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Introduction

On each of n unsteady steps, a drunken gardener drops a seed. Once the
flowers have bloomed, what is the area of the garden enclosed by the
minimal-length fence?
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Introduction

Let Z ,Z1,Z2, . . . ∈ Rd (d ≥ 2) be independent and identically
distributed.

The Zk will be the increments of the random walk Sn, n ≥ 0, started at
the origin 0 in Rd , defined by

S0 = 0, and Sn =
n∑

k=1

Zk for n ≥ 1.

We are interested in the convex hull

Hn := hull{S0, . . . ,Sn},
i.e., the smallest convex set that contains {S0, . . . ,Sn}.

In particular, the n → ∞ limit behaviour of the random variables

• Vd(Hn) = the volume of Hn;

• D(Hn) = the diameter of Hn;

• other intrinsic volumes.



Outline

1 Introduction

2 Laws of large numbers and distributional limits

3 Iterated-logarithm laws

4 Solution to a Strassen-type isoperimetric problem

5 Concluding remarks



Drift: zero vs. non-zero

Standing assumption: E ∥Z∥ ∈ (0,∞).

For the mean drift vector of the walk we write µ = EZ .

There is going to be a clear distinction between the zero drift case
(µ = 0) and the non-zero drift case (µ ̸= 0).

For a qualitative result, observe that H∞ := ∪n≥0Hn exists (by
monotonicity) and P(H∞ = Rd) ∈ {0, 1} (by Hewitt–Savage zero–one
law).

Theorem (López Hernández, W., 2021).
We have P(H∞ = Rd) = 1 if µ = 0 and P(H∞ = Rd) = 0 if
µ ̸= 0.



Law of large numbers

View Hn as a sequence in the metric space of convex, compact subsets of
Rd containing 0, with Hausdorff metric. Let ℓµ := hull{0, µ}, the line
segment from 0 to µ.

A consequence of the strong law of large numbers plus continuity:

Proposition (cf. Lo, McRedmond, Wallace, 2018).
As n → ∞, n−1Hn → ℓµ, a.s.

In non-zero drift case, this tells us the first-order asymptotic shape of
convex hull, and (by continuity) implies that, e.g.,

lim
n→∞

n−1D(Hn) = ∥µ∥, and lim
n→∞

n−dVd(Hn) = 0, a.s.



Zero-drift case

When µ = 0, the strong laws says only n−1Hn → {0}, a.s.
New standing assumption: E(∥Z∥2) ∈ (0,∞).

Let Σ := E(ZZ⊤) denote the increment covariance matrix.

A consequence of Donsker’s theorem plus continuity:

Proposition (cf. W., Xu, 2015; Lo, McRedmond, Wallace, 2018).
Suppose that µ = 0. For b : [0, 1] → Rd the trajectory of a

standard Brownian motion, n−1/2Hn
d−→ Σ1/2 hull b[0, 1].

A consequence is that (for Σ = identity, say)

n−1/2D(Hn)
d−→ diam b[0, 1], and n−d/2Vd(Hn)

d−→ Vd(hull b[0, 1]).

For d = 2, the expected area of the Brownian convex hull is

EV2(hull b[0, 1]) = π/2 (El Bachir, 1983). We don’t know the expected

diameter (cf. McRedmond, Xu, 2017).



Scaling limit in the case with drift

How to go beyond law of large numbers when µ ̸= 0? To get a
non-degenerate scaling limit, we now must scale space by factor 1/n in
the direction of the drift and by factor 1/

√
n in the orthogonal directions.

Take d = 2 so we can draw a picture.

Then, let φµ
n (x) =

 x · µ̂
n∥µ∥

,
x · µ̂⊥√
nσ2

µ⊥

 ;

Here σ2
µ⊥

= E
[
(Z · µ̂⊥)

2 ]
.

Let b̃ denote the process on R2 given by b̃(t) = (t,w(t)), where w is
standard Brownian motion on R.

The analogue of Donsker’s theorem says that φµ
n (Xn) converges weakly

to b̃ as n → ∞; proof combines the functional LLN and CLT (cf. W. &
Xu, 2015).



