Sampling from complex probability distributions

Louis J. M. Aslett (louis.aslett@durham.ac.uk) Department of Mathematical Sciences Durham University

UTOPIAE Training School II 4 July 2017

Motivation

Sampling from probability distributions - why?

Monte Carlo essentially avoids the quandry of choosing an accurate but intractable model versus a simple but computable one.

Sampling from probability distributions - why?

Monte Carlo essentially avoids the quandry of choosing an accurate but intractable model versus a simple but computable one.

May want to answer:

- Probabilistic questions
- simulate physical random processes
- concerned with some corresponding random outcome
- may be inherent or perceived randomness
- eg simulation of shuttle launch
- Deterministic questions
- most often, boils down to computation of high dimensional integrals
- use 'experimental' methods to answer 'theoretical' question

Bayesian inference (recall Georgios Karagiannis’ talk)

- Data: $\underline{t}=\left\{t_{1}, \ldots, t_{n}\right\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $\pi_{T \mid \Psi}(\cdot \mid \psi)$, where ψ is an unknown parameter. $\pi_{T \mid \Psi}(\underline{t} \mid \cdot)$ is the likelihood.
- Prior: all knowledge about ψ which is not contained in \underline{t} is expressed via prior density $\pi_{\Psi}(\psi)$.

Bayesian inference (recall Georgios Karagiannis’ talk)

- Data: $\underline{t}=\left\{t_{1}, \ldots, t_{n}\right\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $\pi_{T \mid \Psi}(\cdot \mid \psi)$, where ψ is an unknown parameter. $\pi_{T \mid \Psi}(\underline{t} \mid \cdot)$ is the likelihood.
- Prior: all knowledge about ψ which is not contained in \underline{t} is expressed via prior density $\pi_{\Psi}(\psi)$.
- Posterior: Bayes’ Theorem enables us to rationally update the prior to our posterior belief in light of the new evidence (data).

Bayes' Theorem

$$
\pi_{\Psi \mid T}(\psi \mid \underline{t})=\frac{\pi_{T \mid \Psi}(\underline{t} \mid \psi) \pi_{\Psi}(\psi)}{\int_{\Omega} \pi_{T \mid \Psi}(\underline{t} \mid \psi) \pi_{\Psi}(d \psi)}
$$

Bayesian inference (recall Georgios Karagiannis’ talk)

- Data: $\underline{t}=\left\{t_{1}, \ldots, t_{n}\right\}$
- Model: \underline{t} is the realisation of a random vector \underline{T} having probability density $\pi_{T \mid \Psi}(\cdot \mid \psi)$, where ψ is an unknown parameter. $\pi_{T \mid \Psi}(\underline{t} \mid \cdot)$ is the likelihood.
- Prior: all knowledge about ψ which is not contained in \underline{t} is expressed via prior density $\pi_{\Psi}(\psi)$.
- Posterior: Bayes’ Theorem enables us to rationally update the prior to our posterior belief in light of the new evidence (data).

Bayes' Theorem

$$
\pi_{\Psi \mid T}(\psi \mid \underline{t})=\frac{\pi_{T \mid \Psi}(\underline{t} \mid \psi) \pi_{\Psi}(\psi)}{\int_{\Omega} \pi_{T \mid \Psi}(\underline{t} \mid \psi) \pi_{\Psi}(d \psi)} \quad \propto \pi_{T \mid \Psi}(\underline{t} \mid \psi) \pi_{\Psi}(\psi)
$$

Everything is about expectations ...

Recall, for a random variable $X \in \Omega$ having probability density $\pi(x)$,

$$
\mathbb{E}[f(X)]:=\int_{\Omega} f(x) \pi(d x) \triangleq \mu
$$

Everything is about expectations ...

Recall, for a random variable $X \in \Omega$ having probability density $\pi(x)$,

$$
\mathbb{E}[f(X)]:=\int_{\Omega} f(x) \pi(d x) \triangleq \mu
$$

Pretty much all statements of probability can be phrased in terms of expectations.

