Iterated-logarithm laws for convex hulls of random walks with drift

UK Research Network in Stochastics, Heriot-Watt, June 2024

Supported by EPSRC grant EP/W00657X/1

Introduction

On each of n unsteady steps, a drunken gardener drops a seed. Once the flowers have bloomed, what is the area of the garden enclosed by the minimal-length fence?

Acknowledgements.

Thanks to James McRedmond and Vlad Vysotsky for sharing several ideas related to this work.

Introduction

Let $Z, Z_{1}, Z_{2}, \ldots \in \mathbb{R}^{d}(d \geq 2)$ be independent and identically distributed.

The Z_{k} will be the increments of the random walk $S_{n}, n \geq 0$, started at the origin $\mathbf{0}$ in \mathbb{R}^{d}, defined by

$$
S_{0}=\mathbf{0}, \quad \text { and } \quad S_{n}=\sum_{k=1}^{n} Z_{k} \quad \text { for } n \geq 1
$$

We are interested in the convex hull

$$
\mathcal{H}_{n}:=\operatorname{hull}\left\{S_{0}, \ldots, S_{n}\right\}
$$

i.e., the smallest convex set that contains $\left\{S_{0}, \ldots, S_{n}\right\}$.

In particular, the $n \rightarrow \infty$ limit behaviour of the random variables

- $V_{d}\left(\mathcal{H}_{n}\right)=$ the volume of \mathcal{H}_{n};
- $D\left(\mathcal{H}_{n}\right)=$ the diameter of \mathcal{H}_{n};
- other intrinsic volumes.

Outline

(1) Introduction
(2) Laws of large numbers and distributional limits
(3) Iterated-logarithm laws
(4) Solution to a Strassen-type isoperimetric problem
(5) Concluding remarks

Drift: zero vs. non-zero

Standing assumption: $\mathbb{E}\|Z\| \in(0, \infty)$.
For the mean drift vector of the walk we write $\mu=\mathbb{E} Z$.
There is going to be a clear distinction between the zero drift case ($\mu=\mathbf{0}$) and the non-zero drift case ($\mu \neq \mathbf{0}$).

For a qualitative result, observe that $\mathcal{H}_{\infty}:=\cup_{n \geq 0} \mathcal{H}_{n}$ exists (by monotonicity) and $\mathbb{P}\left(\mathcal{H}_{\infty}=\mathbb{R}^{d}\right) \in\{0,1\}$ (by Hewitt-Savage zero-one law).

Theorem (López Hernández, W., 2021).
We have $\mathbb{P}\left(\mathcal{H}_{\infty}=\mathbb{R}^{d}\right)=1$ if $\mu=\mathbf{0}$ and $\mathbb{P}\left(\mathcal{H}_{\infty}=\mathbb{R}^{d}\right)=0$ if $\mu \neq \mathbf{0}$.

Law of large numbers

View \mathcal{H}_{n} as a sequence in the metric space of convex, compact subsets of \mathbb{R}^{d} containing $\mathbf{0}$, with Hausdorff metric. Let $\ell_{\mu}:=\operatorname{hull}\{\mathbf{0}, \mu\}$, the line segment from $\mathbf{0}$ to μ.

A consequence of the strong law of large numbers plus continuity:

$$
\begin{aligned}
& \text { Proposition (cf. Lo, McRedmond, Wallace, 2018). } \\
& \text { As } n \rightarrow \infty, n^{-1} \mathcal{H}_{n} \rightarrow \ell_{\mu} \text {, a.s. }
\end{aligned}
$$

In non-zero drift case, this tells us the first-order asymptotic shape of convex hull, and (by continuity) implies that, e.g.,

$$
\lim _{n \rightarrow \infty} n^{-1} D\left(\mathcal{H}_{n}\right)=\|\mu\|, \text { and } \lim _{n \rightarrow \infty} n^{-d} V_{d}\left(\mathcal{H}_{n}\right)=0, \text { a.s. }
$$

Zero-drift case

When $\mu=0$, the strong laws says only $n^{-1} \mathcal{H}_{n} \rightarrow\{\mathbf{0}\}$, a.s.
New standing assumption: $\mathbb{E}\left(\|Z\|^{2}\right) \in(0, \infty)$.
Let $\Sigma:=\mathbb{E}\left(Z Z^{\top}\right)$ denote the increment covariance matrix.
A consequence of Donsker's theorem plus continuity:

Proposition (cf. W., Xu, 2015; Lo, McRedmond, Wallace, 2018).

