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1 Basic Properties of the Integers Z and the ratio-

nals Q.

Notation. By Z we denote the set of integer numbers and by Q we denote the set
of rational numbers. We moreover denote the set of positive integer numbers by N.
We note that N ⊂ Z ⊂ Q.

Basic Properties:

(1) (x+ y) + z = x+ (y + z) (associativity);

(2) x+ y = y + x (commutativity);

(3) The equation a + x = b has a unique solution x (in Z, if a, b ∈ Z, and in Q, if
a, b ∈ Q).

(4) 0 + x = x (existence of a neutral element with respect to addition);

(5) (x · y) · z = x · (y · z) ;

(6) x · y = y · x ;

(7) The equation a · x = b has a unique solution x in Q, provided a 6= 0.

(8) 1 · x = x (existence of a neutral element with respect to multiplication);

(9) x · (y + z) = x · y + x · z (distributivity).

We also have an order relation in Z and Q. Every rational (integer) number a is
either positive (a > 0), negative (a < 0) or zero. Then we say that

• a < b if b− a > 0; a ≤ b if a < b or a = b.

• a > b if b− a < 0; a ≥ b if a > b or a = b.

Basic properties of the order relation:

(1) if x > 0 and y > 0 then x+ y > 0,

(2) if x > 0 and y > 0 then xy > 0.

(3) a ≤ a (reflexivity);

(4) If a ≤ b and b ≤ a then a = b (antisymmetry);



(5) If a ≤ b and b ≤ c then a ≤ c (transitivity).

Proposition (Principle of the least element). Every nonempty subset of the
positive integers contains a smallest element.

Corollary (Principle of mathematical induction). If a statement, say P (x),
about a positive integer x is true for x = 1 and its truth for all x < n implies its truth
for x = n, then it is true for all x ≥ 1.

2 Divisibility.

Definition. Let a, b ∈ Z. We say that a divides b if there exists x ∈ Z such that
b = ax. We will denote it by a|b. In the opposite case we write a - b (a does not
divide b).

Examples. −5|30, 17|323, 13|13, 13 - 17.

Properties: For any a, b, c ∈ Z with a, b 6= 0 we have

• a|0;

• 1|c;

• a|b implies a|bc;

• If a|b and b|c then a|c;

• If a|b and a|c then a|bx+ cy for any x, y ∈ Z;

• If a|b and b|a then a = ±b;

• If a|b and a > 0, b > 0 then a ≤ b;

• a|b implies ma|mb for any m 6= 0.

Example using Mathematical Induction: We prove that for every positive inte-
ger n we have 8|52n + 7.

We check the base case n = 1. We have 52n + 7 = 52 + 7 = 32 which is indeed
divisible by 8. So it holds. We now do the induction step. We assume that we have
that 8 divides 52n + 7 for all 1, 2, · · ·n and we prove it for n + 1, that is 8 divides
52(n+1) + 7. We use the fact that a | b and a | c together imply a | b + c, with
a = 8, b = 52n + 7 and c = 52(n+1) + 7− (52n + 7). This will then imply the claim as
b+ c = 52(n+1) + 7. The first divisibility a | b is our induction assumption. It remains
to show the divisibility for c which can be rewritten 52n(52 − 1) and this is clearly
divisible by 24 = 52− 1, which in turn is divisible by 8. By transitivity of divisibility
we obtain the claim.



2.1 Division with remainder

Proposition. Let a ∈ Z, b ∈ N. Then there exist unique integers q and r such that

a = q · b+ r, and 0 ≤ r < b.

Then q is called the quotient and r is called the remainder.

Example: We take a = 325 and b = 17. Then we have 325 = 19 · 17 + 2. That is
q = 19 and r = 2.

2.2 The greatest common divisor

Definitions. Let a, b ∈ Z. A common divisor of a and b is any integer d such that
d|a and d|b. The greatest common divisor of a and b is the largest integer g with this
property. We denote it by gcd(a, b):

gcd(a, b) := max{d ∈ Z : d|a, d|b}.

Integers a, b are called coprime or relatively prime if gcd(a, b) = 1.

Basic properties

• gcd(a, b) = gcd(b, a);

• If a ≥ 0 then gcd(a, 0) = a;

• gcd(a, b) = gcd(−a, b);

• If a > 0 and b > 0 then gcd(a, b) ≤ min{a, b}.

Examples.

• gcd(19, 19) = 19;

• gcd(−15, 25) = 5;

• gcd(42, 30) = 6;

Lemma. For any integers a, b, q we have

gcd(a, b) = gcd(a, b− qa).

Example: We use the lemma to calculate gcd(345, 92). We have

gcd(345, 92) = gcd(92, 345) = gcd(92, 345− 3 · 92) = gcd(92, 69) = gcd(69, 92) =



gcd(69, 92− 69) = gcd(69, 23) = gcd(23, 69) = gcd(23, 69− 3 · 23) = gcd(23, 0) = 23

Moreover, working backwards, we have that

23 = 92− 69 = 92− (345− 3 · 92) = 4 · 92− 1 · 345,

That is the gcd(345, 92) can be written as a liner combination of 345 and 92 with
integer coefficients.

Euclidean Algorithm. Let a, b be positive integers. The algorithm calculates
the gcd(a, b) as follows: Using division with reminder we find qi (quotients) and ri
(remainders) in Z with 0 ≤ ri < ri−1, (i = 0, 1, 2, . . .), where we put r0 := b, and such
that

a = q1b+ r1

b = q2r1 + r2

r1 = q3r2 + r3
...

rn−1 = qn+1rn + rn+1

until some remainder, say rn+1, equals zero, then stop. In this case, rn = gcd(a, b).

Additionally if in the Euclidean Algorithm we start from the last equality and go
up, then we get rn as the linear combination of a and b:

Corollary. There exist x, y ∈ Z such that gcd(a, b) = xa+ yb.

3 Prime and composite numbers

Definition A positive integer n > 1 is prime if its only positive divisors are 1 and n
itself. Otherwise n is called composite.

Theorem (Euclid) Let p be a prime number and a, b ∈ Z. If p|ab then either p|a or p|b.

Corollary Let p be a prime and a1, . . . , an ∈ Z for some n ≥ 1. Then we have:
if p | a1 · · · an, then p divides one of the ai (1 ≤ i ≤ n).

Fundamental Theorem of Arithmetic (F.T.A). Every positive integer n > 1
can be written as a product of primes in a unique way (up to reordering). That is,

n =
m∏
j=1

p
ej
j

for some m, ej ∈ N and pj primes.



Theorem (Euclid) There are infinitely many primes.

Theorem There are infinitely many primes of the form 4n− 1 with n ∈ N.

Theorem (Dirichlet, without proof) For coprime integers a, b there are infinitely
many primes of the form an+ b with n ∈ N.

Euler’s Proof of the infiniteness of primes. We now give a sketch of another
proof of the infiniteness of primes due to Euler.

For a complex number s with Re(s) > 1 we define

ζ(s) :=
∞∑
n=1

1

ns

where n runs over the positive integers. This is the so-called Riemann Zeta Function.
It is known that ζ(s) diverges for s = 1.

By using the Fundamental Theorem of Arithmetic we have that ζ(s) can be written
as a product over all the primes (so-called Euler product)

ζ(s) =
(

1 +
1

2s
+

1

22s
+

1

23s
+

1

24s
+ . . .

)
×

(
1 +

1

3s
+

1

32s
+

1

33s
+

1

34s
+ . . .