- $X \in \mathbb{R}$,

$$
\mathbb{P}(X<a)=\int_{-\infty}^{a} \pi(d x)=\int_{-\infty}^{\infty} \mathbb{I}_{(-\infty, a)}(x) \pi(d x)=\mathbb{E}\left[\mathbb{I}_{(-\infty, a)}(X)\right]
$$

Everything is about expectations ...

Recall, for a random variable $X \in \Omega$ having probability density $\pi(x)$

$$
\mathbb{E}[f(X)]:=\int_{\Omega} f(x) \pi(d x) \triangleq \mu
$$

Pretty much all statements of probability can be phrased in terms of expectations.

- $X \in \mathbb{R}$,

$$
\mathbb{P}(X<a)=\int_{-\infty}^{a} \pi(d x)=\int_{-\infty}^{\infty} \mathbb{I}_{(-\infty, a)}(x) \pi(d x)=\mathbb{E}\left[\mathbb{I}_{(-\infty, a)}(X)\right]
$$

- $X \in \Omega, A \subseteq \Omega$,

$$
\mathbb{P}(X \in A)=\int_{A} \pi(d x)=\int_{\Omega} \mathbb{I}_{A}(x) \pi(d x)=\mathbb{E}\left[\mathbb{I}_{A}(X)\right]
$$

ie for statements of probability define $f(x):=\mathbb{I}_{A}(x)$

Bayesian inference again

- May want samples directly from the posterior;
- marginal kernel density estimates;
- posterior predictive simulation;
- etc

Bayesian inference again

- May want samples directly from the posterior;
- marginal kernel density estimates;
- posterior predictive simulation;
- etc
- Or may want to answer question about a probability under the posterior

$$
\begin{aligned}
\mathbb{P}(\psi \in A \mid \underline{t}) & =\int_{A} \pi(d \psi \mid \underline{t}) \\
& =\frac{\int_{\Omega} \mathbb{I}_{A}(\psi) \pi(\underline{t} \mid \psi) \pi(d \psi)}{\int_{\Omega} \pi(\underline{t} \mid \psi) \pi(d \psi)} \\
& =\int_{\Omega} \mathbb{I}_{A}(\psi) \pi(d \psi \mid \underline{t})
\end{aligned}
$$

So ... just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

$$
\int_{a}^{b} f(x) \pi(d x)=\int_{a}^{b} g(x) d x \approx \frac{b-a}{n} \sum_{i=1}^{n} g\left(x_{i}\right)
$$

where

$$
x_{i}:=a+\frac{b-a}{n}\left(i-\frac{1}{2}\right)
$$

So ... just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

$$
\int_{a}^{b} f(x) \pi(d x)=\int_{a}^{b} g(x) d x \approx \frac{b-a}{n} \sum_{i=1}^{n} g\left(x_{i}\right)
$$

where

$$
x_{i}:=a+\frac{b-a}{n}\left(i-\frac{1}{2}\right)
$$

It is easy to show the error is:

$$
\left|\int_{a}^{b} g(x) d x-\frac{b-a}{n} \sum_{i=1}^{n} g\left(x_{i}\right)\right| \leq \frac{(b-a)^{3}}{24 n^{2}} \max _{a \leq z \leq b}\left|f^{\prime \prime}(z)\right|
$$

Clearly, $\frac{(b-a)^{3}}{24} \max _{a \leq z \leq b}\left|f^{\prime \prime}(z)\right|$ is fixed by the problem, so we achieve desired accuracy by controlling n^{-2}.

So ... just do numerical integration?

- error in midpoint Riemann integral in 1-dim:

$$
\mathcal{O}\left(n^{-2}\right)
$$

So ... just do numerical integration?

- error in midpoint Riemann integral in 1-dim:

$$
\mathcal{O}\left(n^{-2}\right)
$$

but

- error in midpoint Riemann integral in d-dim:

$$
\mathcal{O}\left(n^{-2 / d}\right)
$$

so-called 'curse of dimensionality'

So ... just do numerical integration?

- error in midpoint Riemann integral in 1-dim:

$$
\mathcal{O}\left(n^{-2}\right)
$$

but

- error in midpoint Riemann integral in d-dim:

$$
\mathcal{O}\left(n^{-2 / d}\right)
$$

so-called 'curse of dimensionality'

- error in Monte Carlo integration:

$$
\mathcal{O}\left(n^{-1 / 2}\right)
$$

ie independent of dimension

So ... just do numerical integration?