Suppose that $\mu=\mathbf{0}$. For $b:[0,1] \rightarrow \mathbb{R}^{d}$ the trajectory of a standard Brownian motion, $n^{-1 / 2} \mathcal{H}_{n} \xrightarrow{\mathrm{~d}} \Sigma^{1 / 2}$ hull $b[0,1]$.

A consequence is that (for $\Sigma=$ identity, say)

$$
n^{-1 / 2} D\left(\mathcal{H}_{n}\right) \xrightarrow{\mathrm{d}} \operatorname{diam} b[0,1], \text { and } n^{-d / 2} V_{d}\left(\mathcal{H}_{n}\right) \xrightarrow{\mathrm{d}} V_{d}(\text { hull } b[0,1]) .
$$

For $d=2$, the expected area of the Brownian convex hull is $\mathbb{E} V_{2}($ hull $b[0,1])=\pi / 2$ (El Bachir, 1983). We don't know the expected diameter (cf. McRedmond, Xu, 2017).

Scaling limit in the case with drift

How to go beyond law of large numbers when $\mu \neq \mathbf{0}$? To get a non-degenerate scaling limit, we now must scale space by factor $1 / n$ in the direction of the drift and by factor $1 / \sqrt{n}$ in the orthogonal directions.

Take $d=2$ so we can draw a picture.

$$
\begin{aligned}
& \text { Then, let } \varphi_{n}^{\mu}(x)=\left(\frac{x \cdot \hat{\mu}}{n\|\mu\|}, \frac{x \cdot \hat{\mu}_{\perp}}{\sqrt{n \sigma_{\mu_{\perp}}^{2}}}\right) \text {; } \\
& \text { Here } \sigma_{\mu_{\perp}}^{2}=\mathbb{E}\left[\left(Z \cdot \hat{\mu}_{\perp}\right)^{2}\right] \text {. }
\end{aligned}
$$

Let \tilde{b} denote the process on \mathbb{R}^{2} given by $\tilde{b}(t)=(t, w(t))$, where w is standard Brownian motion on \mathbb{R}.

The analogue of Donsker's theorem says that $\varphi_{n}^{\mu}\left(X_{n}\right)$ converges weakly to \tilde{b} as $n \rightarrow \infty$; proof combines the functional LLN and CLT (cf. W. \& Xu, 2015).

Scaling limit in the case with drift

The affine map φ_{n}^{μ} preserves the convex hull, so:
Theorem (W. \& Xu, 2015).
If $\mu \neq \mathbf{0}$ and $\sigma_{\mu_{\perp}}^{2}>0$, then as $n \rightarrow \infty, \varphi_{n}^{\mu}\left(\mathcal{H}_{n}\right)$ converges weakly to hull $\tilde{b}[0,1]$.

Scaling limit in the case with drift

By continuity and scaling of volumes (one coordinate by the LLN scaling n, the other $d-1$ coordinates by the CLT scaling \sqrt{n}) this leads to distributional limit for volumes:

Corollary (W. \& Xu, 2015; McRedmond, 2019).
Suppose that $\mu \neq \mathbf{0}$ and $\sigma_{\mu_{\perp}}^{2}>0$. Then, as $n \rightarrow \infty$,

$$
n^{-(d+1) / 2}\|\mu\|^{-1}\left(\sigma_{\mu_{\perp}}^{2}\right)^{-1 / 2} V_{d}\left(\mathcal{H}_{n}\right) \xrightarrow{\mathrm{d}} V_{d}(\text { hull } \tilde{b}[0,1]) .
$$

W. \& XU (2015) show that, when $d=2, \mathbb{E} V_{2}($ hull $\tilde{b}[0,1])=\frac{1}{3} \sqrt{2 \pi}$.

This scaling limit strategy does not work so nicely for diameter or perimeter length when $\mu \neq \mathbf{0}$, because φ_{n}^{μ} does not act in a sensible way on lengths. This leads to another story (and a different class of limit phenomena): W. \& Xu (2015) for perimeter, McRedmond \& W. (2018) for diameter.

