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Abstract
We study static solutions of a D-dimensional modified nonlinear Schrödinger
equation (MNLSE) which was shown to describe, in two dimensions, the
self-trapped (spontaneously localized) electron states in a discrete isotropic
electron–phonon lattice [1, 2]. We show that this MNLSE, unlike the
conventional nonlinear Schrödinger equation, possesses static localized
solutions at any dimensionality when the effective nonlinearity parameter is
larger than a certain critical value which depends on the dimensionality of
the system under study. We investigate various properties of the equation
analytically, using scaling transformations, within the variational scheme and
numerically, and show that the results of these studies agree qualitatively and
quantitatively. In particular, we prove that, for various values of D, when the
coupling constant is larger than a certain critical value (which depends on D),
this equation has two solutions, a stable (metastable) and an unstable one. We
show that the solutions can be well approximated by a Gaussian ansatz and
we also show that, in two dimensions, the equation possesses solutions with a
nonzero angular momentum.

PACS numbers: 05.45.-a, 05.45.Yv, 63.20.Kr, 71.38.-k

1. Introduction

Nonlinear Schrödinger equations (NLSEs) (in various forms and for different spatial
dimensionalities D) describe many interesting effects in condensed matter physics. Some of
the examples are: the self-trapping of carriers (electrons, holes or excitons) in solid states (e.g.
two-dimensional lattices have been studied in [1,2], for more general review see Rashba in [3]),
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nonlinear processes in plasma [4,5], the propagation of light pulses in nonlinear fibre optics [6],
the self-focusing of light beams in nonlinear dispersive media [7] and others (more details can
be found, e.g. in [8]). Note also that the NLSE arises as a result of the adiabatic approximation
in describing a nonrelativistic particle interacting with a quantum Bose field [9] (in particular,
a quasi-particle interacting with lattice vibrations in solids). Usually, the term NLSE is used
for the equation with a local cubic nonlinearity.

The one-dimensional (D = 1) NLSE has been extensively studied as an integrable
equation. It has stationary solutions which can be found by means of the inverse scattering
method [10] and describe solitons that interact elastically. The equation describes the
propagation of light pulses in fibre optics [6], the formation of envelope solitons in magnetized
plasma [4,5], self-trapped excitations in quasi-one-dimensional molecular chains [11,12], etc.

The higher-dimensional NLSEs, on the other hand, are nonintegrable and can be solved
only numerically. They have been studied intensively in various applications (in plasma
physics, nonlinear optics, physics of solids, etc). For example, they describe self-trappings
in two-dimensional (D = 2) and three-dimensional (D = 3) lattices in the continuum
approximation. Calculation of the rate of a particle self-trapping in a three-dimensional lattice
is connected with analogous equations in four dimensions (D = 4) [13]. For D � 2 stationary
solutions of the NLSE are either unstable or do not exist, except for the very specific values of
the coupling constant at D = 2 [14–16]. Instead of a soliton, the main NLSE solution structure
for D � 2 is a collapsing cavity which leads to the formation of localized singularities of the
wave amplitude within a finite time.

Note that the modelling of physical processes by NLSEs usually requires certain
simplifications. Moreover, the various discrete versions of NLSEs (DNLSE) describe systems
only within certain approximations. It is worth noting that some numerical studies and heuristic
scaling arguments were presented in [17] to support the existence of spatially localized solutions
of a particular form of a DNLSE for the dimensions D = 1, 2, 3. Namely, it has been shown
that there is a lower bound on the energy of such a solution if the lattice dimension exceeds
some critical value. These arguments were generalized in [18] where it was shown that there
exists a critical size, called ‘excitation threshold’ by the authors, for the existence of a localized
standing wave solution in an infinite system obeying a DNLS-type equation. Such a threshold
depends on the dimensionality of the system and the degree of the nonlinearity, although
in reality it is hard to imagine this latter as a varying parameter. In more realistic models,
the additional terms due to the higher-order dispersion, nonlinearity saturation or nonlocal
interactions should also be taken into account. Such models are usually studied within the
continuum approximation. Various MNLSEs have also been studied [19,20]. These equations
are, in general, not integrable but some of them do possess stationary localized solutions in
two or higher dimensions (in what follows we will refer to these solutions as solitons even
when they are not solitons of integrable equations). One or more extra terms are added to the
equation and these extra terms sometimes stabilize the solitons in dimensions higher than or
equal to two.

This is the case, for example, for the MNLSEs derived in [1, 2]. In these papers it was
shown that the system of equations describing the self-trapped electron on a lattice can be
reduced, in the continuum limit, to the following MNLSE:

iϕt + �ϕ + 2(g|ϕ|2 + G�|ϕ|2)ϕ = 0, (1)

where g and G are the two coupling constants, and

� =
D∑

µ=1

∂2

∂x2
µ

, (2)
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where D is the number of dimensions. The extra term, that is proportional to G, arises due
to the nonlocality of the nonlinear interaction. In the electron–phonon problems G = αg/12,
where α, typically, takes values in the range 1 � α � 4 [1, 2].

