
ONE PARAMETER FIXED POINT THEORY AND GRADIENT FLOWS
OF CLOSED 1-FORMS

D. SCHÜTZ

Abstract. We use the one-parameter fixed point theory of Geoghegan and Nicas to get
information about the closed orbit structure of transverse gradient flows of closed 1-forms
on a closed manifold M . We define a noncommutative zeta function in an object related to
the first Hochschild homology group of the Novikov ring associated to the 1-form and relate
it to the torsion of a natural chain homotopy equivalence between the Novikov complex and
a completed simplicial complex of M̃ , the universal cover of M .

1. Introduction

Let ω be a closed 1-form on a closed connected smooth manifold M . There is a corresponding
homomorphism ξ : G→ R, where G denotes the fundamental group, which defines a Novikov

ring ẐGξ, a completion of the group ring. We say that ω is Morse if it can be represented
locally by the differential of a real valued function whose critical points are nondegenerate.
In that case ω has only finitely many critical points, each with a well defined index. We
write ind p for the index of p.

A vector field v is an ω-gradient if there is a Riemannian metric g such that ωx(X) =
g(X, v(x)) for every x ∈ M and X ∈ TxM . For a critical point p of an ω-gradient v we
denote the unstable, resp. stable, manifold of p by W u(p), resp. W s(p). It is known that
W u(p) is an immersed open disc of dimension (n − ind p) and W s(p) one of dimension
ind p. We say v is transverse, if all discs W s(p) and W u(q) intersect transversely for all
critical points p, q of ω. It is well known that in this context one can define a Novikov chain

complex C∗(ω, v) which is in each dimension i a free ẐGξ complex with one generator for
every critical point of index i. The boundary homomorphism of C∗(ω, v) is based on the
number of trajectories between critical points of adjacent indices in the universal cover M̃
of M .

Suppose such an ω and v are given, and also a smooth triangulation of M . By adjusting
the triangulation if necessary, we can assume that each simplex is transverse to the unstable
manifolds of the critical points of ω. Then there is a natural chain homotopy equivalence

ϕ(v) : ẐGξ ⊗ZG C
∆
∗ (M̃)→ C∗(ω, v) given as follows: for a k-simplex σ we define

ϕ(v)(σ) =
∑

p∈critk(ω)

[σ : p] p
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where critk(ω) is the set of critical points of ω having index k and [σ : p] ∈ ẐGξ is the

intersection number of a lifting of σ to M̃ with translates of the unstable manifold of a
lifting of the critical point p. One asks: what information is contained in the torsion of this
equivalence?

For any ring R there is a Dennis trace homomorphism DT : K1(R) → HH1(R) from K-
theory to Hochschild homology (in all dimensions, but only dimension 1 concerns us here).

We use a variant of DT which we call DT : W → ĤH1(ZG)ξ. Here W is a subgroup

of K1(ẐGξ) containing the torsion of ϕ(v), and ĤH1(ZG)ξ is a completion of HH1(ZG)
and related to the Hochschild homology of the Novikov ring by a natural homomorphism

θ : HH1(ẐGξ)→ ĤH1(ZG)ξ.

Our main theorem says that if one applies this modified Dennis trace homomorphism to the
torsion of the equivalence ϕ(v), one gets the (topologically important part of the) closed
orbit structure of the flow induced by v in a recognizable form - that of a (noncommutative)
zeta function. In other words the “Dennis trace” of the torsion equals the zeta function.
Detailed versions of these sketchy definitions are given in subsequent sections. Here we have
just said enough to state our main theorem.

Theorem 1.1. Let ω be a Morse form on a smooth connected closed manifold Mn. Let
ξ : G → R be induced by ω and let C∆

∗ (M̃) be the simplicial ZG complex coming from
a smooth triangulation of M . For every transverse ω-gradient v there is a natural chain

homotopy equivalence ϕ(v) : ẐGξ ⊗ZG C
∆
∗ (M̃) → C∗(ω, v) whose torsion τ(ϕ(v)) lies in W

and satisfies

DT(τ(ϕ(v))) = ζ(−v).

Theorem 1.1 is a generalization of [24, Th.1.1], in fact the whole paper is a generalization of
[24] which is closely related to Pajitnov [19, 21]. Most notable is the removal of a cellularity
condition on the vector fields v in Theorem 1.1, a geometric condition due to Pajitnov [19].
Nevertheless this condition is still present in the proof of Theorem 1.1. It allows us to identify
the torsion of ϕ(v) in a way that recovers fixed point information which then matches up with
closed orbit information. In order to remove the cellularity condition we show that both the
zeta function and the torsion of ϕ(v) depend continuously on the ω-gradient v. The general
case then simply follows from the density of ω-gradients satisfying the cellularity condition
among all ω-gradients.

To define the noncommutative zeta function we use the one parameter fixed point theory
of Geoghegan and Nicas [7, 8] developed for homotopies F : X × [a, b] → X, where X is a
finite connected CW complex in the sense of classical Nielsen-Wecken fixed point theory. In
the case where F induces the identity on the fundamental group of X they define the one
parameter trace R(F ), an algebraically defined element of the Hochschild homology group
HH1(ZG), where G denotes the fundamental group; if F does not induce the identity R(F )
lies in the first Hochschild homology group with coefficients in a certain bimodule. This one
parameter trace carries information about the fixed points of F , i.e. points (x, t) ∈ X× [a, b]
with F (x, t) = x, and distinguishes between fixed point classes.
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Given a vector field on a closed smooth manifold M this theory can be (and is in [8]) ap-
plied to obtain information about the closed orbit structure of the associated flow by just
restricting the flow to a set M × [a, b]. In the case where this flow only has finitely many
closed orbits in M × [a, b], the one parameter trace counts these orbits according to their
multiplicity and conjugacy class in G.

The noncommutative zeta function of an ω-gradient is now roughly defined as ζ(−v) =
limn→∞R(Fn), where Fn : M × [0, n] → M is restriction of the flow defined by −v. The
vector field has to satisfy a transversality condition so that ζ(−v) is well defined.

Commutative zeta functions and their properties had already been studied by Fried [5] for
homology proper flows. In fact, if the closed 1-form has no critical points, gradient flows are
easily seen to be homology proper, see [5, §2] for this terminology.

The situation where the closed 1-form is allowed to have critical points has been studied by
Hutchings [10, 11], Hutchings and Lee [12, 13] and Pajitnov [19], again in a commutative
setting.

Noncommutative invariants were studied before that by Geoghegan and Nicas [8] for suspen-
sion flows. The case of critical points has only very recently been studied by Pajitnov [21]
for gradient flows of circle valued maps and by the author [24] for gradient flows of closed
1-forms. Instead of a zeta function, both papers deal with an eta function. In the case where
all the closed orbits of v are nondegenerate, the eta function is defined to be

η(−v) =
∑ ε(γ)

m(γ)
{γ}

where the sum is taken over the closed orbits γ of −v, ε(γ) is the Lefschetz sign of γ, m(γ) its
multiplicity and {γ} the associated conjugacy class in G. The eta function is a well defined

object in a quotient of the Novikov ring R̂Gξ, denoted by R̂Γξ. If we replace conjugacy
classes by homology classes, we can take the exponential of the eta function which leads to
the commutative zeta function of Fried [5], Hutchings [11, 10], Hutchings and Lee [12, 13]
and Pajitnov [19]. But in the noncommutative setting the exponential of the eta function is
not well defined.

The statement of [24] and Pajitnov [21] is that, under stronger assumptions on the vector

field v, η(−v) = L(τ(ϕ(v))), where L is a logarithm-like homomorphism from W to R̂Γξ.

The connection with Theorem 1.1 is given by a natural homomorphism l : ĤH1(ZG)ξ → R̂Γξ
described in Section 4 such that l ◦DT = L and l(ζ(−v)) = η(−v).
The contents of this paper are taken from the author’s doctoral dissertation written at the
State University of New York at Binghamton under the direction of Ross Geoghegan.

2. Hochschild homology of group rings

Let R be a ring and S an R-algebra. For an S − S bimodule M we define the Hochschild
chain complex (C∗(S,M), d) by Cn(S,M) = M ⊗ S ⊗ . . .⊗ S, where the product contains n
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copies of S and the tensor products are taken over R. The boundary operator is given by

d(m⊗ s1 ⊗ . . .⊗ sn) = ms1 ⊗ s2 ⊗ . . .⊗ sn

+
n−1∑
i=1

(−1)im⊗ s1 ⊗ . . .⊗ sisi+1 ⊗ . . .⊗ sn

+(−1)nsnm⊗ s1 ⊗ . . .⊗ sn−1

The n-th Hochschild homology group of S with coefficients in M is denoted by HHn(S,M).
If M = S and the bimodule structure is given by ordinary multiplication we write HH∗(S)
instead of HH∗(S,M). We will mainly be interested in the case where R = Z and n = 1. A
useful observation is that d(x ⊗ 1 ⊗ 1) = x ⊗ 1 and hence classes represented by x ⊗ 1 are
automatically 0 in HH1(S,M).

Given an n × k matrix A = (Aij) over M and an k × n matrix B = (Bij) over S we define

an n × n matrix A ⊗ B with entries in M ⊗ S by setting (A ⊗ B)ij =
∑k

l=1Ail ⊗ Blj. The
trace of this matrix, trace A⊗B, is given by

∑
l,mAlm⊗Bml and is an element of C1(S,M),

it is a cycle if and only if trace(AB) = trace(BA). Matrices with entries in Cn(S,M) can be
defined in a similar fashion.

Let G be a group and φ : G→ G an endomorphism. Then we define (ZG)φ to be the ZG−ZG
bimodule with underlying abelian group ZG and multiplication given by g ·m = φ(g)m and
m · g = mg for m, g ∈ G.

We say g1 and g2 in G are semiconjugate if there exists g ∈ G with g1 = φ(g−1)g2g. We
write Γφ for the set of semiconjugacy classes and γ(g) for the class containing g ∈ G.

For γ ∈ Γφ let Cn(ZG, (ZG)φ)γ be the subgroup of Cn(ZG, (ZG)φ) generated by elements
of the form g1 ⊗ g2 . . . ⊗ gn+1 which satisfy g1 · · · gn+1 ∈ γ. Clearly this is a subcomplex
and the decomposition (ZG)φ ∼=

⊕
γ∈Γφ

Zγ as abelian groups gives an isomorphism of chain

complexes

(1) C∗(ZG, (ZG)φ) ∼=
⊕
γ∈Γφ

C∗(ZG, (ZG)φ)γ.

Denote the projections by pγ : C∗(ZG, (ZG)φ) → C∗(ZG, (ZG)φ)γ. It is shown in Geoghe-
gan and Nicas [7] that H∗(C∗(ZG, (ZG)φ)γ(g)) is naturally isomorphic to H∗(C(g)), where
C(g) = {h ∈ G| g = φ(h−1)gh} denotes the semicentralizer of g ∈ G. This gives a natural
isomorphism

(2) HH∗(ZG, (ZG)φ) ∼=
⊕

γ(g)∈Γφ

H∗(C(g)).

In particular we have HH0(ZG, (ZG)φ) ∼= ZΓφ and HH1(ZG, (ZG)φ) ∼=
⊕

γ(g)∈Γφ
C(g)ab, the

direct sum of the abelianizations of the semicentralizers.

3. Review of parametrized fixed point theory

In this section we recall the parametrized fixed point theory of Geoghegan and Nicas [7].
Let X be a finite connected CW complex, v ∈ X a basepoint and F : X × Ir → X a cellular



ONE PARAMETER FIXED POINT THEORY AND GRADIENT FLOWS OF CLOSED 1-FORMS 5

map, where r ≥ 0 and Ir is the product of r copies of the unit interval with the usual CW
structure. We set G = π1(X, v). Then the choice of a basepath τ from v to F (v, 0, . . . , 0)
induces an endomorphism φ : G → G given by φ([ω]) = [τ ∗ F0 ◦ ω ∗ τ−1]. Let X̃ be the
universal covering space of X and ṽ a lift of v. Let τ̃ be the lift of τ which starts at ṽ and let
F̃ be the lift of F mapping (ṽ, 0, . . . , 0) to τ̃(1). By choosing an oriented lift ẽ for every cell e
in X we get a basis of the free left ZG complex C∗(X̃). The action is given by [ω]ẽ = h[ω]∗(ẽ),
where h[ω] is the covering transformation that sends ṽ to ω̃(1), where ω̃ is a lift of ω with
ω̃(0) = ṽ.

Remark 3.1. In [7], Geoghegan and Nicas consider C∗(X̃) as a right complex. This leads
to differences between their exposition and ours in that group elements have to be replaced
here by their inverse, semiconjugation has the φ on the left, etc. This has no impact on the
main theorems in [7, 8] other than sign differences.

We now define D̃F
k : Ck(X̃)→ Ck+r(X̃) by ẽD̃F

k = (−1)(k+r)rF̃k+r(ẽ× Ir). Since we consider

C∗(X̃) as a left module, we write D̃F
k on the right. A standard computation gives

(gẽ)D̃F
k = φ(g)(ẽD̃F

k ). We want to examine the behavior with the boundary homomorphism

of C∗(X̃). So assume that r ≥ 1. Then

ẽ∂̃kD̃
F
k−1 = (−1)(k−1+r)rF̃k+r−1(∂̃kẽ× Ir)

ẽD̃F
k ∂̃k+r = (−1)(k+r)r∂̃k+rF̃k+r(ẽ× Ir)

= (−1)(k+r)rF̃k+r−1(∂̃kẽ× Ir) + (−1)(k+r)r+kF̃k+r−1(ẽ× ∂Ir)

= (−1)(k+r)rF̃k+r−1(∂̃kẽ× Ir)−
2r∑
j=1

(−1)σ(j)D̃
Fj

k (ẽ).