Outline

(1) Introduction

2 Laws of large numbers and distributional limits
(3) Iterated-logarithm laws
(4) Solution to a Strassen-type isoperimetric problem
(5) Concluding remarks

Iterated-logarithm laws: Overview

We want to study a.s. behaviour of upper envelope of e.g. $V_{d}\left(\mathcal{H}_{n}\right)$: we seek appropriate versions of the law of the iterated logarithm (LIL) from classical fluctuation theory.

In the zero-drift case, the answer is an elegant theorem due to Khoshnevisan (1992), using Strassen's (1964) functional LIL. For example, when $d=2, \mu=\mathbf{0}$, and $\Sigma=I$ (identity), Khoshnevisan shows that area satisfies

$$
\limsup _{n \rightarrow \infty} \frac{V_{2}\left(\mathcal{H}_{n}\right)}{n \log \log n}=\frac{1}{\pi} \text {, a.s. }
$$

The constant $1 / \pi$ arises from solving a variational problem (this is typical for a Strassen-type argument).

The analogue of this result for Brownian motion had already been obtained in a remarkable paper of LÉvy (1955), who anticipated to some extent the functional LIL of Strassen (1964).

Iterated-logarithm laws: Overview

In the non-zero drift case, Khoshnevisan's LIL does not apply. Our result is:

Theorem (Cygan, Sandrić, Šebek, W., 2023).

$$
\text { If } d=2, \mu \neq \mathbf{0} \text {, and } \Sigma=I,
$$

Our general result covers all intrinsic volumes and (like Khoshnevisan's) is founded on Strassen's functional LIL, modified appropriately to apply to walks with non-zero drift; in our setting, as in Khoshnevisan's, limiting constants can often be characterized by variational problems, but in only a limited number of instances is the solution known.
The variational problem also arises in the context of large deviations, where it was solved using an alternative approach by Akopyan \& Vysotsky (2021).

Strassen's theorem

Let \mathcal{C}_{d} denote the set of continuous $f:[0,1] \rightarrow \mathbb{R}^{d}$, and let \mathcal{C}_{d}^{0} denote the subset of those $f \in \mathcal{C}_{d}^{0}$ for which $f(0)=\mathbf{0}$. Define the linearly-interpolated random walk trajectory

$$
Y_{n}(t):=S_{\lfloor n t\rfloor}+(n t-\lfloor n t\rfloor) Z_{\lfloor n t\rfloor+1}, \text { for } t \in[0,1] .
$$

Then $Y_{n} \in \mathcal{C}_{d}^{0}$ for every $n \in \mathbb{Z}_{+}$. The Khinchin scaling function for the classical LIL is

$$
\ell(n):=\sqrt{2 n \log \log n} \text { for } n \geq 3
$$

The symmetric, non-negative definite matrix Σ has a unique symmetric, non-negative definite square-root $\Sigma^{1 / 2}$, which acts as a linear transformation of \mathbb{R}^{d}.
Strassen's theorem is a statement about the a.s. limit points of the sequence $Y_{n} / \ell(n)$ in the metric space \mathcal{C}_{d}^{0} (endowed with the supremum metric).

Strassen's theorem

Theorem (Strassen's theorem for random walk).
Let $d \in \mathbb{N}$ and $\mu=\mathbf{0}$. With probability 1 , the sequence $Y_{n} / \ell(n)$ in \mathcal{C}_{d}^{0} is relatively compact, and its set of limit points is $\Sigma^{1 / 2} U_{d}$.

