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Abstract. Given a knot, we ask how its Khovanov and Khovanov-Rozansky
homologies change under the operation of introducing twists in a pair of
strands. We obtain long exact sequences in homology and further algebraic
structure which is then used to derive topological and computational results.
Two of our applications include giving a new way to generate arbitrary num-
bers of knots with isomorphic homologies and finding an infinite number of
mutant knot pairs with isomorphic reduced homologies.

1. Introduction and results

In this paper we consider sl(n) Khovanov-Rozansky homology (Khovanov ho-
mology appears as n = 2) under the operation of adding twists in a pair of strands.
We observe stabilization of the homology as we add more twists and, looking a
little deeper, reveal some further algebraic structure which we exploit for various
structural and topological results.

In the remainder of this paper we shall assume that we have chosen a fixed n ≥ 2
unless we make it clear otherwise.

First we describe some chain complexes of matrix factorizations, one such for
each integer, which will be the building blocks of this paper.

Definition 1.1. For k ≥ 0, the complex Tk is the sl(n) Khovanov-Rozansky chain
complex of direct sums of matrix factorizations corresponding to a diagram of k full
twists in two oppositely oriented strands, where the 2k crossings are positive (see
Figures 1 and 2 for an explicit picture). When k < 0 we take the −2k crossings to
be negative.

It should be clear that there is an obvious way in which each of these complexes
can be built from T1 and T−1 by tensor product.

Proposition 1.2. Up to homotopy equivalence Tk ⊗ Tl = Tk+l, where the ten-
sor product of complexes of matrix factorizations is taken by concatenating in the
obvious way the corresponding tangle diagrams with |2k| and |2l| crossings.

Proof. For k and l of the same sign this is by definition, and for k and l of opposite
sign it follows from the invariance up to homotopy equivalence of the Khovanov-
Rozansky chain complex under Reidemeister move II. �

There are two main sections with proofs in this paper: in Section 2 we shall deal
with the question of stabilization of the complex Tk as k → ∞ and prove results
necessary for the topological and structural results proved in Section 3. For the
rest of the current section we give statements of some results whose proofs follow
later and context for these results.
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Figure 1. The complex T1 is the sl(n) Khovanov-Rozansky com-
plex of direct sums of matrix factorizations corresponding to this
diagram. Note that there are two positive crossings in the diagram.

. . .

Figure 2. The complex Tk = ⊗kT1 is the sl(n) Khovanov-
Rozansky complex corresponding to the diagram above with 2k
crossings.
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1.1. Stabilization and exact sequences. In this section, all complexes are un-
derstood to be complexes of matrix factorizations, and C(K) and H(K) stand for
the sl(n) Khovanov-Rozansky chain complex and homology of the knot K respec-
tively, for some fixed n ≥ 2. Sometimes we will mean specifically the reduced,
unreduced, or equivariant (with potential w = xn+1 − ax) [7] homologies in which
case we shall make it clear. Otherwise results should be interpreted as holding for
each of these three versions of Khovanov-Rozansky homology.

By stabilization we mean, most basically, the existence of a complex T∞, the
direct limit of a sequence of maps Tk → Tk+1. This complex T∞ is defined in
Definition 2.2.

If we have a knotK given by a diagramD we may consider T0 as a subtangle ofD.
Replacing T0 by T1, T2, T3, . . . in D we obtain a sequence of diagramsD1, D2, D3, . . .
and hence a sequence of knots K1,K2,K3, . . ..

In the chain complex C(Di), Ti appears as a tensor factor. Replacing Ti by
T∞ gives us a chain complex which we shall denote C(D∞) and its homology by
H(D∞). We have, in effect, replaced the Ti tangle in Di by a “tangle consisting of
an infinite number of twists”.
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In the following theorems we let D be such a diagram with a subtangle of D
identified with T0. We write c− and c+ for the number of negative crossings and
for the number of positive crossings of D respectively.

Theorem 1.3. For each 0 ≤ i < j there exists a directed system of maps (to be
defined)

Fi,j : Ti → Tj

that is graded of homological degree 0 and of quantum degree 0. Then for 0 ≤ i < j
(we allow j = ∞) we have that the induced map on homology

Fi,j : H(Di) → H(Dj)

is an isomorphism in all homological degrees ≤ 2i− c− − 2.

Using square brackets to denote a shift in homological grading, and curly brackets
to denote a shift in quantum grading, we also have:

Theorem 1.4. For each 0 ≤ i < j there exists a directed system of maps (to be
defined)

Gi,j : Ti → Tj[2(i− j)]{2n(j − i)}

that is graded of homological degree 0 and of quantum degree 0. Then for 0 ≤ i < j
we have that the induced map on homology

Gi,j : H(Di) → H(Dj)[2(i− j)]{2n(j − i)}

is an isomorphism in all homological degrees ≥ c+.

Remark. To shorten our exposition, in this paper we restrict ourselves to the
tangles Tk where the 2k crossings are positive. For each theorem we state, there is
a dual theorem using negative crossings that the interested reader should have no
trouble in stating and proving for herself.