Here Fj : X× Ir−1 → X is obtained from F by restricting to a side of ∂Ir. The sign (−1)σ(j)

depends on the orientation of that side in ∂Ir. Hence

D̃F
k ∂̃k+r + (−1)r+1∂̃kD̃

F
k−1 =

2r∑
j=1

(−1)σ(j)D̃
Fj

k .

We define endomorphisms of C∗(X̃) by D̃F
∗ =

⊕
k(−1)k+rD̃F

k , D̃
Fj
∗ =

⊕
k(−1)k+r−1D̃

Fj

k and

∂̃∗ =
⊕

k ∂̃k and denote the matrices with the same letter. The alternation of signs leads to
the following matrix equality:

(3) D̃F
∗ ∂̃∗ + (−1)rφ(∂̃∗)D̃

F
∗ = −

2r∑
j=1

(−1)σ(j)D̃
Fj
∗ .

For r = 1 this implies

(4) d(trace(D̃F
∗ ⊗ ∂̃∗)) = trace(D̃F

∗ ∂̃∗)− trace(φ(∂̃∗)D̃
F
∗ ) = trace D̃F0

∗ − trace D̃F1
∗ .

These traces contain information about the fixed points of the respective maps. To clarify
this let Fix(F ) = {(x, t1, . . . , tr) ∈ X × Ir|F (x, t1, . . . , tr) = x}. We define an equivalence
relation ∼ on Fix(F ) by saying that the fixed points a and b are equivalent if there exists a
path ν in X × Ir from a to b such that the loop (p ◦ ν) ∗ (F ◦ ν)−1 is homotopically trivial;
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here p : X × Ir → X is projection. Since X × Ir is compact and locally contractible there
are only finitely many fixed point classes. There is an injective function Φ : Fix(F )/∼→ Γφ
by mapping [a] to γ([τ ∗ (F ◦ µ) ∗ (p ◦ µ)−1]), where µ is a path from (v, 0, . . . , 0) to a. It is
easy to see that this is well defined, but it depends on the choice of the base path τ .

Let us return to the algebraic traces. First we look at a cellular map f : X → X. Geoghegan
and Nicas [7] prove the following

Theorem 3.2. [7, Th.2.6] Let f : X → X be a cellular self map of a CW complex X. Let e

be a q-cell of X and let the corresponding diagonal entry in the ZG matrix of f̃q : Cq(X̃)→
Cq(X̃) be d(ẽ) =

∑
gmg, where mg ∈ Z. For each mg 6= 0, e contains a fixed point xg such

that f̃(x̃g) = gx̃g, where x̃g is the lift of xg to ẽ.

In particular, nonzero terms in pγ(trace D̃f
∗ ) ∈ Zγ ⊂ (ZG)φ detect fixed points x with

Φ[x] = γ. In other words if f has no fixed points corresponding to γ, then pγ(trace D̃f
∗ ) = 0.

This leads to the classical Nielsen-Wecken fixed point theory; see Geoghegan and Nicas [7]
for details.

To get a similar result for one parameter fixed point theory we need the following theorem
of Geoghegan and Nicas [7].

Theorem 3.3. [7, Th.2.12] Let F : X×I → X be a cellular map where X is a well faced CW
complex. Let eq−1 ⊂ eq be cells of X of the indicated dimensions and let the corresponding
entry in the ZG matrix of F̃q : Cq(X̃ × I) → Cq(X̃) be d(ẽq−1, ẽq) =

∑
gmg where each

mg ∈ Z. For each g ∈ G with mg 6= 0 and u ∈ G with hu(ẽ
q−1) ⊂ ẽq, eq−1 × I contains a

fixed point (xg,u, tg,u) such that F̃ (x̃g,u, tg,u) = gux̃g,u, where (x̃g,u, tg,u) is the lift of (xg,u, tg,u)
to ẽq−1 × I.
The condition “well faced” is merely a technicality which is satisfied for example by regular
CW complexes. Again we get that nonzero terms in pγ(trace(D̃F

∗ ⊗ ∂̃∗)) ∈ C1(ZG, (ZG)φ)γ
detect fixed points (x, t) with Φ[x, t] = γ.

Looking back at (4) we now see that pγ(trace(D̃F
∗ ⊗ ∂̃∗)) is a cycle if F1 and F0 have no fixed

points associated to γ. Let S ⊂ Γφ, then we define p†S : C∗(ZG, (ZG)φ)→ C∗(ZG, (ZG)φ) to
be the composition

C∗(ZG, (ZG)φ)

L
γ∈Γφ−S

pγ

−→
⊕

γ∈Γφ−S

C∗(ZG, (ZG)φ)γ
i
↪→
⊕
γ∈Γφ

C∗(ZG, (ZG)φ)γ = C∗(ZG, (ZG)φ).

Definition 3.4. Let F : X × I → X be a cellular homotopy, where X is a finite connected
CW complex. Then the one parameter trace of F , denoted by R(F ) ∈ HH1(ZG, (ZG)φ), is

the homology class of p†S(trace(D̃F
∗ ⊗ ∂̃∗)), where S ⊂ Γφ is the set of semiconjugacy classes

associated to fixed points of F0 and F1.

By the remarks above we get that if pγ(g)∗R(F ) ∈ C(g)ab is nonzero, then F contains a fixed
point associated to γ(g). It is shown in Geoghegan and Nicas [7, Prop.4.1] that R(F ) is
independent of the orientation and the choice of lifts of cells to X̃. The following is an easy
example, but it shows how the signs behave compared to Geoghegan and Nicas [7, 8].
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Example 3.5. Let Φ : S1 × R→ S1 be defined by Φ(e2πiθ, t) = e2πi(θ+t) and let
Fn : S1 × [0, n] → S1 be given by Fn = Φ|S1×[0,n]. The basepath is chosen to be constant.

We can put a cell structure on S1 with two cells and lift it to a cell structure of R = S̃1.
Choose a 0-cell ẽ0 = 0 ∈ R and a 1-cell ẽ1 = [0, 1]. Let t be the generator of π1(S

1, 1) = G

that satisfies ht(x) = x+1. Then ẽ0D̃F
0 = −(1+ t+ . . .+ tn−1)ẽ1 and ẽ1∂̃1 = (t−1)ẽ0. Hence

trace(D̃F
∗ ⊗∂̃∗) = (1+t+. . .+tn−1)⊗(t−1) which is homologous to 1⊗t+t⊗t+. . .+tn−1⊗t. The

last summand corresponds to a fixed point of F (·, n), soR(Fn) is represented by
∑n−1

k=1 t
k−1⊗t.

Notice that H1(C∗(ZG,ZG)γ(tk)) ' H1(C(tk)) ' Z and tk−1 ⊗ t is a generator.

To examine the behavior of R(F ) within its homotopy class we look at chains modulo
boundaries. Define C/B = C1(ZG, (ZG)φ)/d2(C2(ZG, (ZG)φ)) and let CR(F ) be the image

of trace(D̃F
∗ ⊗ ∂̃∗) in C/B. Given a cellular homotopy Λ : X × I × I → X define

F i(x, t) = Λ(x, t, i) and U i(x, t) = Λ(x, i, t) for i = 0, 1. To ensure that all maps induce the
same homomorphism φ, F 0 and U0 use the basepath τ while F 1 uses τ ∗σ and U1 uses τ ∗µ,
where σ(t) = Λ(v, 0, t) and µ(t) = Λ(v, t, 0). Then we get the following

Proposition 3.6. [7, Prop.4.2] CR(F 0)− CR(F 1) = CR(U0)− CR(U1).

Proof. Use (3) with r = 2. This gives

d(trace(D̃Λ
∗ ⊗ ∂̃∗ ⊗ ∂̃∗)) = trace((D̃Λ

∗ ∂̃∗ + φ(∂̃∗)D̃
Λ
∗ )⊗ ∂̃∗)

= trace(D̃U0

∗ ⊗ ∂̃∗)− trace(D̃U1

∗ ⊗ ∂̃∗) +

trace(D̃F 1

∗ ⊗ ∂̃∗)− trace(D̃F 0

∗ ⊗ ∂̃∗).

Passing to C/B gives the result. �

In particular R(F ) only depends on the homotopy class of F relative to the ends. Another
property of R(F ) is combinatorial invariance; see [7, Cor.4.6] and [9, Th.4.6], which is used
in [7, §4B] to extend the definition of R(F ) to continuous homotopies on compact polyhedra.
To do this one just has to use a fine enough triangulation and a simplicial approximation of
F . This R(F ) has the same properties for detecting fixed points and homotopy invariance.

4. Hochschild homology of Novikov rings

Let G be a group and ξ : G→ R be a homomorphism. We denote by
̂̂ZG the abelian group

of all functions G→ Z. For λ ∈ ̂̂ZG let supp λ = {g ∈ G |λ(g) 6= 0}. Then we define

ẐGξ = {λ ∈ ̂̂ZG | ∀r ∈ R # supp λ ∩ ξ−1([r,∞)) <∞}

For λ1, λ2 ∈ ẐGξ we set (λ1 · λ2)(g) =
∑

h1,h2∈G
h1h2=g

λ1(h1)λ2(h2), then λ1 · λ2 is a well defined

element of ẐGξ and turns ẐGξ into a ring, the Novikov ring. It contains the usual group

ring ZG as a subring and we have ZG = ẐGξ if and only if ξ is the zero homomorphism.
We can define Novikov rings for Q or R by simply replacing Z in the above definitions by
one of these.



8 D. SCHÜTZ

Definition 4.1. The norm of λ ∈ ẐGξ is defined to be

‖λ‖ = ‖λ‖ξ = inf{t ∈ (0,∞)| supp λ ⊂ ξ−1((−∞, log t])}.

It has the following nice properties:

(1) ‖λ‖ ≥ 0 and ‖λ‖ = 0 if and only if λ = 0.
(2) ‖λ‖ = ‖ − λ‖.
(3) ‖λ+ µ‖ ≤ max{‖λ‖, ‖µ‖}.
(4) ‖λ · µ‖ ≤ ‖λ‖ · ‖µ‖.

This norm can be used to define a complete metric on ẐGξ, the topology induced by this
metric is the Krull topology, compare Eisenbud [3].

If N is a normal subgroup of G that is contained in ker ξ we get a well defined homomorphism

ξ̄ : G/N → R and a well defined ring epimorphism ε : ẐGξ → ẐG/N ξ̄ given by

ε(λ)(gN) =
∑
n∈N

λ(gn).

Now let Γ = Γ1 be the set of conjugacy classes of G. Again the homomorphism ξ induces
a well defined function Γ→ R which we also denote by ξ. In analogy with above we define

ẐΓξ, but since there is no well defined multiplication in Γ, this object is just an abelian

group. Again there is an epimorphism ε : ẐGξ → ẐΓξ of abelian groups. We can think of

ẐΓξ as lying between ẐGξ and ẐH1(G)ξ̄.

We would like to get a result for HH∗(ẐGξ) similar to (2). We will just be interested in
the case where φ is the identity. Before we go into detail let us have an informal discussion.

Elements of ZG and ẐGξ can also be described as formal linear combinations. So a typical
n-chain looks like ∑

g1∈G

ng1g1 ⊗ . . .⊗
∑

gn+1∈G

ngn+1gn+1.

If the elements are taken from ZG we can write this as

(5)
∑

g1,...,gn+1∈G

ng1 · · ·ngn+1 g1 ⊗ . . .⊗ gn+1

which is just a finite sum. But if we think of the elements as being taken from ẐGξ, (5) would

be an infinite sum of tensors which does not give a well defined element of Cn(ẐGξ, ẐGξ).
In other words, the process of breaking down an n-chain into the form (5) might not give
an n-chain. On the other hand given a conjugacy class γ ∈ Γ there are only finitely many
nonzero summands in (5) that satisfy g1 · · · gn+1 ∈ γ. So we are going to define a chain
complex C∗ based on conjugacy classes in which (5) makes sense together with a chain map

Cn(ẐGξ, ẐGξ)→ C∗.

More precisely for γ ∈ Γ we define a chain map θγ : C∗(ẐGξ, ẐGξ) → C∗(ZG,ZG)γ. To do

this let λ1 ⊗ λ2 . . . ⊗ λn+1 ∈ Cn(ẐGξ, ẐGξ). We can assume that all λi are nonzero. Then
let T = log min{‖λi‖| i = 1, . . . , n+ 1} and choose an M < 0 such that
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‖λ1‖ · · · ‖λn+1‖ ≤ exp(−M). Then for i = 1, . . . , n+ 1 we define λ̄i ∈ ZG by

λ̄i(h) =

{
0 if ξ(h) < M + T + ξ(γ)

λi(h) otherwise

and
θγ(λ1 ⊗ . . .⊗ λn+1) = pγ(λ̄1 ⊗ . . .⊗ λ̄n+1).