We would also like to add here that equation (1) is of the type that arises in many physical
problems (see, e.g. [19–21]).

2. General characteristics of the MNLSE

In this paper, we study some properties of the MNLSE (1) numerically and using a variational
scheme. We show that the equation admits stationary localized solutions at any dimensionality
of the system in study, provided that the coupling constant g is larger than a certain critical
value which depends on the number of dimensions D.

It is straightforward to show that the following values, which are determined as the
functionals of the solutions of (1), are conserved: the norm functional

N =
∫

dxD|ϕ|2, (3)

the Hamiltonian

H =
∫

dxD(|�∂ϕ|2 − g|ϕ|4 + G(�∂|ϕ|2)2), (4)

the momentum

�I =
∫

dxD �j, jµ = − i

2

(
ϕ∗ ∂ϕ

∂xµ

− ϕ
∂ϕ∗

∂xµ

)
(5)

and the angular momenta

Lµν =
∫

dxD(xµjν − xνjµ), (6)

i.e. the following holds:

dN
dt

= dH

dt
= d �I

dt
= dLµν

dt
= 0. (7)

Note that when ϕ is interpreted as a wavefunction it is normalized to one, i.e. N = 1. The
norm of the wavefunction can also correspond to a signal intensity, which is often called ‘the
number of particles’, and that can take arbitrary values.

Introducing

� =
∫

dxD i

2

(
ϕ∗ ∂ϕ

∂t
− ϕ

∂ϕ∗

∂t

)
, (8)

which we call the eigenenergy, the following useful relation can be easily obtained from
equation (1):

� =
∫

dxD(|�∂ϕ|2 − 2g|ϕ|4 + 2G(�∂|ϕ|2)2). (9)

Next, we define the average square radius of a field configuration as

R2 =
∫

dxD

D∑
µ=1

x2
µ|ϕ|2 =

∫
dxDr2|ϕ|2. (10)

It is easy to show that

d2

dt2
R2 = 4

∫
dxD(2|�∂ϕ|2 − Dg|ϕ|4 + (D + 2)G(�∂|ϕ|2)2), (11)

when ϕ is a solution of (1). For localized solutions we interpret R as the radius of the soliton.
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3. Stationary solutions

In this section, we consider stationary solutions of the MNLSE (1) of the form ϕ = φe−iλt .
Then φ satisfies the equation

�φ + λφ + 2
(
g|φ|2 +

αg

12
�|φ|2

)
φ = 0. (12)

In this case one can easily prove that

� =
∫

dxD
(
|�∂φ|2 − 2g|φ|4 +

αg

6
(�∂|φ|2)2

)
= λN (13)

and it is straightforward to show that the solutions of equation (12) correspond to the minimum
of the functional

E = H − λN (14)

together with the normalization condition

N =
∫

dxD|ϕ|2 = n. (15)

In (14), λ is a Lagrange multiplier which has to be determined from the additional
condition (15). Notice that N refers to the norm functional, while n refers to the actual
value that this functional takes for a particular solution.

Notice incidentally that if φ(�x) is a stationary solution of (12) then

	(�x, t) = φ(�x − �vt)ei((�v·�x)/2−|�v|2t/4) (16)

satisfies (1) and so it corresponds to a soliton moving at the constant speed �v. This shows that
one can easily ‘boost’ any static solution.

To study the existence of solutions of equation (12) we start by performing the following
scaling, bearing in mind that λ is negative for bound state solutions:

ψ =
√

g

−λ
φ, �ξ = √−λ �x. (17)

The scaled static MNLS equation (12) then becomes

�ψ − ψ + 2

(
|ψ |2 − αλ

12
�|ψ |2

)
ψ = 0. (18)

Defining the quantities

N =
∫

dξD|ψ |2, K =
∫

dξD|∂ψ |2,

Y =
∫

dξD|ψ |4, Z =
∫

dξD(�∂|ψ |2)2,

(19)

the total energy H of the system, the eigenenergy � and the norm of the solution take the
forms

H = (−λ)(4−D)/2

g

(
K − Y − λα

12
Z

)
, (20)

� = (−λ)(4−D)/2

g

(
K − 2Y − λα

6
Z

)
(21)

and

N = −K + 2Y +
λα

6
Z, (22)
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respectively. Moreover, the coupling constant g is directly related to the norm of ψ through
the relation

γ = ng = N

(−λ)(D−2)/2
. (23)

Given that for stationary solutions d2R2/dt2 = 0 the virial equation (11) becomes

