−∗
∆ (M̃).

Using Lemma 8.1 we have an isomorphism Θ : Σ−1
χ ZG⊗ZGC

n−∗
∆ (M̃)→ Cn−∗

∆ (M ; Σ−1
−χZG)

given by Θ(r ⊗ σ∗) : s ⊗ τ 7→ s · σ∗(τ) · r̄. Hence we get a Poincaré duality simple chain
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homotopy equivalence

Pi : C∆
i (M ; Σ−1

χ ZG)→ Cn−i
∆ (M ; Σ−1

−χZG).

Because of Poincaré duality we now get

Proposition 8.2. (1) C∆
∗ (M ; ẐGχ) is acyclic if and only if C∆

∗ (M ; ẐG−χ) is acyclic.
(2) C∆

∗ (M ; Σ−1
χ ZG) is acyclic if and only if C∆

∗ (M ; Σ−1
−χZG) is acyclic. 2

In that case we get for the Latour obstructions

τ(M,α) = (−1)n−1τ̄(M,−α)

both in Wh(G;χ) and Wh(G; Σχ) by Milnor [20]. Notice that the antiisomorphism ¯ :

ẐG−χ → ẐGχ induces an isomorphism of abelian groups¯: Wh(G;−χ) → Wh(G;χ) by
taking the conjugate transpose of a matrix. Similar for Wh(G; Σχ).

9. Connections between Novikov homology and controlled connectivity

Proposition 4.1 and Proposition 4.4 show directly how controlled connectivity properties
lead to the vanishing of certain Novikov homology groups and vice versa, at least in the
manifold case. In Section 4 we did not deal with end points as we needed absolute CC1

for the results in Section 6. But we can refine the results of Section 4 slightly by looking
at end points.

For a control function f of α define

M̃−
t = f−1((−∞, t]) and M̃+

t = f−1([t,∞))

The analogues of Propositions 4.3-4.5 are now

Proposition 9.1. Let α ∈ H1(M ; R). Assume that α 6= 0 and n = dimM ≥ 3. Then
the following are equivalent.

(1) α is CC0 at −∞ (resp. +∞).
(2) There is a control function f of α without critical points of index 0, n and with

connected M̃−
t (resp. M̃+

t ).
(3) There is a control function f of α with connected M̃−

t (resp. M̃+
t ).

The proof is analogous to the proof of Proposition 4.3.

Proposition 9.2. Let α ∈ H1(M ; R). Assume that α 6= 0 and n = dimM ≥ 5. Then α
is CC0 at −∞ (resp. +∞) if and only if α can be represented by a Morse form ω without
critical points of index 0, 1 and n (resp. 0, n− 1 and n).

Proof. Replace Ñ(f, t) by M̃−
t in the proof of Proposition 4.4, the rest is analogous. �

Proposition 9.3. Let α ∈ H1(M ; R). Assume that α 6= 0 and n = dimM ≥ 5. Then
the following are equivalent.

(1) α is CC1 at −∞ (resp. +∞).
(2) There is a control function f of α without critical points of index 0, 1 and n (resp.

0, n− 1 and n) and with simply connected M̃−
t (resp. M̃+

t ).
(3) There is a control function f of α with simply connected M̃−

t (resp. Ñ+
t ).
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2

Example 9.4. Let M be a closed connected smooth manifold such that its fundamental
group is the Baumslag-Solitar group G = 〈x, t | t−1xt = x2〉. Clearly H1(M) = Z. Let
α ∈ H1(M ; R) induce the homomorphism χ : G → Z given by x 7→ 0 and t 7→ 1. It is
shown in [2, §10.2] that χ is CC1 at −∞, but not CC0 at +∞.

This shows that we can find cohomology classes which are CC1 over −∞ but not CC0

over +∞. In particular we can represent such a cohomology class by a Morse form without
critical points of index 0, 1 and n, but with critical points of index n− 1.

Let us now return to the group theoretic setting. Given a character χ : G → R let
X again be the k-skeleton of the universal cover of a K(G, 1) CW-complex with finite
k-skeleton and h a control function. We can look at the completed cellular complex

ẐGχ ⊗ZG C∗(X) and the completed singular complex ẐGχ ⊗ZG Cs
∗(X) and denote its

homology by H∗(X; ẐGχ). For this situation let us introduce a notion similar to controlled
connectivity.

Definition 9.5. The homomorphism χ : G → R is called controlled (k − 1)-acyclic
(CAk−1) over −∞, if for every s ∈ R and p ≤ k − 1 there is an λ(s) ≥ 0 such that every
singular p-cycle (over Z) in Xs bounds in Xs+λ(s) and s+ λ(s)→ −∞ as s→ −∞.

