
THE DOLD-WHITNEY THEOREM AND THE SATO-LEVINE

INVARIANT

ANDREW LOBB

Abstract. We use the Dold-Whitney theorem classifying SO(3)-bundles over
a 4-complex to give a mod 4 obstruction to a 2-component link of trivial linking

number being slice. It turns out that this coincides with the reduction of the

Sato-Levine invariant.

1. Introduction

Let L be a 2-component link in S3 with trivial linking number. Choose a Seifert
surface for each component of L that misses the other component and such that
the surfaces intersect transversely. The intersection of the two Seifert surfaces gives
a framed link in S3. Such a framed link determines a homotopy class of maps
S3 → S2 by the Pontryagin-Thom construction.

Definition 1.1. The Sato-Levine invariant of L is the corresponding group element
of π3(S2) = Z.

This definition first appears in [5]. The non-vanishing of the Sato-Levine invariant
of L provides an obstruction to the link L bounding disjoint locally flat discs in the
4-ball (in other words, an obstruction to L being slice).

In this paper we give a combinatorially-defined obstruction φ(L) ∈ Z/4Z to L
being slice. It turns out to be equal to the modulo 4 reduction of the Sato-Levine
invariant.

Nevertheless, the proofs of the well-definedness and properties of φ are straight-
forward and direct. The intermediate construction used in the proofs is a flat
SO(3) connection on a 4-manifold. The result follows from an application of the
Dold-Whitney theorem (which classifies all SO(3) bundles over a 4-complex by their
characteristic classes).

Theorem 1.2 (Dold-Whitney [2]). Let X be a 4-dimensional CW-complex. A prin-
cipal SO(3) bundle E over X is determined by the pair consisting of its Pontryagin
class p1(E) ∈ H4(X;Z) and second Steifel-Whitney class w2(E) ∈ H2(X;Z/2Z).
Furthermore there is an SO(3) bundle E realizing p1(E) = a and w2(E) = b exactly
when

a = b2 ∈ H4(X;Z/4Z)

where we write a for the reduction of a and where the squaring of b is the Pontryagin
squaring operation.

In essence, we are giving an essentially 4-dimensional proof of the invariance and
properties of a reduction of the Sato-Levine invariant.

Acknowledgements. We thank the Max Planck Institute for their hospitality and
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well-known invariant.
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2. Definition and properties

Let L be an oriented link in S3 of trivial linking number comprising two com-
ponents K1 and K2. Then there certainly exist two disjoint locally flat immersed
discs in the 4-ball B4, bounded by L, where the discs are boundary-transverse and
oriented consistently with L. Let D1 and D2 be two such discs.

Definition 2.1. To each self-intersection point p ∈ B4 of D1 or D2 we associate a
number i(p) ∈ {−1, 0, 1} as follows.

Let {s, t} = {1, 2}, and suppose that p is a self-intersection point of Ds. Choose
a loop l which starts and ends at p ∈ B4, staying on Ds and starting and ending on
different branches of the intersection. Then we set

w(p) := [l] ∈ H1(B4 \Dt;Z/2Z) = Z/2Z = {0, 1}.

Note that this is independent of the choice of l.
We define

i(p) = w(p)σ(p)

where σ(p) = ±1 is the sign of the intersection at p.

Definition 2.2. We define

φ(L,D1, D2) =
∑
p

i(p) ∈ Z/4Z

where the sum is taken over all the self-intersections p of D1 and D2.

Remark 2.3. The fact that φ is the reduction of the Sato-Levine invariant may
be deduced from this definition and the crossing-change formula due to Jin [3] and
Saito [4].

We shall show the following

Proposition 2.4. Suppose that L bounds the two pairs of disjoint locally flat
immersed discs (D1, D2) and (D′1, D

′
2). Then there exists a closed 4-manifold X

with a flat SO(3)-bundle E → X with

φ(L,D1, D2)− φ(L,D′1, D
′
2) = w2

2(E) = p1(E) = 0 ∈ Z/4Z = H4(X;Z/4Z).

From this proposition we immediately obtain a corollary.

Corollary 2.5. The quantity φ(L,D1, D2) depends only on the link L. So we can
write φ(L) = φ(L,D1, D2). Furthermore, if φ(L) 6= 0 then L does not bound two
disjoint embedded locally flat discs in B4. �

We note that the content of the equation in Proposition 2.4 is the first equality
sign, the second being the Dold-Whitney theorem (the squaring operation here
is the Pontryagin square, a Z/4Z lift of the cup product), and the third being a
consequence of the flatness of the bundle E.