It is to be shown that this is independent of M , so let ¯̄λi be defined using an M ′ with
M ′ < M . It suffices to show that pγ(

¯̄λ1 ⊗ . . .⊗ ¯̄λi−1 ⊗ ¯̄λi − λ̄i ⊗ λ̄i+1 ⊗ . . .⊗ λ̄n+1) = 0. Let

gi ∈ supp(¯̄λi − λ̄i) and assume that there are gj ∈ supp ¯̄λj for j 6= i with g1 · · · gn+1 ∈ γ.
Then

ξ(gi) < M + T + ξ(γ) = M + T + ξ(g1) + . . .+ ξ(gn+1),

so ∑
j 6=i

ξ(gj) > −M − T,

hence
exp(

∑
j 6=i

ξ(gj)) > exp(−M) · exp(−T ) ≥ exp(−M) · ‖λi‖−1

and so ‖λ1‖ · · · ‖λn+1‖ > exp(−M), a contradiction, hence the gj for j 6= i with the described

properties cannot exist. Therefore pγ(
¯̄λ1 ⊗ . . .⊗ ¯̄λi−1 ⊗ ¯̄λi − λ̄i ⊗ λ̄i+1 ⊗ . . .⊗ λ̄n+1) = 0.

Next we show that θγ commutes with the boundary. We have

d(λ1 ⊗ . . .⊗ λn+1) = λ1λ2 ⊗ . . .⊗ λn+1

+
n−1∑
i=1

(−1)iλ1 ⊗ . . .⊗ λiλi+1 ⊗ . . .⊗ λn+1

+(−1)nλn+1λ1 ⊗ . . .⊗ λn
In forming “¯”, use T = log(min{‖λi‖| i = 1, . . . , n + 1} ∪ {‖λi‖ · ‖λj‖| i, j = 1, . . . , n + 1})
and M so small that the same M + T + ξ(γ) can be used for every λ̄i, λiλi+1. We have to
show that pγ(λ̄1 ⊗ . . .⊗ λiλi+1 − λ̄iλ̄i+1 ⊗ . . .⊗ λ̄n+1) = 0. We have

λiλi+1(h) =

{
0 if ξ(h) < M + T + ξ(γ)

λiλi+1(h) otherwise

On the other hand

λ̄iλ̄i+1(h) =
∑

hihi+1=h

λ̄i(hi)λ̄i+1(hi+1) =
∑

hihi+1=h

ξ(hk)≥M+T+ξ(γ)

λi(hi)λi+1(hi+1).

Let h ∈ supp(λiλi+1 − λ̄iλ̄i+1). If ξ(h) < M + T + ξ(γ), then there exist hi ∈ suppλi,
hi+1 ∈ suppλi+1 with hihi+1 = h. The existence of hj ∈ suppλj for j 6= i, i + 1 with
h1 · · ·hn+1 ∈ γ leads to a contradiction as above. If ξ(h) ≥M+T+ξ(γ), then assume without
loss of generality that there is hi ∈ suppλi, hi+1 ∈ suppλi+1 with ξ(hi) < M + T + ξ(γ) and
ξ(hi+1) ≥ M + T + ξ(γ), but as before no hj ∈ suppλj for j 6= i, i + 1with h1 · · ·hn+1 ∈ γ
can exist. Therefore pγ(λ̄1 ⊗ . . . ⊗ λiλi+1 − λ̄iλ̄i+1 ⊗ . . . ⊗ λ̄n+1) = 0 and θγ is a chain
homomorphism.
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In analogy with (1) we define

C∗(ZG)ξ = {(cγ) ∈
∏
γ∈Γ

C∗(ZG,ZG)γ| ∀r ∈ R # {cγ 6= 0 | ξ(γ) ≥ r} <∞}

and ĤH∗(ZG)ξ = H∗(C∗(ZG)ξ). Notice that⊕
γ∈Γ

H∗(C∗(ZG,ZG)γ) ⊂ ĤH∗(ZG)ξ ⊂
∏
γ∈Γ

H∗(C∗(ZG,ZG)γ),

which follows from Section 2. Furthermore it is easy to see that

(θγ∗)γ∈Γ : HH∗(ẐGξ) →
∏

γ∈ΓH∗(C∗(ZG,ZG)γ) factors through ĤH∗(ZG)ξ; we denote this
corestriction by θ. Therefore we have the commutative diagram

HH∗(ZG)
'−→

⊕
γ∈Γ

H∗(C∗(ZG,ZG)γ)y y
HH∗(ẐGξ)

θ−→ ĤH∗(ZG)ξ

By analogy with [24, §3] we can define a homomorphism L :
∏
γ∈Γ

C1(ZG,ZG)γ →
̂̂RΓ by

L((g1 ⊗ g2)g1g2∈γ)(γ) =


ξ(g2)

ξ(γ)
if ξ(γ) < 0

0 otherwise

which induces a homomorphism on homology that restricts to a homomorphism

l : ĤH1(ZG)ξ → R̂Γξ.

In [24, §3], the bimodule in the Hochschild complex is on the right, so if the homomorphism
µ in [24] is defined by switching the bimodule to the left, we see that this homomorphism
factors as µ = l ◦ θ.

Remark 4.2. In Section 2 we saw that HH0(ZG) ∼= ZΓ, a result which can easily be derived
directly, in particular we also have HH0(RG) ∼= RΓ. We can also define Cn(RG,RG)γ to
be the subgroup of Cn(RG,RG) generated by r1g1 ⊗ . . . ⊗ rn+1gn+1 with r1, . . . , , rn+1 ∈ R
and g1 · · · gn+1 ∈ γ. In analogy with above we get the complex C∗(RG)ξ, which contains

C∗(RG,RG) as a subcomplex. Denoting the resulting homology by ĤH∗(RG)ξ, a completion

of HH∗(RG), we get R̂Γξ ∼= ĤH0(RG)ξ and the homomorphism l is reminiscent of the

homomorphism P̂+ in Geoghegan and Nicas [8, §5].

5. Gradient flows of closed 1-forms

Given a closed 1-form ω on a closed manifold M we obtain a homomorphism ξ̄ : H1(M)→ R
by ξ̄[α] =

∫
α
ω which induces a homomorphism ξ : G → R , where G = π1(M, v) for some

basepoint v ∈M . Since G is finitely generated, the image of ξ is a finitely generated subgroup
of R, hence isomorphic to Zk for some integer k. If k = 1 ω is said to be rational, if k > 1 it
is irrational.
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We will call a closed 1-form a Morse form if ω is locally represented by the differential of
real valued functions whose critical points are nondegenerate. So if ω is a Morse form, then
ω has only finitely many critical points and every critical point has a well defined index. If
p is a critical point, we denote its index by ind p.

Definition 5.1. Let ω be a closed 1-form. A vector field v is called an ω-gradient, if there
exists a Riemannian metric g such that ωx(X) = g(X, v(x)) for every x ∈M and X ∈ TxM .

For a critical point p of an ω-gradient v we denote the unstable, resp. stable, manifold of p
by W u(p), resp. W s(p). So if Φ : M × R→M denotes the flow of v, then
W u(p) = {x ∈ M |Φ(x, t)→ p for t→ −∞} and W s(p) = {x ∈ M |Φ(x, t)→ p for t→∞}.
It is known that W u(p) is an immersed open disc of dimension (n − ind p) and W s(p) one
of dimension ind p, see e.g. Abraham and Robbin [1, §27]. The next Lemma allows us to
forget about the Riemannian metric and will be useful in using vector fields as gradients of
different Morse forms.

Lemma 5.2. [24, Lm.2.3] Let ω be a Morse form and v a vector field. Then v is an ω-
gradient if and only if

(1) For every critical point p of ω there exists a neighborhood Up of p and a Riemannian
metric g on Up such that ωx(X) = g(X, v(x)) for every x ∈ Up and X ∈ TxUp.

(2) If ωx 6= 0, then ωx(v(x)) > 0. �

Condition 2. will sometimes be all we need so we define a smooth vector field v to be a weak
ω-gradient if ωx = 0 implies v(x) = 0 and ωx 6= 0 implies ωx(v(x)) > 0. The stable and
unstable manifolds still exist as sets but they might not have as nice properties as in the
case of ω-gradients.

Definition 5.3. Let v be an ω-gradient.

(1) We say v is transverse, if all discs W s(p) and W u(q) intersect transversely for all
critical points p, q of ω.

(2) We say v is almost transverse, if for critical points p, q with ind p ≤ ind q the discs
W s(p) and W u(q) intersect transversely.

The condition that v is almost transverse basically means that if there is a nonconstant
trajectory of −v from one critical point p to a critical point q, then ind q < ind p. Notice that
for ind p < ind q transverse intersection in 2. means empty intersection and for ind p = ind q
the intersection is 0-dimensional. But if x ∈ W s(p)∩W u(q), the whole trajectory through x
is also in the intersection. The existence of transverse ω-gradients is given in Pajitnov [20,
Lm. 5.1] which is a version of the classical Kupka-Smale theorem.

Let Φ : M × R → M be the flow obtained from a vector field v by integration. By a
closed orbit of v we mean a nonconstant map γ : S1 → M with γ′(x) = v(γ(x)). The
multiplicity m(γ) is the largest positive integer m such that γ factors through an m-fold
covering S1 → S1. Alternatively we write γ : [0, p] → M with γ(0) = γ(p). The number p
is then called the period of γ, which we also denote by p(γ). We say two closed orbits are
equivalent if they only differ by a rotation of S1. We denote the set of equivalence classes of
closed orbits by Cl(v). Notice that γ ∈ Cl(v) gives a well defined element {γ} ∈ Γ.
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Given b > a ≥ 0 define F b
a : M × [a, b] → M by restricting Φ to M × [a, b]. The results

of Section 3 can be used directly on F b
a . As the basepath from v to F (v, a) we choose

τ(t) = Φ(v, t). It is immediate that stationary points of the flow, when viewed as fixed points
of F b

a , correspond to the conjugacy class of 1G. For a nontrivial closed orbit γ : [0, c] → M
we get fixed points (γ(t), c) which correspond to the conjugacy class of [γ]. To see this choose
the path µ to first go from (v, a) to (v, 0), then from (v, 0) to (γ(0), 0) and then from (γ(0), 0)
to (γ(0), c).

We have R(F b
a) ∈

⊕
γ∈Γ

H1(C∗(ZG,ZG)γ) and we want to let b go to infinity.

Lemma 5.4. Let X be a compact polyhedron and E : X× [0, 2]→ X be a homotopy. Define
F,G : X × [0, 1]→ X by F (x, t) = E(x, t) and G(x, t) = E(x, t+ 1).
Then CR(E) = CR(F ) + CR(G).

Proof. If E is cellular, define Λ : X×I×I → X by Λ(x, t, s) = E(x, t(s+1)) and use Propo-
sition 3.6. In the general case use a fine enough triangulation and a simplicial approximation
for E and proceed as before. �

From this Lemma it follows that CR(F n+1
0 ) = CR(F n

0 ) + CR(F n+1
n ). To get something

reasonable for n → ∞ we have to be able to somehow disregard the last term. So now
assume that ω is a Morse form and our flow comes from a weak ω-gradient v. Let p, q be
critical points of ω, x ∈ W u(p)∩W s(q) and γ : R→M the trajectory of −v with γ(0) = x.
Then γ extends to a path γ̄ : [−∞,∞]→M from q to p.

Definition 5.5. We call a loop δ : S1 → M a broken closed orbit of −v, if it is a finite
concatenation of such paths γ̄.

Remark 5.6. If v is almost transverse, no nonconstant broken closed orbits can exist since
trajectories of −v between critical points lower the index.

If γ : [0, c]→M is a nontrivial closed orbit of −v, we get

ξ({γ}) =

∫
γ

ω =

c∫
0

ω(γ′(t)) dt =

c∫
0

−ω(v(γ(t)) dt < 0

by Lemma 5.2. A broken closed orbit δ of −v also defines a conjugacy class {δ} ∈ Γ which
also satisfies ξ({δ}) < 0. Then we set

bω(−v) = sup { ξ({δ}) ∈ R | δ is a nonconstant broken closed orbit of − v}.

In particular the vector field −v has no nonconstant broken closed orbits if and only if
bω(−v) = −∞. Define

On = {γ : [0, b]→M |The period b ≥ n and γ is a closed orbit of − v}

and Cn = sup{c ∈ R | − ξ([γ]) ≥ c for all γ ∈ On} ∈ [0,∞]. Since the On decrease as sets in
n we get Cn → C ∈ [0,∞] as n→∞.

Lemma 5.7. Under the above assumptions, if bω(−v) = −∞ we get C =∞.
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Proof. The argument is similar to Hutchings [10, §3.2]. Assume C <∞, then there exists a
sequence γn ∈ On with −ξ([γn]) ∈ [0, C] for all n.

Choose disjoint small balls around the critical points of ω such that whenever a flowline of
v leaves a ball it takes a positive time t0 > 0 to get back into a ball. For a closed orbit γ
let Nγ be the number of how often the closed orbit enters (and leaves) such a ball. Because
of t0 > 0 we get Nγ < ∞. The sequence Nγn is bounded because otherwise −ξ([γn]) → ∞.
This follows because t0 > 0 and ω(v) ≥ ε outside the balls for some ε > 0. By passing to a
subsequence we can assume that Nγn is constant to N .

Choose points xn,j for j = 1, . . . , N on the orbit of γn away from the balls such that there
is exactly one ball on the orbit between xn,j and xn,j+1 and between xn,N and xn,1. Also
denote by tn,j the time it takes from xn,j to xn,j+1. We can assume that the xn,j converge
to xj ∈ M and the tn,j converge to tj ∈ [0,∞]. Notice that

∑
j tn,j = p(γn). If tj < ∞ the

continuity of the flow implies the existence of a flow line between xj and xj+1 If tj =∞ there
is a “broken” flow line from xj to xj+1 through a critical point. At least one of the tj has to
be ∞ because p(γn)→∞. As a result we get a broken closed orbit of −v which contradicts
bω(−v) = −∞. �

In particular for γ ∈ Γ − {γ(1G)} there exists an nγ > 0 such that pγ(CR(Fm
nγ

)) = 0 for

all m > nγ. The only conjugacy classes where pγ(CR(F
nγ

0 )) can fail to be a homology
class are γ(1G) and conjugacy classes corresponding to fixed points of F (·, nγ). In particular
pγ(CR(F

nγ

0 )) = pγ∗(R(F
nγ

0 )) is a homology class.