Here

$$
U_{d}:=\left\{\text { a.c. } f: f(0)=\mathbf{0}, \int_{0}^{1}\left\|f^{\prime}(s)\right\|^{2} \mathrm{~d} s \leq 1\right\}
$$

is unit ball in Cameron-Martin space for the Wiener measure, and f^{\prime} is componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of $Y_{n} / \ell(n)$ contains a further subsequence that converges, its limit being some $f \in \Sigma^{1 / 2} U_{d}$, and (b) for every $f \in \Sigma^{1 / 2} U_{d}$, there is a subsequence of $Y_{n} / \ell(n)$ that converges to f.

Strassen's theorem

Theorem (Strassen's theorem for random walk).
Let $d \in \mathbb{N}$ and $\mu=\mathbf{0}$. With probability 1 , the sequence $Y_{n} / \ell(n)$ in \mathcal{C}_{d}^{0} is relatively compact, and its set of limit points is $\Sigma^{1 / 2} U_{d}$.

Here

$$
U_{d}:=\left\{\text { a.c. } f: f(0)=\mathbf{0}, \int_{0}^{1}\left\|f^{\prime}(s)\right\|^{2} \mathrm{~d} s \leq 1\right\}
$$

is unit ball in Cameron-Martin space for the Wiener measure, and f^{\prime} is componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of $Y_{n} / \ell(n)$ contains a further subsequence that converges, its limit being some $f \in \Sigma^{1 / 2} U_{d}$, and (b) for every $f \in \Sigma^{1 / 2} U_{d}$, there is a subsequence of $Y_{n} / \ell(n)$ that converges to f.

Example: among $f \in U_{d}$, maximum $f(1)=1$ achieved by $f(s) \equiv s$; so corollary to Strassen's theorem is the classical LIL: for $\Sigma=I$,

$$
\limsup _{n \rightarrow \infty} \frac{S_{n}}{\ell(n)}=1, \text { a.s. }
$$

Strassen's theorem

Theorem (Strassen's theorem for random walk).
Let $d \in \mathbb{N}$ and $\mu=\mathbf{0}$. With probability 1 , the sequence $Y_{n} / \ell(n)$ in \mathcal{C}_{d}^{0} is relatively compact, and its set of limit points is $\Sigma^{1 / 2} U_{d}$.

Here

$$
U_{d}:=\left\{\text { a.c. } f: f(0)=\mathbf{0}, \int_{0}^{1}\left\|f^{\prime}(s)\right\|^{2} \mathrm{~d} s \leq 1\right\}
$$

is unit ball in Cameron-Martin space for the Wiener measure, and f^{\prime} is componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of $Y_{n} / \ell(n)$ contains a further subsequence that converges, its limit being some $f \in \Sigma^{1 / 2} U_{d}$, and (b) for every $f \in \Sigma^{1 / 2} U_{d}$, there is a subsequence of $Y_{n} / \ell(n)$ that converges to f.

Example: also yields the extension that for $\Sigma=I$,

$$
\liminf _{n \rightarrow \infty}\left|\frac{S_{n}}{\ell(n)}-\theta\right|=0, \text { a.s., if and only if } \theta \in[-1,1] .
$$

A Strassen theorem for non-zero drift

Idea: Use different scalings, like in the W. \& Xu weak convergence result; this time LLN scaling in drift direction, LIL scaling in the rest.

WLOG, choose coordinates so that the standard orthonormal basis $\left(e_{1}, \ldots e_{d}\right)$ of $\mathbb{R}^{d}, d \geq 2$, has e_{1} in the direction of μ.