Remark 2.6. Work by Saito [4] gives a Z/4Z-valued extension of the Sato-Levine
invariant for links of even linking number. Saito’s invariant is constructed via
considering the framed intersection of possibly non-orientable Seifert surfaces, and
is distinct from that which we consider.

We devote the following section to the description of the manifold X and the
SO(3)-bundle E → X.
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3. Construction of a 4-manifold with an SO(3)-bundle

Given an immersed locally-flat 2-link Λ ⊆ S4 of two components with no inter-
sections between distinct components of the link, we give a construction of a closed
diagonal 4-manifold XΛ.

Suppose that Λ has n− negative and n+ positive intersection points. Then we

blow-up each negative intersection point by taking connect sum with P2
and each

positive intersection point by taking connect sum with P2. Let

Λ ↪→ n−P
2
#n+P2

be the proper transform of Λ.
Because of the way we chose to blow-up the negative and positive intersections

respectively, each exceptional sphere intersects Λ in two points, once negatively,
and once positively. Furthermore, since the self-intersections of Λ do not occur
between the distinct components of Λ, each exceptional sphere intersects exactly
one component of Λ.

This means that each component of Λ is trivial homologically, and so has a trivial
D2-neighborhood. This allows us to do surgery by removing a neighborhood Λ×D2

and gluing in two copies of D3 × S1. We call the resulting manifold XΛ. Now we
collect some information about the algebraic topology of XΛ.

Proposition 3.1. The 4-manifold XΛ has diagonal intersection form and satisfies

H1(XΛ;Z) = Z2, H2(XΛ;Z) = Zn++n− ,

b+2 = n+, b
−
2 = n−.

Proof. We shall display n− + n+ disjoint embedded tori in XΛ, n− of which have
self-intersection −1 and n+ of which have self-intersection +1. Using a simple
argument counting handles and computing Euler characteristics, it is easy then to
deduce the statement of the proposition.

Each exceptional sphere E ⊂ n−P
2
#n+P2 intersects Λ transversely in two points.

Connect these two points by a path on Λ. The D2-neighborhood of Λ pulls back to a
trivial D2-bundle over the path. The fibers over the two endpoints can be identified
with neighborhoods on E. Removing these neighborhoods from E we get a sphere
with two discs removed and we take the union of this with the S1 boundaries of the
all the fibers of the D2-bundle over the path.

This either gives a torus or a Klein bottle. Because E intersects Λ once positively
and once negatively, we see that we in fact get a torus which has self-intersection ±1.
Finally note that we can certainly choose paths on Λ for each exceptional sphere
which are disjoint. �

4. A flat connection and the Dold-Whitney theorem

This section considers the characteristic classes of SO(3)-bundles, but in fact we
shall only be concerned with those bundles whose structure group can be restricted
to a small subgroup of SO(3).

Definition 4.1. Let V4 ⊆ SO(3) be the Klein 4-group

V4 =


 1 0 0

0 1 0
0 0 1

 ,

 1 0 0
0 −1 0
0 0 −1

 ,

 −1 0 0
0 1 0
0 0 −1

 ,

 −1 0 0
0 −1 0
0 0 1

 .

In future, we write x1, x2, x3 for the non-identity elements.
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We begin with a well-known (in certain circles) lemma about a flat SO(3)-
connection on the torus.

Lemma 4.2. Let T 2 be a torus and let η : π1(T 2)→ SO(3) be defined by η(a) = x1

and η(b) = x2 where a, b is a basis for π1(T 2) = H1(T 2;Z) = Z ⊕ Z. Writing Eη
for the associated (flat) SO(3)-bundle, we have

w2(Eη) = 1 ∈ H2(T 2;Z/2) = Z/2.

Proof. Note that the matrices of V4 are all diagonal with entries in Z/2Z = O(1).
Hence, thinking of Eη as an O(3)-bundle, we can write Eη = L1 ⊕ L2 ⊕ L3 where
Li is the (flat) real line bundle determined by the representation

π1(T 2)
η−→ V4

pi−→ Z/2Z = O(1),

where pi is given by the (ii) matrix entry.
Each Li is the pullback of a Möbius line bundle over a circle by a map T 2 → S1

(depending on i) which is a projection map onto an S1 factor of T 2. We compute
then that

w1(L1) = a, w1(L2) = b, and w1(L3) = a+ b,

where we write a, b ∈ H1(T 2;Z/2Z) for the reductions of the Poincaré duals of a
and b respectively.

Then we compute via the cup-product formula for the Stiefel-Whitney class of a
sum of bundles:

w2(Eη) = a ∪ b+ b ∪ (a+ b) + (a+ b) ∪ a = a ∪ b = 1 ∈ H2(T 2;Z/2Z).