If this were all that there were to say about the algebra, we would not expect
to be able to prove interesting results. However, the maps Fi,j and Gi,j mesh well
together, in a sense that we shall later make explicit.

From homology theories in different branches of mathematics we know that short
exact sequences of chain complexes (and hence long exact sequences of homology
groups) are useful tools when they are found in a homology theory. And even
more so are morphisms of short exact sequences of chain complexes (giving natural
maps between long exact sequences of homology groups). We find these relatively
easily in our set-up and it is these that provide the power to start proving our later
topological and structural results.

The results on exact sequences are best stated in the next section, after Theorems
1.3 and 1.4 are established. For those wishing to jump ahead, these results appear
as Propositions 2.6 and 2.7.

We do not expect that the topological and structural corollaries that we find
represent all of that which can be proved by making use of our exact sequences.
We therefore end this subsection with an encouragement for others to play with
these exact sequences and see what else may drop out!



4 ANDREW LOBB

1.2. Topological and structural results on Khovanov-Rozansky homology.

In [14] Rasmussen gives a homomorphism s : K 7→ s(K) ∈ 2Z from the smooth
knot concordance group to the additive group of even integers. Furthermore, he
shows that s provides a lower bound |s(K)|/2 on the smooth slice genus of a knot
K. Rasmussen’s construction proceeds by extracting an even integer s(K) from
the E∞ page of a spectral sequence which has E2 page the standard Khovanov
homology of K. This spectral sequence is essentially due to Lee [12].

Since this seminal paper, there have been generalizations of this result for other
quantum knot homologies. In particular Gornik [1] has constructed a spectral
sequence with E2 page sl(n) Khovanov-Rozansky homology H(K). In [11], the
author shows that the E∞ page of Gornik’s spectral sequence is equivalent to an
even integer sn(K) which gives a homomorphism sn : K 7→ sn(K) ∈ 2Z from the
smooth knot concordance group to the additive group of even integers. Earlier work
by the author [10] and independently by Wu [20], implies that |sn(K)|/2(n− 1) is
a lower bound on the smooth slice genus of K.

In [11] it is shown that the E∞ page of Gornik’s spectral sequence is isomorphic
as a graded group to the homology of the unknot but with a shift in quantum
grading E∞

∼= H(U){sn(K)}, so that all the information about E∞ is contained in
the even integer sn(K).

In [14], Rasmussen asked if the concordance homomorphism s coming from
Khovanov homology was the same as the concordance homomorphism τ coming
Heegaard-Floer knot homology, a conjecture motivated by the observation that
s and τ share many of the same properties. A negative answer to Rasmussen’s
question was first provided by Hedden and Ording [2].

The homomorphisms sn also share many properties with s and moreover both s
and sn arise from the quantum world. It is an interesting open question whether the
homomorphisms sn are equivalent to the homomorphism s = −s2 (see Conjecture
1.5 of [11]). Partly as a first step towards this question, in this paper we give a way
in which the standard Khovanov-Rozansky homology interacts with sn.

Theorem 1.5. Let the knot K0 be obtained by changing a crossing of K−1 from
negative to positive as in Figure 3. Then we know by [11] and Corollary 3 of
Livingston’s [9] that we must have

sn(K0) ≤ sn(K−1).

If in fact we have strict inequality sn(K0) < sn(K−1) then the homology group in
homological degree 2p satisfies

H2p(Kp) 6= 0

for the sequence of knots K1,K2, . . . shown in Figure 3.

By the definition of the Khovanov-Rozansky chain complex it is then clear that
we have the following:

Corollary 1.6. Given the conditions of Theorem 1.5 the knot Kp must have at
least 2p positive crossings in any diagram. �

In other words, the crossings in Kp shown in Figure 3 are in some sense essential.
We note that each sn provides a tight bound on the the unknotting number of a
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D0D−1

Dp

. . .

Figure 3. Here we show a knot K−1 differing from a knot K0 by
a single crossing change. We have drawn local pictures of diagrams
of these knots. The knots Kp for p ≥ 1 have diagrams Dp formed
by making p further positive crossing changes at the same site as
shown. Alternatively, one can think of the knot K−1 and the knots
Kp as obtained from K0 by replacing the tangle T0 shown in D0

by T−1 or Tp respectively.

torus knot and in the standard diagram of a torus knot, a single crossing change
anywhere results in a diagram with a smaller unknotting number. Hence Corollary
1.6 can be applied in this situation.

The exact sequences that we are using work best when we can identify one of
the terms. In particular, we expect to be able to say useful things about knots with
unknotting number equal to 1.

Theorem 1.7. We consider the situation of Figure 3 where we take K0 = U , the
unknot. Then we have

sn(Kp) = sn(K1)

for all p ≥ 1.