- error in midpoint Riemann integral in 1-dim:

$$
\mathcal{O}\left(n^{-2}\right)
$$

but

- error in midpoint Riemann integral in d-dim:

$$
\mathcal{O}\left(n^{-2 / d}\right)
$$

so-called 'curse of dimensionality'

- error in Monte Carlo integration:

$$
\mathcal{O}\left(n^{-1 / 2}\right)
$$

ie independent of dimension
Simpson's improves this to $\mathcal{O}\left(n^{-4 / d}\right)$, but in general Bakhvalov's Theorem bounds all possible quadriture methods by $\mathcal{O}\left(n^{-r / d}\right) \ldots$ quadriture can't beat curse of dimensionality.

Note: this is the order of error, not absolute error!

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

where $x_{i} \sim \pi(\cdot)$

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

where $x_{i} \sim \pi(\cdot)$
The root mean square error is:

$$
\sqrt{\mathbb{E}\left[\left(\int f(x) \pi(d x)-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)^{2}\right]}=\frac{\sigma}{\sqrt{n}}
$$

where $\sigma=\operatorname{Var}_{\pi}(f(X))$.
Again, σ is (mostly) inherent to the problem, so we achieve desired accuracy by controlling $n^{-1 / 2}$

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

where $x_{i} \sim \pi(\cdot)$
The root mean square error is:

$$
\sqrt{\mathbb{E}\left[\left(\int f(x) \pi(d x)-\frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right)\right)^{2}\right]}=\frac{\sigma}{\sqrt{n}}
$$

where $\sigma=\operatorname{Var}_{\pi}(f(X))$.
Again, σ is (mostly) inherent to the problem, so we achieve desired accuracy by controlling $n^{-1 / 2}$

Recall we can set $f(x):=\mathbb{I}_{A}(x)$ to compute probabilities.

Monte Carlo - the practicality

Remarkably:

- No dependence on d.
- No dependence on smoothness of integrand.
- $\frac{\sigma}{\sqrt{n}}$ can itself be directly estimated from the samples drawn.

Monte Carlo - the practicality

Remarkably:

- No dependence on d.
- No dependence on smoothness of integrand.
- $\frac{\sigma}{\sqrt{n}}$ can itself be directly estimated from the samples drawn.
but ... the crux of the last slide was:

$$
\text { "where } x_{i} \sim \pi(\cdot) "
$$

Methodological research in Monte Carlo is largely preocupied with how to achieve this for complex probability distributions.

Monte Carlo - achieving desired accuracy

A simple application of Chebyshev's inequality allows us to bound how certain we are in a fully quantified way,

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq \frac{\mathbb{E}\left[(\hat{\mu}-\mu)^{2}\right]}{\varepsilon^{2}}=\frac{\sigma}{n \varepsilon^{2}}
$$

Monte Carlo - achieving desired accuracy

A simple application of Chebyshev's inequality allows us to bound how certain we are in a fully quantified way,

$$
\mathbb{P}(|\hat{\mu}-\mu| \geq \varepsilon) \leq \frac{\mathbb{E}\left[(\hat{\mu}-\mu)^{2}\right]}{\varepsilon^{2}}=\frac{\sigma}{n \varepsilon^{2}}
$$

Or indeed, invoking the iid central limit theorem we can asymptotically state,

$$
\mathbb{P}\left(\frac{\hat{\mu}-\mu}{\sigma n^{-1 / 2}} \leq z\right) \xrightarrow{n \rightarrow \infty} \Phi(z)
$$

and so form confidence intervals for μ based on large n samples.

Simple MC

The setting

Almost all Monte Carlo procedures start from the assumption that we have available an unlimited stream of independent uniformly distributed values, typically on the interval $[0,1]$.
We now want to study how to convert a stream

$$
u_{i} \sim \operatorname{Unif}(0,1)
$$

into a stream

$$
x_{j} \sim \pi(\cdot)
$$

where x_{j} is generated by some algorithm depending on one or more u_{i}. In more advanced methods (see MCMC), x_{j} may also depend on x_{j-1} or even x_{1}, \ldots, x_{j-1}.