2K − DY − (D + 2)
λα

12
Z = 0 (24)

and so we can eliminate K from (22) and (24) to get the relation

N = −Y
D − 4

2
+ Z

λα

12

D − 2

2
(25)

allowing us to rewrite (20) as

H = (−λ)(4−D)/2

2g

(
(D − 2)Y +

λα

12
DZ

)
. (26)

If ψ is a stationary solution of (18) the eigenvalue λ must be negative and we will see later
that λ can be arbitrarily small. For a solution to be stable the Hamiltonian (26) must also be
negative and this imposes the following condition on λ:

αλ < 12
(2 − D)Y

DZ
. (27)

We notice immediately that for D = 2 and 1 the solutions are always stable and that when
D > 2 one has to evaluate the integrals Y and Z for the solution and check whether the
condition (27) holds.

When α = 0 we see that (12) reduces to the NLSE and we see directly from (25) and
(20) that the solutions exist when D < 4 and that they are stable (E < 0) for D = 1, unstable
(E > 0) for D = 3 and marginally stable (E = 0) for D = 2.

In [23] it was proved that equation (18) admit radially symmetric solutions for all αλ < 0.
So, to compute the solutions of (12), one must first solve explicitly (18) for a given value of
the product αλ, evaluate N using (19) and then determine the corresponding value of γ , or g,
using (23). Unfortunately, solving (18) explicitly is virtually impossible.

In the next section, we will determine the range of γ values for which (12) admits solutions
by solving (18) numerically. This will show that solutions always exist when γ is larger than
a certain critical value.

In section 5, we will tackle the problem analytically by approximating the solution of (12)
by a radial ansatz and by using the variational principle to determine the parameters appearing
in the ansatz. This will confirm the results obtained numerically in the previous section.

4. Numerical solutions

In this section, we consider the problem of finding some stationary solutions of equation (12)
which, after the scaling introduced in the previous section, reduces to having to solve
equation (18). Notice also that the effective coupling constant is now γ defined by (23)
and that it is identical to g in the special case where n = 1.

For simplicity we first seek radially symmetric solutions of (18) and we look for solutions
of the type ψ = F(r) where r is the radius in the D-dimensional polar coordinates. From (18)
we then see that the profile F(r) must satisfy the equation

Frr +
D − 1

r
Fr − F + 2

(
F 2 − λα

6

(
F 2

r + FFrr +
D − 1

r
FFr

))
F = 0, (28)
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which can be solved as an ordinary differential equation with the initial condition
F0 = F(r = 0) and dF/dr(r = 0) = 0. One then has to find, for a given λ, the values
F0 for which F(r) goes to 0 as r goes to infinity and compute the norm of ψ

N = VD−1

∫ ∞

0
F 2rD−1 dr, (29)

where we have defined VD as the area of the D-dimensional sphere

VD =
∫ 2π

0
dθ1

D∏
i=2

∫ π

0
sini−1 θi dθi . (30)

Then we use (23) to determine the value of γ , for the given value of λ and the chosen value of
n and g.

When α is nonzero we see from (28) that, without any loss of generality, we can restrict
ourselves to the case α = 1 as any other value changes γ , defined by (23), by the factor
α(2−D)/2.

When computing a solution numerically we can also evaluate the eigenenergy (9)

� = −VD−1
λn

N

∫ ∞

0
rD−1

(
F 2

r − 2αλ

3
F 2F 2

r − 2F 4

)
dr, (31)

which, for a solution, should be equal to λn.
The eigenenergy � should not be confused with the conserved Hamiltonian energy H (20).

In fact they differ by a factor of 1
2 in the last two terms and one can write

H = −λn

N
VD−1

∫ ∞

0
rD−1

(
F 2

r − αλ

3
F 2F 2

r − F 4

)
dr

= 1

2
� − λn

2N
VD−1

∫ ∞

0
rD−1F 2

r dr. (32)

In figure 1 we exhibit various properties of the numerical solutions of (28). In particular,
figure 1(a) shows the eigenenergy −� = −λ as a function of γ . In particular, it demonstrates
that a solution exists only when the parameter γ is larger than some critical values, which are
given in table 1. Other data shown in table 1 correspond to values derived later using an ansatz
approximation. We observe also that for D = 2 there is only one branch of solutions while for
D > 2 there are two solutions for each value of γ > γcr. According to the Vakhitov–Kolokolov
criteria [24], the upper branch corresponds to the stable (metastable) solution, and the other
(lower) one corresponds to an unstable solution. Figure 1(b) presents the plot of the ratio of
the energy (32) to the eigenvalue λ as a function of γ . As shown above, the energy is always
negative for D = 2 and, hence, the corresponding solution is stable. For D > 2 the upper
branch is metastable at γcr < γ < γc, and is stable, i.e. has negative energy, only at γ > γc.
In table 1 we give the critical values of γc corresponding to the zero energy, and, respectively,
the value of λc. When λ is large, we see from (32) that the ratio −H/λ goes asymptotically
to − 1