)
×

(
1 +

1

5s
+

1

52s
+

1

53s
+

1

54s
+ . . .

)
...

and the geometric series identity

1

1− x
= 1 + x+ x2 + x3 + · · ·

we get

ζ(s) =
1

1− 2−s
· 1

1− 3−s
· 1

1− 5−s
· . . . =

∏
p

(
1

1− p−s

)
where the prime is over all prime numbers.

If we now assume that there are only finitely many primes then if we consider the

values of ζ(s) at s = 1 we have that the product form
∏

p

(
1

1−p−1

)
is a well defined

number. But this contradicts the fact stated above that ζ(s) diverges for s = 1.

The function ζ(s) encodes information about the distribution of primes. We make
this a bit more precise next.

Definition. Let x ∈ R. By π(x) we define the number of prime numbers less or
equal to x.



x 10 102 103 104 105 106 107

π(x) 4 25 168 1229 9592 78498 664579
x

log(x)
4.34 21.7 144.7 1085.7 8685 72382 620420

Prime Number Theorem (Hadamard, 1896; without proof):

π(x) ∼ x

log(x)

where log denotes the natural logarithm (to base e). In other words we have

lim
x→∞

π(x)

x/ log(x)
= 1.

The proof uses quite deep investigation of the properties of ζ(s). Actually there is a
very famous conjecture (perhaps the most important open conjecture in mathematics
today) that is related to the Riemann Zeta Function. Namely,

Riemann Hypothesis: The non-trivial zeros of ζ(s) all lie on the line <(s) =
1/2.

The trivial zeros are the ones of the form ζ(−2k) = 0 for k = 1, 2, 3, . . .. Note
that for both the conjecture and the values at negative integers one first have to make
sense of the ζ(s) defined not only for Re(s) > 1 but for s ∈ C. This is possible thanks
to the analytic continuation of ζ(s).

Some more open conjectures with respect to primes:

• There are infinitely many primes of the form n2 + 1.

• There are infinitely many “twin” primes. I. e. the primes p such that p + 2 is
prime too.

• (Goldbach) Every even number is a sum of two primes.

4 Congruences

Definition. For integers a, b and n ≥ 1, we define

a ≡ b (mod n)

(in words: “a is congruent to b modulo n”, whenever n | a− b . Or equivalently we
have that a ≡ b (mod n) if we write a = q1n+ r1 with 0 ≤ r1 < n b = q2n+ r2 with
0 ≤ r2 < n then r1 = r2. Sometimes n is called the modulus.

Basic properties. For all a, b, n ∈ Z and n ≥ 1 we have:



1. a ≡ a modulo any n ≥ 1. (Reflexivity)

2. If a ≡ b (mod n) then b ≡ a (mod n). (Symmetry)

3. If a ≡ b (mod n) and b ≡ c (mod n) then a ≡ c (mod n). (Transitivity)

These three properties define an equivalence relation. That is we say that two integers
are equivalent if they give the same remainder after division by n. In this way we
can partition Z into equivalence classes. Since there are n many possible remainders
modulo n we get n many classes.

Notation: The equivalence class of an integer a modulo a positive integer n is de-
noted by [a]n or, provided the context is clear, simply by [a]. It is called the residue
class or congruence class modulo n, and a is called a representative of its class.

Example. Let n = 5. Then we have the following classes:

[0]5 : −5 0 5 10 . . .

[1]5 : −4 1 6 11 . . .

[2]5 : −3 2 7 12 . . .

[3]5 : −2 3 8 13 . . .

[4]5 : −1 4 9 14 . . .

4.1 Arithmetics modulo n

It appears that for a fixed modulus n we can add, subtract and multiply the classes.

Proposition. Let n ∈ Z, n ≥ 1. If a ≡ a′ (mod n) and b ≡ b′ (mod n) then

• a+ b ≡ a′ + b′ (mod n)

• a · b ≡ a′ · b′ (mod n)

That is, we can add or multiply classes by picking any representative in the class.
Usually the set of classes modulo n is denoted by Z/nZ. It is a ring (Algebra II).

Example. Take n = 7. Then

[3] · [5] ≡ [15] ≡ [1] (mod 7).

If we take another representative of the same class (i.e. [12] instead of [5]) then we
have

[3] · [12] ≡ [36] ≡ [1] (mod 7)

So the result is the same. If it does not cause the confusion we will omit square
brackets and just write

3 · 12 ≡ 36 ≡ 1 (mod 7)

Proposition. Let a, b, c ∈ Z and n ≥ 1 such that gcd(c, n) = 1. Then if a · c ≡ b · c
(mod n) then a ≡ b (mod n).

The proposition shows that in some cases we can even divide out by a class.



Definition. A complete set of residues modulo n is a subset R ⊂ Z of size n whose
remainders modulo n are all different.

A rather canonical choice for a complete set is R = {0, 1, . . . , n − 1}. However one
can choose different complete set. For example the following set is complete set of
residues modulo 7

R = {−35, 15, 23,−4, 4,−9, 97}.

Lemma. Let R be a complete set of residues modulo n and a ∈ Z with gcd(a, n) = 1.
Then aR := {ax : x ∈ R} is also a complete set of residues modulo n.

Definition. A linear congruence is an equation in x ∈ Z of the form

ax ≡ b (mod n) ,

where a, b, and n are given integers (n ≥ 1).

Proposition. For a, b, n ∈ Z with n ≥ 1 gcd(a, n) = 1 the linear congruence ax ≡ b
(mod n) has a solution. Moreover, the solution is unique up to adding multiples of n.

We can solve linear congruences quite efficiently by using the Euclidean algorithm.
Indeed if we find u, v ∈ Z such that 1 = gcd(a, n) = ua+vn then we can take x = ub.
Indeed we can check that

aub ≡ aub+ bvn ≡ b(au+ vn) ≡ b · 1 ≡ 1 (mod n).

We have even the more general proposition:

Proposition. (Without proof) A linear congruence ax ≡ b (mod n) is solvable if
and only if gcd(a, n) | b.

Definition. Euler’s totient function or Euler’s ϕ-function is defined as

ϕ(n) := #{r ∈ Z | 0 < r ≤ n and gcd(r, n) = 1} ,

i.e., as the number of positive integers below n which are coprime to it.

Euler Theorem. For n ∈ N and a ∈ Z such that gcd(a, n) = 1 we have

aϕ(n) ≡ 1 (mod n) .

Corollary. (Fermat Little Theorem) For p prime and a ∈ Z such that gcd(a, p) =
1 we have

ap−1 ≡ 1 (mod p) .

We now turn to the computation of φ(n) for a given n ∈ N. We have



Lemma. For prime p and positive integer n we have

φ(pn) = pn − pn−1.

Definition. A function f : N → Z is called multiplicative if, for gcd(m,n) = 1, one
has

f(mn) = f(m)f(n) . (1)

A function f : N → Z is called completely multiplicative if for any m, n, one has
f(mn) = f(m)f(n) for all m,n ∈ N.

Examples.

1. f(n) = nk for k ∈ N is completely multiplicative.

2. The “number of divisors” function τ(n) =
∑

0<d|n 1 is multiplicative, but not
completely multiplicative. The same holds for the “sum of divisors” function
σ(n) =

∑
0<d|n d.

Proposition. Euler’s totient function is multiplicative.