We can define χ being CCk−1 over +∞ similarly. For k ≤ 1 we clearly have χ is CCk−1

over −∞ if and only if χ is CAk−1 over −∞. For higher k we have the usual problem in
comparing homology and homotopy, but there is a Hurewicz-type theorem, see Geoghegan
[16].

Theorem 9.6. For k ≥ 2, χ is CCk−1 over −∞ if and only if χ is CC1 over −∞ and
CAk−1 over −∞. 2

The relation with Novikov homology is now summarized in

Proposition 9.7. [1, Prop.D.2] Let χ : G → R be a character, k ≥ 1 and X as above.

Then χ is CAk−2 over −∞ if and only if Hi(X; ẐGχ) = 0 for i ≤ k − 1.

Proof. We can attach (k + 1)-cells to X to make X k-connected. This will not change
the Novikov homology in dimensions ≤ k− 1. We can describe CAk−1 by saying that the
map H̃i(Xs) → H̃i(Xs+λ(s)) induced by inclusion is trivial for i ≤ k − 1 with s and λ(s)
as in the definition. We have the commutative diagram

Hi+1(X,Xs) −→ H̃i(Xs)y y
Hi+1(X,Xs+λ(s)) −→ H̃i(Xs+λ(s))

and the horizontal arrows are isomorphisms for i ≤ k − 1 since X is k-connected.

It is known that ẐGχ ⊗ZG C
s
∗(X) = lim

←−
Cs
∗(X,Xs), compare Remark A.5, so the Novikov

homology fits into a short exact sequence

0 −→ lim
←−

1Hi+1(X,Xs) −→ Hi(X, ẐGχ) −→ lim
←−

Hi(X,Xs) −→ 0
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see e.g. Geoghegan [16]. By the diagram above and this short exact sequence we now
get immediately that CAk−1 implies the vanishing of the Novikov homology groups in
dimensions ≤ k− 1 and this vanishing implies CAk−2. To see that already CAk−2 implies

Hk−1(X; ẐGχ) = 0 note that by Bieri and Renz [5, Th.4.2] the inverse system {Hk(X,Xs)}
is surjective, hence lim

←−
1Hk(X,Xs) = 0. By the short exact sequence above we get the

result. �

Let us now look at the case of an aspherical manifold M . In this case we can use the
universal cover M̃ to check for all controlled connectivity properties.

Proposition 9.8. Let M be an aspherical closed connected smooth manifold with n =
dimM and χ : G→ R a character. Then the following are equivalent.

(1) The Novikov complex C∆
∗ (M ; ẐGχ) is acyclic.

(2) χ is CAn−2 over −∞.
(3) χ is CA[n

2
]−1.

Proof. By Proposition 9.7 we get 1.⇒ 2. and 1.⇒ 3.

If χ is CAn−2 over −∞, we get Hi(M ; ẐGχ) = 0 for i ≤ n − 1 by Proposition 9.7. Now

Hn(M ; ẐGχ) = H0(M ; ẐG−χ) = 0 by Poincaré duality and since χ 6= 0.

If χ is CA[n
2
]−1, we get Hi(M ; ẐGχ) = 0 for i ≤ [n

2
]. Now for i ≥ [n

2
] + 1 we have

Hi(M ; ẐGχ) = Hn−i(M ; ẐG−χ)

But n − i ≤ n − [n
2
] − 1 ≤ [n

2
] and Hn−i(M ; ẐG−χ) = 0, since −χ is CA[n

2
]−1 as well.

Therefore we get the result. �

The proof shows we can loosen the condition that M be aspherical slightly to get

Corollary 9.9. Let M be a closed connected smooth manifold with n = dimM and

χ : G→ R a character such that M̃ is [n
2
]-connected. Then C∆

∗ (M ; ẐGχ) is acyclic if and

only if χ is CA[n
2
]−1. 2

For an aspherical manifold M Latour’s theorem can now be phrased as

Theorem 9.10. Let M be an aspherical closed connected smooth manifold with n =
dimM ≥ 6 and χ : G → R a character. Then χ can be represented by a nonsingular
closed 1-form if and only if χ is CC1, χ is CAn−2 over −∞ and τ(M,χ) = 0. 2

Whitehead groups of aspherical manifolds are conjectured to be zero which is known for
certain classes of manifolds. In this case CC1 and CAn over −∞ suffices in Theorem 9.10.