2 .
The size of the solutions for the rescaled function is given by the radius

R =
(

1

N

∫ ∞

0
F 2rD+1dr

)1/2

, (33)

where N is defined by (29) as a function of γ . The actual size of the soliton, R, is related to
R defined by (33) as follows:

R = R√−λ
. (34)
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Figure 1. Numerical solutions (28) for D = 2, 3, 4 and 5: (a) eigenvalues −� = −nλ as
functions of γ ; (b) energy (20), eigenvalue ratios −H/λ; (c) Radii R; (d) profiles for λ = −10 and
γ = 26.7231 (D = 2), γ = 68.5808 (D = 3), γ = 188.576 (D = 4) and γ = 552.273 (D = 5).

Table 1. Critical values of γ and λ, determined numerically and using equations (57) and (58),
respectively.

D γc λc γ ans
c λans

c

2 — 0 — 0
3 30.0982 −1.79 3(3π/2)3/2 ≈ 30.7 −2
4 103.91 −3.035 32π2/3 ≈ 105.28 −3
5 345.466 −3.95 55(π/2)5/2/33 ≈ 357.9 −3.6

In figure 1(c) we present the plot of the radius R. The top and the bottom branches
of figure 1(c) correspond, respectively, to the top and the bottom branches of the curves
in figure 1(a). The stable solutions are thus the ones with the bigger value of R. In
figure 1(d) we present the profiles F(r) of one solution corresponding to the eigenvalue
λ = −10, for various dimensionalities. The corresponding values of γ are given in the figure
caption.
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5. Radial ansatz

In this section, we approximate the solutions by an analytical ansatz. First we note that
equation (28) can be obtained by minimizing the density

S =
∫ ∞

0
rD−1 dx

(
F 2

r − F 4 + F 2 − λα

3
F 2F 2

r

)
. (35)

Note that, in this section, we will allow α to take any value. We now use the fact that the
MNLSE admits radially symmetric solutions [22, 23, 1, 2].

To estimate the values of g for which equation (1) admits solutions normalized to n, we
consider the Gaussian ansatz

F = Ae−kr2
, (36)

compute N given by equation (29) and use the fact that N = γ (−λ)(D−2)/2 to express A as
the following function of γ and k:

A2 = γ (−λ)(D−2)/2 2(D+2)/2kD/2

�(D/2)VD−1
. (37)

Next we evaluate (35) for the above ansatz and obtain

S = γ

(
kD(−λ)(D−2)/2 + (−λ)(D−2)/2 − 2γ (−λ)D−2kD/2

�(D/2)VD−1
+

αγD(−λ)D−1k(D+2)/2

3�(D/2)VD−1

)
.

(38)

Minimizing it with respect to k we get the equation

�

(
D

2

)
VD−1 − γ κ(D−2)/2 +

D + 2

6
γακD/2 = 0, (39)

where we have introduced κ = −λk. Once we have determined the value of κ which
minimizes S, we find the eigenenergy (21):

λ = κD − 4γ κD/2

�(D/2)VD−1
+

2αγDκ(D+2)/2

3�(D/2)VD−1
(40)

and obtain an estimate of the eigenvalue λ from the ansatz. Notice that if we define κ̃ = κα

and γ̃ = γ a(2−D)/2, α disappears from (39) and (40). Thus, without loss of generality, we take
α = 1 from now on.

The simplest cases are summarized in table 2. We easily solve the algebraic equations
when D = 1, 2 and 4 and the results are given in table 3. The case D = 3 and 5 can be easily
solved using an algebraic manipulation package like Maple.

Table 2. Equation for κ and eigenenergy λ for the ansatz (36) for D = 2–5.

D VD−1 �(D/2) Equation �

1 2
√

π 2π1/2κ1/2 − γ + γ 1
2 κ = 0 κ − 2γ

π1/2
κ1/2 +

γ

3π1/2
κ3/2

2 2π 1 2π − γ + γ 4
6 κ = 0 2κ − 2γ

π
κ +

2γ

3π
κ2

3 4π 1
2

√
π 2π3/2 − γ κ1/2 + γ 5

6 κ3/2 = 0 3κ − 2γ

π3/2
κ3/2 +

γ

π3/2
κ5/2

4 2π2 1 2π2 − γ κ + γ κ2 = 0 4κ − 2γ

π2
κ2 +

4γ

3π2
κ3

5 8
3 π2 3

4

√
π 2π5/2 − γ κ3/2 + γ 7

6 κ5/2 = 0 5κ − 2γ

π5/2
κ5/2 +

5γ

3π5/2
κ7/2



Static solutions of a D-dimensional MNLSE 1489

Table 3. Values of κ for D = 1, 2 and 4.