The proof of this uses the Chinese Remainder Theorem. This is,

Chinese Remainder Theorem (CRT) Let ni ∈ N for j = 1, . . . , r with gcd(ni, nj) =
1 for i 6= j. We consider the system of linear congruences

x ≡ ai (mod ni), i = 1, . . . r,

with ai ∈ Z. Then this system of linear congruences has a solution in x ∈ Z which is
unique modulo n :=

∏r
i=1 ni.

Now we are ready to give a formula for the function φ(n) if the prime factorization
of n is given.

Theorem. Let

n =
r∏
i=1

pαi
i

be a prime factorization of n with pi 6= pj for i 6= j. Then

φ(n) = n ·
r∏
i=1

(
1− 1

pi

)
.

Example. φ(100) = φ(22 · 52) = 100 · 1
2
· 4
5

= 40.

5 Primality checking

We have two necessary and sufficient conditions for a number n to be a prime. Namely



Theorem. A natural number n is prime if and only if ∀a 6≡ 0 (mod n) one has

an−1 ≡ 1 (mod n).

The condition a 6≡ 0 (mod n) is not equivalent to the condition gcd(a, n) = 1
if n is not a prime. We may ask whether we could use in the above theorem the
condition gcd(a, n) = 1. However the theorem would d no longer be true. Actually
we call a composite integer a Carmichael numbers if,

an−1 ≡ 1 (mod n)

for all integers a with gcd(a, n) = 1. The smallest such number is n = 561. Some
more are 1105, 1729, 2465, 2821, 6601. Actually it is known that there exist infinitely
many of them. Another criterion for primes is the following theorem.

Wilson Theorem. An integer number n is prime if and only if

(n− 1)! ≡ −1 (mod n).

6 Fast exponentiation modulo n (method of suc-

cessive squaring)

The algorithm for computing am (mod n):

1. Take the binary expansion of m:

m = εk2
k + εk−12

k−1 + . . .+ ε1 · 2 + ε0, with εi ∈ {0, 1}.

2. Compute the powers a2
l

(mod n) for 1 ≤ l ≤ k. It will require k modular
multiplications. (Next power a2

l+1
is a square of the previous one a2

l
).

3. Finally am is the product of those powers a2
l

for which the coefficient εl above
equals 1. This will require at most k additional modular multiplications.

The number of modular multiplications in the algorithm is between log2(m) and
2 log2(m). So it is very fast. It can be applied for very huge numbers a,m, n.

7 Computing kth roots modulo n

Given n > 1, let r be coprime to n, and let k be coprime to ϕ(n). Then a solution of
the congruence xk ≡ r (mod n) can be found as follows.

1. Compute ϕ(n).

2. Find an integer a with 0 ≤ a < φ(n) and such that ak ≡ 1 (mod φ(n)). That
is we find the inverse of k modulo φ(n). This can be done using the Euclidean
algorithm.

3. Then the integer ra (mod m) is a solution. This can be computed using the
method of successive squaring described above.



8 Primitive roots

Definition. Let n ∈ N and a ∈ Z such that gcd(a, n) = 1. The multiplicative order
of a modulo n is the smallest positive integer d such that

ad ≡ 1 (mod n).

We usually denote it by ordn(a). This is well defined since by Euler’s Theorem we
have aϕ(n) ≡ 1 (mod n), hence we have ordn(a) ≤ φ(n). Actually we have some-
thing stronger, namely

Proposition. ordn(a)|ϕ(n).

Definition. An a as above is called (i.e. with gcd(a, n) = 1) is called a primitive
root modulo n if ordn(a) = ϕ(n).

Example: Let p = 7 and a = 3. Then a is a primitive root modulo 7:

31 ≡ 3 , 32 ≡ 2 , 33 ≡ 6 , 34 ≡ 4 , 35 ≡ 5 , 36 ≡ 1 (mod 7) .

On the other hand, 2 is not a primitive root modulo 7, since already 23 ≡ 1.
However there is another primitive root modulo 7, namely 5.

We address the following four questions:

1. Given a prime number p, is there always a primitive root modulo p?

2. If the answer to the above question is yes, then how many are there?

3. Assuming that the answer to the first question again is yes, how to we find a
primitive root modulo p?

4. What about general n (not necessarily a prime), is there always a primitive root
modulo n?

Theorem. For a prime p and a divisor d of ϕ(p) = p− 1, the equation

xd − 1 ≡ 0 (mod p)

has d incongruent solutions modulo p.

Theorem. For every prime p there exist exactly ϕ(p−1) incongruent primitive roots
a modulo p. In particular there always exists at least one primitive root modulo p.

Theorem(Gauss). A primitive root modulo n exists if and only if n = 2, 4, pk or 2pk

where k ∈ N and p is an odd prime number.

Important property. Let p be prime and g be a primitive root modulo p. Then
every element a with gcd(a, p) = 1 can be written as a ≡ gd (mod p) for some
natural d. If we insist that 0 ≤ d ≤ p− 2 then this d is unique (depends of course on



g).

Finding primitive roots: There is no efficient way for finding primitive roots mod-
ulo a given prime p. The following algorithm relies on the fact that the ratio ϕ(p−1)

p−1
is usually quite close to one.

Algorithm.

1. Pick an a ∈ Z with 1 ≤ a ≤ p− 1.

2. Find all different prime divisors of p− 1, say p1, p2, . . . , pr.

3. Check all the congruences

a
p−1
pk ≡ 1 (mod p), 1 ≤ k ≤ r.

If one of them is satisfied then a is not the primitive root modulo p, and we
repeat the algorithm. Otherwise a is a primitive root modulo p.

We mention also an open question.

Artin Conjecture. There exist infinitely many primes p for which 2 is a primitive
root modulo p.

For example, 2 is primitive root modulo p = 3, 5, 11, 13, 19, 29, . . . but not primitive
root modulo p = 7, 17, 23, 31, . . ..

9 Indices and the Discrete Logarithm Problem (DLP)

Let g be a primitive root modulo a prime p. The we have the following crucial
property: For any a ∈ Z, 1 ≤ a ≤ p− 1 there is precisely one positive integer r with
0 ≤ r ≤ p− 2 such that gr ≡ a (mod p). In other words the following sets coincide:

{g0 (mod p), g1 (mod p), . . . , qp−2 (mod p)} = {1, 2, . . . , p− 1}.

Definition. Given p and a a primitive root g modulo p, and an a ∈ Z, 1 ≤ a ≤ p−1,
we call r as above (i.e. a ≡ gr (mod p)) the index of a modulo p for the base g. The
notation for the index is I(a) := Ip,g(a) = r. Note that it depends on both p and g.

Example. Take p = 11, g = 6

a 1 2 3 4 5 6 7 8 9 10
I11,6(a) 0 9 2 8 6 1 3 7 4 5

For a chosen p and g we have:
Proposition. For a, b, k ∈ Z with gcd(a, p) = gcd(b, p) = 1 we have

• I(ab) = I(a) + I(b) (mod p− 1) (product rule);

• I(ak) = k · I(a) (mod p− 1) (power rule).



Knowing the indices for some chosen base g can be very helpful in solving problems
which we encounter before. For example,

• Example 1. Solve the congruence

x ≡ 8103 (mod 11).

I(x) = I(8103) = 103 · I(8) ≡ 1 (mod 10)

therefore
8103 ≡ 6I(8

103) ≡ 6 (mod 11).

• Example 2. Solve the following congruence

9x3 ≡ 8 (mod 11).

By passing to indices it gives

I(9x3) = I(9) + 3I(x) ≡ I(8) (mod 10)

which leads to the linear congruence

3I(x) ≡ 3 (mod 10) ⇒ x ≡ 6 (mod 11).