�

Remark 4.3. For representations η : π1(T 2)→ V4, Lemma 4.2 says that w2(Eη) is
non-trivial exactly when η is surjective (note that if η is not surjective then Eη is
the pullback of a bundle over a circle).

Suppose now that we are in the situation of the hypotheses of Proposition 2.4. By
gluing together the two pairs of disks (D1, D2) and (D′1, D

′
2) along their boundary

L ⊂ S3, we get a 2-component locally-flat immersed link Λ ⊂ S4. We write Λj for
the sphere resulting from gluing together Dj and D′j for j = 1, 2. In performing
this gluing we of course reverse the orientation of the second 4-ball. This has the
effect that positive/negative self-intersections of (D′1, D

′
2) become negative/positive

self-intersections of Λ respectively. We write X = XΛ, and now give a flat SO(3)
connection on X.

Let θ : π1(X) → SO(3) be a representation that factors through an onto map
θ : H1(X;Z) = Z ⊕ Z → V4. We define θ by setting θ : mj 7→ xj where mj is a
meridian of Λj for j = 1, 2. We write Eθ for the associated (flat) SO(3)-bundle
over X. We are interested in the characteristic classes w2(Eθ) ∈ H2(X;Z/2Z) and
p1(Eθ) ∈ H4(X;Z). In the case we consider in this paper, we know immediately
that p1(Eθ) = 0 since the bundle admits a flat connection.

Proposition 2.4 now follows by computing w2
2(Eθ) using our basis of tori repre-

senting the second homology of X.

Proof of Proposition 2.4. As noted before, the content of the proposition is in the
first equality sign, namely that we have

w2
2(Eθ) = φ(L,D1, D2)− φ(L,D′1, D

′
2) ∈ H4(X;Z/4Z).

We compute w2(Eθ) ∈ H2(X;Z/2Z) by pulling back the representation θ to
each torus representing a basis element of H2(X;Z). Let Tp ⊆ X be a torus as
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constructed in Proposition 3.1 coming from a self-intersection point p ∈ Λj for some
j ∈ {1, 2}. We wish to give a pair of H1(Tp;Z)-generating circles on Tp.

The first of these circles we take to be a meridian mp to Λj . The other we
take to be any circle lp on Tp which is dual to mp. Then the restriction of θ to

π1(Tp) = H1(Tp;Z) is determined by θ(mp) and θ(lp).

We know by the definition of θ that we have θ(mp) = xj . On the other hand,

θ(lp) is determined by the class of lp in H1(X;Z/2Z). Consider w(p) as given in

Definition 2.1. If we have w(p) = 0 then θ(lp) ∈ {1, xj}, but if w(p) = 1 then

θ(lp) /∈ {1, xj}. In consequence, θ|π1(Tp) maps onto V4 if and only if w(p) = 1.

In light of Remark 4.3, it follows that w2(Eθ|Tp
) = w(p) ∈ Z/2Z = H2(T,Z/2Z).

The equation we wish to prove then follows since, computing in H4(X,Z/4Z),
we have

p1(Eθ) = w2
2(Eθ) =

(∑
p

(w2(Eθ)[Tp])[Tp]

)2

=
∑
p

(w2(Eθ|Tp
)[Tp])([Tp] ∪ [Tp]) =

∑
p

w(p)([Tp] ∪ [Tp])

= φ(L,D1, D2)− φ(L,D′1, D
′
2),

where we write [Tp] for the fundamental class of Tp and the overline denotes the
Poincaré dual. We use here that the Pontryagin square of the Z/2Z reduction of an
integral class is the Z/4Z reduction of the usual square of that integral class. �

Remark 4.4. It is possible to give more a complicated construction along the
lines above, which should extend the invariant to 2-component links of even linking
number. This recovers the Z/4Z reduction of the Sato-Levine invariant due to
Akhmetiev and Repovs [1] for this class of links.

The construction above starts with two pairs of discs (D1, D2) and (D′1, D
′
2).

In the case of a link L of non-zero linking number 2n we start rather with two
immersed concordances from L to the (2, 4n)-torus link. These may then be glued
end-to-end and the resulting immersed surface resolved by blow-up in order to give
two embedded tori Λ of self-intersection 0 in a blow-up of S1 × S3. Surgery may be
done on Λ in order to give a closed 4-manifold X.

The main subtleties in this new situation are in performing the surgery so that one
obtains X with the correct algebraic topology, and in dealing with an intersection
form that is no longer diagonal.
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