Let $\Sigma_{\mu^{\perp}}$ denote the matrix obtained from Σ by omitting the first row and column (reduced covariance matrix).
For $n \in \mathbb{N}$, define $\psi_{n}^{\mu}: \mathbb{R}^{d} \rightarrow \mathbb{R}^{d}$, acting on $x=\left(x_{1}, \ldots, x_{d}\right)$, by

$$
\psi_{n}^{\mu}\left(x_{1}, \ldots, x_{d}\right)=\left(\frac{x_{1}}{n}, \frac{x_{2}}{\ell(n)}, \ldots, \frac{x_{d}}{\ell(n)}\right) .
$$

Let $I_{\mu}:[0,1] \rightarrow \mathbb{R}_{+}$denote the function $I_{\mu}(t)=\|\mu\| t$, and set

$$
W_{d, \mu, \Sigma}:=\left\{g=\left(I_{\mu}, \Sigma_{\mu^{\perp}}^{1 / 2} f\right): f \in U_{d-1}\right\}, \text { for } d \geq 2 .
$$

A Strassen theorem for non-zero drift

Theorem (Cygan, Sandrić, Šebek, W., 2023).

Suppose that $d \geq 2$ and $\mu \neq \mathbf{0}$. With probability 1 , the sequence $\psi_{n}^{\mu}\left(Y_{n}\right)$ in \mathcal{C}_{d}^{0} is relatively compact, and its set of limit points is $W_{d, \mu, \Sigma}$.

Proof.

Combine the strong LLN (in functional form) for the first component, with Strassen's LIL for the remaining $d-1$ components.

Corollary.

Suppose that $d \geq 2$ and $\mu \neq \mathbf{0}$. Let G be a real-valued, continuous function on compact, convex sets. Then

$$
\limsup _{n \rightarrow \infty} G\left(\psi_{n}^{\mu}\left(\mathcal{H}_{n}\right)\right)=\sup _{g \in W_{d, \mu, \Sigma}} G(\text { hull } g[0,1]) \text {, a.s. }
$$

Note: Not necessarily immediate to use, because of the involved nature of the ψ_{n}^{μ} map.

Application to volumes

Theorem (Cygan, Sandrić, Šebek, W., 2023).
Suppose that $d \geq 2$ and $\mu \neq \mathbf{0}$. Then, a.s.,

$$
\limsup _{n \rightarrow \infty} \frac{V_{d}\left(\mathcal{H}_{n}\right)}{\sqrt{2^{d-1} n^{d+1}(\log \log n)^{d-1}}}=\|\mu\| \cdot \sqrt{\operatorname{det} \Sigma_{\mu^{\perp}}} \cdot \lambda_{d}
$$

where

$$
\lambda_{d}:=\sup _{f \in U_{d-1}} V_{d}(\text { hull }\{(t, f(t)) ; t \in[0,1]\}) .
$$

Theorem (Akopyan \& Vysotsky, 2021; Cygan, Sandrić, Šebek,
W., 2023).

When $d=2$, the constant takes value $\lambda_{2}=\sqrt{3} / 6$.

Together, these results give the LIL for area of the planar convex hull stated earlier.

Link to large deviations

One proof of Strassen's theorem for Brownian motion is via Schilder's theorem from large deviations.

As kindly pointed out to us by Vlad Vysotsky, the Strassen-type functional in the variational problem for λ_{2} is exactly the large-deviations rate function for a degenerate, non-centred Gaussian distribution. The solution to this isoperimetric problem is given in Proposition 2.15 of Akopyan \& Vysotsky (2021). The proof (by approximating the degenerate distribution by non-degenerate ones) is omitted, but is it is fully covered in Theorem 1 of Vysotsky (2023).

General intrinsic volumes

For $k \in\{1, \ldots, d\}$, let $V_{k}\left(\mathcal{H}_{n}\right)$ denote the k th intrinsic volume of \mathcal{H}_{n}. ($V_{d}=$ volume, $V_{d-1} \approx$ surface area, etc.)