The Discrete Logarithm Problem (DLP): Given a prime p, a primitive root g
modulo p and a number 1 ≤ a ≤ p−1, find Ip,g(a). Or equivalently solve the following
equation:

gx ≡ a (mod p).

There are no known efficient methods which solve the Discrete Logarithm Problem for
a general large prime. The (publicly known) record of computing discrete logarithm
is for 160-digit prime. m.

10 Applications to Cryptography

Two parties (A (Alice) and B (Bob), say) want to establish a secret key. However
they only have the non-secure communication channel which can be intercepted by
eavesdropper (E) (Eve).

Even though Alice and Bob want to exchange text messages, they need first to
get a number out of it. Assume for simplicity that Alice and Bob exchange messages
consisting of only English capital letters i.e. A,B,C...

We start by fixing a bijection between the letters A, B, C, . . . , Z of the alphabet
and the numbers 1, 2,. . . , 26. Also add a blank and identify with 0. Then one can
transform any message into a number by working with base 27. The key point is that
this correspondence has to be one-to-one. Each word corresponds to a unique integer.
Here is an example:



Example. Let’s turn the word “DURHAM” into the corresponding integer. We have
the following correspondence:

D ↔ 4 , U ↔ 21 , R↔ 18 , H ↔ 8 , A↔ 1 , M ↔ 13 ,

from which we produce the decimal expansion of the number

4 + 27 · 21 + 18 · 272 + 8 · 273 + 1 · 274 + 13 · 275 = 187238389 ,

our numerical equivalent of DURHAM.

So, Alice and Bob want to exchange a number X over the non-secure channel.
Traditionally (Symmetric Key Cryptography) this can happen if Alice and Bob shared
a secret key K. For practical applications it is desirable to be able to establish this
over a non-secure channel.

10.1 Diffie-Hellman Key Exchange

In 1976 Diffie and Hellman suggested the following solution for this problem

1. A and B decide (publicly) on a large (200 digits is usually enough) prime number
p and a primitive root g modulo p.

2. A chooses a secret random integer m with 1 ≤ m ≤ p− 2.
B chooses a secret random integer n with 1 ≤ n ≤ p− 2.

3. A sends gm (mod p) to B.
B sends gn (mod p) to A.

4. Both can now calculate the shared secret key given by K := gmn (mod p).

The information available to E is p, g, gm (mod p) and gn (mod p). The only known
way of calculating gnm (mod p) from that information is to solve DLP problem which
is believed to be computationally very hard to solve efficiently.

Example. Take p = 11 and g = 2 (not real life numbers).

Now Alice chooses (randomly) their secret m = 6, hence sends gm = 26 ≡ 9
(mod 11) to Bob.
Similarly, Bob chooses (randomly) their secret n = 7, hence sends gn = 27 ≡ 7
(mod 11) to Alice.

Both can retrieve the shared secret code: Alice takes the number 7 they received and
raises it to the power m = 6, so finds

76 ≡ 4 (mod 11) ,

while Bob takes the received number 9 and raises it to their chosen n = 7, and with
the above modular exponentiation we find

97 ≡ 4 (mod 11) .



10.2 Public Key Cryptography, RSA

In Public Key Cryptography, opposite to the classical setting, Alice and Bob want to
communicate over the non-secure channel without sharing a secret key. RSA (Rivest,
Shamir, Adleman, 1977) serves this purpose:

Let us assume that Alice wants to send a message, say an integer X, to Bob.
Creation of a Public and a Secret Key (Bob).

1. Choose two different large primes p and q (say, 100 digits long each) and take
n = pq.

2. Choose a positive number e < ϕ(n) which is coprime to ϕ(n).

3. Find a positive integer d such that ed ≡ 1 (mod ϕ(n)).

4. The pair (n, e) is made public. It is called the public key. The integer d is called
the private or secret key. It is kept of course secret.

Encryption (Alice). Given an integer X, the encrypted message is C := Xe

(mod n). Note that to encrypt the message one just needs to know the public key
(n, e).

Decryption (Bob). To decrypt the message C one calculates Cd (mod n). This
is congruent to X i.e. X ≡ Cd (mod n).

The information available to Eve is the public key (n, e) and C. In order to find
X she needs to solve the congruence

Xe ≡ C (mod n).

The only known way of doing that (in general) needs calculation ϕ(n). The following
proposition implies that given n, finding ϕ(n) is a shard as factoring n. The last is
believed to be a very hard computational problem.

Proposition: Given n (of the form n = pq, p 6= q) and ϕ(n), the p, q are the roots
of the quadratic equation

x2 − (n− ϕ(n) + 1)x+ n = 0

.

10.3 Fermat factorization method

In RSA we need to make sure that the number |p − q| is large, that is p and q are
not very close. The reason being the following factorization method due to Fermat.
Here an n of the form pq is given and the task is to find p and q.

ALGORITHM.



1. Check that n is odd (otherwise the factorization can be easily found).

2. Take x = d
√
ne;

3. Calculate y =
√
x2 − n;

4. Check if y is an integer. If it is then the required factorization is

n = (x− y) · (x+ y).

5. Otherwise increase x by one and go to step 3.

Example. Take n = 1692209. Then t = 1301. By applying the algorithm above we
find that after fifth iteration we get

1692209 = (1301 + 4)2 − 1042

which then gives the factorization 1692209 = 1201 · 1409.

10.4 Factoring an RSA modulus “with high probability”

The following algorithm demonstrates that the task of finding d is a shard as factoring
n “with high probability”.

1. Calculate m = ed− 1.

2. Pick a ranom a which is coprime to n and compute the successive “square
roots” of am (mod n), i.e. am/2 (mod n), am/4 (mod n), . . . , until one of
these roots am/2

k
(mod n) is 6≡ 1 (mod n).

3. If this does not occur for any k for which m/2k is an integer, go back to step 2
and pick another a.

4. Calculate gcd(a
m

2k − 1, n). If this is not 1 or n then we found a factor of n.
Otherwise go back to step 2 and pick another a.

There is a good chance that we will pick an a that satisfies, for m′ = m/2k,

am
′ ≡ ±1 (mod p), am

′ ≡ ∓1 (mod q),

In this case gcd(am
′ − 1, n) will give us a nontrivial divisor of n.

Example: Suppose we are given the modulus n = 10403, encryption exponent e = 7
and our spy informs us that d = 8743 is the decryption key. We want to find the
factorization of n.
We try a = 5, and find that

m = de− 1 = 61200.
For k = 1, 2 or 3 we find that am/2

k ≡ 1 (mod n), while for k = 4 we get
m/24 = 3825 and a3825 ≡ 102 (mod n).

Now we compute gcd(a3825 − 1, n) = 101. Therefore we can easily derive that n =
101 · 103.



11 Quadratic residues

Definition. Let p be a prime and a ∈ Z with gcd(a, p) = 1. We call a a quadratic
residue modulo p, QR if there exists x ∈ Z such that x2 ≡ b (mod p); otherwise we
call a quadratic non-residue modulo p, NR.

Example. We take p = 7. Then we have 11 ≡ 1, 22 ≡ 4, 32 ≡ 2, 42 ≡ 2, 52 ≡ 4 and
62 ≡ 1 (mod 7). In particular 1,2,4 are QR and 3, 5, 6 are NR.

Proposition. For an odd prime p, there exist exactly p−1
2

quadratic residues modulo

p, and exactly p−1
2

quadratic non-residues modulo p. Note that 0 is not neither a
quadratic residue nor a quadratic non-residue. number of quadratic non-residues.