Definition 5.8. Let ω be a Morse form and v a weak ω-gradient with bω(−v) = −∞. Then

we define the noncommutative zeta function of −v to be the element ζ(−v) ∈ ĤH1(ZG)ξ
which satisfies

(1) pγ(ζ(−v)) = 0 for ξ(γ) ≥ 0.
(2) pγ(ζ(−v)) = pγ(CR(F

nγ

0 )) ∈ H1(C∗(ZG,ZG)γ) for ξ(γ) < 0.

That ζ(−v) lies indeed in ĤH1(ZG)ξ follows from Lemma 5.4 and 5.7. By Remark 5.6 ζ(−v)
is defined if v is almost transverse.

Remark 5.9. There is an alternative way to decribe this zeta function. Similar to Defi-

nition 4.1 we can define a norm ‖ · ‖ on ĤH1(ZG)ξ which turns it into a complete metric

space. Because of Lemma 5.7 the elements R(F n
0 ) ∈ HH1(ZG) ⊂ ĤH1(ZG)ξ form a Cauchy

sequence. Then ζ(−v) = limn→∞R(F n
0 ).

The name noncommutative zeta function is motivated by the following: let v be a vector field
as above that only has nondegenerate closed orbits. Here a closed orbit γ is nondegenerate
if det(I − dP ) 6= 0, where P is a Poincaré map corresponding to γ. In that case we define
ε(γ) ∈ {1,−1} to be the sign of det(I − dP ). Given a closed orbit γm : [0,mp]→ M where
m is the multiplicity of γm and hence there is a primitive loop γ : [0, p]→M , the conjugacy
class corresponding to that orbit is {γm}. By choosing a basepath we associate to γ an
element [γ] ∈ G so that [γ]m represents {γm} and then we set

I(γm) = [[γ]m[γ]−1 ⊗ [γ]] ∈ H1(C∗(ZG,ZG){γm}).
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We do not have to worry about the basepath because of the following

Lemma 5.10. Let g, h ∈ G and k be an integer. Then gk ⊗ g is homologous to h−1gkh ⊗
h−1gh.

Proof. Let x = h−1gkh⊗ h−1g ⊗ h+ gkh⊗ h−1 ⊗ g − gk+1 ⊗ h⊗ h−1. Then

d(x) = h−1gk+1 ⊗ h− h−1gkh⊗ h−1gh+ gkh⊗ h−1g + gk ⊗ g − gkh⊗ h−1g

+gk+1h⊗ h−1 − gk+1h⊗ h−1 + gk+1 ⊗ 1− h−1gk+1 ⊗ h.

Since gk+1 ⊗ 1 is a boundary we get the result. �

In analogy with Geoghegan and Nicas [8, §2B] we form the Nielsen-Fuller series

Θ(Φ) =
∑

γ∈Cl(−v)

ε(γ)I(γ) ∈ ĤH1(ZG)ξ.

Here Φ denotes the flow of −v. We can also define the eta function of −v to be the element

of Q̂Γξ defined by

η(−v)(δ) =
∑

γ∈Cl(−v)
{γ}=δ

ε(γ)

m(γ)

This formula for the eta function is basically taken from Pajitnov [21]. Commutative eta
functions already appeared in Fried [5] whose exponential is then the zeta function of the
vector field. Notice that the exponential of the noncommutative eta function is not defined
since there is no well defined multiplication in Γ in general.

It is easy to see that η(−v) = l(Θ(Φ)). Now it follows from Geoghegan and Nicas [8, Th.2.7]
that

(6) ζ(−v) = Θ(Φ) and hence η(−v) = l(ζ(−v))

so ζ(−v) is a generalization of η(−v) which is defined even when v has degenerate closed
orbits. Our different convention for R(F ) leads to the vanishing of the ‘−’ sign in [8, Th.2.7],
compare Example 3.5.

Fried [5] already defined his zeta function without the requirement of nondegenerate closed
orbits using the Fuller index [6]. We want to show that our ζ(−v) is an appropriate gener-
alization in that context. Because of Lemma 5.7 and Fuller [6, Th.3] the union Cγ of closed
orbits belonging to γ ∈ Γ is an isolated compact set in M × (0,∞). Choose n > 0 such that
Cγ ⊂M× [0, n−1] and let C be the union of closed orbits in M× [0, n]. By Fuller [6, Lm.3.1]
we can perturb the vector field −v to a vector field −v′ with a finite number of closed orbits
in M × [0, n] and no closed orbits in the boundary of a neighborhood of C. By choosing
the vector field −v′ close enough to −v we get no further closed orbits corresponding to γ
in M × [0, n], compare the proof of [6, Lm.3.1]. The straight line homotopy between −v
and −v′ induces a homotopy between F n

0 and F ′, which gives pγ(CR(F n
0 )) = pγ(CR(F ′))

by Proposition 3.6. But l(pγ(CR(F ′)))(γ) = i(Cγ), the Fuller index of Cγ, by the remarks
above. Therefore l(pγ(CR(F n

0 )))(γ) = i(Cγ).
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Notice that the eta function can be described as

η(−v)(γ) = i(Cγ),

the formula in the commutative case given by Fried [5].

6. The Novikov complex of a Morse form

Given a Morse form ω and a transverse ω-gradient v we can define the Novikov complex

C∗(ω, v) which is in each dimension i a free ẐGξ complex with one generator for every
critical point of index i. Here ξ is again the homomorphism induced by ω. The boundary
homomorphism of C∗(ω, v) is based on the number of trajectories between critical points of
adjacent indices. For more details see Pajitnov [17] or Latour [15]. This chain complex is

chain homotopy equivalent to ẐGξ⊗ZGC
∆
∗ (M̃), where C∆

∗ (M̃) is the simplicial chain complex

of the universal cover M̃ of M with respect to a smooth triangulation of M lifted to M̃ . The
chain homotopy equivalence can be chosen so that its torsion lies in a certain subgroup of

K
G

1 (ẐGξ) = K1(ẐGξ)/〈±[g] | g ∈ G〉. Given a ∈ ẐGξ with ‖a‖ < 1, the series
∑∞

k=0 a
n is a

well defined element of ẐGξ and hence the inverse of 1−a. Therefore {1−a ∈ ẐGξ | ‖a‖ < 1}
is a subgroup of ẐG

∗
ξ , the group of units of ẐGξ. We denote the image of this subgroup in

K
G

1 (ẐGξ) by W . It is proven in Pajitnov [17] in the rational case and in Latour [15] for the
general case that there is a chain homotopy equivalence whose torsion lies in W .

Let us specify a chain map between the completed triangulated chain complex and the
Novikov complex. We can assume that a triangulation is adjusted to v, i.e. a k-simplex σ
intersects the unstable manifolds W u(q) transversely for critical points of index ≥ k, see [24,
§2.3]. Then we define

(7) ϕ(v)(σ) =
∑

p∈critk(ω)

[σ : p] p

where critk(ω) is the set of critical points of ω having index k and [σ : p] ∈ ẐGξ is the inter-

section number of a lifting of σ to M̃ with translates of the unstable manifold of a lifting of
the critical point p.

Let us look at the case of a rational Morse form ω first. There is an infinite cyclic covering
space p : M̄ → M such that p∗ω = df̄ is exact, namely the one corresponding to ker ξ. We
can also assume that 0 ∈ R is a regular value of f̄ : M̄ → R. Let N = f̄−1(0) and b > 0
be the number such that f̄−1(b) = tN , where t is a generator of the covering transformation
group. Define MN = f̄−1([0, b]). Then the cobordism (MN , N, tN) is equipped with a Morse
function f̄ |MN

: MN → [0, b]. The covering map p restricted to N is a diffeomorphism onto
its image and we can think of MN as a splitting of M along N .

For this situation Pajitnov [19, 20, 21] defines a condition (C′) for an ω-gradient v. For
the full condition we refer the reader to these papers, but informally it can be described as
follows: the condition (C′) requires a Morse map ψ on N which gives a handle decomposition
on N and tN . The vector field v which lifts to a vector field v′ on MN now has to satisfy a
“cellularity condition”: whenever p is a critical point of f̄ of index i, it should be the case
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that some thickening of W s(p) is attached to the union of the (i − 1)-handles of N and of
MN . Also a thickening of an i-handle in tN has to flow under −v′ into the i-skeleton of N
and MN . A symmetric condition holds for the unstable manifolds and handles of N .

By Pajitnov [20, §5], the set of transverse ω-gradients satisfying (C′) is C0-open and dense
in the set of transverse ω-gradients. Such gradients should be thought of as cellular approx-
imations to arbitrary ω-gradients.

Now let ρ : M̃ →M be the universal cover, f̃ : M̃ → R the lifting of f̄ and Ñk = f̃−1({k ·b})
for k ∈ Z. The handle decomposition of N gives rise to sets Ṽ

[i]
k , Ṽ

(i)
k described in [21,

§4.4,§4.5] such that Di =
⊕

k∈Z H̃i(Ṽ
[i]
k /Ṽ

(i−1)
k ) gives a finitely generated free ZG module.

The topological space Ṽ
[i]
k /Ṽ

(i−1)
k is in fact a wedge of thickened i-spheres. The vector field

−ṽ, the lifting of −v to M̃ , induces a map ki : Di → Di. We can choose a basis of D by
choosing lifts of handles in Ñ := Ñ0 and this allows us to form a matrix Ai that represents ki.

It follows that I−Ai is an invertible matrix when viewed as a matrix over ẐGξ and the inverse

is
∑∞

k=0A
k
i . It is shown in [24, §4.1] that in this situation ϕ(v) : ẐGξ⊗ZGC

∆
∗ (M̃)→ C∗(ω, v)

is a natural chain homotopy equivalence whose torsion is given by

τ(ϕ(v)) =
n−1∑
i=0

(−1)i+1τ(I − Ai) ∈ K
G

1 (ẐGξ).

The case of irrational Morse forms is treated by approximation. The following Lemma is
proven in [24], see also Pajitnov [18, §2B].

Lemma 6.1. [24, Lm.4.2] For a Morse form ω and an ω-gradient v there exists a rational
Morse form ω′ with the same set of critical points and that agrees with ω in a neighborhood
of these critical points such that v is also an ω′-gradient. �

We denote by ξ′ the homomorphism induced by this rational approximation ω′. Let us
compare the Novikov complexes we obtain for a Morse form ω and a rational approximation
ω′ that both use the same vector field v. The complexes are taken over different rings,

ẐGξ and ẐGξ′ respectively. But for two critical points p, q of adjacent index the elements

∂̃(p, q) ∈ ẐGξ and ∂̃′(p, q) ∈ ẐGξ′ agree when viewed as elements of
̂̂ZG since both count

the number of flowlines between p̃ and translates of q̃, and these only depend on v. So we
can compare chain complexes even though they are over different rings.

We say an ω-gradient v satisfies the condition (AC), if there exists a rational Morse form ω′

such that v is an ω′-gradient and as such it satisfies (C′). Using Lemma 6.1 we get C0-openess
and density for vector fields satisfying (AC) among the transverse ones.

Now given an ω-gradient v satisfying (AC) we can use the rational approximation to define
the matrices Ai as above. It is shown in [24, §4.3] that I − Ai is not just invertible over

ẐGξ′ , but also over ẐGξ and the inverse is again
∑∞

k=0A
k
i . Furthermore [24] shows that
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ϕ(v) : ẐGξ ⊗ZG C
∆
∗ (M̃)→ C∗(ω, v) is again a chain homotopy equivalence with torsion

(8) τ(ϕ(v)) =
n−1∑
i=0

(−1)i+1τ(I − Ai) ∈ K
G

1 (ẐGξ).

7. Proof of the main theorem, Part 1

We now want to draw the connection between the torsion of the chain homotopy equivalence
described in Section 6 and ζ(−v). Because of Pajitnov [19, 21] and our paper [24] we expect
τ(ϕ(v)) to carry the information of ζ(−v). To connect these two objects there is the Dennis
trace homomorphism DT : K1(R) → HH1(R) defined by DT (α) = [trace A−1 ⊗ A], where
α ∈ K1(R) is represented by the matrix A. Here R is a ring with unit. It is elementary that
DT is a well defined homomorphism. For more on the Dennis trace see Igusa [14, §1].

Now we choose R = ẐGξ and the composition θ ◦DT is a homomorphism

K1(ẐGξ) → ĤH1(ZG)ξ. Our torsion τ(ϕ(v)) is an element of W ⊂ K
G

1 (ẐGξ). We can also

define a subgroup W ⊂ K1(ẐGξ) as the image of {1− a | ‖a‖ < 1} in K1(ẐGξ).

Lemma 7.1. The projection p : K1(ẐGξ) → K
G

1 (ẐGξ) restricted to W induces an isomor-
phism W → W .1

Proof. Look at the composition

K1(ẐGξ)
DT−→ HH1(ẐGξ)

θ−→ ĤH∗(ZG)ξ
pγ(1)−→ H1(C∗(ZG,ZG)γ(1)) = H1(G) = Gab.

