The convex hull of a planar random walk: perimeter, diameter, and shape

James McRedmond and Andrew R. Wade

Electronic Journal of Probability, 23, 2018, paper no. 131. DOI: 10.1214/18-EJP257 [Article] [arXiv] [MR]



Abstract

We study the convex hull of the first $n$ steps of a planar random walk, and present large-$n$ asymptotic results on its perimeter length $L_n$, diameter $D_n$, and shape. In the case where the walk has a non-zero mean drift, we show that $L_n / D_n \to 2$ a.s., and give distributional limit theorems and variance asymptotics for $D_n$, and in the zero-drift case we show that the convex hull is infinitely often arbitrarily well-approximated in shape by any unit-diameter compact convex set containing the origin, and then $\liminf_{n \to \infty} L_n/D_n =2$ and $\limsup_{n \to \infty} L_n /D_n = \pi$, a.s. Among the tools that we use is a zero-one law for convex hulls of random walks.