D κ

1

(√
4π + 2γ 2 − 2

√
π

γ

)2

, γ > 0

2 (γ − 2π)
3

2γ
, γ > 2π

4
1

2


1 ±

√
1 − 8π2

γ


, γ > 8π2
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Figure 2. Radial ansatz (36) for D = 2, 3, 4 and 5: (a) eigenenergies −� (40) as functions of
γ ; (b) energy (20) and eigenenergy (40) ratios −H/�; (c) radii R; (d) profiles for λ = −10
and (D = 2): γ = 27.2271, A = 1.4142, k = 0.115 38; (D = 3): γ = 72.098, A = 1.9252,
k = 0.100 80; (D = 4): γ = 207.52, A = 2.5914, k = 0.089 35; and (D = 5): γ = 643.59,
A = 3.9398, k = 0.088 93.

In figure 2 we present some properties of the ansatz (36) when D = 2, 3, 4 and 5.
Figures 2(a)–(c) present, respectively, the eigenenergy −λ, the ratio of the energy (20) to
the eigenenergy (40), and the radius R, as functions of γ . From table 4 we conclude that the
predicted value of γcr is very close to the one calculated numerically.
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Table 4. Critical values of γ determined numerically and for the ansatz (36).

D Numerical γcr Ansatz γcr

2 5.85 2π ≈ 6.2832
3 26.4094 3π(5π/2)1/2 ≈ 26.4129
4 82.6714 8π2 ≈ 78.957
5 254.964 5(π)5/2(35/18)3/2 ≈ 237.16

Figure 2(d) presents the profile functions of the configurations corresponding to � = −10.
The values of γ , k and A, given in the caption, were computed as follows: first we used
figure 2(a) to determine the value of γ corresponding to the solution � = 10. Then we
calculated K by solving equation (39) and then, taking k = −κ/λ, we determined A using
(37). Comparing figures 1 and 2, we see that the ansatz (36) gives a very good approximation
to the solutions of (28). In fact, the approximation is so good that figures 1 and 2, at first sight,
may appear to be almost the same (especially for D < 5).

The relations (39) and (40) determine the dependence of λ on the constants γ and α in
parametric form via the parameter κ . To obtain this dependence explicitly, we rewrite (39) as
follows:

γ = VD−1�

(
D

2

) (
1

κ
− D + 2

6
α

)−1 (
1

κ

)D/2

. (41)

Rewriting (40) as

λ = Dκ − 4κ
1/κ − (D/6)α

1/κ − (D + 2)/6α
(42)

and solving this algebraic expression we can compute κD/2 as a function of λ and substitute it
into (40) to get

1

κ
= α

12

Q + (4 − D)/2

µ
, (43)

where

Q = (D + 2)µ +

√(
4 − D

2

)2

+ (D2 − 2D + 8)µ + (D + 2)2µ2 (44)

and

µ = −λα

12
> 0. (45)

Substituting (43) into (41), we find

γ = VD−1

16
�

(
D

2

) [ α

12

](D−2)/2
F(µ), (46)

where F(µ) is given by

F(µ) =
(

Q − 4 − D

2

) [
Q + (4 − D)/2

µ

]D/2

. (47)

Using this result, we can analyse the conditions of the existence of solutions for arbitrary
values of D.

The function F(µ) satisfies the following asymptotic conditions: F(µ) → ∞ as µ → ∞
for any value of D and when µ → 0 we have

F(µ → 0) →
{∞ if D � 4,

F0 if D > 4.
(48)
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Moreover, F(µ) has a minimum at the finite value

µ0 = (D − 2)(6 − D)

2(D + 2)2
(49)

when 2 < D � 6. For D > 6, F(µ) is a monotonically increasing function of µ thus attaining
its minimum value at µ = 0.

Thus equation (46) has solutions only when

γ � VD−1

16
�

(
D

2

) [ α

12

](D−2)/2
Fmin(µ), (50)

where Fmin(µ) is the corresponding minimum value of F :

Fmin(µ) =
{
F(µ0) if D � 6,

F (0) if D > 6.
(51)

Here

F(µ0) = 8D

(
2D

D + 2

D − 2

)(D−2)/2

, (52)

F(0) = (D − 4)

(
2D

D − 2

D − 4

)D/2

. (53)

When D � 6, according to the argument above, equation (46) has thus only one solution
when γ > γcr. For D < 5 and γ > γcr this equation has two solutions, which correspond to
the stable and unstable solutions, respectively. When D = 5 and γcr < γ < γ0 the equation
has two solutions (one stable and one unstable), and when γ > γ0 it has only one solution,
which corresponds to a stable soliton. Here γcr is proportional to F(µ0), and γ0 is proportional
to F(0) = F0. For D > 6 the value of γcr determined from equation (50) is given by the
expression:

γcr = VD−1
D − 2

4
�

(
D

2
+ 1

) [
αD(D − 2)

6(D − 4)

](D−2)/2

. (54)

The solution of the equation corresponds to the absolute minimum of the Hamiltonian
only when the total energy is negative. The latter is given by the expression

E = (−λ)(4−D)/2

8g
A2b(D−2)/2�

(
D

2

) (
3D − 4

2
− Q

)
. (55)

Thus, the energy is negative when µ > µ1 = (D − 2)/2D. At µ = µ1 the function F takes
the value

F(µ1) = 8D2

(
2D2

D − 2

)(D−2)/2

. (56)

Therefore, the soliton solution corresponds to the absolute minimum of the energy functional
for γ > γc, where γc is given by

γc = VD−1
D

2
�

(
D

2
+ 1

) [
αD2

6(D − 2)

](D−2)/2

. (57)

The corresponding eigenvalue λc is

λc = −6(D − 2)

αD
. (58)

The values of γc and λc are given in the last two columns of table 1 and compare well with the
values obtained by the numerical calculations. However, although the Gaussian ansatz gives
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a good approximation to what we have seen in our numerical simulations, the ansatz is not
exact. In fact, for D = 6 and 7 the numerical integration of equation (28) shows the existence
of two solutions (like for D = 5) except that the critical values of the coupling constants are
very large (e.g. the critical values of γc (as λ → 0) are given by ∼808 and ∼10637 for d = 6
and 7, respectively). So we see that this approximation is very good, though not perfect.

A similar analysis of equation (46) can be carried out straightforwardly for D/2 � 1
using the asymptotic expression for the �-function and the relation

VD−1 ≈
√

2e

(
2πe

D

)(D−1)/2

,
D

2
� 1. (59)

Using (44) we can expand (47) in power series of 1/D to find

F(µ) ≈ D(2D)D/2

(
1 +

2

D

)D/2 [
1 − 4

D
+ 2

(
1 +

2

D

)
µ

]
. (60)

Substituting these results into equation (46), and solving it with respect to the eigenenergy,
using (45), we get

λ = − 6

α

γ − γcr

γcr
, (61)

where γcr can be approximated at D/2 � 1 by its asymptotic value:

γcr → 3De

2α

(
απD

6

)D/2

,
D

2
� 1. (62)

Note that the asymptotic value of γcr can also be obtained from (54) and that the dependence
of λ on γ at large dimensionalities is similar to the case D = 2 (see below).

The dependence of the total energy (20) on γ is given by the expression

E = 3n

α

2γcr − γ

γcr
. (63)

As was mentioned above, the solutions are metastable when E > 0, and are absolutely
stable when E < 0. For D/2 � 1 these regimes, according to (63), occur when
γcr < γ < γc = 2γcr, and γ > γc, respectively. We also find from (61) that λ = λc = −6/α

corresponds to the given value of γ = γc, which is in agreement with the general analysis
of (46) for an arbitrary value of D (see (57) and (58)).

The energy ratio, according to (61) and (63), takes the form
E

−�
= 2γcr − γ

2(γ − γcr)
, � = nλ. (64)

The radius (10) of the configuration corresponding to the anstaz (36) is given by

R2 = D

4k
. (65)

At large D it takes the asymptotic value

R = D

2

√
−λ

α

6
(66)

and, thus, the asymptotic value of the actual soliton size (34) is

R = D

2

√
α

6
. (67)

Therefore, the soliton radius depends only on the nonlinearity coefficients α and is independent
of γ for large D.

It is worth mentioning here that the two branches of solutions, stable (metastable) and
unstable, exist when D > 2. The stability of the corresponding solutions can be analysed using
the Vakhitov–Kolokolov [24] criteria, which state that a soliton is stable if d(−λ)/dn > 0.
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6. Special solutions for D = 2

The two-dimensional case of the MNLSE is very special. First, in equation (23) the value of γ

is equal to N for all values of −λ. Moreover, (22) and (24) imply that N = Y and so we have

K − Y = 2
αλ

12
Z < 0. (68)

Hence

γ = ng = N = Y > K (69)

for all values of λ and, for the radial function ψ = F(r), we get

K = 2π

∫ ∞

0
dr rF 2

r . (70)

In particular, as was shown in [1,15], when α = 0, K = 5.85 and this value is thus the critical
value for γ below which there is no solution when D = 2.

When D = 2 equation (12) also has solutions of the form ψ = F(r)eilθ where the radial
profile F(r) now satisfies the equation

−F + Frr +
1

r
Fr − l2

r2
F + 2

(
F 2 − λα

6

(
F 2

r + FFrr +
1

r
FFr

))
F = 0. (71)

Notice that the angular momentum (6) for these solutions is simply given by L10 = ln. When
α = 0, we see from (24) and (22) that K = Y = N for any value of l. Solving (71) numerically
for different values of l, we find the values of K given in table 5. Note that they do not depend
on λ.