Proposition. The products of the quadratic residues and quadratic non-residues
satisfy the following rules:

QR×QR = QR ,

QR×NR = NR ,

NR×NR = QR .

11.1 The Legendre Symbol

Definition. The Legendre symbol of a ∈ Z modulo the prime p is defined as(
a

p

)
=


1 if a is QR ,
−1 if a is NR ,
0 if a ≡ 0 (mod p) .

Basic properties of Legendre symbols.

1.

(
a

p

)(
b

p

)
=

(
ab

p

)
, with a, b ∈ Z,

2.

(
a

p

)
=

(
a+ kp

p

)
, (k ∈ Z).

3.

(
a2

p

)
= 1 if gcd(a, p) = 1.

Examples.

1.

(
3

11

)
=

(
3 + 2 · 11

11

)
=

(
25

11

)
=

(
52

11

)
= 1,

2.

(
45

139

)
=

(
5 · 32

139

)
=

(
5

139

)(
32

139

)
=

(
5

139

)
=

(
5 + 139

139

)
=

(
144

139

)
=(

122

139

)
= 1.



Question. Given a prime p and an a ∈ Z, how do we calculate
(

3
11

)
?

Of course the naive approach is to calculate all x2 (mod p) for x running over all
x (mod p) and see whether a shows up as a square. There are however much more
efficient methods.

Theorem. (Euler’s criterion) For odd prime p and any a ∈ Z with gcd(a, p)1 we
have,

a(p−1)/2 ≡
(
a

p

)
(mod p) .

Corollary. (−1

p

)
=

{
1 if p ≡ 1 (mod 4) ,
−1 if p ≡ 3 (mod 4) .

Gauss’ Lemma. For an odd prime p and an a ∈ Z with gcd(a, p) = 1, let n denote
the number of integers in the set

S =

{
a, 2a, 3a, . . . ,

p− 1

2
a

}
,

whose remainder upon division by p exceeds p/2, then(
a

p

)
= (−1)n .

As the corollary one can deduce the following,

Corollary. (2

p

)
=

{
1 if p ≡ ±1 (mod 8) ,
−1 if p ≡ ±3 (mod 8) .

The all important theorem due to Gauss is,

Theorem. (Quadratic reciprocity law) Let p, q be two odd primes with p 6= q. Then(p
q

)(q
p

)
= (−1)

p−1
2
· q−1

2 .

Examples.

1. Compute
(

17
691

)
.

( 17

691

)
Q.R.L.

=
(691

17

)
=
(11

17

)
Q.R.L.

=
(17

11

)
=
( 6

11

)
=
( 2

11

)
·
( 3

11

)
.

The first term is -1 since 11 ≡ 3 (mod 8). For the second one we have( 3

11

)
= −

(11

3

)
= −

(2

3

)
= 1,

since 3 ≡ 3 (mod 8). Putting them together we have
(

17
691

)
= −1



2. (101

613

)
Q.R.L.

=
(613

101

)
=
( 7

101

)
Q.R.L.

=
(101

7

)
=
(3

7

)
= −1 .

12 Pythagorean Triples

Definition 1. A triple (x0, y0, z0) ∈ N3 is called Pythagorean if

x20 + y20 = z20 .

Every Pythagorean triple (x0, y0, z0) give rise to an infinite family of Pythagorean
triples simply by considering (tx0, ty0, tz0) where t ∈ N. On the other hand every
Pythagorean triple (x1, y1, z1) can be written as (tx0, ty0, tz0) with gcd(x0, y0, z0) = 1
and x20 + y20 = z20 . Pythagorean triples gcd(x0, y0, z0) = 1 are called primitive, as
from the observation above it is enough to describe all of them in order to have a
description of all Pythagorean triples.

Q. Are there infinitely many primitive Pythagorean triples?
A. Yes. For example one can take triples (2n2 + 2n, 2n + 1, 2n2 + 2n + 1) where

n ∈ N.
Q. Are there any other more primitive Pythagorean triples?
A. Yes. For example (8, 15, 17).

Lemma. In a primitive Pythagorean triple exactly one of x0 or y0 is even and the
other is odd.

Theorem. (x0, y0, z0) is a Pythagorean triple with even x0 if and only if ∃s, t ∈ N
such that

• s > t, s 6≡ t (mod 2), gcd(s, t) = 1;

• x0 = 2st, y0 = s2 − t2, z0 = s2 + t2.

Fermat’s Conjecture

About 1637 Fermat stated that xn + yn = zn, n > 2 , has no solutions in integers
x, y, z with xyz 6= 0. It was proven by A. Wiles in 1995.

Fermat himself proved the case of n = 4,

Theorem. The Diophantine equation

x4 + y4 = z4

has no solutions in positive integers x, y, z.

This follows from the theorem

Theorem. x4 + y4 = z2 has no solutions in positive integers x, y, z.



Fermat proved this using his Descent Method. The idea is to assume that (x0, y0, z0)
is a solution of the equation with z0 minimal. Then based on this triple we find an-
other solution (x1, y1, z1) with smaller z1 < z0. But this contradicts to the choice of
triple (x0, y0, z0).

Fermat also proved

Theorem. x4 − y4 = z2 has no solutions in positive integers x, y, z.

The proof of both theorems is based on the idea of Fermat’s infinite descent:

Sum of Two Squares

We address the question,

Question: Given a positive integer n, can we find two integers a, b such that
n = a2 + b2, or equivalently does the Diophantine equation n = x2 + y2 have a solu-
tion in integers x, y.

Some first few examples,

1 = 11 + 02

2 = 12 + 12

3 not possible

4 = 22 + 02

5 = 22 + 12

6 not possible

Actually the question can be reduced to the question regarding prime numbers.
Indeed by using the equality

(a2 + b2)(c2 + d2) = (ac+ bd)2 + (ad− bc)2

can be shown easily that

Lemma If m,n ∈ N are sum of two squares, so is also their product mn.

As the example with 3 indicated, not all primes can be written as the sum of two
squares. Actually we have

Theorem No prime p of the form 4k+ 3 (that is p ≡ 3 (mod 4)) can be written as
the sum of two squares.



However the situation is different when we consider primes of the form 4k + 1,
(that is p ≡ 1 (mod 4)). Indeed we have

Theorem An prime of the form 4k + 1 can be written as the sum of two squares.

The key ingredient of the proof of this Theorem is the following Lemma due to
Thue.

Lemma Let p be a prime and a ∈ Z with gcd(a, p) = 1. Then the congruence

ax ≡ y (mod p)

has a solution x0, y0 where

0 < |x0| <
√
p, and 0 < |y0| <

√
p.

The main idea for the proof of this lemma is the so-called “Pigeon-Hole Principle”.

Pigeon-Hole Principle: If n objects are placed in m boxes (or pigeon-holes) and if
n > m, then some box will contain at least two objects.

Moreover we can also address the question whether one can represent a prime as
the sum of two squares in a unique way (not counting change of signs of course).

Proposition Let p be a prime with p ≡ 1 (mod 4). The p can be written in a
unique way as the sum of two squares

Going back to the initial question, for any given integer n, we have

Theorem Let n = N2m with m square free. Then n can be represented as the sum
of two squares if an only if m does not contain any prime factor of the form 4k + 3.

Sum of Three and Four Squares

If we give ourselves more freedom, namely to increase the number of squares in the
representation we can obtain “more” integers. Indeed we have.