We mentioned above that sometimes by H(K) we shall mean the equivariant
Khovanov-Rozansky homology [7] with potential w = xn+1 − ax. Here, all the
modules involved in the Khovanov-Rozansky complex are free C[a]-modules where a
has quantum grading 2n. The reason we are interested in this version of Khovanov-
Rozansky homology is that the sn invariant is then built into the homology. In fact
for any knot K, we have that the equivariant homology with this potential satisfies

H(K) = tor ⊕

n⊕

l=1

C[a][0]{2l− n− 1 + sn(K)}

where tor is a finitely-generated torsion C[a]-module.
To see this, observe that C(K), as a freely-generated graded complex of C[a]-

modules is chain homotopy equivalent to a sum of complexes of the form

(1) 0 → C[a] → 0 and

(2) 0 → C[a]
ak

→ C[a] → 0.

Setting a = 0 we recover standard Khovanov-Rozansky homology, while setting
a = 1 destroys the quantum grading and gives us Gornik’s version of Khovanov-
Rozansky homology. This also tells us that nothing is lost by considering equivariant
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homology since the non-equivariant unreduced homology can be obtained from the
equivariant homology groups.

In the case where sn(K1) = 0, we can say more about the homology of the knot
Kp. In fact, the homology of Kp is characterized entirely by p and the homology
of the knot K1. We state this first for the equivariant case.

Theorem 1.8. We consider the situation of Figure 3 where we take K0 = U , the
unknot, and assume that sn(K1) = 0. Taking equivariant homology with potential
w = xn+1 − ax, let ∆ be the bigraded C[a]-module isomorphic to the torsion part of
H(K1). Then for p ≥ 2 we have

H(Kp) = H(Kp−1) ⊕ ∆[2p]{2n(1 − p)}.

It is almost possible to characterize completely the homology of Kp in terms of
p and the homology of Kp−1 even if sn(K1) 6= 0. In fact, just knowing H(Kp−1)
we would know H(Kp) in all homological degrees apart from possibly one, and to
determine H(Kp) in this degree we would need one more piece of information. We
discuss what piece of information this is following the proof of Theorem 1.8. Armed
with Theorem 1.8, we can also consider the non-equivariant cases.

Theorem 1.9. Suppose we are in the set-up of Theorem 1.8 and let H(K) stand
for the standard unreduced or reduced Khovanov-Rozansky homology of K. Let ∆
be the bigraded C-module satisfying

H(K1) = C[0]{0} ⊕ ∆

for the reduced case and

H(K1) = C[0]{1 − n} ⊕ C[0]{3 − n} ⊕ · · · ⊕ C[0]{n− 1} ⊕ ∆

for the unreduced case. Then for p ≥ 2 we have

H(Kp) = H(Kp−1) ⊕ ∆[2p]{2n(1 − p)}.

By relating Khovanov homology with their own instanton knot Floer homology,
Kronheimer and Mrowka have shown that Khovanov homology detects the unknot
[8]. It is still an open question whether the Jones polynomial, which is the graded
Euler characteristic of Khovanov homology, detects the unknot. However, it is
known that the Jones polynomial (and likewise the HOMFLY polynomial) does
not enjoy the stronger property of being a complete invariant able to distinguish
between any pair of knots. For example, the HOMFLY polynomial is unable to
distinguish between mutant knots.

It has been verified by Mackaay and Vaz [13] that the mutant knot pair con-
sisting of the Kinoshita-Terasaka and the Conway knots have isomorphic reduced
Khovanov-Rozansky homologies and hence also isomorphic reduced HOMFLY ho-
mologies. Furthermore, there exist families of distinct 2-bridge knots with the same
HOMFLY polynomials. Since 2-bridge knots have thin homology, these knots must
also share isomorphic reduced Khovanov-Rozansky homologies.

With Theorem 1.8 on hand we can give a new method for producing families of
knots with isomorphic Khovanov-Rozansky homologies. The next theorem follows
as a consequence.
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V Z

x1
x1x2

x2

x3
x3

x4
x4

Figure 4. We draw here the matrix factorizations V and Z. In the
text of this paper, V and Z often appear with integers appended in
curly and/or square parentheses to indicate quantum degree shift
and homological degree respectively.

Theorem 1.10. Given a natural number m, there are m distinct prime knots with
bridge number greater than 2, which have isomorphic sl(n) Khovanov-Rozansky
homologies for all n.

We note that Theorem 1.10 holds for reduced, unreduced, and equivariant ho-
mology with potential w = xn+1 + ax. The knots undistinguished by these fla-
vors of Khovanov-Rozansky homology that we produce are not necessarily thin nor
necessarily related by mutation. For an example of two knots with isomorphic
Khovanov-Rozansky homologies, see Figure 8 and the discussion in Subsection 3.1.

It remains a motivating question whether topological conclusions may be drawn
from the coincidence of Khovanov-Rozansky homologies. Further consequences of
Theorem 1.10 and its proof are discussed in Subsections 3.1 and 3.2, where we give
specific examples of interesting phenomena including an infinite number of mutant
knot pairs with isomorphic reduced homologies.