It is easy to see that the image of τ(1− a) ∈ W under this composition in Gab is 0. Denote

the image of ±G in K1(ẐGξ) by Ḡ. Then τ(±g) ∈ Ḡ gets mapped to g[G,G], compare
Geoghegan and Nicas [7, §6A]. So W ∩ Ḡ ⊂ {τ(±1)}. To see that τ(−1) /∈ W look at the

composition K1(ẐGξ)
ε∗−→ K1(ẐH1(G)ξ̄)

det−→ (ẐH1(G)ξ̄)
∗. �

Therefore we get a homomorphism DT = θ ◦DT ◦ (p|W )−1 : W → ĤH1(ZG)ξ and we want
to compare DT(τ(ϕ(v))) with ζ(−v).
So given a Morse form ω we denote by GA(ω) the set of ω-gradients satisfying (AC). The
theorem we can prove now reads

Theorem 7.2. Let ω be a Morse form on a smooth connected closed manifold Mn. Let
ξ : G → R be induced by ω and let C∆

∗ (M̃) be the simplicial ZG complex coming from
a smooth triangulation of M . For every v ∈ GA(ω) there is a natural chain homotopy

equivalence ϕ(v) : ẐGξ ⊗ZG C
∆
∗ (M̃) → C∗(ω, v) given by (7) whose torsion τ(ϕ(v)) lies in

W and satisfies
DT(τ(ϕ(v))) = ζ(−v).

Remark 7.3. This theorem is a generalization of Pajitnov [21, Main Th.] and of our paper
[24, Th.4.5] in that ζ(−v) is a generalization of η(−v) and the condition that the vector
fields v only have nondegenerate closed orbits is dropped.

1In the case of a rational Novikov ring this also follows from Pajitnov and Ranicki [22, Cor.0.1]
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To prove Theorem 7.2 we have to show for every γ ∈ Γ that pγ∗ ◦DT(τ(ϕ(v))) = pγ∗(ζ(−v)).
For this we have to compare the Hochschild chains that represent both sides of the equation
and show that they are homologous. After we bring the chains into a certain form the last
comparison will follow from the fact that the Lefschetz number can be computed by the

fixed point index. This idea is basically given in Pajitnov [19, §8] but since ĤH1(ZG)ξ is

more delicate than Q̂Γξ the proof will be slightly more involved.

Because of (8) let us look at DT(τ(I − A)), where A is an l × l matrix over ZG such that

I − A is invertible over ẐGξ with inverse I + A + A2 + . . .. We denote the entries of A by

Aij ∈ ZG. We can consider τ(I − A) ∈ K1(ẐGξ). Then

DT (τ(I − A)) = [trace(
∞∑
k=1

Ak−1 ⊗ (I − A))] = −[trace(
∞∑
k=1

Ak−1 ⊗ A)] ∈ HH1(ẐGξ).

Passing to ĤH1(ZG)ξ by θ allows us to move the series out of the tensor, so let us look at
trace(Ak−1 ⊗ A) ∈ C1(ZG,ZG). We have

(9) trace(Ak−1 ⊗ A) =
l∑

i1,...,ik=1

Ai1i2Ai2i3 · · ·Aik−1ik ⊗ Aiki1 .

We need to bring the 1-chain (9) into a different form.

Lemma 7.4. Let k, r, i1, . . . , ik be positive integers and Ais,it ∈ ZG for s, t ∈ {1, . . . , k}.
Denote A∗ = Ai1i2 · · ·Aiki1, then Ar−1

∗ Ai1i2 · · ·Aik−1ik ⊗ Aiki1 + Ai2i3 · · ·Aiki1Ar−1
∗ ⊗ Ai1i2 +

. . .+ Aiki1A
r−1
∗ Ai1i2 · · ·Aik−2ik−1

⊗ Aik−1ik is homologous to Ar−1
∗ ⊗ A∗.

Proof. Look at the 2-chain Ar−1
∗ ⊗Ai1i2 ⊗Ai2i3 · · ·Aiki1 +Ar−1

∗ Ai1i2 ⊗Ai2i3 ⊗Ai3i4 · · ·Aiki1 +
. . .+Ar−1

∗ Ai1i2 · · ·Aik−2ik−1
⊗Aik−1ik ⊗Aiki1 . It is straightforward to check that its boundary

gives the result. �

Proof of Theorem 7.2. Since v ∈ GA(ω), there exists a rational Morse form ω′ such that v
satisfies condition (C′) with respect to ω′. Let ξ′ be the homomorphism induced by ω′, M̄ the
infinite cyclic covering space corresponding to ker ξ′ and f̄ : M̄ → R a smooth function with
0 ∈ R a regular value and p∗ω′ = df̄ . Furthermore choose b > 0 such that MN = f̄−1([0, b])
is a splitting of M along N . We can assume that v satisfies condition (C′) with respect to
this splitting. Hence there is a Morse function ψ : N → [0, 1] and on Nk = f̄−1({kb}) for all
k ∈ Z which is ordered in the sense of Milnor [16, Def.4.9]. Then we get filtrations of N and
Nk by

V
(i)
k = ψ−1([0, αi+1]) ⊂ Nk,

where αi+1 is a real number bigger than the image of critical points of index i under ψ and
smaller than the image of critical points of index i+ 1 under ψ, and

V
[i]
k = V

(i−1)
k ∪ thickenings of the stable manifolds of critical points of index i ⊂ V

(i)
k .

If γ is a closed orbit of −v, it lifts to a trajectory γ̄ : R → M̄ such that f̄ ◦ γ̄ : R → R is
bijective. Assume γ̄(0) ∈ N and let p > 0 be the prime period of γ, i.e. the smallest p > 0
such that γ(p) = γ(0). There is a negative integer k such that γ̄(p) ∈ Nk. Furthermore
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tkγ̄(0) = γ̄(p), where t is the generator of the covering transformation group that satisfies

tN0 = N1. Let i be a number such that γ̄(0) ∈ V (i)
0 − V

(i−1)
0 . It follows from the definition

of condition (C′) that γ̄(R)∩Nk ⊂ V
[i]
k for all k ∈ Z, see Pajitnov [19, 21]. In fact the points

are in the interior of the handle. Therefore we get a partition of Cl(−v) into sets Cl(−v; i)
consisting of closed orbits passing through V

(i)
k − V

(i−1)
k .

We get the chain homotopy equivalence ϕ(v) : ẐGξ ⊗ZG C
∆
∗ (M̃)→ C∗(ω, v) with torsion (8)

from Section 6. We show that the i-th summand (−1)i+1τ(I − Ai) carries the information
of Cl(−v; i), so let us fix i and for ease of notation denote the matrix Ai by A. To describe
the entries Ajk of A we need the universal cover p : M̃ → M̄ . For X ⊂ M̄ let X̃ = p−1(X).

The map f̄ induces a map f̃ : M̃ → R. The matrix A described in Section 6 comes in fact

from a map (−ṽ) : Ṽ
[i]
0 /Ṽ

(i−1)
0 → Ṽ

[i]
−1/Ṽ

(i−1)
−1 induced by −ṽ. Now Ṽ

[i]
0 /Ṽ

(i−1)
0 is a wedge

of thickened i-spheres and
∐

k∈Z Ṽ
[i]
k /Ṽ

(i−1)
k has a natural G-action and modulo G it consists

of as many spheres as ψ has critical points of index i. To get the matrix A we have to lift

the handles of the critical points to Ñ = Ñ0. Hence we pick spheres in Ṽ
[i]
0 /Ṽ

(i−1)
0 that we

denote by σj. So if we denote the composition

σj ↪→ Ṽ
[i]
0 /Ṽ

(i−1)
0

(−ṽ) −→ Ṽ
[i]
−1/Ṽ

(i−1)
−1

r−→ gσk

by σgjk, where the last map just retracts every sphere other than gσk to the wedge point,

then Ajk(g) is the degree of σgjk.

Now we look at trace(Ak−1 ⊗ A). This term contains information about the map

((−ṽ) )k : Ṽ
[i]
0 /Ṽ

(i−1)
0 → Ṽ

[i]
−k/Ṽ

(i−1)
−k .

We say (i1, . . . , ik), (j1, . . . , jk) ∈ {1, . . . , l}k are equivalent if they differ only by a rotation
and denote by S the set of equivalence classes. Then

trace(Ak−1 ⊗ A) =
l∑

i1,...,ik=1

Ai1i2 · · ·Aik−1ik ⊗ Aiki1

=
∑
[x]∈S

∑
(i1,...,ik)∈[x]

Ai1i2 · · ·Aik−1ik ⊗ Aiki1

Fix [x] ∈ S. The order of [x] divides k. Let q be the order of [x] and let r be so that qr = k.
If (i1, . . . , ik) ∈ [x], then (i1, . . . , ik) = (i1, . . . , iq, . . . , i1, . . . , iq).

Let us first look at r = 1. By Lemma 7.4
∑

(i1,...,ik)∈[x]

Ai1i2 · · ·Aik−1ik ⊗ Aiki1 is homologous to

1⊗ Ai1i2 · · ·Aiki1 . For gj ∈ supp Aijij+1
, Ai1i2(g1) · · ·Aiki1(gk) is the degree of the map

(g1 · · · gk−1σ
gk
iki1

) ◦ . . . ◦ (g1σ
g2
i2i3

) ◦ σg1i1i2 : σi1 → g1 · · · gkσi1 .

Let χ : σi1 → σi1 be the composition of that map with (g1 · · · gk)−1 : g1 · · · gkσi1 → σi1 .
Then a fixed point other than the basepoint of χ corresponds to a closed orbit of −v. Notice
that a closed orbit arising this way has multiplicity 1, since it passes through the spheres
σj without a repeating pattern (recall r = 1). Furthermore (i1, . . . , ik) describes the cells
through which the closed orbit passes.
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To continue we now look at the special case where the vector field −v only has nondegenerate
closed orbits. Then the fixed points of χ are isolated. Notice that the basepoint is a fixed
point and its index is 1, since χ is constant near the basepoint. Now the Lefschetz number
of χ satisfies

(10) L(χ) = 1 + (−1)iAi1i2(g1) · · ·Aiki1(gk) =
∑

fixed point indices

so if Cl(−v; i; i1, . . . , ik; g1, . . . , gk) is the subset of Cl(−v; i) consisting of closed orbits fol-
lowing the pattern σi1 → g1σi2 → . . .→ g1 · · · gkσi1 , then

(−1)iAi1i2(g1) · · ·Aiki1(gk) =
∑

γ∈Cl(−v;i;i1,...,ik;g1,...,gk)

ε(γ).

Recall that ε(γ) is the fixed point index of the Poincaré map and hence the fixed point
index of the corresponding fixed point of χ. Notice that γ ∈ Cl(−v; i; i1, . . . , ik; g1, . . . , gk)
contributes the 1-chain ε(γ)1⊗ g1 · · · gk to Θ(Φ) = ζ(−v) and g1 · · · gk = [γ]. By looking at
all combinations gj ∈ supp Aijij+1

we get that

(−1)i
∑

(i1,...,ik)∈[x]

Ai1i2 · · ·Aik−1ik ⊗ Aiki1 ∼
∑

γ∈Cl(−v;i;[x])

ε(γ)1⊗ [γ]

where ∼ means homologous and Cl(−v; i; [x]) is the subset of Cl(−v; i) consisting of closed
orbits following a pattern σi1 → g1σi2 → . . . → g1 · · · gkσi1 for (i1, . . . , ik) ∈ [x] and some
gj ∈ supp Aijij+1

.

Now look at r > 1. Then Ai1i2 · · ·Aik−1ik ⊗ Aiki1 = (Ai1i2 · · ·Aiqi1)r−1Ai1i2 · · ·Aiq−1iq ⊗ Aiqi1
and ∑

(i1,...,ik)∈[x]

Ai1i2 · · ·Aik−1ik ⊗ Aiki1 ∼ (Ai1i2 · · ·Aiqi1)r−1 ⊗ Ai1i2 · · ·Aiqi1

by Lemma 7.4. Let gj ∈ supp Aijij+1
for j = 1, . . . , k. Note that ij = ij+q but we can have

gj 6= gj+q. We also have gj ∈ supp Aijij+1
implies ξ′(gj) = −b, so we restrict our attention to

G−1 = (ξ′)−1({−b}). Again Ai1i2(g1) · · ·Aiki1(gk) is the degree of χ which is defined just as in
the case r = 1, but this time fixed points can correspond to closed orbits γ with multiplicity
m(γ) > 1.

We say (h1, . . . , hk), (h
′
1, . . . , h

′
k) ∈ (G−1)

k are equivalent, if they differ only by a rotation of
jq elements, where j is an integer, e.g. for x, y different (x, y, x, y, x, y) and (y, x, y, x, y, x)
are equivalent for q = 3, but not for q = 2. Denote the set of equivalence classes by T .

We now have

(Ai1i2 · · ·Aiqi1)r−1 ⊗ Ai1i2 · · ·Aiqi1 =
∑

g1,...,gk∈G−1

ng1 · · ·ngk
g1 · · · gk−q ⊗ gk−q+1 · · · gk

=
∑
[y]∈T

∑
(g1,...,gk)∈[y]

ng1 · · ·ngk
g1 · · · gk−q ⊗ gk−q+1 · · · gk.

Note that ng1 · · ·ngk
only depends on [y], so we denote this by n[y]. Fix [y] and let s be

the order of [y]. Then s divides r, so let s · p = r and we get for (g1, . . . , gk) ∈ [y] that
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(g1, . . . , gk) = (g1, . . . , gqp, . . . , g1, . . . , gqp), where (g1, . . . , gqp) repeats s times. By Lemma 7.4
we get ∑

(g1,...,gk)∈[y]

g1 · · · gk−q ⊗ gk−q+1 · · · gk ∼ (g1 · · · gqp)s−1 ⊗ g1 · · · gqp.