Appendix A. Chain homotopy equivalences between Novikov complexes

In this appendix we introduce several chain homotopy equivalences between Novikov
complexes and sketch proofs of their properties. The techniques involved are described in
more detail in [31, App.A] and [32, §9]. The reader might also want to compare Cornea
and Ranicki [8], Hutchings and Lee [17, §2.3], Latour [18, §2], Pozniak [27, §2] and Schwarz
[33, 34].
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The Morse-Smale complex. Let us begin with the exact case. Let (W ;M0,M1) be
a compact cobordism, f : W → R a Morse function and v an f -gradient satisfying the
transversality condition. A smooth triangulation ∆ of W is said to be adjusted to v, if
every k-simplex σ intersects the unstable manifolds W u(p, v) transversely for all critical
points p of index ≥ k. In particular, if p is a critical point of index k, a k-simplex σ
intersects W u(p, v) in finitely many points. Using the orientations we can assign to every
such point a sign. Given a regular covering space q : W̃ → W we can use the covering
transformation group G and liftings of critical points and simplices to assign an element
[σ : p] ∈ ZG to the intersection and define a map

ϕv : C∆
∗ (W̃ , M̃0) −→ CMS

∗ (W̃ , M̃0, f, v)

σk 7→
∑

p∈critk(f)

[σ : p] p

Here CMS
∗ (W̃ , M̃0, f, v) is the Morse-Smale complex generated by the critical points of f .

For A ⊂ W we denote Ã = q−1(A). It is shown in [31, App.A] that adjusted triangulations
are generic and ϕv is a simple homotopy equivalence.

Now given another Morse function g : W → R with a transverse g-gradient w, let
Φ : W → W be isotopic to the identity such that Φ(W s(q, v)) |∩ W u(p, w) for criti-
cal points q of f and p of g with ind q ≤ ind p. The existence of Φ is achieved by
standard transversality arguments. Furthermore we get openness and density for such
Φ in the smooth topology. If ind q = ind p we get that Φ(W s(q, v)) ∩ W u(p, w) is fi-
nite, in fact we get an intersection number [q : p] ∈ ZG as above and we can define
ψv,w : CMS

∗ (W̃ , M̃0, f, v)→ CMS
∗ (W̃ , M̃0, g, w) by

ψv,w(q) =
∑

p,ind p=ind q

[q : p] p

The proof that ψv,w is a chain map is identical to [32, §9], even though the two Morse
functions there were equal. Also, as in [31, Lm.A.2] the chain homotopy type does not
depend on Φ.

Proposition A.1. For i = 0, 1, 2 let fi : W → R be a Morse function of the cobordism
(W ;M0,M1) and vi a transverse fi-gradient. Then

(1) ψv0,v1 ◦ ϕv0 ' ϕv1.
(2) ψv1,v2 ◦ ψv0,v1 ' ψv0,v2.

In particular we get that ψv,w is a simple chain homotopy equivalence.

Proof. The proof of 1. is identical to the proof of [32, Prop.9.4] even though the Morse
functions there are equal. 2. now follows from the fact that ϕvi

is a chain homotopy
equivalence, but in view of the nonexact case let us give a direct proof. Let Φ : W → W
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be isotopic to the identity such that

(3)

Φ(W s(q, v0)) |∩ W u(p, v1)

Φ(W s(q, v0)) |∩ W u(r, v2)

Φ(W s(p, v1)) |∩ W u(r, v2)

for the relevant critical points. For j = −1, . . . , n and δ > 0 let

Dj
δ(vi) =

⋃
p∈crit fi
ind p≤j

Dδ(p, vi) ∪M0

Choose δ > 0 so small that Φ(Dj
δ(vi)) is disjoint from W u(p, vk) where k > i and ind p > j.

This is possible by (3).

Let Θ : W × R → W be induced by the flow of −v1, i.e. stop once the boundary is
reached. There is a K > 0 such that Φ(ΘK(Dj

δ(v0)) ⊂ Dj
δ(v1). Let h : W × I → W be

a homotopy between the identity and Φ ◦ ΘK such that Φ(h(W s(p, v0) × I)) |∩W u(r, v2)
for ind p ≤ ind r − 1. Again we get intersection numbers [p : r] ∈ ZG. Then h defines
a chain homotopy H : CMS

∗ (W̃ , M̃0, f0, v0) → CMS
∗+1(W̃ , M̃0, f2, v2) between ψv1,v2 ◦ ψv0,v1

and ψv0,v2 by

H(p) = (−1)ind p
∑

r, ind r=ind p+1

[p : r] r.