2. Algebraic structure results

In this section we shall prove Theorems 1.3 and 1.4 and derive further results
enabling us to prove our more topological theorems.

2.1. Stabilization. To simplify notation we shall write V and Z (vertical and
horizontal) for the matrix factorizations indicated in Figure 4.

In [6], Krasner gave a compact description of the complex Tk of our Definition
1.1. As a consequence of this description, one can see that knot diagrams built
up from these tangle building blocks have associated chain complexes which avoid
the “thick-edged” matrix factorization, and hence much of the complication usually
involved in the Khovanov-Rozansky chain complex. Understanding such Krasner
knots may well be a good way to begin getting a grasp on Khovanov-Rozansky
homology.

This compact description of Tk will essentially be our main ingredient. In the
theorem that follows we use curly or square parentheses to indicate shift in the
quantum degree and homological degree respectively and w is the potential. We
state Krasner’s theorem both for the standard potential w = xn+1 and for the equi-
variant potential w = xn+1 − ax, although Krasner only stated it for the standard
potential. Since the results that go into the proof of Krasner’s theorem have now
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been established in the general equivariant setting [7], we can state the result in
more generality.

Theorem 2.1 (Krasner [6]). Up to chain homotopy equivalence, the complex Tk is
isomorphic to the following chain complex of matrix factorizations:

V [0]{1 − n}
x2−x4−→ V [1]{−1 − n}

A
−→ V [2]{1 − 3n}

x2−x4−→ · · ·

· · ·
x2−x4−→ V [2k − 1]{(1 − 2k)n− 1}

S
−→ Z[2k]{−2kn},

where we write

A = xn−1
2 + xn−2

2 x4 + xn−3
2 x2

4 + · · · + xn−1
4

and we write S for the map induced by the saddle cobordism.

Definition 2.2. Setting k = ∞ in Theorem 2.1 gives us a definition of a complex
T∞.

With Krasner’s characterization, it is a quick matter to define the chain maps
Fi,j and Gi,j of Theorems 1.3 and 1.4.

Definition 2.3. Let 0 ≤ i < j. Using the description of Theorem 2.1 of the
complexes Tk, we define two maps

Fi,j : Ti → Tj,

Gi,j : Ti → Tj[2(i− j)]{2n(j − i)}

as follows. We require that Fi,j preserves the homological grading and is the identity
map on the the matrix factorizations in all homological degrees less than 2i. To the
component of Fi,j in homological degree 2i we assign the map S′ = (−1/n + 1)S
where S is the map of matrix factorizations associated to the saddle cobordism. To
check that Fi,j is a chain map, it is enough to observe that

S2 = −(n+ 1)A and (x2 − x4) ◦ S = 0.

The former of these identities is computed in detail in Appendix A of [5]. For the
latter note that up to homotopy we have

(x2 − x4) ◦ S = x2 ◦ S − x4 ◦ S

= x2 ◦ S − S ◦ x4 = x2 ◦ S − S ◦ x1

= x2 ◦ S − x1 ◦ S = x2 ◦ S − x2 ◦ S

= 0.

Clearly Fi,j preserves the quantum grading.
We require that Gi,j is the identity map on all homological degrees of Ti which

are non-zero matrix factorizations. Certainly then Gi,j is a chain map and we see
that it is quantum graded of degree 0.

With these definitions in hand, the path to proving Theorems 1.3 and 1.4 is
straightforward: in brief, we compute the cones of the maps Fi,j and Gi,j and show
that the homology of the cones is supported well away from certain degrees in which
Fi,j and Gi,j must therefore induce isomorphisms.
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In the following propositions, we leave out quantum grading shifts and only give
the leftmost and rightmost homological gradings. We do this in order to try and give
an uncluttered exposition; for the reader who is making use of these propositions,
we recommend having a copy of Krasner’s [6] to hand.

Proposition 2.4. Writing Co(Fi,j) for the cone of Fi,j we have

Co(Fi,j) = Z[2i− 1]
S′

→ V
x2−x4→ V

A
→ V

x2−x4→ V
A
→ V · · ·

x2−x4→ V
S

−→ Z[2j].

Proposition 2.5. Writing Co(Gi,j) for the cone of Gi,j we have

Co(Gi,j) = V [2(i− j)]
x2−x4→ V

A
→ V

x2−x4→ V
A
→ V · · ·

x2−x4→ V [−1].

Proof of Propositions 2.4 and 2.5. This is a straightforward application of Gauss-
ian elimination. Starting from the leftmost homological degree in the case of Fi,j
and the rightmost in the case of Gi,j , we cancel all the identity maps of chain fac-
torizations appearing as components of the chain maps. �

With our precise knowledge of the cones Co of the chain maps Fi,j and Gi,j , it
is straightforward to prove our stabilization Theorems 1.3 and 1.4.

Proof of Theorems 1.3 and 1.4. There is a short exact of chain complexes

0 → C(Di)
Fi,j

→ C(Dj) → Co(Fi,j) → 0

in which each map is graded of homological and quantum degree 0. This is clear
in the unreduced and equivariant settings, and indeed holds also in the reduced
setting since the map of rings C[x]/xn → C is flat.