Notice also that as N = γ , for D = 2, we can compute a solution numerically by first
choosing a value of λ, then solving (71) with the appropriate boundary conditions and then
computing N which gives the value γ for which this is a solution.

In figure 3, we exhibit various properties of the numerical solutions of (71) for l = 0, 1
and 2. Figure 3(a) shows the eigenenergy −� = −nλ as a function of γ and it confirms the
fact that solutions exist only when the parameter γ is larger than the critical values listed in
the table. Figures 3(b) and (c) show, respectively, the ratio of the total energy to the eigenvalue
−E/�, and the radius (33) as functions of γ . In figure 3(d) we present the plots of the profiles
F(r) of the solutions for l = 0, 1 and 2 when γ = 55. The corresponding values of λ are
given in the figure caption.

Note also that (71) can be obtained by minimizing the density

S =
∫ ∞

0
dr r

(
F 2

r − F 4 + F 2 +
l2

r2
F 2 − λα

3
F 2F 2

r

)
. (72)

It is straightforward to show that the asymptotic behaviour of F near the origin is given
by F = Brl , for some constant B, while the finiteness of N imposes the requirement that F

goes to 0 at infinity. Therefore we approximate the solutions by evaluating S for the ansatz

F = Arle−kr2
. (73)

Table 5. Critical values of γ predicted from (69), D = 2.

l γcr,l = K

0 5.85
1 24.1492
2 44.876
3 66.2117
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Figure 3. Numerical solutions (28) for D = 2 and l = 0, 1, 2: (a) eigenvalues −� = −nλ as
functions of γ ; (b) energy (20) and eigenenergy (40) ratios −E/�; (c) radii R; (d) solution profiles
F(r) when γ = 55 for l = 0 (λ = −24.4781) l = 1 (λ = −7.7915) and l = 2 (λ = −1.2255).

First, we compute N using equation (29) and as equation (23) for D = 2 implies N = −λγ ,
we can express A as a function of γ and k, finding

A2 = γ (2k)l+1

�(l + 1)π
. (74)

Substituting (73) and (74) into (72) and using the fact that, as shown in the previous section,
α can be scaled away and so that we can take α = 1 without any loss of generality, we get

S = γ

π

(
1

2
+ k(1 + l)

)
+

γ 2�(2l + 1)

22l+1π2�2(l + 1)

(−λk2

3
− k

)
. (75)

Minimizing S with respect to k and defining, as before, κ = −kλ, we find the solution

κl = 3

2γ
(γ − γcr,l), (76)

where

γcr,l = γcr,0
l!(l + 1)!

(2l)!
22l , γcr,0 = 2π. (77)
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Table 6. Critical value for γ determined numerically and using (77) for the ansatz (73).

l Numerical γcr,l Ansatz γcr,l

0 5.85 6.28
1 24.14 25.13
2 44.87 50.27

Expression (76), taken together with (74), gives us the minimizing parameters for the
ansatz (73). Note also from (76) that κl is positive only if γ is larger than the critical values
γcr,l (77), which depend on l and which are given in table 6.

The eigenenergy (9), evaluated for the new ansatz, is now

λ(κ) = 2κ(1 + l) +
γ�(2l + 1)κ

22l−1π�2(l + 1)

(κ

3
− 1

)
. (78)

Substituting (76) into (78), we get

−λl = κ2 = 3(l + 1)

αγcr,l
(γ − γcr,l). (79)

The corresponding energy takes the value

El = − 3(l + 1)

2αgγcr,l
(γ − γcr,l)

2, (80)

and, thus,

El

−�l

= −γ − γcr,l

2γ
, (81)

where �l = nλl .
The radius of localization R = √

(l + 1)/2k = √−λ(l + 1)/2κ as a function of γ is given
by the expression

Rl = (l + 1)

√
γ

γcr,l
, (82)

from which it follows, that Rl = l + 1 at γ = γcr,l . The actual size of the localization, R,
which was defined in (10) is, according to (34) and (82), given by the expression

Rl =
√

αγ (l + 1)

3(γ − γcr,l )̃
(83)

(at l = 0 this value had been calculated in [1, 2]).
In figure 4, we exhibit various properties of the ansatz (73) for l = 0, 1 and 2.

Figures 4(a)–(c) present, respectively, the eigenenergy −�, the ratio of the energy (20) to
the eigenenergy (40), and the radius (83). Notice that the radius curves of l = 0 and 1 overlap
exactly for the ansatz. Comparing figure 4 with 3, we see that the ansatz (73) provides a very
good approximation to the solutions of (71). In figure 4(d) we present the profiles F(r) of one
solution of each l = 0, 1 and 2 for γ = 55. The corresponding values of �, obtained from
figure 4(a), are given in the figure caption.