As mentioned above, fixed points of χ correspond to closed orbits of −v. Let γ be a closed
orbit coming from a fixed point of χ which is not the basepoint. The multiplicity of γ divides
s, let m′(γ) be the number with m(γ)m′(γ) = s. The closed orbit γ then provides m′(γ) dif-
ferent fixed points of χ, all with the same fixed point index. Furthermore I(γ) is represented
by (g1 · · · gqp)s−m

′(γ)⊗ (g1 · · · gqp)m
′(γ) which is homologous to m′(γ) · (g1 · · · gqp)s−1⊗g1 · · · gqp

by Lemma 7.4. Denote a representing chain of I(γ) by I ′(γ). Now we can basically proceed
as in the case r = 1,

(−1)in[y] =
∑

γ∈Cl(−v;i;[y])

ε(γ)I ′(γ)

where Cl(−v; i; [y]) consists of closed orbits following a pattern σi1 → g1σi2 → . . . →
g1 · · · gkσi1 for (g1, . . . , gk) ∈ [y] and the right side is the contribution of those closed or-
bits to ζ(−v). Summing over all [y] ∈ T gives

(−1)i(Ai1i2 · · ·Aiqi1)r−1 ⊗ Ai1i2 · · ·Aiqi1 ∼
∑

γ∈Cl(−v;i;[x])

ε(γ)I ′(γ).

Therefore we get that

−(−1)i+1trace(Ak−1 ⊗ A) ∼
∑

γ∈Cl(−v;i;k)

ε(γ)I ′(γ).

Here Cl(−v; i; k) consists of those γ : [0, p(γ)]→ M ∈ Cl(−v; i) that satisfy γ̄(0) ∈ N0 and
γ̄(p(γ)) ∈ N−k for a lift γ̄ of γ to M̄ .

Because of (6) and (8) summing over all k and all i gives the desired result for vector fields
that only have nondegenerate closed orbits.

Now we have to allow degenerate closed orbits for our vector field v. A key fact in proving
the theorem for vector fields with only nondegenerate closed orbits was the equality (10)
which still holds in the general case. The fixed point index has to be taken in a more general
sense, see Brown [2, Ch.4]. What needs to be shown is that the fixed point index contains
the right information for ζ(−v).
So fix k and look at trace(Ak−1 ⊗ A). The matrix A comes from the flow of −v. Recall
the maps σgjm which have Ajm(g) as degree. By abuse of notation we denote the i-handle in

V
[i]
0 ⊂ N0 corresponding to the thickened i-sphere σj also by σj. If x ∈ σj is a point whose
−v-trajectory leads into a critical point of f̄ before it reaches N−1, then σgjm(x) = ∗, the

basepoint of gσm ⊂ Ṽ
[i]
−1/Ṽ

(i−1)
−1 . By the definition of (−ṽ) we get that points near x will

also be mapped to ∗ under σgjm. Also points on a closed orbit have to be in the interior of the
handle by the definition of condition (C′). Points in σj that do not get mapped to ∗ under
σgjm have trajectories avoiding critical points of f̄ between N−1 and N0. A compactness
argument gives that the information to define σgjm and up to k compositions of these maps
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is contained in a finite piece of the flow. Let F : M × [0, s]→M be such a piece. The fixed
point set of F does not consist of finitely many circles in general (aside the fixed points of
F0, Fs and stationary points). But by transversality we can change F to a homotopy F ′

whose fixed points are finitely many circles. By changing only near the fixed points of F we
can use the homotopy between F and F ′ to get a map (σgjm)′ homotopic to σgjm which has
finitely many fixed points, each corresponding to a circle of Fix(F ′).

Now R(F ) = R(F ′) and by Geoghegan and Nicas [7, Th.1.10] R(F ′) can be computed by
the transverse intersection invariant Θ(F ′), see also [8, Th.1.15] for an easy interpretation
of Θ(F ′) in terms of 1-chains. But Θ(F ′) gives us the right comparison with τ(ϕ(v)) just as
the Nielsen Fuller series did in the case of nondegenerate orbits only. This finishes the proof
of Theorem 7.2. �

8. Properties of the zeta function

We want to remove the cellularity condition in Theorem 7.2. To do this we will show that
the zeta function and the torsion depend continuously on the vector field. The statement
will then follow from the density of GA(ω). This section is about the zeta function and the
remaining sections will deal with the torsion.

Definition 8.1. Let (vt)t∈[0,1] be a smoothly varying one parameter family of weak ω-
gradients and R ∈ [−∞, 0). We say (vt) is R-controlled, if bω(−vt) ≤ R for all t ∈ [0, 1].

Proposition 8.2. Let R ∈ [−∞, 0) and (vt)t∈[0,1] be an R-controlled one parameter family
of weak ω-gradients such that bω(−v0) = bω(−v1) = −∞. Then pγ(ζ(−v0)) = pγ(ζ(−v1)) for
every γ ∈ Γ with ξ(γ) > R.

Proof. We need an argument similar to the proof of Lemma 5.7. Define

On = {c : [0, b]→M | b ≥ n and c is a closed orbit of − vt for some t ∈ [0, 1]}
and Cn = sup {x ∈ R | − ξ([c]) ≥ x for all c ∈ On} ∈ [0,∞]. Again we get Cn → C ∈ [0,∞]
as n→∞. We claim that C ≥ −R.

So let ε > 0 and assume C ≤ −(R+ε). Now we proceed as in the proof of Lemma 5.7 to get a
broken closed orbit δ of −vt for some t ∈ [0, 1]. But by continuity we get −ξ({δ}) ≤ −(R+ε)
contradicting the fact that the one parameter family is R-controlled.

Now let γ ∈ Γ satisfy ξ(γ) > R and let Ft be the flow of −vt. Then F : M ×R× [0, 1]→M
is a smooth homotopy of flows and by the argument above there exists an n > 0 such that
F |M×[0,n]×[0,1] contains all closed orbits c with {c} = γ. By Proposition 3.6 we get

pγ(ζ(−v0))− pγ(ζ(−v1)) = −pγ(CR(U)),

where U : M × [0, 1] → M is given by U(x, t) = F (x, n + 1, t). But pγ(CR(U)) = 0, since
U has no fixed points corresponding to γ as such fixed points would give a closed orbit of
some −vt with period n+ 1 corresponding to γ. �

Corollary 8.3. Let ω be a Morse form and v0, v1 be weak ω-gradients such that there exists
a (−∞)-controlled one parameter family joining them. Then ζ(−v0) = ζ(−v1). �

If D∗ is a free finitely generated acyclic complex over a ring R, denote by τ(D∗) its torsion.
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Corollary 8.4. Let ω be a closed 1-form without critical points and v an ω-gradient. Then

ζ(−v) = −DT(τ(ẐGξ ⊗ZG C
∆
∗ (M̃))).

In particular ζ(−v) does not depend on v.

Proof. We have bω(−v) = −∞ for any ω-gradient, since there are no critical points. Let

w ∈ GA(ω). By Theorem 7.2 we have ζ(−w) = DT(τ(ϕ)), where ϕ : ẐGξ ⊗ZG C
∆
∗ (M̃) →

C∗(ω, v) = 0 is the zero map. But for any chain homotopy equivalence ψ : D∗ → E∗ between

acyclic complexes we have τ(ψ) = τ(E∗)−τ(D∗). Hence τ(ϕ) = −τ(ẐGξ⊗ZGC
∆
∗ (M̃)). Now

ζ(−v) = ζ(−w) since the one parameter family vt = tv + (1− t)w is (−∞)-controlled. �

We now want to show that Proposition 8.2 is still useful when we allow critical points.

Let (W ;N0, N1) be a cobordism and f : W → [a, b] a Morse function on W in the sense of
Milnor [16, Def.2.3]. Just as for closed 1-forms we can define f -gradients and the notion of
transverse and almost transverse f -gradients. We say a weak f -gradient is almost transverse
if for two different critical points p, q of f with ind p ≤ ind q we have W s(p) ∩W u(q) = ∅.

Lemma 8.5. Let v be an almost transverse f -gradient on W . Then any weak f -gradient w
sufficiently close to v in the C0-topology is also almost transverse.

Proof. Since v is an almost transverse f -gradient, we can rearrange f to a Morse function
φ which is self-indexed in the sense of Milnor [16, Df.4.9], near the critical points φ − f
is constant and such that v is also a φ-gradient. By Pajitnov [20, Lm.2.74] every weak
f -gradient w close enough to v is also a weak φ-gradient. But such a vector field is almost
transverse, since for critical points p 6= q with ind p ≤ ind q we have φ(p) ≤ φ(q) and so
W s(p, w) ∩W u(q, w) = ∅. �

Let Gat(ω) be the set of almost transverse ω-gradients together with the C0-topology.

Theorem 8.6. Let ω be a Morse form on the connected closed smooth manifold M . Then

ζ : Gat(ω)→ ĤH1(ZG)ξ sending v to ζ(−v) is continuous.

Proof. Let v ∈ Gat(ω). Given R < 0 we need to find a neighborhood U(v) of v in Gat(ω) such
that for all γ ∈ Γ with ξ(γ) ≥ R we have pγ(ζ(−v)) = pγ(ζ(−w)) for all w ∈ Gat(ω).

Assume first that ω is rational. As in Section 6 we have the infinite cyclic covering space
p : M̄ → M and a smooth function f̄ : M̄ → R with p∗ω = df̄ and 0 ∈ R as a regular
value. Let b > 0 as in Section 6. For any two regular values a1 < a2 f̄ |f̄−1[a1,a2] is a Morse

function on the cobordism Wa1,a2 . The vector field v lifts to a transverse f̄ -gradient v̄ on M̄
whose restriction to Wa1,a2 is an f̄ |-gradient. If we choose another ω-gradient w close to v,
then its lift w̄ will also be close to v̄. Since v̄ is almost transverse on Wa1,a2 , an ω-gradient w
close enough to v will lift to an f̄ -gradient w̄ such that its restriction to Wa1,a2 is an almost
transverse f̄ |-gradient by Lemma 8.5. Furthermore the same is true for the weak ω-gradients
vt = tw + (1− t)v for t ∈ [0, 1].

Now choose a negative integer k such that (k + 1)b < R. We set W = f̄−1[kb, 0]. We claim
that any weak ω-gradient w that lifts to an almost transverse weak f̄ |W -gradient satisfies
bω(−w) < R. Assume not, then there exists a broken closed orbit δ of −w with ξ({δ}) ≥ R.
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Let p ∈M be a critical point in the image of δ. Lift p to p̄ ∈ f̄−1[−b, 0]. The loop δ lifts to
a path δ̄ in M̄ starting at p̄ and δ̄ is a concatenation of trajectories of −w̄ between critical
points and it ends in a translate of p̄. But since ξ({δ}) ≥ R > (k + 1)b, the path δ̄ actually
is in W . Now δ̄ contradicts almost transversality of w̄ on W .

Therefore the family vt is R-controlled and the statement follows by Proposition 8.2.

So now assume ω is irrational. By Lemma 6.1 there is a rational form ω′ agreeing with ω in
a neighborhood of the critical points such that v is an ω′-gradient. We can also choose ω′

arbitrary close to ω. In particular we can choose ω′ so close that we have
ωx(v(x)) > 1

2
ω′x(v(x)) > 0, if x ∈ M is not in a neighborhood of a critical point. By

compactness and continuity we can also get this for tangent vectors near v(x). To be more
precise, a Riemannian metric on M induces a norm ‖ · ‖x on every TxM and we can find an
ε > 0 such that ωx(X) ≥ 1

2
ω′x(X) > 0 for X ∈ TxM with ‖X − v(x)‖x < ε and all x outside

the neighborhood of the critical points where ω and ω′ agree.

Now the first part of the proof applies to ω′. We choose a neighborhood U(v) of v such that
every w ∈ U(v) satisfies

(1) w is an ω-gradient.
(2) ‖v(x)− w(x)‖x < ε for all x ∈M .
(3) vt = tw + (1− t)v is (2R)-controlled with respect to ω′.

It remains to prove that vt is R-controlled with respect to ω′.

So let δ be a broken closed orbit of some vt. Write ξ′ for the homomorphism induced by ω′.
Then

ξ({δ}) =

∫
δ

ω =
k∑
i=1

∫
γi

ω = −
k∑
i=1

∞∫
−∞

ωγi(s)(vt(γi(s))) ds

≤ −
k∑
i=1

1

2

∞∫
−∞

ω′γi(s)
(vt(γi(s))) ds

=
1

2

∫
δ

ω′ =
1

2
ξ′({δ}) ≤ 1

2
2R = R

since bω′(−vt) ≤ 2R. Therefore (vt)t∈[0,1] is R-controlled as a one parameter family of weak
ω-gradients and the statement follows again by Proposition 8.2. �

Corollary 8.4 states that ζ is constant if there are no critical points, but in general ζ is
nonconstant, see [24, Rm.5.4].