Induced by this short exact sequence is a long exact sequence of homology groups.
Proposition 2.4 tells us that we must have

Hk(Co(Fi,j)) = 0

for k ≤ 2i− c− − 2, so that the long exact sequence consists of isomorphisms Fi,j
in homological degrees ≤ 2i− c− − 2. This proves Proposition 1.3.

The proof of Theorem 1.4 follows the same argument. �

Informally speaking, Theorem 1.3 tells us that we can generalize the class of
objects for which there exists Khovanov-Rozansky homology to include knots with
infinite twist regions, as discussed in the preamble to the statement of the theorem.
More formally we could consider knot diagrams with extra singularities allowed.
The concept is outlined in Figure 5. Investigating these stable homologies is an
interesting project, but we shall not pursue it further in this paper.

2.2. Some exact sequences. We derive some exact sequences of homology groups
to use in proving the structural and topological theorems of Section 3.

Proposition 2.6. Let knots K0,K1,K2, . . . be given as in Figure 3. Then there is
a commutative diagram in which the rows are exact, which has the following form:
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+∞

+∞

Figure 5. We show an example of part of a knot diagram where
we have allowed an extra type of singularity corresponding to an
infinitely positively twisted pair of strands. From the results on
stabilization in this paper it follows that such enhanced diagrams
have well-defined homology groups. We also give an example of
a new Reidemeister-type move for such diagrams: the infinitely
twisted region donates a positive twist to the rest of the diagram.
Clearly the homology groups will not change under this move. Fur-
ther moves are possible of course, and we encourage the reader to
investigate.

−→ M−1 −→ H0(K0) −→ H0(K1) −→ M0 −→ H1(K0) −→

id

y
y

y id

y
y

−→ M−1 −→ H2(K1){2n} −→ H2(K2){2n} −→ M0 −→ H3(K1){2n} −→

id

y
y

y id

y
y

−→ M−1 −→ H4(K2){4n} −→ H4(K3){4n} −→ M0 −→ H5(K2){4n} −→

id

y
y

y id

y
y

Here M is a bigraded, finitely-generated module (over C or C[a] depending on the
variant of homology chosen). Moreover, in the equivariant case, M is a torsion
C[a]-module. All maps preserve the quantum grading.

Proof. Each row of the commutative diagram comes about from a short exact se-
quence of chain complexes, and the maps between the rows are induced by mor-
phisms of these short exact sequences. From Proposition 2.4 we first observe that

Co(Fi,i+1) = Co(F0,1)[2i]{−2ni}.

It is then straightforward to check that for i ≥ 0, there is a commutative map of
short exact sequences of chain complexes

0 −−→ C(Di)
Fi,i+1

−−−−→ C(Di+1) −−→ Co(F0,1)[2i]{−2ni} −−→ 0

Gi,i+1

y Gi+1,i+2

y id

y

0 −−→ C(Di+1)[−2]{2n}
Fi+1,i+2

−−−−−→ C(Di+2)[−2]{2n} −−→ Co(F0,1)[2i]{−2ni} −−→ 0.
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So setting M = H(Co(F0,1 : C(D0) → C(D1))) we are almost done, it only
remains to argue that M is finitely-generated and, in the equivariant case, torsion.

That M is finitely-generated follows from H(K0) and H(K1) being finitely-
generated and the first row of the commutative diagram. In the equivariant case,
suppose that M were not torsion, so that there is some i for which C[a] is a sub-
module of M i. Taking a row low enough in the commutative diagram, we see that
this would force Hk(Kl) to be non-torsion for some k > 0 and some knot Kl, a
contradiction. Hence M is torsion. �

Proposition 2.7. Let knots K0,K1,K2, . . . be given as in Figure 3. Then there is
a commutative diagram in which the rows are exact, which has the following form:

−−→ N−1 −−→ H0(K0) −−→ H2(K1){2n} −−→ N0 −−→ H1(K0) −−→

id

y
y

y id

y
y

−−→ N−1 −−→ H0(K1) −−→ H2(K2){2n} −−→ N0 −−→ H1(K1) −−→

id

y
y

y id

y
y

−−→ N−1 −−→ H0(K2) −−→ H2(K3){2n} −−→ N0 −−→ H1(K2) −−→

id

y
y

y id

y
y

Here N is a bigraded, finitely-generated module (over C or C[a] depending on
the variant of homology chosen). Every map in the complex preserves the quantum
grading.

Proof. Setting N = H(Co(G0,1 : C(D0) → C(D1))), this follows in the same way
as before from the commutative map of short exact sequences:

0 −−→ C(Di)
Gi,i+1
−−−−→ C(Di+1)[−2]{2n} −−→ Co(G0,1) −−→ 0

Fi,i+1

y Fi+1,i+2[−2]{2n}

y id

y

0 −−→ C(Di+1)
Gi+1,i+2

−−−−−−→ C(Di+2)[−2]{2n} −−→ Co(G0,1) −−→ 0.