Theorem (Cygan, Sandrić, Šebek, W., 2023).
Suppose that $d \geq 2$ and $\mu \neq \mathbf{0}$. Let $k \in\{1,2, \ldots, d\}$. Then there exists a constant $\Lambda \in(0, \infty)$, depending on d, k, and the law of Z, such that, a.s.,

$$
\limsup _{n \rightarrow \infty} \frac{V_{k}\left(\mathcal{H}_{n}\right)}{\sqrt{2^{k-1} n^{k+1}(\log \log n)^{k-1}}}=\Lambda
$$

- Case $k=d$ is the LIL for volumes. For other k, V_{k} does not scale so nicely through ψ_{n}^{μ}, so the proof is less direct, and the constant less explicit.
- Proof uses some further ingredients, including a zero-one law.

Outline

(1) Introduction
(2) Laws of large numbers and distributional limits
(3) Iterated-logarithm laws
(4) Solution to a Strassen-type isoperimetric problem
(5) Concluding remarks

The planar constant: isoperimetric problem

We turn back to:

Theorem (Cygan, Sandrić, Šebek, W., 2023).
When $d=2$, the constant in the LIL for area is $\lambda_{2}=\sqrt{3} / 6$.
Recall that λ_{2} was characterized via

$$
\lambda_{2}=\sup _{f \in U_{1}} V_{2}(\operatorname{hull}\{(t, f(t)) ; t \in[0,1]\}),
$$

where U_{1} was the Strassen ball, i.e., a.c. $f:[0,1] \rightarrow \mathbb{R}$ with $f(0)=\mathbf{0}$ and

$$
\Gamma(f):=\int_{0}^{1} f^{\prime}(s)^{2} \mathrm{~d} s \leq 1
$$

Denoting by \bar{f}, \underline{f} the least concave majorant and greatest convex minorant, respectively, of f, we can write

$$
V_{2}(\operatorname{hull}\{(t, f(t)) ; t \in[0,1]\})=A(f):=\int_{0}^{1}(\bar{f}(s)-\underline{f}(s)) \mathrm{d} s
$$

The planar constant: isoperimetric problem

We can express the variational problem to identify λ_{2} as maximize $A(f)$ subject to $\Gamma(f) \leq 1$,
where $f(0)=0$ and

$$
\Gamma(f)=\int_{0}^{1} f^{\prime}(s)^{2} \mathrm{~d} s ; \quad A(f)=\int_{0}^{1}(\bar{f}(s)-\underline{f}(s)) \mathrm{d} s
$$

Theorem (Cygan, Sandrić, Šebek, W., 2023).
The optimal f is $f=f^{\star}$ given by

$$
f^{\star}(u)=\sqrt{3} u(1-u), \text { for } 0 \leq u \leq 1,
$$

which has $\Gamma\left(f^{\star}\right)=1$ and $A\left(f^{\star}\right)=\sqrt{3} / 6$.

We sketch the proof.

The planar constant: isoperimetric problem

Three important reductions:

- Suffices to work with bridges, $f(0)=f(1)=0$. Easy: a calculation shows the bridge \hat{f} given by $\hat{f}(s):=f(s)-s f(1)$ has $A(\hat{f})=A(f)$ and $\Gamma(\hat{f}) \leq \Gamma(f)$.
- Suffices to work with positive bridges, $f(s)>0$ for $s \in(0,1)$. Harder?: our proof uses symmetrization.
- Suffices to work with concave positive bridges. Easy: replace positive bridge by its concave majorant to decrease Γ.

Problem then reduces to

$$
\text { maximize } \int_{0}^{1} f(s) \mathrm{d} s \text { subject to } \Gamma(f) \leq 1
$$

and to show that optimal f is $f=f^{\star}$ given above.
This is a "Cameron-Martin" or "Strassen" version of the Dido problem of antiquity to find maximal enclosed area for a curve of given arc length; here arc length is replaced by Strassen cost Г. Adjacent results by Schmidt (1940).

The planar constant: isoperimetric problem

Proposition.

For every bridge f, there is a positive bridge f^{s} (produced by symmetrization) for which $\Gamma\left(f^{\mathrm{s}}\right)=\Gamma(f)$ and $A\left(f^{\mathrm{s}}\right) \geq A(f)$.