To see that this is indeed the right chain homotopy compare the proof of [32, Prop.9.4]. �

The Novikov complex. Let M be a closed connected smooth manifold and ωi be co-
homologous Morse forms with transverse ωi-gradients vi for i = 0, 1. Then we can define
chain maps

ϕvi
: C∆
∗ (M ; ẐGχ)→ C∗(ωi, vi)

and
ψv0,v1 : C∗(ω0, v0)→ C∗(ω1, v1)

as in the exact case using intersection numbers which are now elements of ẐGχ. To see this
one uses inverse limit arguments in the rational case, compare the proof of [32, Prop.9.2].
The irrational case is treated by approximation, one shows that [σ : q] and [p : q] are

elements of ẐGχ ∩ ẐGχ′ , where χ′ : G → Q. The details are similar to [32, Prop.9.2],
though the Morse form is fixed there, and will be omitted.

Proposition A.2. For i = 0, 1, 2 let ωi be cohomologous Morse forms and vi transverse
ωi-gradients. Then

(1) ψv0,v1 ◦ ϕv0 ' ϕv1.
(2) ψv1,v2 ◦ ψv0,v1 ' ψv0,v2.

Proof. Both statements are deduced from the exact case by inverse limit arguments in
the rational and approximation arguments in the irrational case. Compare the proof of
[32, Prop.9.5]. �

Corollary A.3. ψv0,v1 and ϕv0 are chain homotopy equivalences.
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Proof. That ψv0,v1 is a chain homotopy equivalence follows from Proposition A.2.2 since
ψv0,v0 ' id. To see that ϕv0 is a chain homotopy equivalence, it is by Proposition A.2.1
good enough to find a v1 such that ϕv1 is a chain homotopy equivalence. But by a nice
trick of Latour [18, Lm.2.28] there is a Morse form ω1 cohomologous to ω0 and a transverse
ω1-gradient v1 such that v1 is also the gradient of an ordinary Morse function f : M → R.

Then C∗(ω1, v1) = ẐGχ⊗ZG C∗(M̃, f, v1) and ϕv1 = id cZGχ
⊗ZG ϕ

MS
v1

. Since ϕMS
v1

is a chain

homotopy equivalence, so is ϕv1 . �

We are also interested in torsion.

Theorem A.4. ψv0,v1 and ϕv0 are simple chain homotopy equivalences, i.e. τ(ψv0,v1) =
τ(ϕv0) = 0 ∈Wh(G;χ).

Proof. That τ(ϕv0) is in the image of units of the form 1 − a with ‖a‖ < 1 is shown in
[32]. Now τ(ψv0,v1) = 0 follows from Proposition A.2.1.

Alternatively we can use the techniques of Latour [18, §2.25-2.28] to show that τ(ψv0,v1) =
0. Then τ(ϕv0) = 0 follows from Proposition A.2.1 after noticing that τ(ϕv1) = 0 for ϕv1

as in the proof of Corollary A.3. �

Remark A.5. Both proofs that τ(ϕv) = 0 are quite involved. But in the rational case
there is a significantly easier proof: let ρ : Mω → M be the infinite cyclic covering such
that ρ∗ω = df . We can assume that 0 is a regular value of f and that f(tx)−f(x) = 1 for
a generator t of the infinite cyclic covering transformation group. For k a positive integer
let Mk = f−1([−k, 0]) and Nk = f−1({−k}). Then the following diagram commutes

C∆
∗ (M̃k, Ñk) ←− C∆

∗ (M̃k+1, Ñk+1)yϕv|
yϕv|

CMS
∗ (M̃k, Ñk, f |, v|) ←− CMS

∗ (M̃k+1, Ñk+1)

Let ẐG
0

χ be the subring of ẐGχ consisting of elements a with ‖a‖ ≤ 1 and let H = kerχ.

Then the inverse limits are finitely generated free ẐG
0

χ complexes. Since ϕv| is a chain

homotopy equivalence, so is lim
←−

ϕv|. Also idZH ⊗cZG
0

χ
lim
←−

ϕv| = ϕv| : C∆
∗ (M̃1, Ñ1) →

CMS
∗ (M̃1, Ñ1, f |, v|) and id cZGχ

⊗cZG
0

χ
lim
←−

ϕv| = ϕv : C∆
∗ (M ; ẐGχ) → C∗(ω, v). Since ϕv|

is simple, τ(lim
←−

ϕv|) ∈ ker r∗ ⊂ K1(ẐG
0

χ)/〈±[h] |h ∈ H〉, where r : ẐG
0

χ → ZH is

projection. But by an elementary argument ker r∗ is generated by units of the form 1− a
with ‖a‖ < 1, see Pajitnov [23, Lm.1.1]. Hence τ(ϕv) = i∗τ(lim←−

ϕv|) = 0 ∈ Wh(G;χ)

where i : ẐG
0

χ → ẐGχ is inclusion.