�

Remark. Although we do not prove it in this paper, we believe that the results of
Propositions 2.6 and 2.7 hold for standard Khovanov homology over the integers,
allowing analogues of results such as those of the next section to be deduced in this
setting.

3. Topological and Structural results

With Proposition 2.6 in hand, we can now begin to prove Theorems 1.5, 1.7,
and 1.8. We note that Propositions 2.6 and 2.7 seem to contain much of the same
information from our point of view, but we suspect that there are some useful
applications of Proposition 2.7 yet to be uncovered which make use of the fact that
Co(G0,1) is such a simple complex.



12 ANDREW LOBB

Proof of Theorem 1.5. Let us work in the equivariant setting. First note that the
commutative diagram in Proposition 2.6 can in fact be extended arbitrarily up-
wards. This is because for any l ≥ 1, we can add l negative full twists to K0 forming

K̃0 = K−l, and then make use of the short exact sequences for C(K̃j) = C(Kj−l).
Now suppose we are in the situation of Theorem 1.5 where sn(K−1) > sn(K0).
From Proposition 2.6 we see that we have the row-exact commutative diagram

−−−−→ H0(K−1){−2n} −−−−→ H0(K0){−2n} −−−−→ M2 −−−−→
y

y id

y

−−−−→ H2p(Kp−1){2np} −−−−→ H2p(Kp){2np} −−−−→ M2 −−−−→ .

Since the free parts of H0(K−1) and H0(K0) do not lie in the same quantum de-
grees by hypothesis and M is torsion, this forces the map H0(K0) →M2 to be non-
zero. By commutativity of the righthand square, this also forces H2p(Kp) → M2

to be non-zero, and in particular we have H2p(Kp) 6= 0. �

We note that with a little more work we could say exactly what quantum de-
grees of H2p(K) are non-zero, in terms of sn(K−1), sn(K0), and p. Such exact
information could be useful in investigating whether the sn homomorphisms are
equivalent. This precise knowledge is not necessary however to deduce Corollary
1.6, which follows immediately.

Proof of Theorem 1.7. Let us work in the equivariant setting. Suppose we have
the hypotheses of Theorem 1.7. Let p ≥ 2, and consider the following part of the
commutative diagram of Proposition 2.6

−−−−→ H−2p−2(K0) −−−−→ H−2p−2(K1)
ψ

−−−−→ M2p−2 −−−−→
y

y id

y

−−−−→ H0(Kp−1){2n(p− 1)} −−−−→ H0(Kp){2n(p− 1)}
ϕ

−−−−→ M2p−2 −−−−→ .

Observe that since by hypothesis K0 is the unknot we have H−2p−2(K0) =
H−2p−1(K0) = 0 so that ψ is an isomorphism. Then the commutativity of the
square involving both ψ and ϕ tells us that ϕ restricted to the torsion part of
H0(Kp) is a surjection. Therefore there exists a decomposition H0(Kp) = Fr⊕ tor
into free and torsion C[a]-modules such that ϕ|Fr = 0. But if sn(Kp) 6= sn(Kp−1)
then we must have ϕ|Fr 6= 0, hence a contradiction. �

Proof of Theorem 1.8. Suppose now that we have the hypotheses of Theorem 1.8.
First of all we would like to see that M = ∆, the torsion part of H(K1). This

follows directly from the first row of the commutative diagram in Theorem 2.6 and
the fact that the map H0(K0) → H0(K1) is onto the free part of H0(K1). Indeed,
if this map were not, we would either have a non-torsion part of M−1 or we would
have sn(K1) < 0.

Now let p ≥ 2 and consider the following two commutative diagrams with exact
rows
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−−−−→ Hi−2(p−1)(K1) −−−−→ M i−2p+2 ϕ
−−−−→ Hi−2(p−1)+1(K0) −−−−→

y id

y
y

−−−−→ Hi(Kp){2n(p− 1)} −−−−→ M i−2p+2 ψ
−−−−→ Hi+1(Kp−1){2n(p− 1)} −−−−→ ,

−−−−→ M i−2p+1 ϕ′

−−−−→ Hi−2(p−1)(K0) −−−−→ Hi−2(p−1)(K1) −−−−→

id

y
y

y

−−−−→ M i−2p+1 ψ′

−−−−→ Hi(Kp−1){2n(p− 1)} −−−−→ Hi(Kp){2n(p− 1)} −−−−→ .

From the first diagram observe that ϕ = 0 since H(K0) is non-torsion. This im-
plies that ψ = 0 by commutativity of the rightmost square. For the same reason in
the second diagram we see ϕ′ = 0, which implies that ψ′ = 0 by the commutativity
of the leftmost square. This means that each row gives rise to short exact sequences

0 → Hi(Kp−1){2n(p− 1)} → Hi(Kp){2n(p− 1)} →M i−2p+2 → 0.