Inverse sampling

Let $F(x):=\mathbb{P}(X \leq x)$ be the cumulative distribution function for our target probability density function $\pi(\cdot)$.

Inverse Sampling
(1) Sample $U \sim \operatorname{Unif}(0,1)$.
(2) Set $X=F^{-1}(U)$.

Inverse sampling

Let $F(x):=\mathbb{P}(X \leq x)$ be the cumulative distribution function for our target probability density function $\pi(\cdot)$.

Inverse Sampling

(1) Sample $U \sim \operatorname{Unif}(0,1)$.
(2) Set $X=F^{-1}(U)$.

Why is $X \sim \pi(\cdot)$?

$$
\begin{aligned}
\mathbb{P}(X \leq x) & =\mathbb{P}\left(F^{-1}(U) \leq x\right) \\
& =\mathbb{P}\left(F\left(F^{-1}(U)\right) \leq F(x)\right) \\
& =\mathbb{P}(U \leq F(x)) \\
& =F(x)
\end{aligned}
$$

Inverse sampling

Let $F(x):=\mathbb{P}(X \leq x)$ be the cumulative distribution function for our target probability density function $\pi(\cdot)$.

Inverse Sampling

(1) Sample $U \sim \operatorname{Unif}(0,1)$.
(2) Set $X=F^{-1}(U)$.

Why is $X \sim \pi(\cdot)$?

$$
\begin{aligned}
\mathbb{P}(X \leq x) & =\mathbb{P}\left(F^{-1}(U) \leq x\right) \\
& =\mathbb{P}\left(F\left(F^{-1}(U)\right) \leq F(x)\right) \\
& =\mathbb{P}(U \leq F(x)) \\
& =F(x)
\end{aligned}
$$

To avoid problems with discrete distributions, we must define

$$
F^{-1}(u)=\inf \{x: F(x) \geq u\}, \forall u \in[0,1]
$$

Rejection sampling

Seek a density $\tilde{\pi}(\cdot)$ we can sample from and such that

$$
\pi(x) \leq c \tilde{\pi}(x) \forall x
$$

where $c<\infty . \tilde{\pi}(\cdot)$ and $\pi(\cdot)$ need not be normalised. Rejection Sampling
(1) Sample $Y \sim \tilde{\pi}(\cdot)$ and $U \sim \operatorname{Unif}(0,1)$.
(2) If $U \leq \frac{\pi(Y)}{c \tilde{\pi}(Y)}$, return Y, else return to 1 .

Rejection sampling

Seek a density $\tilde{\pi}(\cdot)$ we can sample from and such that

$$
\pi(x) \leq c \tilde{\pi}(x) \forall x
$$

where $c<\infty . \tilde{\pi}(\cdot)$ and $\pi(\cdot)$ need not be normalised.

Rejection Sampling

(1) Sample $Y \sim \tilde{\pi}(\cdot)$ and $U \sim \operatorname{Unif}(0,1)$.
(2) If $U \leq \frac{\pi(Y)}{c \tilde{\pi}(Y)}$, return Y, else return to 1 .

This is not perfectly efficient as we must iterate $1 \& 2$ a random number of times until acceptance, with

$$
\mathbb{P}(\text { accept })=\frac{1}{c}
$$

Rejection sampling - caution, a low- d method

Consider a multi-variate Normal distribution centered at 0,

$$
\pi(\mathbf{x})=\operatorname{det}(2 \pi \Sigma)^{-1 / 2} \exp \left(-\frac{1}{2} \mathbf{x}^{\mathrm{T}} \Sigma^{-1} \mathbf{x}\right)
$$

Say want to produce samples for target where

$$
\Sigma=\left(\begin{array}{cccc}
1 & 0.9 & \cdots & 0.9 \\
0.9 & 1 & \cdots & 0.9 \\
\vdots & \vdots & \ddots & \vdots \\
0.9 & 0.9 & \cdots & 1
\end{array}\right)=Q^{\mathrm{T}} \Lambda Q
$$

using a proposal $\tilde{\pi}(\cdot)$ where $\Sigma=\sigma I$.
If $\sigma<\max \left\{\lambda_{i}\right\}, c=\infty$.
c minimal for $\sigma=\max \left\{\lambda_{i}\right\}$.