7. Conclusion

We have shown that the MNLSE (1) admits solutions at all dimensionalities, D, when the
nonlinearity coupling constant g is larger than a certain critical value which depends on the
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Figure 4. Numerical solutions (28) for D = 2 and l = 0, 1, 2: (a) eigenvalues −λ as functions
of γ ; (b) energy (20) and eigenenergy (40) ratios −H/�; (c) radii R; (d) solution profiles F(r)

when γ = 55 for l = 0 (λ = −23.2606, A = 1.4142, k = 0.057 12), l = 1 (λ = −7.130 28,
A = 0.9560, k = 0.114 24) and l = 2 (λ = −0.847 712, A = 0.4975, k = 0.152 32).

dimensionality and the norm n of the solution. We have also shown that, as the value of
g increases, the solutions are more bound, their energies are smaller and they correspond
to solitons which are narrower. Obviously, the values of energy and γcr depend on the
second nonlinearity parameter of the equation, G, which characterizes the dispersion of
the nonlinearity. We have also shown that all solutions can be well approximated by an
appropriate Gaussian ansatz. This approximation is exceptionally good although it tends to
overestimate the values of γc. At D � 6 it predicts only one solution while, in fact, there
are two.

We have shown that all two-dimensional solutions are stable as their total energy is
negative, while in higher dimensions only solutions corresponding to sufficiently large values
of the coupling constant g are stable, since at D � 2 we have γc = 2γcr, where γ = ng.

In two dimensions, equation (1) also has stationary solutions with a nonzero angular
momentum. These solutions are also all stable but they exist only when g is larger than a
critical value which grows with the value of the angular momentum. These solutions can also
be successfully approximated by a modified Gaussian ansatz.
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In a future work, we plan to present our investigations of the scattering properties of the
solutions we derived in this paper.

Acknowledgments

The work reported here was partly supported by the Project No 0102U002332 of the
Fundamental Research Programme of the Ukrainian NASc. A travel grant from NATO is
also acknowledged. The authors express their thanks to Professor T A Davydova for many
stimulating discussions.

References

[1] Brizhik L S, Eremko A A, Piette B and Zakrzewski W J 2001 Physica D 159 71–90
[2] Brizhik L S, Eremko A A, Piette B and Zakrzewski W J 2002 Ukr. Fiz. Zh. 47 at press
[3] Rashba E I and Sturge M D (ed) 1985 Excitons (Moscow: Nauka)

Rashba E I and Sturge M D (ed) 1982 Excitons (Amsterdam: North-Holland)
[4] Cho T and Tanaka S 1980 Phys. Rev. Lett. 45 1403
[5] Leung P, Tran M Q and Wong A Y 1982 J. Plasma Phys. 24 567
[6] Hasegawa A 1990 Optical Solitons in Fibres (Berlin: Springer)
[7] Chiao R Y, Garmire E and Townes C H 1964 Phys. Rev. Lett. 13 479
[8] Christiansen P L, Sorensen M P and Scott A C (ed) 2000 Nonlinear Science at the Dawn of the 21st Century

(Berlin: Springer)
[9] Bogolyubov N N 1950 Ukr. Mat. Zh. 2 3–24

[10] Zakharov V E and Shabat A B 1972 Sov. Phys.–JETP 34 62
[11] Davydov A S and Kislukha N I 1973 Phys. Status Solidi b 59 465–70
[12] Davydov A S 1985 Solitons in Molecular Systems (Dordrecht: Reidel) p 290
[13] Iordanskii S V and Rashba E I 1978 Sov. Phys.–JETP 74 1872
[14] Juul Rasmussen J and Rypdal K 1986 Phys. Scr. 33 481
[15] Chiao R J, Gardmire F and Townes C H 1964 Phys. Rev. Lett. 13 479
[16] Kuznetsov E A and Zakharov V E 2000 Nonlinear Science at the Dawn of the 21st Century ed P L Christiansen

et al (Berlin: Springer) pp 3–46
[17] Flach S, Kladko K and MacKay R S 1997 Phys. Rev. Lett. 78 1207–10
[18] Weinstein M I 1999 Nonlinearity 12 673–91
[19] Davydova T A and Zaliznyak Y U 2000 Phys. Scr. 61 476–84
[20] Fobich G and Papanicolaou G 1999 J. Appl. Math. 60 183–240
[21] Davydova T A, Yakimenko A I and Zaliznyak Yu A 2003 Phys. Rev. E 67 026402
[22] Poppenberg M, Schmidt K and Wang Z-Q 2002 Calculus of Variations 14 329–44
[23] Colin M and Jeanjean L Solutions for a quasilinear Schrödinger equation: a dual approach Preprint URM CNRS
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