With this in hand, to prove the theorem it remains to see that every such short
exact sequence splits to give isomorphisms

Hi(Kp){2n(p− 1)} = Hi(Kp−1){2n(p− 1)} ⊕M i−2p+2.

A splitting map is found by running anticlockwise around the square

Hi−2(p−1)(K1) −−−−→ M i−2p+2

y id

y

Hi(Kp){2n(p− 1)} −−−−→ M i−2p+2,

from M i−2p+2 to Hi(Kp){2n(p − 1)}, which is possible since the top row of the

square is an isomorphism when restricted to the torsion part of Hi−2(p−1)(K1). �

Proof of Theorem 1.9. We can copy the proof of Theorem 1.8 here. In fact, this
situation is simpler since there is no torsion hence every short exact sequence splits.
The one almost delicate point is to deduce that the map appearing in the top row
commutative diagram in Theorem 2.6

F0,1 : H0(U) = H0(K0) → H0(K1)

is an injection. We know that it is an injection equivariantly and furthermore we
have a description of the chain-homotopy type of the equivariant complex given in
the discussion following the statement of Theorem 1.7. So it follows that F0,1 is an
injection in the unreduced case which is obtained by setting a = 0 in the equivari-
ant chain complexes. The reduced case then follows from F0,1 being an injection in
the unreduced case and the generalized universal coefficients theorem for principal
ideal domains. �
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Ui
U

Tani

Tani

Figure 6. This diagram accompanies the statement of Theorem
3.2. We have drawn a tangle in a small 3-ball Tani ⊂ B3 which is a
subtangle of the link (U ∪Ui) ⊂ S3. It consists of all of Ui and two
strands of U which intersect a disc bounded by Ui in two points,
with signed count 0. (The rest of U has been drawn schematically
as a dotted line). We denote by Tani the complement to this tangle
so that Tani ∪∂ Tani = U ∪ Ui.

Earlier we promised a discussion of the case when sn(K1) 6= 0. Notice that
in this case our argument in the proof of Theorem 1.8 goes through as before
for all Hi(Kp){2n(p − 1)} except when 2p − i = 2. Hence we can determine
the homology groups of Kp in terms of H(Kp−1) and p except for H2p−2(Kp).
To fix the remaining homology group it suffices to know the image of the map
H0(K0) → H2p−2(Kp−1){2n(p− 1)}. We do not give a proof of this fact since it is
not needed for our main application of Theorem 1.8.

To begin our proof of Theorem 1.10, we first collect a few results from the
literature on hyperbolic 3-manifolds. We state the first theorem not as strongly as
Thurston proved it, but strongly enough for us to use.

Theorem 3.1 (Hyperbolic Dehn Surgery [19]). Let M be a cusped hyperbolic 3-
manifold with a distinguished cusp. We write M(1/p) for the result of filling the
distinguished cusp with filling coefficient 1/p. Then M(1/p) is hyperbolic except for
a finite set of filling slopes and M(1/p) converges to M in the geometric topology
as p→ ∞.

We shall also need a result of Kawauchi’s concerning special knots K∗ in S3.

Theorem 3.2 (Kawauchi [3]). For every m > 1 there exists an (m+1)-component
link

U ∪ U1 ∪ U2 ∪ · · · ∪ Um ⊂ S3,

where U is the unknot and U1∪U2∪ . . .∪Um is the m-component unlink, satisfying
the following properties:

(1) Each Ui bounds a disc intersecting U in two points with signed count 0.
(2) For i 6= j, the link U ∪ Ui is distinct from the link U ∪ Uj.
(3) For any i, the result of +1-surgery on Ui turns U into a smoothly slice knot

K∗, which is independent of i.
(4) Define the tangles Tani as in Figure 6. Each tangle Tani is hyperbolic, as

is the branched double cover of each Tani.



2-STRAND TWISTING & KNOTS WITH IDENTICAL QUANTUM KNOT HOMOLOGIES 15

Proof of Theorem 1.10. Consider Figure 6, Tani is an example of a simple tangle
(in other words prime and atoroidal). Furthermore, we know by item (4) of Theorem
3.2 that Tani (the complement of Tani) is hyperbolic.

We are in the situation where we can apply Lemma 2 of [18]. This tells us that
if we glue back Tani to Tani, then the result (which is Tani ∪∂ Tani = U ∪ Ui) is
a hyperbolic link.

We now write Ki
N for the result of doing (1/N)-surgery on Ui to the knot U , so

that Ki
0 = U for each i. By item (3) of Theorem 3.2, we see that Ki

1 is the knot
K∗ for each i = 1, 2, . . . ,m.