9. Chain homotopy equivalences between Novikov complexes

Given two transverse ω-gradients v, w for the Morse form ω we want to describe a chain
homotopy equivalence ψw,v between the Novikov complexes C∗(ω,w) and C∗(ω, v) such that
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the diagram

(11)

ẐGξ ⊗ZG C
∆
∗ (M̃)

ϕ(w)↙ ↘ ϕ(v)

C∗(ω,w)
ψw,v−→ C∗(ω, v)

commutes up to chain homotopy. Then τ(ψw,v) = τ(ϕ(v)) − τ(ϕ(w)). Constructions of
such equivalences are given in various places in the literature, e.g. Latour [15, §2.21] gives a
description of the torsion which is particularly useful in trying to show that the torsion of
ϕ(v) depends continuously on v. In order to show that (11) commutes up to chain homotopy
using the equivalence of Latour we will give full proofs for some results in Latour [15] instead
of just refering to [15] to make the proof easier to read. Notice that in [24] we only showed
that ϕ(v) is a chain homotopy equivalence for v ∈ GA(ω). The fact that ϕ(v) is a chain
homotopy equivalence in general will follow from the fact that ψv,w is an equivalence once we
show that (11) commutes up to chain homotopy. A more direct proof can be obtained using
the methods of Pajitnov [17]. In fact these methods simplify since the diagram corresponding
to [17, Diag.(4.1)] commutes “on the nose” and not just up to chain homotopy.

Let us recall some definitions of Pajitnov [20]. Let f : W → [a, b] be a Morse function on a
Riemannian cobordism (W ;M0,M1) and v a transverse f -gradient (the Riemannian metric
is only needed to get a metric on the cobordism, but not to specify v). If p is a critical
point and δ > 0, let Bδ(p), resp. Dδ(p) be the image of the Euclidean open, resp. closed,
ball of radius δ under the exponential map. Here δ is understood to be so small that exp
restricts to a diffeomorphism of these balls and so that for different critical points p, q we
get Dδ(p) ∩Dδ(q) = ∅.
If Φ denotes the flow of v, we set

Bδ(p, v) = {x ∈ W | ∃t ≥ 0 Φ(x, t) ∈ Bδ(p)}
Dδ(p, v) = {x ∈ W | ∃t ≥ 0 Φ(x, t) ∈ Dδ(p)}

We also define for i = −1, . . . , n

Di
δ(v) =

⋃
ind p≤i

Dδ(p, v) ∪M0

Ci
δ(v) = W −

⋃
ind p≥i+1

Bδ(p,−v)

Ci(v) = W −
⋃

ind p≥i+1

W u(p, v)

Using a self-indexing Morse function φ adjusted to (f, v), i.e. v is a φ-gradient and df = dφ
near the critical points and ∂W , we get another filtration W i = φ−1([−1

2
, i + 1

2
]), the one

used in Milnor [16].

Lemma 9.1. For δ > 0 sufficiently small and 0 < δ0 < δ we have for all i = −1, . . . , n

Di
δ0

(v) ⊂ Di
δ(v) ⊂ W i ⊂ Ci

δ(v) ⊂ Ci
δ0

(v)
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and all inclusions are homotopy equivalences.

Proof. We can use the flow of −v to define homotopy inverses to the inclusions. For details
see Pajitnov [20, Prop.2.42] �

Therefore we can use any of these filtrations for the Morse-Smale complex CMS
∗ (W̃ , M̃0; v).

Since H∗(C̃
i(v), C̃i−1(v)) is the direct limit of H∗(C̃

i
δ(v), C̃

i−1
δ (v)) for δ > 0 we can also use

Ci(v).

Now if ∆ is a smooth triangulation adjusted to v, the chain homotopy equivalence
ϕ(v) : C∆

∗ (W̃ , M̃0)→ CMS
∗ (W̃ , M̃0; v) is just induced by the inclusion

(W (i),W (i−1)) ⊂ (Ci(v), Ci−1(v)). Here W (i) is the i-skeleton of the triangulation.

Let w be another transverse f -gradient. To define ψw,v : CMS
∗ (W̃ , M̃0;w)→ CMS

∗ (W̃ , M̃0; v)
let Φ : W → W be isotopic to the identity such that Φ(W u(p, v)) |∩W s(q, w) for ind p ≥ ind q.
The existence is given in Latour [15, Lm.2.20]. Furthermore Φ can be chosen as close as we
like to the identity. Notice that for ind q < ind p the intersection is empty and by compactness
we can find a δ > 0 such that Di

δ(w) ⊂ Φ(Ci(v)). Let

ψw,v = Φ̃−1
∗ ◦ j−1

∗ : Hi(C̃
i(w), C̃i−1(w))

'−→ Hi(D̃
i
δ(w), D̃i−1

δ (w)) −→ Hi(C̃
i(v), C̃i−1(v)).

Clearly ψw,v is a chain map. The f -gradients w, v have the same critical points, so we
can choose compatible orientations of the stable manifolds. For ind q = ind p we have
Φ(W u(p, v)) ∩ W s(q, w) is a finite set and ψw,v can be expressed by intersection numbers
which we denote as [q : p] ∈ ZG. In particular we get [q : q] = 1 and for f(p) ≥ f(q) with
p 6= q we get [q : p] = 0, since the intersection is empty. Thus each ψw,v can be expressed by
an elementary matrix, so ψw,v is a simple isomorphism.

Now let M be a closed connected smooth manifold, ω a Morse form and v, w transverse
ω-gradients. Let Φ : M → M be isotopic to the identity such that Φ(W u(p, v)) |∩W s(q, w)
for ind p ≥ ind q, see Latour [15, Lm.2.20]. Again Φ can be arbitrarily close to the identity.
Choose liftings of the critical points in the universal cover and orientations of the stable
manifolds of v. This gives a basis of C∗(ω, v) and we can choose a corresponding basis for
C∗(ω,w).

Proposition 9.2. If p, q are critical points of the same index, the intersection number

[q : p] ∈ ẐGξ is well defined and ψw,v : C∗(ω,w)→ C∗(ω, v) given by ψw,v(q) =
∑

[q : p] p is
an isomorphism of chain complexes with τ(ψw,v) ∈ W .

Proof. Assume ω is rational. Let p∗ω = df with f : M̄ → R having 0 ∈ R as a regular
value. Also let f̃ : M̃ → R be the composition with the universal covering projection. We
can assume that the b from Section 6 is 1 and the liftings of the critical points are chosen in
f̃−1([−1, 0]).

Define

Ci
m(v) = Φ̄

f−1((−∞, 0])−
⋃

ind r≥i+1
f(r)≥−m

W u(r, v̄)


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where v̄ is the lift of v to M̄ and the same for Φ̄. Also let

Di
m,δm(w) = f−1((−∞,−m] ∪

⋃
ind r≤i

Dδ(r, w̄)

with δm > 0 so small that Di
m,δm

(w) ⊂ Ci
m(v). Now define

CMS
i (m,w) = Hi(D̃

i
m,δm

(w), D̃i−1
m,δm

(w)) and CMS
i (m, v) = Hi(C̃

i
m(v), C̃i−1

m (v)). Both com-

plexes calculate the homology of (f̃−1([−m, 0]), f̃−1({−m})). The exact case described above
gives a chain isomorphism ψmw,v : CMS

i (m,w)→ CMS
i (m, v) such that the diagram

CMS
∗ (m,w) ←− CMS

∗ (m+ 1, w)yψmw,v yψm+1
w,v

CMS
∗ (m, v) ←− CMS

∗ (m+ 1, v)

commutes. In fact all the arrows are just induced by inclusion. Passing to the inverse limit
gives almost the Novikov complex; we only look at f̃−1((−∞, 0]) ⊂ M̃ . But lim

←−
CMS
∗ (m,w)

is a finitely generated free ẐG
0

ξ complex2, where ẐG
0

ξ is the subring of ẐGξ consisting of
elements λ with ‖λ‖ ≤ 1.

Now C∗(ω,w) = ẐGξ ⊗cZG0

ξ
lim
←−

CMS
∗ (m,w) and similarly for C∗(ω, v). The chain map ψw,v =

id cZGξ
⊗cZG0

ξ
lim
←−

ψmw,v is represented by intersection numbers, since the ψmw,v are. In particular

we have [q : p] ∈ ẐGξ. Also [q : q] = 1−aq with ‖aq‖ < 1 and [q : p] = bqp−aqp with ‖aqp‖ < 1
and bqp is the coefficient of ψ1

w,v. So we can order the critical points such that the matrix of
ψw,v is of the form I −O−A, where O is nilpotent and A satisfies ‖Aij‖ < 1 for all entries.
The matrix I+O+O2 + . . . is elementary and (I−O−A) · (I+O+O2 + . . .) = I−A′ where
the entries of A′ satisfy ‖A′ij‖ < 1. Therefore ψv,w is an isomorphism of chain complexes and

τ(ψw,v) ∈ W .

It remains to prove the proposition for irrational ω. We can assume that there exists a
rational approximation ω′ that agrees with ω near the critical points such that v and w are
also ω′-gradients for we can find a sequence w = w0, w1, . . . , wk = v of ω-gradients such that
wi and wi+1 have a common rational approximation.

Let ξ′ : G → R be the homomorphism induced by ω′. By the rational case above we find

a chain isomorphism ψ′w,v for the ẐGξ′ Novikov complexes C∗(ω
′, w) and C∗(ω

′, v). If we

can show that the matrix entries of ψ′w,v lie in ẐGξ′ ∩ ẐGξ, then ψ′w,v induces a chain map
ψw,v : C∗(ω,w) → C∗(ω, v) by the remarks at the end of Section 6. Notice that the entries

are intersection numbers [q : p]. So [q : p](g) 6= 0 gives a point x̃ ∈ M̃ , a trajectory γ1 of −w̃
from q̃ to x̃ and a trajectory γ2 of −ṽ from Φ̃−1(x̃) to Φ̃−1(gp̃). Now [q : p] ∈ ẐGξ′ ∩ ẐGξ

follows from the next lemma.

To see that ψw,v is an isomorphism with τ(ψw,v) ∈ W notice that in the irrational case we

2Notice that we considered CMS
∗ (m,w) as a Z complex, so the inverse limit is also just a Z complex, but

it carries extra structure as a free ẐG
0

ξ complex generated by the critical points of ω.
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can choose liftings of the critical points of ω in f̃−1(Iε), where Iε ⊂ R is an arbitrarily small
interval. Then the matrix of ψw,v in a basis corresponding to these critical points is of the
form I − A with ‖Aij‖ < 1 for all the entries of A, compare Latour [15, §2.23] �

Lemma 9.3. Let ω1, ω2 be Morse forms that agree near the common set of critical points
with corresponding homomorphisms ξ1, ξ2 : G → R. Let v, w be both ω1- and ω2-gradients.
Then there exist constants A, B ∈ R with A > 0 such that whenever for g ∈ G there exist
critical points p, q, a point x̃ ∈ M̃ , a trajectory γ̃1 of −w̃ from q̃ to x̃ and a trajectory γ̃2 of
−ṽ from Φ̃−1(x̃) to Φ̃−1(gp̃), then ξ1(g) ≤ Aξ2(g) +B.

Proof. For every pair of critical points p, q of ω1 we can choose a path γ̃pq inM̃ from p̃ to q̃.
Then there is a constant K > 0 such that |

∫
γpq
ωi| ≤ K for i = 1, 2 and all pairs of critical

points. Let Θ : M × I → M be the isotopy between id and Φ. For every y ∈ M we get a
path γy(t) = Θ(y, t) from y to Φ(y). By compactness we can also assume |

∫
γy
ωi| ≤ K for

i = 1, 2 and all y ∈M . Since ω1 and ω2 agree near the critical points there exists a C ∈ (0, 1)
such that

ω1(v(x)) ≥ Cω2(v(x)) and ω1(w(x)) ≥ Cω2(w(x)) for all x ∈M
again by compactness. Now let g ∈ G be as in the statement. Then

ξ2(g) =

∫
γqp

ω2 +

∫
γ1

ω2 +

∫
γx

ω2 +

∫
γ2

ω2

≥ −2K −
∫ b1

−∞
(ω2)γ1(t)(w(γ1(t))) dt−

∫ ∞
a1

(ω2)γ2(t)(v(γ2(t))) dt

≥ −2K − C
(∫ b1

−∞
(ω1)γ1(t)(w(γ1(t))) dt+

∫ ∞
a1

(ω1)γ2(t)(v(γ2(t))) dt

)
≥ −2K − 2KC + C

(∫
γqp

ω1 +

∫
γ1

ω1 +

∫
γx

ω1 +

∫
γ2

ω1

)
= −2K(1 + C) + Cξ1(g)

which gives the result. �

To show that (11) commutes up to chain homotopy let us start with the exact case again,
i.e. we have a compact cobordism and a Morse function f : W → [a, b]. We use the same
notation as before. Let ∆ be a smooth triangulation adjusted to w and Φ∗v = dΦ−1 ◦ v ◦Φ,
this is possible by [24, §A.1]. So for every k-simplex σ we have σ |∩W u(p, w) and
σ |∩ Φ(W u(p, v)) if ind p ≥ k.

Proposition 9.4. The chain maps ψw,v ◦ ϕ(w) and ϕ(v) are chain homotopic.

Proof. Let Θw : W̃ × R → W̃ be induced by the flow of −w, i.e. stop once the boundary is
reached. There is a δ > 0 such that Dk

δ (w) ⊂ Φ(Ck(v)). Since ∆ is adjusted to w there is a

K > 0 such that Θw(W̃ (k), K) ⊂ D̃k
δ (w), where W (k) is the k-skeleton of the triangulation.

Furthermore Θw gives a homotopy between id and Θ(·, K).