Outline

(1) Introduction
(2) Laws of large numbers and distributional limits
(3) Iterated-logarithm laws
(4) Solution to a Strassen-type isoperimetric problem
(5) Concluding remarks

Concluding remarks

- The infinite-variance, multidimensional case (when the random walk is in the domain of attraction of a d-dimensional stable law), distributional limit theory recently studied by Cygan, Sandrić, Šebek (2022). LIL-type behaviour still open.
- As hinted earlier, some functionals fall into a different class of limit theorems, e.g. perimeter in case $\mu \neq \mathbf{0}$ satisfies a CLT (W., Xu, 2015) and we would expect a LIL there, too, but existing approaches do not seem to apply.

Concluding remarks

- The infinite-variance, multidimensional case (when the random walk is in the domain of attraction of a d-dimensional stable law), distributional limit theory recently studied by Cygan, Sandrić, Šebek (2022). LIL-type behaviour still open.
- As hinted earlier, some functionals fall into a different class of limit theorems, e.g. perimeter in case $\mu \neq \mathbf{0}$ satisfies a CLT (W., Xu, 2015) and we would expect a LIL there, too, but existing approaches do not seem to apply.

Thank you!

References

- Akopyan \& Vysotsky, Large deviations of convex hulls of planar random walks and Brownian motions. Ann. Henri Lebesgue 4 (2021) 1163-1201.
- Cygan, Sandrić, \& Šebek, Convex hulls of stable random walks. Electron. J. Probab. 27 (2022) 1-30.
- El Bachir, L'enveloppe convexe du mouvement brownien. Ph.D. thesis, Université Toulouse III, 1983.
- Khoshnevisan, Local asymptotic laws for the Brownian convex hull. Probab. Theory Relat. Fields 93 (1992) 377-392.
- Lévy, Le caractère universel de la courbe du mouvement brownien et la loi du logarithme itéré. Rend. Circ. Mat. Palermo 4 (1955) 337-366.
- Lo, McRedmond, \& Wallace, Functional limit theorems for random walks. arXiv: 1810.06275, 2018.
- López Hernández \& Wade, Angular asymptotics for random walks. A Lifetime of Excursions Through Random Walks and Lévy Processes: A Volume in Honour of Ron Doney's 80th Birthday, pp. 315-342, Springer, 2021.
- Majumdar, Comtet, \& Randon-Furling, Random convex hulls and extreme value statistics. J. Stat. Phys. 138 (2010) 955-1009.
- McRedmond, Convex Hulls of Random Walks. PhD Thesis, Durham U., 2019.
- McRedmond \& Wade, The convex hull of a planar random walk: perimeter, diameter, and shape. Electron. J. Probab. 23 (2018).

References

- McRedmond \& Xu, On the expected diameter of planar Brownian motion. Statist. Probab. Letters 130 (2017) 1-4.
- Schmidt, Über die Ungleichung, welche die Integrale über eine Potenz einer Funktion und über eine andere Potenz ihrer Ableitung verbindet. Math. Ann. 117 (1940) 301-326.
- Snyder \& Steele, Convex hulls of random walks. Proc. Amer. Math. Soc. 117 (1993) 1165-1173.
- Spitzer \& Widom, The circumference of a convex polygon. Proc. Amer. Math. Soc. 12 (1961) 506-509.
- Steele, The Bohnenblust-Spitzer algorithm and its applications. J. Comput. Appl. Math. 142 (2002) 235-249.
- Strassen, An invariance principle for the law of the iterated logarithm. Z. Wahrschein. verw. Gebiete 3 (1964) 211-226.
- Wade \& Xu, Convex hulls of planar random walks with drift. Proc. Amer. Math. Soc. 143 (2015) 433-445.
- Wade \& Xu, Convex hulls of random walks and their scaling limits. Stoch. Proc. Appl. 125 (2015) 4300-4320.
- Xu, Convex Hulls of Planar Random Walks. PhD Thesis, U. Strathclyde, 2017.