Since the complement of U ∪Ui is atoroidal for each i, Theorem 3.1 tells us that
the complement ofKi

N is hyperbolic for large enoughN and that these complements
converge in the geometric topology to the complement of U ∪Ui as N → ∞. Since
the meridians of the Ki

N converge to the meridian to U , the sequence of knots Ki
N

determines the link complement to U ∪ Ui as well as the meridional curve to U .
By filling along the meridian and taking U isotopic to any longitude relative to
the meridian, we see this determines U inside the solid torus complement to Ui.
Since there is only one way to fill the boundary of this solid torus to get U = Ki

0

unknotted inside S3, we have determined the whole link U ∪ Ui.
Hence there exists an N such that the complement to Ki

N is not diffeomorphic

to the complement to Kj
N whenever i 6= j. Since the knot complement determines

the knot, we know that for this N we have Ki
N 6= Kj

N whenever i 6= j. This set
{K1

N ,K
2
N , . . . ,K

m
N } will be the m distinct knots we are required to exhibit.

Because K∗ is slice we have sn(K
i
1 = K∗) = 0 for all i = 1, 2, . . .m. This means

that we can apply Theorem 1.8 to see that H(Ki
N ) = H(Kj

N) for all 1 ≤ i, j ≤ m.
It remains to see that each Ki

N is prime and not 2-bridge. Primeness follows
from the hyperbolicity of Ki

N .
The branched double cover of Ki

N is a Dehn filling of the branched double cover

of Tani, with filling slope determined by N . Again, Theorem 3.1 inplies that for
N large enough, the branched double cover of Ki

N is hyperbolic. We know that
branched double covers of 2-bridge knots are lens spaces, which are not hyperbolic.
Hence Ki

N is not 2-bridge. �

3.1. An example of the construction of a knot pair with isomorphic knot

homologies. Kawauchi used the theory of almost identical imitation to create
knots K∗ with multiple unknotting sites [3]. In the proof of Theorem 1.10 we
used these knots K∗ in an essential way to create distinct knots with isomorphic
Khovanov-Rozansky knot homologies. If we wished to draw a diagram of such
knots it would be necessary to understand in detail the theory of almost identical
imitation. However, if one is prepared to work on a more ad hoc basis then it is
easy to create examples of knots with isomorphic knot homologies.

One such ad hoc construction is based on pure Brunnian braids (pure braids that
become equivalent to a trivial braid when any strand is removed). We have drawn
an example of such a braid (on three strands) in Figure 7.

From the braid drawn in Figure 7 we obtain the tangle drawn in Figure 8. This
tangle can be completed to a knot by filling the slots X,Y, Z with other tangles. We
now abuse notation by referring to the tangle corresponding to the chain complex
Ti itself by Ti. We denote by KX

i the knot obtained by filling X with Ti, Y with
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Figure 7. Here is an example of a Brunnian pure braid - a pure
braid with the property that the removal of any strand results in
a trivial braid.

T1, and Z with T−1, and denote by KY
i the knot obtained by filling X with T1, Y

with Ti and Z with T−1.
Note that KX

0 = KY
0 = U , the unknot and that KX

1 = KY
1 . Furthermore since

KX
1 can be transformed into the unknot both by a positive-to-negative crossing

change (in place X , say) and by a negative-to-positive crossing change (in place
Z), we must have sn(K

X
1 ) = sn(K

Y
1 ) = 0.

Hence it follows from Theorem 1.8 that KX
i and KY

i have isomorphic homologies
for all i ≥ 2.

One can check that KX
2 6= KY

2 using SnapPea. In fact, they have different
hyperbolic volumes so they are not even mutant by a result of Ruberman’s [16].

3.2. Pairs of mutant knots with isomorphic knot homologies. The Conway
and the Kinoshita-Terasaka (KT) knots are the first (measured by crossing number)
example of a pair of mutant knots. In [13] Mackaay and Vaz use techniques given
by Rasmussen in [15] in order to compute that all reduced Khovanov-Rozansky
homologies of the Conway and the KT knots agree. Since it is easily observed that
the KT knot and the Conway knot have unknotting number equal to 1, we can
build upon this computation and give an infinite number of mutant pairs.

Theorem 3.3. There exist an infinite number of mutant pairs of prime knots that
have isomorphic reduced Khovanov-Rozansky homology groups.

Proof. We work with reduced homology. Consider the two families of knots KC
i and

KKT
i shown in Figure 9. Since the reduced homologies agree H(KC

1 ) = H(KKT
1 ),

KC
0 = KKT

0 = U , and sn(K
C
1 ) = sn(K

KT
1 ) = 0, we can apply Theorem 1.8 to

see that we have isomorphic homology groups H(KC
i ) = H(KKT

i ) for all i ≥ 2.
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X Y Z

Figure 8. Here we show a tangle determined by the braid drawn
in Figure 7. There are three boundary components to this tan-
gle, each will be filled by some tangle corresponding to the chain
complex Ti as in Figure 2.

Ti Ti

Figure 9. This diagram shows two families of knots KKT
i and

KC
i . On both sides the unknot U occurs when we put the tangle

T0 where indicated KKT
0 = KC

0 = U . When we add the tangle
T1 we get the Kinoshita-Terasaka knot KKT

1 on the left and the
Conway knot KC

1 on the right.

Thurston’s Theorem 3.1 tells us that KC
i 6= KKT

i for large enough i, and since each
is hyperbolic each must be prime. �
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