Scaling limit in the case with drift
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The affine map φµ
n preserves the convex hull, so:

Theorem (W. & Xu, 2015).
If µ ̸= 0 and σ2

µ⊥
> 0, then as n → ∞, φµ

n (Hn) converges weakly

to hull b̃[0, 1].



Scaling limit in the case with drift

By continuity and scaling of volumes (one coordinate by the LLN scaling
n, the other d − 1 coordinates by the CLT scaling

√
n) this leads to

distributional limit for volumes:

Corollary (W. & Xu, 2015; McRedmond, 2019).
Suppose that µ ̸= 0 and σ2

µ⊥
> 0. Then, as n → ∞,

n−(d+1)/2∥µ∥−1(σ2
µ⊥
)−1/2Vd(Hn)

d−→ Vd(hull b̃[0, 1]).

W. & Xu (2015) show that, when d = 2, EV2(hull b̃[0, 1]) =
1
3

√
2π.

This scaling limit strategy does not work so nicely for diameter or
perimeter length when µ ̸= 0, because φµ

n does not act in a sensible way
on lengths. This leads to another story (and a different class of limit
phenomena): W. & Xu (2015) for perimeter, McRedmond & W.
(2018) for diameter.
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Iterated-logarithm laws: Overview

We want to study a.s. behaviour of upper envelope of e.g. Vd(Hn): we
seek appropriate versions of the law of the iterated logarithm (LIL) from
classical fluctuation theory.

In the zero-drift case, the answer is an elegant theorem due to
Khoshnevisan (1992), using Strassen’s (1964) functional LIL. For
example, when d = 2, µ = 0, and Σ = I (identity), Khoshnevisan shows
that area satisfies

lim sup
n→∞

V2(Hn)

n log log n
=

1

π
, a.s.

The constant 1/π arises from solving a variational problem (this is typical
for a Strassen-type argument).

The analogue of this result for Brownian motion had already been
obtained in a remarkable paper of Lévy (1955), who anticipated to some
extent the functional LIL of Strassen (1964).



Iterated-logarithm laws: Overview

In the non-zero drift case, Khoshnevisan’s LIL does not apply. Our result
is:

Theorem (Cygan, Sandrić, Šebek, W., 2023).
If d = 2, µ ̸= 0, and Σ = I ,

lim sup
n→∞

V2(Hn)

n3/2
√
log log n

=
∥µ∥√
6
, a.s.

Our general result covers all intrinsic volumes and (like Khoshnevisan’s)
is founded on Strassen’s functional LIL, modified appropriately to apply
to walks with non-zero drift; in our setting, as in Khoshnevisan’s, limiting
constants can often be characterized by variational problems, but in only
a limited number of instances is the solution known.

The variational problem also arises in the context of large deviations,
where it was solved using an alternative approach by Akopyan &
Vysotsky (2021).



Strassen’s theorem

Let Cd denote the set of continuous f : [0, 1] → Rd , and let C0
d denote

the subset of those f ∈ C0
d for which f (0) = 0. Define the

linearly-interpolated random walk trajectory

Yn(t) := S⌊nt⌋ + (nt − ⌊nt⌋)Z⌊nt⌋+1, for t ∈ [0, 1].

Then Yn ∈ C0
d for every n ∈ Z+. The Khinchin scaling function for the

classical LIL is
ℓ(n) :=

√
2n log log n for n ≥ 3.

The symmetric, non-negative definite matrix Σ has a unique symmetric,
non-negative definite square-root Σ1/2, which acts as a linear
transformation of Rd .

Strassen’s theorem is a statement about the a.s. limit points of the
sequence Yn/ℓ(n) in the metric space C0

d (endowed with the supremum
metric).



Strassen’s theorem

Theorem (Strassen’s theorem for random walk).
Let d ∈ N and µ = 0. With probability 1, the sequence Yn/ℓ(n) in C0

d is
relatively compact, and its set of limit points is Σ1/2Ud .