Rejection sampling - demo

Shiny demo for rejection sampling with:

$$
\pi(x) \propto(x-5)^{2} \cos \left(x^{-1 / 4}\right)
$$

and

$$
\tilde{\pi}(x) \sim N(\mu=4, \sigma=3)
$$

Thus,

$$
c \approx 4.9 \quad \text { and } \quad \mathbb{P}(\text { accept }) \approx 0.204
$$

Importance sampling (I)

If we have a probability density $\tilde{\pi}(\cdot)$ which is 'close' to $\pi(\cdot)$, then we can produce a weighted set of samples.

Importance sampling (I)

If we have a probability density $\tilde{\pi}(\cdot)$ which is 'close' to $\pi(\cdot)$, then we can produce a weighted set of samples.

Importance Sampling
(1) Sample $X \sim \tilde{\pi}(\cdot)$
(2) Sample is $x_{i}=X$, with weight $w_{i}=\frac{\pi(X)}{\tilde{\pi}(X)}$

Importance sampling (I)

If we have a probability density $\tilde{\pi}(\cdot)$ which is 'close' to $\pi(\cdot)$, then we can produce a weighted set of samples.

Importance Sampling
(1) Sample $X \sim \tilde{\pi}(\cdot)$
(2) Sample is $x_{i}=X$, with weight $w_{i}=\frac{\pi(X)}{\tilde{\pi}(X)}$

Monte Carlo estimator is slightly modified to account for weights:

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

Importance sampling (I)

If we have a probability density $\tilde{\pi}(\cdot)$ which is 'close' to $\pi(\cdot)$, then we can produce a weighted set of samples.

Importance Sampling

(1) Sample $X \sim \tilde{\pi}(\cdot)$
(2) Sample is $x_{i}=X$, with weight $w_{i}=\frac{\pi(X)}{\tilde{\pi}(X)}$

Monte Carlo estimator is slightly modified to account for weights:

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} w_{i} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

Standard Importance Sampling Properties

$$
\mathbb{E}[\hat{\mu}]=\mu, \operatorname{Var}(\hat{\mu})=\frac{\sigma_{\tilde{\pi}}}{n} \quad \text { where } \sigma_{\tilde{\pi}}=\int \frac{(f(x) \pi(x)-\mu \tilde{\pi}(x))^{2}}{f(x) \pi(x)} d x
$$

Importance sampling (II)

Consequently, can show optimal proposal for importance sampling is:

$$
\tilde{\pi}(x)_{\mathrm{opt}}=\frac{|f(x)| \pi(x)}{\int_{\Omega}|f(x)| \pi(d x)}
$$

Importance sampling (II)

Consequently, can show optimal proposal for importance sampling is:

$$
\tilde{\pi}(x)_{\mathrm{opt}}=\frac{|f(x)| \pi(x)}{\int_{\Omega}|f(x)| \pi(d x)}
$$

Hence, importance sampling shows how to beat naïve Monte Carlo when estimating expectations of non-identity functionals - in practice, we can never compute the optimal $\tilde{\pi}(\cdot)$.

Can still provide a nice guide ...

Importance sampling - unnormalised $\pi(\cdot)$

We can still perform importance sampling if $\tilde{\pi}(\cdot)$ and $\pi(\cdot)$ are only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised importance sampling estimate becomes:

$$
\int f(x) \pi(d x) \approx \frac{\sum_{i=1}^{n} f\left(x_{i}\right) w_{i}}{\sum_{i=1}^{n} w_{i}}
$$

Importance sampling - unnormalised $\pi(\cdot)$

We can still perform importance sampling if $\tilde{\pi}(\cdot)$ and $\pi(\cdot)$ are only known up to a normalising constant.
Algorithm for sampling is unchanged, but the self-normalised importance sampling estimate becomes:

$$
\int f(x) \pi(d x) \approx \frac{\sum_{i=1}^{n} f\left(x_{i}\right) w_{i}}{\sum_{i=1}^{n} w_{i}}
$$