This proof does not seem to carry over to the irrational case.

Continuation. Given two Morse-Smale or Novikov complexes, one can find other meth-
ods in the literature to produce a chain homotopy equivalence between these complexes,
like continuation. This principle is explained e.g. in Schwarz [33] or Pozniak [27, §2]. The



34 D. SCHÜTZ

purpose of this subsection is to show that even though its definition differs from the defi-
nition of ψv,w given above it agrees with ψv,w up to chain homotopy. We will only consider
the exact case noting that the nonexact case can be derived from the exact case by the
typical techniques described above. To describe continuation we choose the description
of Pozniak [27, §2.6].

So let f, g : M → R be Morse functions, v a transverse f -gradient and w a transverse
g-gradient. Let F : M × R → R be a smooth function with F (x, 0) = f(x) + C1,
F (x, 1) = g(x) +C2 such that the critical points of F are exactly of the form (p, 0) where
p is a critical point of f and (q, 1) where q is a critical point of g. Furthermore we want
ind (p, 0) = ind p+ 1 and ind (q, 1) = ind q. Using a transverse F -gradient u which agrees
with v on M × {0} and with w on M × {1}, Pozniak [27, §2.6] shows that there is an
acyclic finitely generated free Morse-Smale complex CMS

∗ (F, u) which fits into a short
exact sequence of chain complexes

0 −→ CMS
∗ (M̃, g, w) −→ CMS

∗ (F, u) −→ CMS
∗−1(M̃, f, v) −→ 0

But this means we can think of CMS
∗ (F, u) as the mapping cone of a chain homotopy

equivalence cv,w : CMS
∗ (M̃, f, v) → CMS

∗ (M̃, g, w). Furthermore cv,w can be described by
flowlines of −u from critical points (p, 0) to critical points (q, 1). Notice that this agrees
with the chain map given in Cornea and Ranicki [8, Prop.1.11].

Proposition A.6. We have cv,w ' ψv,w : CMS
∗ (M̃, f, v)→ CMS

∗ (M̃, g, w).

Proof. We can assume that W s(p, v) |∩W u(q, w) for ind p ≤ ind q. Let p be a critical point
of f of index i. Let θp : Ri × R → W s((p, 0), u) be an immersion of the stable manifold
in M × R so that we can identify the image of Ri × {0} with W s(p, v) in M = M × {0}.
By the definition of F we either have θp(x, t) ∈M × (0, 1) for all x ∈ Ri and t > 0, or for
all x ∈ Ri and t < 0. Let us assume this is true for t > 0.

Identify CMS
k (M̃, g, w) = Hk(C

k(w), Ck−1(w)) with Ck(w) = M −
⋃

ind q>k

W u(q, w), com-

pare [32, §9]. By the transversality assumption on u we can find for every compact disc
Di ⊂ Ri a K > 0 such that pM ◦ θp(D

i × {K}) ⊂ Ci(w), since θp(Ri+1) will avoid critical
points (q, 1) with ind q > i. Here pM : M × R → M is projection. We can also find a
large disc Di

p ⊂ Ri such that pM ◦ θp(∂D
i
p × {K}) ⊂ Ci−1(w) and

cv,w(p) = (pM̃ ◦ θ̃p)∗[D
i
p × {K}] ∈ Hi(C̃

i(w), C̃i−1(w)).

If Di
p is large enough, we also have

ψv,w(p) = (pM̃ ◦ θ̃p)∗[D
i
p × {0}].

Choose K so large that it works for every critical point of f . Let C be the union of
the images of the discs Di

p × {0} in M and let h : C × I → M be a homotopy between

pM ◦ θ(Di
p × {0}) and pM ◦ θp(D

i
p × {K}) such that h(pM ◦ θp(D

i
p × {0}) × I) intersects

W u(q, w) transversely for ind p ≤ ind q−1. Then h extends to a homotopy h : M×I →M
of the identity which induces the desired chain homotopy equivalence. �
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[29] A. Ranicki, The algebraic construction of the Novikov complex of a circle-valued Morse function,
available as math.DG/9903090, to appear in Math. Annalen.

[30] B. Renz, Thesis, University of Frankfurt 1987.
[31] D. Schütz, Gradient flows of closed 1-forms and their closed orbits, available as math.DG/0009055,

to appear in Forum Math.
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