Here
Ud :=

{
a.c. f : f (0) = 0,

∫ 1

0

∥f ′(s)∥2ds ≤ 1
}

is unit ball in Cameron–Martin space for the Wiener measure, and f ′ is
componentwise derivative.

In words, the theorem states that, a.s., (a) every subsequence of Yn/ℓ(n)
contains a further subsequence that converges, its limit being some
f ∈ Σ1/2Ud , and (b) for every f ∈ Σ1/2Ud , there is a subsequence of
Yn/ℓ(n) that converges to f .

Example: among f ∈ Ud , maximum f (1) = 1 achieved by f (s) ≡ s; so
corollary to Strassen’s theorem is the classical LIL: for Σ = I ,

lim sup
n→∞

Sn
ℓ(n)

= 1, a.s.
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Strassen’s theorem

Theorem (Strassen’s theorem for random walk).
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Example: also yields the extension that for Σ = I , achieved by f (s) ≡ s

lim inf
n→∞

∣∣∣∣ Sn
ℓ(n)

− θ

∣∣∣∣ = 0, a.s., if and only if θ ∈ [−1, 1].

achieved by f (s) ≡ s; so corollary to Strassen’s theorem is th



A Strassen theorem for non-zero drift

Idea: Use different scalings, like in the W. & Xu weak convergence
result; this time LLN scaling in drift direction, LIL scaling in the rest.

WLOG, choose coordinates so that the standard orthonormal basis
(e1, . . . ed) of Rd , d ≥ 2, has e1 in the direction of µ.

Let Σµ⊥ denote the matrix obtained from Σ by omitting the first row and
column (reduced covariance matrix).

For n ∈ N, define ψµ
n : Rd → Rd , acting on x = (x1, . . . , xd), by

ψµ
n (x1, . . . , xd) =

(
x1
n
,
x2
ℓ(n)

, . . . ,
xd
ℓ(n)

)
.

Let Iµ : [0, 1] → R+ denote the function Iµ(t) = ∥µ∥t, and set

Wd,µ,Σ := {g = (Iµ,Σ
1/2
µ⊥ f ) : f ∈ Ud−1}, for d ≥ 2.



A Strassen theorem for non-zero drift

Theorem (Cygan, Sandrić, Šebek, W., 2023).
Suppose that d ≥ 2 and µ ̸= 0. With probability 1, the sequence
ψµ
n (Yn) in C0

d is relatively compact, and its set of limit points
is Wd,µ,Σ.

Proof.
Combine the strong LLN (in functional form) for the first component,
with Strassen’s LIL for the remaining d − 1 components.

Corollary.
Suppose that d ≥ 2 and µ ̸= 0. Let G be a real-valued, continuous
function on compact, convex sets. Then

lim sup
n→∞

G (ψµ
n (Hn)) = sup

g∈Wd,µ,Σ

G (hull g [0, 1]), a.s.

Note: Not necessarily immediate to use, because of the involved nature
of the ψµ

n map.



Application to volumes

Theorem (Cygan, Sandrić, Šebek, W., 2023).
Suppose that d ≥ 2 and µ ̸= 0. Then, a.s.,

lim sup
n→∞

Vd(Hn)√
2d−1nd+1(log log n)d−1

= ∥µ∥ ·
√
detΣµ⊥ · λd ,

where
λd := sup

f∈Ud−1

Vd(hull{(t, f (t)); t ∈ [0, 1]}).

Theorem (Akopyan & Vysotsky, 2021; Cygan, Sandrić, Šebek,

W., 2023).
When d = 2, the constant takes value λ2 =

√
3/6.

Together, these results give the LIL for area of the planar convex hull
stated earlier.



Link to large deviations

One proof of Strassen’s theorem for Brownian motion is via Schilder’s
theorem from large deviations.

As kindly pointed out to us by Vlad Vysotsky, the Strassen-type
functional in the variational problem for λ2 is exactly the large-deviations
rate function for a degenerate, non-centred Gaussian distribution. The
solution to this isoperimetric problem is given in Proposition 2.15 of
Akopyan & Vysotsky (2021). The proof (by approximating the
degenerate distribution by non-degenerate ones) is omitted, but is it is
fully covered in Theorem 1 of Vysotsky (2023).