Since ∆ is adjusted to Φ∗v we have W (k) ⊂ Φ(Ck(v)). We can modify the homotopy
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away from the endpoints to get a homotopy h : W̃ × I → W̃ between id and Θw(·, K)
such that h(W̃ (k) × I) ⊂ Φ(Ck+1(v)). The modifications are done skeleton by skeleton,
compare the proof of [24, Lm.A.2] and can be done arbitrarily close to the original homo-
topy. Now define H : C∆

k (W̃ , M̃0) → CMS
k+1(W̃ , M̃0; v) be sending σ̃ to (−1)kΦ̃−1

∗ h∗[σ̃ × I] ∈
Hk+1(C̃

k+1(v), C̃k(v)). Then

∂H +H∂(σ̃) = (−1)kΦ̃−1
∗ h∗∂[σ̃ × I] + (−1)k−1Φ̃−1

∗ h∗[∂σ̃ × I]
= Φ̃−1

∗ h∗[σ̃ × 1]− Φ̃−1
∗ h∗[σ̃ × 0]

= Φ̃−1
∗ Θw∗[σ̃ ×K]− Φ̃−1

∗ [σ̃]

= ψw,v ◦ ϕ(w)(σ̃)− ϕ(v)(σ̃).

Notice that Θw∗[σ̃ × K] ∈ Hk(D̃
k
δ (w), D̃k−1

δ (w)) represents ϕ(w)(σ̃) and using Φ̃−1
∗ gives

ψw,v. �

Proposition 9.5. Diagram (11) commutes up to chain homotopy.

Proof. Assume ω is rational. We use the notation from the proof of Proposition 9.2. We can
assume that ∆ contains f−1({0}) as a subcomplex. Let us also set M̃m = f̃−1([−m, 0]).

Let Hm : C∆
k (M̃m, f̃

−1({−m})) → CMS
k+1(m, v) be the chain homotopy given by Proposition

9.4. Actually in the nonexact case it comes from a homotopy hm : f̃−1((−∞, 0]) × I →
f̃−1((−∞, 0]) and it satisfies hm(σ̃k × I) ⊂ Φ̃(C̃k+1

m (v)) and hm(σ̃k × 1) ⊂ D̃k
m,δm

(w).

We want to get a chain homotopy Hm+1 : C∆
∗ (M̃m+1, f̃

−1({−m − 1})) → CMS
k+1(m + 1, v)

based on Hm. First we need hm+1(σ̃k × 1) ⊂ D̃k
m+1,δm+1

(w). Notice that δm+1 ≤ δm. So we
take the homotopy hm and flow along −w̃ for a little bit longer. Call this homotopy h′m+1.

Then h′m+1(σ̃k× I) ⊂ Φ̃(C̃k+1
m (v)), but not necessarily ⊂ Φ̃(C̃k+1

m+1(v)). We need to adjust the
homotopy slightly to achieve this. So do this skeleton by skeleton to get a homotopy hm+1

so close to h′m+1 that passing σ̃k × I from h′m+1 to hm+1 is done within Φ̃(C̃k+1
m (v)).

Then if Hm+1 is induced by hm+1 as in the proof of Proposition 9.4 we get the commutative
diagram

C∆
k (M̃m, f̃

−1({−m})) ←− C∆
k (M̃m+1, f̃

−1({−m− 1}))yHm
yHm+1

CMS
k+1(m, v) ←− CMS

k+1(m+ 1, v)

Passing to the inverse limit as in the proof of Proposition 9.2 gives the result in the rational
case.

For the irrational case notice that nonzero terms of the chain homotopy give a trajectory of
−w from some x ∈ σk to a y ∈ M and a trajectory of −v from Φ−1(y) to a critical point.
Thus we can use a similar approximation argument as in the proof of Proposition 9.2, we
omit the details. �
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10. Proof of the main theorem, Part 2

In [24] we have shown that ϕ(v) is a chain homotopy equivalence for v ∈ GA(ω) and that
τ(ϕ(v)) ∈ W . By Proposition 9.2 and Proposition 9.5 we now get that this also holds for any
transverse ω-gradient v. But we want to show that the torsion actually depends continuously
on the vector field. To do this let us first put a topology on W . Denote by U the subgroup

of units of ẐGξ that consists of elements 1− a with ‖a‖ < 1. As a subset of ẐGξ it carries a
natural topology. Now U surjects onto W so we give W the quotient topology. Notice that
both U and W are topological groups.

For a Morse form ω we let Gt(ω) be the space of transverse ω-gradients with the C0-topology.

Theorem 10.1. Let ω be a Morse form on the closed connected smooth manifold M . Then
the map T : Gt(ω)→ W given by T (v) = τ(ϕ(v)) is continuous.

Proof. For R < 0 let UR = {1− a | ‖a‖ < expR}. The collection (UR)R<0 forms a neighbor-
hood basis of 1 ∈ U , so (τ(UR))R<0 forms a neighborhood basis of 0 ∈ W .

Let v ∈ Gt(ω). To see that T is continuous, we have to find for every R < 0 a neighborhood
U of v such that w ∈ U satisfies τ(ϕ(v)) − τ(ϕ(w)) ∈ τ(UR). By Proposition 9.5 we have
τ(ϕ(v))− τ(ϕ(w)) = τ(ψw,v).

Assume that ω is rational. Let M̄ be the infinite cyclic covering space corresponding to
ker ξ and f : M̄ → R such that df is the pullback of ω and 0 ∈ R a regular value. For
simplicity assume that the b from Section 6 is 1. Since v is transverse, so is its lift v̄ to
M̄ . Choose an integer m with m + 1 < R. We can find a self-indexing Morse function
φ : f−1([m, 0])→ [−1

2
, n+ 1

2
] such that v̄| is a φ-gradient and dφ = df near the critical points

and f−1({m, 0}). Pajitnov [20, Lm.2.74] gives a neighborhood U of v in Gt(ω) such that
every w ∈ U lifts to a φ-gradient on f−1([m, 0]). Now for ind q ≤ ind p with q 6= p we get
W s(q, w̄) ∩W u(p, v̄) ∩ f−1([m, 0]) = ∅, since φ(W s(q, w̄) ∩ f−1([m, 0]) − {q}) ⊂ [−1

2
, ind q)

and φ(W u(p, v̄) ∩ f−1([m, 0])− {p}) ⊂ (ind p, n+ 1
2
]. By choosing the isotopy Φ of M close

enough to the identity we still have Φ̄(W u(p, v̄))∩W s(q, w̄)∩f−1([m, 0]) = ∅. Now we choose
liftings of the critical points within f−1([−1, 0]) to get a basis for the Novikov complex. For
every w ∈ U the coefficients [q : p] of ψw,v then have the property that any g ∈ G with
[q : p](g) 6= 0 implies ξ(g) < R, compare the proof of Theorem 8.6. Thus τ(ψw,v) is repre-
sented by a matrix I −A where ‖Aij‖ < expR for all entries of A. By Gauß elimination we
see that τ(ψw,v) = τ(1− a) with ‖a‖ < expR, so τ(ψw,v) ∈ τ(UR) for all w ∈ U .

The irrational case is now derived from the rational case by analogy to the proof of Theorem
8.6, we omit the details. �

Now we can finally drop the cellularity condition on the vector fields in Theorem 7.2 to get

Theorem 10.2. Let ω be a Morse form on a smooth connected closed manifold Mn. Let
ξ : G → R be induced by ω and let C∆

∗ (M̃) be the simplicial ZG complex coming from
a smooth triangulation of M . For every transverse ω-gradient v there is a natural chain

homotopy equivalence ϕ(v) : ẐGξ⊗ZGC
∆
∗ (M̃)→ C∗(ω, v) given by (7) whose torsion τ(ϕ(v))

lies in W and satisfies
DT(τ(ϕ(v))) = ζ(−v).



ONE PARAMETER FIXED POINT THEORY AND GRADIENT FLOWS OF CLOSED 1-FORMS 31

Proof. Clearly the homomorphism DT : W → ĤH1(ZG)ξ is continuous. So the statement
follows from the theorems 7.2, 8.6 and 10.1, since GA(ω) is dense in Gt(ω). �

Let us obtain a commutative version of Theorem 10.2. Instead of the universal covering
space we look at the universal abelian covering space M . We set H = H1(M). Then

C∆
∗ (M) = ZH ⊗ZG C

∆
∗ (M̃). If we set C∗(ω, v) = ẐH ξ̄ ⊗cZGξ

C∗(ω, v), we get the Novikov

complex corresponding to M . Then ϕ̄(v) = id ⊗cZGξ
ϕ(v) : ẐH ξ̄ ⊗ZH C∆

∗ (M) → C∗(ω, v) is

a chain homotopy equivalence. Denote the subgroup of K1(ẐH ξ̄) consisting of units of the
form 1− a, where ‖a‖ < 1 by W ′.

To define a commutative zeta function let Q̂H
−
ξ̄ = {λ ∈ Q̂H ξ̄ | ‖λ‖ < 1}, a subgroup of Q̂H ξ̄.

Notice that ε(η(−v)) ∈ Q̂H
−
ξ̄ , where ε is the augmentation. We define exp : Q̂H

−
ξ̄ → 1+Q̂H

−
ξ̄

by exp(λ) =
∞∑
m=0

λm

m!
.

Definition 10.3. Let ω be a Morse form and v an ω-gradient with bω(−v) = −∞. Then
we define the zeta function of −v to be

ζ̄(−v) = exp ◦ ε(η(−v)) ∈ 1 + Q̂H
−
ξ̄ .

Notice that this coincides with the formula for a zeta function given in Fried [5].

Corollary 10.4. Let ω be a Morse form and v a transverse ω-gradient. Then there is a

natural chain homotopy equivalence ϕ̄(v) : ẐH ξ̄ ⊗ZH C∆
∗ (M) → C(ω, v) whose torsion lies

in W ′ and that satisfies
det(τ(ϕ̄(v))) = ζ̄(−v).

Proof. The composition W
DT−→ ĤH1(ZG)ξ

l−→ R̂Γξ induces the homomorphism

L : W → Q̂Γ
−
ξ from [24, §3.2], compare Section 4. By [24, Prop.3.4], L is a power series of

a logarithm, so we get exp ◦ ε ◦ L([1− a]) = det ◦ ε∗([1− a]), where ε∗ : W → W ′ is induced

by the augmentation ẐGξ → ẐH ξ̄. By (6) and Theorem 10.2 we get

ζ̄(−v) = exp ◦ ε ◦ l(ζ(−v)) = exp ◦ ε ◦ l ◦DT(τ(ϕ(v)))

= exp ◦ ε ◦ L(τ(ϕ(v))) = det(τ(ϕ̄(v)))

�

11. The zeta function vs. the eta function

In the commutative case the zeta and the eta function carry the same information since we
have

ζ̄(−v) = exp η̄(−v) and η̄(−v) = log ζ̄(−v).
We have seen in Section 6 that the noncommutative zeta function determines the noncom-
mutative eta function via η(−v) = l(ζ(−v)). It is natural to ask whether the zeta function
is determined by the eta function as in the commutative case or if it actually carries more
information than the eta function.
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Let us define a rational version of the noncommutative zeta function. The ring homomor-
phism i : ZG → QG induces a map on Hochschild homology i∗ : HH∗(ZG) → HH∗(QG).
Since Q is a flat Z module and Q⊗Q ' Q we see that HH∗(QG) ' Q⊗HH∗(ZG). Further-
more we get a direct sum decomposition of C∗(QG,QG) as in Section 2 and we can complete

HH∗(QG) to ĤH∗(QG)ξ. The homomorphism i∗ extends to ı̂∗ : ĤH∗(ZG)ξ → ĤH∗(QG)ξ
and we define the rational noncommutative zeta function by

ζQ(−v) = ı̂∗ζ(−v) ∈ ĤH1(QG)ξ.

It is easy to see that l : ĤH1(ZG)ξ → R̂Γξ = ĤH0(RG)ξ factors through ĤH1(QG)ξ as
l = lQ ◦ ı̂∗. For γ ∈ Γ define eγ : C0(QG,QG)γ → C1(QG,QG)γ by eγ(g) = 1 ⊗ g. By

Lemma 5.10 this induces a homomorphism e : ĤH0(QG)ξ → ĤH1(QG)ξ with lQ ◦ e(x) = x

for x ∈ Q̂Γ
−
ξ . Notice that η(−v) ∈ Q̂Γ

−
ξ .

Proposition 11.1. Let ω be a Morse form on the closed connected smooth manifold M and
v an almost transverse ω-gradient. Then ζQ(−v) = e(η(−v)).

Proof. Assume that the closed orbits of v are nondegenerate. Then for a closed orbit γ of −v
of multiplicity m, we get a summand ε(γ)

m
{γ} in η(−v). Let g ∈ G be so that gm represents

the conjugacy class {γ}. Then e( ε(γ)
m
{γ}) = [ ε(γ)

m
1 ⊗ gm], but 1

m
⊗ gm is homologous to

gm−1 ⊗ g by Lemma 7.4. Therefore e( ε(γ)
m
{γ}) = ε(γ)I(γ) (recall the Nielsen-Fuller series

from Section 5) and we get the result.

The general case now follows by continuity, compare the end of Section 6. �

To simplify notation let Hγ = H1(C∗(ZG,ZG)γ) for γ ∈ Γ. Projection gives homomorphisms

pγ : ĤH1(ZG)ξ → Hγ and pQ,γ : ĤH1(QG)ξ → Q ⊗ Hγ. It follows from Section 5 that
pγ(ζ(−v)) is generated by homology classes of the form [gk−1⊗g] where k ≥ 1 and γ(gk) = γ.
It is possible that pγ(ζ(−v)) is a torsion element, so that pQ,γ(ζQ(−v)) = 0. But to produce
torsion we need closed orbits of multiplicity > 1. It is not clear to the author whether at the
Z-level the zeta function carries more information than the eta function.
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