Self-normalised Importance Sampling Properties

$$
\begin{aligned}
\mathbb{E}[\hat{\mu}] & =\mu+\frac{\mu \operatorname{Var}(W)-\operatorname{Cov}(W, W f(X))}{n}+\mathcal{O}\left(n^{-2}\right) \\
\operatorname{Var}(\hat{\mu}) & \approx \sum_{i=1}^{n} w_{i}^{2}\left(f\left(x_{i}\right)-\hat{\mu}\right)^{2} \quad \text { and } \quad \tilde{\pi}(x)_{\text {opt }} \propto|f(x)-\mu| \pi(x)
\end{aligned}
$$

Importance sampling - simple diagnostic

Equate variance of importance sampling estimate to Monte Carlo variance for a fixed sample size n_{e} :

$$
\begin{aligned}
\operatorname{Var}\left(\frac{\sum_{i=1}^{n} f\left(x_{i}\right) w_{i}}{\sum_{i=1}^{n} w_{i}}\right) & =\frac{\sigma^{2}}{n_{e}} \\
\Longrightarrow \frac{\operatorname{Var}\left(\sum_{i=1}^{n} f\left(x_{i}\right) w_{i}\right)}{\left(\sum_{i=1}^{n} w_{i}\right)^{2}} & =\frac{\sigma^{2}}{n_{e}} \\
\Longrightarrow \frac{\sigma^{2} \sum_{i=1}^{n} w_{i}^{2}}{\left(\sum_{i=1}^{n} w_{i}\right)^{2}} & =\frac{\sigma^{2}}{n_{e}} \\
\Longrightarrow n_{e} & =\frac{n \bar{w}^{2}}{\overline{w^{2}}}
\end{aligned}
$$

- balanced weights are desirable.
- small $n_{e} \Rightarrow$ diagnose a problem with IS
- large $n_{e} \nRightarrow$ all is ok with IS

MCMC

Markov Chain Monte Carlo

- Standard Monte Carlo methods indeed have the nice $\mathcal{O}\left(n^{-1 / 2}\right)$ convergence rates
- no dependence on dimension d
- Constant in the error term still depends on dimension!
- no completely free lunch
- But there are methods which control the error term better than standard Monte Carlo
- MCMC, introduced in 1953, constructs a Markov Chain whose stationary distribution is the target distribution of interest, $\pi(\cdot)$.

Markov Chains

Saw Markov Chains in an imprecise probability context yesterday morning (Gert de Cooman's talk).

Recall, a process $\left(X_{1}, X_{2}, \ldots\right)$ is a continuous state space, discrete time Markov Chain if

$$
\mathbb{P}\left(X_{t} \in A \mid X_{1}=x_{1}, \ldots, X_{t-1}=x_{t-1}\right) \equiv \mathbb{P}\left(X_{t} \in A \mid X_{t-1}=x_{t-1}\right)
$$

Markov Chains

Saw Markov Chains in an imprecise probability context yesterday morning (Gert de Cooman's talk).

Recall, a process (X_{1}, X_{2}, \ldots) is a continuous state space, discrete time Markov Chain if
$\mathbb{P}\left(X_{t} \in A \mid X_{1}=x_{1}, \ldots, X_{t-1}=x_{t-1}\right) \equiv \mathbb{P}\left(X_{t} \in A \mid X_{t-1}=x_{t-1}\right)$
The transition probabilities from a current state are defined by a kernel function $K(x, \cdot)$, such that,

$$
\mathbb{P}\left(X_{t} \in A \mid X_{t-1}=x_{t-1}\right)=\int_{A} K\left(x_{t-1}, d y\right) \triangleq K\left(x_{t-1}, A\right)
$$

Markov Chains

Saw Markov Chains in an imprecise probability context yesterday morning (Gert de Cooman's talk).