General intrinsic volumes

For k ∈ {1, . . . , d}, let Vk(Hn) denote the kth intrinsic volume of Hn.
(Vd = volume, Vd−1 ≈ surface area, etc.)

Theorem (Cygan, Sandrić, Šebek, W., 2023).
Suppose that d ≥ 2 and µ ̸= 0. Let k ∈ {1, 2, . . . , d}. Then
there exists a constant Λ ∈ (0,∞), depending on d , k , and the
law of Z , such that, a.s.,

lim sup
n→∞

Vk(Hn)√
2k−1nk+1(log log n)k−1

= Λ.

• Case k = d is the LIL for volumes. For other k , Vk does not scale so
nicely through ψµ

n , so the proof is less direct, and the constant less
explicit.

• Proof uses some further ingredients, including a zero–one law.
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The planar constant: isoperimetric problem

We turn back to:

Theorem (Cygan, Sandrić, Šebek, W., 2023).
When d = 2, the constant in the LIL for area is λ2 =

√
3/6.

Recall that λ2 was characterized via

λ2 = sup
f∈U1

V2(hull{(t, f (t)); t ∈ [0, 1]}),

where U1 was the Strassen ball, i.e., a.c. f : [0, 1] → R with f (0) = 0 and

Γ(f ) :=

∫ 1

0

f ′(s)2ds ≤ 1.

Denoting by f , f the least concave majorant and greatest convex
minorant, respectively, of f , we can write

V2(hull{(t, f (t)); t ∈ [0, 1]}) = A(f ) :=

∫ 1

0

(
f (s)− f (s)

)
ds.



The planar constant: isoperimetric problem

We can express the variational problem to identify λ2 as

maximize A(f ) subject to Γ(f ) ≤ 1,

where f (0) = 0 and

Γ(f ) =

∫ 1

0

f ′(s)2ds; A(f ) =

∫ 1

0

(
f (s)− f (s)

)
ds.

Theorem (Cygan, Sandrić, Šebek, W., 2023).
The optimal f is f = f ⋆ given by

f ⋆(u) =
√
3u(1− u), for 0 ≤ u ≤ 1,

which has Γ(f ⋆) = 1 and A(f ⋆) =
√
3/6.

We sketch the proof.



The planar constant: isoperimetric problem

Three important reductions:

• Suffices to work with bridges, f (0) = f (1) = 0.
Easy: a calculation shows the bridge f̂ given by f̂ (s) := f (s)− sf (1) has

A(f̂ ) = A(f ) and Γ(f̂ ) ≤ Γ(f ).

• Suffices to work with positive bridges, f (s) > 0 for s ∈ (0, 1).
Harder?: our proof uses symmetrization.

• Suffices to work with concave positive bridges.
Easy: replace positive bridge by its concave majorant to decrease Γ.

Problem then reduces to

maximize

∫ 1

0

f (s)ds subject to Γ(f ) ≤ 1,

and to show that optimal f is f = f ⋆ given above.

This is a “Cameron–Martin” or “Strassen” version of the Dido problem of

antiquity to find maximal enclosed area for a curve of given arc length; here arc

length is replaced by Strassen cost Γ. Adjacent results by Schmidt (1940).



The planar constant: isoperimetric problem
Proposition.
For every bridge f , there is a positive bridge f s (produced by
symmetrization) for which Γ(f s) = Γ(f ) and A(f s) ≥ A(f ).
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Concluding remarks

• The infinite-variance, multidimensional case (when the random walk
is in the domain of attraction of a d-dimensional stable law),
distributional limit theory recently studied by Cygan, Sandrić,
Šebek (2022). LIL-type behaviour still open.

• As hinted earlier, some functionals fall into a different class of limit
theorems, e.g. perimeter in case µ ̸= 0 satisfies a CLT (W., Xu,
2015) and we would expect a LIL there, too, but existing approaches
do not seem to apply.

Thank you!
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