Theorem Any integer not of the form 4n · (8m+ 7) with n,m ∈ Z, and n,m ≥ 0 can
be written as the sum of three squares.

In the lectures we proved the necessary condition (namely that no integer of the form
can be written as the sum of three squares), while the other direction is harder, due
to the fact that we are lacking an identity to write the product of the sum of three
squares as the sum of three squares. Something available in the two squares situation.
Moreover we mention without proof the following theorem of Lagrange

Theorem Any integer can be written as the sum of four squares.



Finite Continued Fractions

Definition A finite continued fraction is a number of the form

= a0 +
1

a1 + 1

a2 + 1
······

an−1+
1
an

where a0, a1, . . . , an ∈ R, all of which except possible a0 are positive. The numbers
a0, a1, . . . , an are called the partial quotients. The fraction is called simple if all the
ai’s are integers. Such a number we denote by [a0; a1, a2, . . . , an].

Examples

1.

[1; 1, 2] = 1 +
1

1 + 1
2

=
5

3
.

2.

[3; 1, 4, 2] = 3 +
1

1 + 1
4+ 1

2

=
42

11
.

Theorem. Any rational number can be written as a finite simple continued fraction.

Q. Is this representation unique?
A. Any p

q
is uniquely written as [a0; a1, . . . , an] with an ≥ 2. However there is

always 2-nd possibility with the last partial quotient 1.

[a0; a1, . . . , an] = [a0; a1, . . . , an − 1, 1].

Usually the first representation is used. It is called canonical.

Definition The k-th convergent, for 0 ≤ k ≤ n, of [a0; a1, . . . , an] is the number
Ck = [a0; a1, . . . , ak]. Here we take C0 = a0.

We usually write it as the fraction Ck = pk
qk

. It appears that convergents can be
calculated quite easily by using the following property.

Theorem. Convergents can be calculated by the following recurrent formulas.

p0 = a0, p1 = a0a1 + 1 pk = akpk−1 + pk−2,
q0 = 1, q1 = a1 qk = akqk−1 + qk−2.

Example. Consider the number α = 767
201

= [3; 1, 4, 2, 3, 5]. Then the convergents are
as follows:

ak 3 1 4 2 3 5
pk 3 4 19 42 145 767
qk 1 1 5 11 38 201

The main properties of the convergents Ck = pk
qk

of a finite simple continued
fraction are

1. pk, qk ∈ Z



2. pkqk−1 − qkpk−1 = (−1)k−1,

3. gcd(pk, qk) = 1,

4. 0 < q0 ≤ q1 < qk < qk+1 for k ≥ 2,

5. C0 < C2 < C4 < . . . < C2k < C2k+2 < . . .,

6. C1 > C3 > C5 > . . . > C2k+1 > C2k+3 > . . .,

7. Codd > Ceven

Infinite Continued Fractions

Let a0, a1, a2, . . . be an infinite collection of integers, all of which, except possibly a0,
are taken to be positive. We define the infinite continued fraction [a0; a1, a2, . . . , ] as
the limit of its convergents:

[a0; a1, a2, . . .] := lim
n→∞

Cn.

where Cn = [a0; a1, a2, . . . , an]. The existence of the limit can be shown be considering
the limits αodd := limn→∞C2n+1 and αeven := limn→∞C2n. The first exists because
the {C2n+1} is a strictly decreasing sequence bounded from below, and {C2n} increas-
ing and bounded from above. Since the distance between Cn and Cn+1 tends to zero
as n goes to infinity we have that limn→∞Cn exists.

A real number x is called irrational if x 6∈ Q, that is there exist no a, b ∈ Z such that
x = a

b
.

Theorem: The value of every infinite continued fraction is an irrational number.

Theorem: For any irrational number x there exists a unique infinite continued frac-
tion such that

x = [a0; a1, . . .].

Given an irrational number x0 we can compute its nth partial denominator an in its
infinite continued fraction representation by using the following algorithm:
We set a0 := [x0] and then

x1 :=
1

x0 − [x0]
, a1 := [x1],

x2 :=
1

x1 − [x1]
, a2 := [x2],

xn =
1

xn−1 − [xn−1
, an := [xn]

Example. Find the continued fraction for
√

5.

√
5 = 2 + (

√
5− 2);

1√
5− 2

=
√

5 + 2 = 4 + (
√

5− 2);



1√
5− 2

=
√

5 + 2 = 4 + (
√

5− 2); . . .

So
√

5 = [2; 4, 4, 4, 4, . . .] = [2, 4].
Infinite continued fractions of the above form are called periodic. That is, we write
[a0; a1, . . . , am, b1, . . . bn] for the infinite continued fraction of the form

[a0; a1, . . . , am, b1, . . . bn, b1, . . . bn, b1, . . . bn, . . .]

that is the string b1, . . . bn repeats itself. Moreover we say that it of period of length
n.
Theorem Let x be an irrational number. Then the infinite continued fraction of x
is periodic if and only if x is of the form r + s

√
d with r ∈ Q, 0 6= s ∈ Q and d ∈ N

but not a square.

13 Application of infinite continued fraction to the

approximation of irrational numbers

Infinite continued fractions, and in particular its convergents, can be used to provide
“optimal” approximations of irrational numbers by rational numbers. We list two
theorems in this direction.

Theorem If pn
qn

is the nth convergent of the irrational number x, then

|x− pn
qn
| < 1

qnqn+1

<
1

q2n

So we see that the convergent approximate the irrational number with precision
measured by the denominator of the convergent. We may ask the question.

Q: Given an irrational number x, how closely can be approximated by rational num-
bers?

Theorem: Let x be an irrational number. Then

1. If 1 ≤ b ≤ qn, the rational number a
b

satisfies

|x− pn
qn
| ≤ |x− a

b
|.

2. If the rational number a
b
, where b ≥ 1 and gcd(a, b) = 1 satisfies

|x− a

b
| < 1

2b2

then a
b

is a convergent of x.

The above theorem indicates that the convergents of an irrational number x are
the best rational approximations to x, in that every other rational number with the
same or smaller denominator differs from x by a larger amount.



14 Pell’s Equation

Let d be a positive integer, which is not a square. Then Pell’s equation is the dio-
phantine equation of the form

x2 − dy2 = 1.

The following theorem describes all positive solutions in x and y of the above equation.

Theorem Let pm
qm

denote the mth convergent of the infinite continued fraction of
√
d.

Let n be the length of the period of the continued fraction expansion of
√
d. Then

1. If n is even, then all positive solutions of x2 − dy2 = 1 are given by

x = pkn−1, y = qkn−1, k = 1, 2, 3, . . .

2. If n is odd, then all positive solutions are given by

x = p2kn−1, y = q2kn−1, k = 1, 2, 3, . . .

15 The General Discrete Logarithm Problem

We start by defining some notion form group theory.

Definition: A set G equipped with an operation ∗ (that is for g1, g2 ∈ G we have
g1 ∗ g2 ∈ G) is called a group if the following hold

1. g1 ∗ (g2 ∗ g3) = (g1 ∗ g2) ∗ g3

2. there exists an e ∈ G, usually called the neutral or identity element such that
g ∗ e = e ∗ g = g for all g ∈ G.

3. for all g ∈ G, there exists an element in G, usually denoted by g−1 such that
g ∗ g−1 = g−1 ∗ g = e. The element g−1 is called the inverse of g with respect to
the operation ∗.

We usually denote a group by (G, ∗) when we want to make clear the operation.
When this is clear we usually write just G. Finally if for any g1, g2 ∈ G we have
g1 ∗ g2 = g2 ∗ g1, then the group is called abelian.

Examples: The following are all abelian groups

1. (Z,+),

2. (Z/nZ,+),

3. ((Z/nZ)× , ·).



We can build groups from another groups. One way to do this is by forming the
direct product of two groups. Namely if (G1, ∗1) and (G2, ∗2) are two groups then we
may define (G3, ∗3) as follows

G3 = G1 ×G2 = {(g1, g2)|g1 ∈ G1, g2 ∈ G2}

and (g1, g2)3(g
′
1, g
′
2) = (g1 ∗1 g′1, g2 ∗2 g′2). It is clear that if G1 and G2 are both abelian

then so is also (G3, ∗3). When operations are clear we usually write G1 ×G2 for G3.

Definition Let (G1, ∗1) and (G2, ∗2) be two groups. A map f : G1 → G2 is called a
group homomorphism if f(g1 ∗1 g2) = f(g1) ∗2 f(g2) for g1, g2 ∈ G1. A group homo-
morphism which is bijective is called a group isomorphism and in this case the two
groups are called isomorphic.

Definition Let (G, ∗) be a group. A subset H ⊆ G is called a subgroup of G if H is
a group with respect to the operation ∗.

Theorem If G is a finite group and H is a subgroup of G, then if we write ]G (resp
]H) for the order (i.e. number of elements in the set G) of G (resp H), then

]H | ]G,

that is the integer ]H divides the integer ]G.

Given a group (G, ∗), an element g ∈ G and a positive integer m we define

[m]g := g ∗ g ∗ g ∗ . . . ∗ g,

where g appears m-many times. We also define [0]g = e (the identity) and [−m]g :=
[m]g−1. We consider the set

< g >:= {e, [±1]g, [±2]g, [±3]g, . . . , [±m]g, . . .}

Then (< g >, ∗) is a subgroup of G, and it is called the subgroup of G generated
by the element g.

General Discrete Logarithm Problem Let (G, ∗) be an abelian group and let
g ∈ G be an element different from e. Given h ∈< g > find an m ∈ Z such that

h = [m]g

If we take (G, ∗) = ((Z/pZ)× , ·), where p is a prime and g a primitive root modulo
p, then the General Discrete Logarithm Problem is the “classical” Discrete Logarithm
Problem which we have seen in the Michaelmas Term.

The General Discrete Logarithm Problem may be quite easy for some choices of
the group (G, ∗). For example if we take (Z/pZ,+) and g any non-zero element, it
can be solved very easily using the Euclidean Algorithm.



16 Elliptic Curves defined over Q
We start with the definition of elliptic curves defined over the rational numbers.

Definition An elliptic curve E, defined over Q is the set of solutions of the equation

Y 2 = X3 + aX + b,

with a, b ∈ Z, ∆ := 4a3 + 27b2 6= 0 and a rational point at infinity O. ∆ is often
called the discriminant of E.

The high interest in elliptic curves is due to the fact that they posses a group
structure. This is defined as follows.

Group Structure: We give to the set E ∪ {O} a groups structure, where the
operation will be denoted by ⊕, as follows,

1. The neutral or identity element is O. That is for any point P ∈ E we have
P ⊕O = O ⊕ P = P , O ⊕O = O.

2. Given P = (x, y) ∈ E we define its inverse by −P = (x,−y). Moreover −O = O

3. Given P1 = (x1, y1) and P2 = (x2, y2) with P1, P2 ∈ E we define P3 = P1 ⊕ P2

as follows

(a) If P1 6= P2 and x1 6= x2 then we define P3 = (x3,−y3) where x3 :=
λ2 − x1 − x2, y3 := λx3 + ν, λ := y2−y1

x2−x1 and ν := y1 − λx1.
(b) If P1 6= P2 and x1 = x2, then this implies in particular that y1 = −y2 and

hence we obtain P1 ⊕ p2 = O.

(c) If P1 = P2 and y1 6= 0 then we define P3 = (x3,−y3) by x3 := λ2 − 2x1,

y3 := λx3 + ν, λ :=
3x21+a

2y1
and ν := y3 − λx3.

(d) If P1 = P2 and y1 = 0 then we have that P1 ⊕ P1 = O.

One can check that the above operation is associative (i.e. P1 ⊕ (P2 ⊕ P3) =
(P1 ⊕ P2)⊕ P3 and the group is abelian, that is P1 ⊕ p2 = P2 ⊕ p− 1.

We define the set

E(Q) = {(x, y) ∈ Q2|(x, y) ∈ E} ∪ {O}

The set E(Q0 has also the structure of an abelian group. Indeed one can check
that P ⊕Q ∈ E(Q) if P,Q ∈ E(Q).

Mordell’s Theorem: The abelian group E(Q) is finitely generated.

We call a point P ∈ E a torsion point or point of finite order if there exists an
m ∈ N such that [m]P = O. The set of the torsion points is a subgroup of E. The
set of torsion points of E which are also in E(Q)c is denoted by E(Q)tors, and it is a



subgroup of E(Q).

Nagell-Lutz Theorem Let E be an elliptic curve defined by Y 2 = X3 + aX + b
with a, b ∈ Z and ∆ = 4a3 + 27b2 6= 0. Let O 6= P = (x, y) ∈ E(Q)tors. Then x, y ∈ Z
and either i) y = 0 in which case P is of order two or ii) y2 divides ∆.

Mazur’s Theorem The group E(Q)tors is isomorphic to one of the following groups

1. Z/NZ where 1 ≤ N ≤ 10 or N = 12,

2. Z/2Z× Z/2NZ, 1 ≤ N ≤ 4.

17 Elliptic Curves over finite fields.

Fields: A set K equipped with two operations +, · is called a field if

1. (K,+) is an abelian group with a neutral element 0,

2. K×, ·) is an abelian group with a neutral element 1 6= 0, where K× := K−{0}.

3. For a, b, c ∈ K we have a · (b+ c) = a · b+ a · c.

The main examples for this course are the field of rational numbers Q with the
usual addition and multiplication, and the set Z/pZ for p a prime number with the
usual addition and multiplication. The last is usually denoted by Fp when we want
to indicate the field structure.

Definition Let p be an odd prime. An elliptic curve E, defined over Fp is the set of
solutions of the equation

Y 2 = X3 + aX + b,

with a, b ∈ Fp, ∆ := 4a3 + 27b2 6= 0 (the last as element in Fp) and an Fp rational
point at infinity O.

Of special interest is for us the set:

E(Fp) = {(x, y) ∈ F2
p : y2 = x3 + ax+ b} ∪ {O}

Using exactly the same definitions as we did over the rational numbers we can make
this an abelian group. Of course now all the operations are happening over the field Fp.

Theorem: The group E(Fp) is isomorphic to either i) Z/d1Z where d1 ∈ N or ii)
Z/d1Z× Z/d1d2Z where d1, d2 ∈ N with d1 ≥ 2.

Hasse’s Theorem: For an elliptic curve E defined over the finite field Fp we have

|]E(Fp)− (p+ 1)| ≤ 2
√
p.

There is a relation between an elliptic curve define over the rational numbers and
elliptic curves defined over Fp, where p an odd prime. Indeed if E is an elliptic curve
defined by

Y 2 = X3 + aX + b,



where a, b ∈ Z and ∆ = 4a3 + 27b2 6= 0. For any odd prime p that p does not divide
∆ then we can use the same equation to define an elliptic curve over the finite field
Fp where we take the integers a, b modulo p. We have:

Theorem (Reduction modulo p): Let E be an elliptic curve defined over Q, and
let ∆ be its discriminant. Then for any odd prime P which does not divide ∆ we
have an injective homomorphism

E(Q)tors → E(Fp),

and the map is given by sending (x, y) ∈ E(Q)tors to (x (mod p), y (mod p)) ∈
E(Fp), and the point at infinity to the point at infinity.

18 Elliptic Curve Cryptography

We can use the theory of elliptic curves for Key Exchange.

Elliptic Curve Key Exchange Protocol:

1. Alice and Bob agree, over the public channel, on an elliptic curve E, defined
over a finite field Fp and a point P ∈ E(Fp).

2. Alice selects an integer m ∈ N, and computes the point Q := [m]P .

3. Bob selects an integer n ∈ N, and computes the point R := [n]P .

4. Alice sends the point Q to Bob, and Bob sends the point R to Alice.

5. Alice computes [m]R = [m][n]P = [mn]P , and Bob computes [n]Q = [n][m]P =
[nm]P . The common secret key is K = [mn]P .

Eve sees E, Fp, P , Q and R. Eve could try to recover m or n by solving the Elliptic
Curve Discrete Logarithm Problem (ECDLP) namely Q = [m]P or R = [n]P to
recover n or m. This is believed to be computationally hard.

We can use elliptic curves also to implement Public Key Cryptography.

The ElGamal Public Key Cryptography Protocol:

1. Alice and Bob agree, over the public channel, on an elliptic curve E, defined
over a finite field Fp and a point P ∈ E(Fp).

2. Alice selects an integer a, and computes the point A := [a]P . The point A is
the public key, and the integer a is the secret key.

3. Bob wants to send the message M ∈ E(Fp). He chooses an integer k, and
computes B1 := [k]P and B2 = M + [k]A. He sends B − 1 and B2 to Alice.

4. Alice computes B2 − [a]B1.



Alice recovers indeed the message M since,

B2 − [a]B1 = (M + [k]A)− [a][k]P = M + [ka]P − [ka]P = M.

Eve sees E,Fp, A,B1, B2, P . A way to recover M is to solve the ECDLP B1 = [k]P ,
or A = [a]P .

Elliptic Curve Digital Signature Protocol:

1. Alice and Bob agree, over the public channel, on an elliptic curve E, defined
over a finite field Fp and a point P ∈ E(Fp) of prime order q.

2. Alice selects an integer a and compuets A := [a]P . Alice publishes A (public
verification key) and keeps a secret (secret signing key).

3. Let d (mod q) be the digital document. Alice picks an integer 0 6= k (mod q)
and computes [k]P and sets

s1 ≡ x([k]P ) (mod q), s2 ≡ (d+ as1)k
−1 (mod q),

where x([k]P ) = 0, 1, 2, . . . , p − 1 the x-coordinate of the point [k]P . The
signature of Alice for the document d is (s1, s2).

4. In order for Bob to verify that indeed the document d was signed by Alice he
computes

v1 ≡ ds−12 (mod q), v2 ≡ s1s
−1
2 (mod q),

and verifies whether

x([v1]P + [v2]A) ≡ s1 (mod q).

If the last equality holds, then then document d with signature (s1, s2) was
signed by Alice, otherwise was not. Given d, in order Eve to reproduce the
signature s1, s2 she has to solve an ECDLP.

19 Some Examples.

1. Consider the curve E defined by the equation

Y 2 = X3 +X + 1.

(a) Show that E is an elliptic curve defined over the field F5, and determine
the group E(F5).

(b) Show that E is an elliptic curve defined over the field F7 and determine
the group E(F7).

Ans.



(a) We compute ∆ = 4 · 13 + 27 · 12 ≡ 1 (mod 5). Hence ∆ 6= 0 in F5 so E
is an elliptic curve defined over F5. In order to determine E(F5) as a set
we just check all possible values that Y 2 can take for all possible values
of Y in F5, that is Y = 0,±1,±2 and similarly for X2 + X + 1 where
X = 0,±1,±2. Then we see that the set of points is given by (always we
have the point at infinity)

E(F5) = {O, (0,±1), (2,±1), (−2,±1), (−1,±2)}

So we have that the cardinality of E(F5) is 9. In order to determine
the group structure of this set we recall from the lectures that E(F5) is
either of the form Z/dZ for d ∈ N or Z/d1Z × Z/d1d2Z for d1, d2 ∈ N
and d1 ≥ 2. That means that E(F5) is either isomorphic to Z/9Z or to
Z/3Z × Z/3Z. In order to determine which group E(F5) it is enough to
check whether E(F5) has any point of order larger than 3 since all the
elements in Z/3Z×Z/3Z have order at most three (check!). We take P =
(0, 1). Then we compute using the method from above that [2]P = (−1, 2)
and [3]P = P ⊕ [2]P = (2, 1). In particular [3]P 6= O and hence P has
order larger than 3. That is E(F5) is isomorphic to Z/9Z, and actually we
have also seen that E(F5) =< P >.

(b) We have ∆ = 31 ≡ 3 (mod 7). That is ∆ 6= 0 in F7 and hence E is
an elliptic curve over F7. As above by doing an exhaustive search of all
possible points we find that the set E(F7) is given by

E(F7) = {O, (0,±1), (2,±2)}.

That is E(F7) is of size 5. The only possibility is then (since 5 is a prime)
that E(F5) is isomorphic to Z/5Z. We moreover note that for any point
P ∈ E(F7) different to O we have E(F7) =< P >.

2. Consider the curve E defined by the equation

Y 2 = X3 + 2X + 1.

Show that E is an elliptic curve defined over the field F5, and determine the
group E(F5).

Ans. We compute ∆ = 4 ·23 +27 ·12 = 32+27 = 59 ≡ 4 6= 0 (mod 5). Hence
E is an elliptic curve over F5. The set E(F5) is given by

E(F5) = {O, (0,±1), (1,±2), (−2,±2)}.

In particular it is of size 7. Hence it has to be isomorphic to Z/7Z.

3. Consider the curve E defined by the equation

Y 2 = X3 + 6X + 1.



Show that E is an elliptic curve defined over the field F7, and determine the
group E(F7).

Ans. We first note that since we are working over F7 the above equation is
equivalent to the equation

Y 2 = X3 −X + 1

We compute now ∆ = 4 · (−1)2 + 27 · 13 = 31 ≡ 3 6= 0 (mod 7). Hence E is
an elliptic curve. Computing the set E(F7) we find that

E(F7) = {O, (0,±1), (1,±1), (2, 0), (3,±2), (−2,±3), (−1,±1)}.

Hence E(F7) is of size 12. Hence the possibilities are Z/12Z or Z/2Z×Z/6Z. In
order to distinguish between the two groups we calculate the orders of some of
the points of E(F7). We take P = (0, 1). Then we compute that (check) [2]P =
(2, 0) Hence [2]P is a point of order 2, which makes P a point of order 4, and
hence the same holds for −P = (0,−1). Now we check the point Q = (−2, 3).
We have [2]Q = (−1, 1) and moreover [4]Q = [2]Q⊕ [2]Q = (3,−2) 6= O. Since
(3,−2) is not of order two (why?) we can conclude that Q is of order 12, since
we have that Q has order larger than 6, and the size of < Q > has to divide 12.
In particular E(F7) has a point of order 12, and hence cannot be isomorphic to
Z/2Z× Z/6Z. Hence it is isomorphic to Z/12Z.