Recall, a process (X_{1}, X_{2}, \ldots) is a continuous state space, discrete time Markov Chain if
$\mathbb{P}\left(X_{t} \in A \mid X_{1}=x_{1}, \ldots, X_{t-1}=x_{t-1}\right) \equiv \mathbb{P}\left(X_{t} \in A \mid X_{t-1}=x_{t-1}\right)$
The transition probabilities from a current state are defined by a kernel function $K(x, \cdot)$, such that,

$$
\mathbb{P}\left(X_{t} \in A \mid X_{t-1}=x_{t-1}\right)=\int_{A} K\left(x_{t-1}, d y\right) \triangleq K\left(x_{t-1}, A\right)
$$

Under certain conditions, these chains will have a stationary distribution. We are interested in constucting Markov Chains with the stationary distribution we want to target, ie

$$
\int_{\Omega} \pi(d x) K(x, y)=\pi(y)
$$

Diving straight in ...

There is a rich and interesting theory of Markov Chains, but we'll fast-forward to the action for today.

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct $K(x, \cdot)$ such that $\pi(\cdot)$ will be stationary distribution.

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct $K(x, \cdot)$ such that $\pi(\cdot)$ will be stationary distribution.

Metropolis-Hastings

Specify a target, $\pi(\cdot)$, proposal, $q(\cdot \mid x)$, and starting point x_{1}. To sample the Markov Chain, repeat:
(1) Sample $x^{\star} \sim q\left(\cdot \mid x_{t-1}\right)$
(2) Compute

$$
\alpha\left(x^{\star} \mid x_{t-1}\right)=\min \left\{1, \frac{\pi\left(x^{\star}\right) q\left(x_{t-1} \mid x^{\star}\right)}{\pi\left(x_{t-1}\right) q\left(x^{\star} \mid x_{t-1}\right)}\right\}
$$

(3) Sample $u \sim \operatorname{Unif}(0,1)$. Set,

$$
x_{t}= \begin{cases}x^{\star} & \text { if } u \leq \alpha\left(x^{\star} \mid x_{t-1}\right) \\ x_{t-1} & \text { otherwise }\end{cases}
$$

Metropolis-Hastings - common proposals

- Random-walk MH: choose some spherically symmetric distribution $g(\cdot)$ and define

$$
q\left(x^{\star} \mid x\right)=x+\varepsilon, \text { where } \varepsilon \sim g(\cdot)
$$

- the spherical symmetry means acceptance probability simplifies:

$$
\alpha\left(x^{\star} \mid x_{t-1}\right)=\min \left\{1, \frac{\pi\left(x^{\star}\right)}{\pi\left(x_{t-1}\right)}\right\}
$$

- often, $g(\cdot)$ is zero-mean multivariate Normal

Metropolis-Hastings - common proposals

- Random-walk MH: choose some spherically symmetric distribution $g(\cdot)$ and define

$$
q\left(x^{\star} \mid x\right)=x+\varepsilon, \text { where } \varepsilon \sim g(\cdot)
$$

- the spherical symmetry means acceptance probability simplifies:

$$
\alpha\left(x^{\star} \mid x_{t-1}\right)=\min \left\{1, \frac{\pi\left(x^{\star}\right)}{\pi\left(x_{t-1}\right)}\right\}
$$

- often, $g(\cdot)$ is zero-mean multivariate Normal
- Independent MH: any choice $q\left(x^{\star} \mid x\right)=g\left(x^{\star}\right)$, where the proposal does not depend on the current state.
- generally not a good choice, easy to construct non-ergodic chains

Convergence results

We use the same estimator as standard Monte Carlo,

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

where now x_{i} are MCMC draws.

Convergence results

We use the same estimator as standard Monte Carlo,

$$
\mu \triangleq \int f(x) \pi(d x) \approx \frac{1}{n} \sum_{i=1}^{n} f\left(x_{i}\right) \triangleq \hat{\mu}
$$

where now x_{i} are MCMC draws.
However, we no longer have iid samples from $\pi(\cdot)$, so standard Monte Carlo convergence results do not apply. Under some mild assumptions, we can state similar results for MCMC:

$$
\sqrt{n}(\hat{\mu}-\mu) \xrightarrow{n \rightarrow \infty} N\left(0, \sigma^{2}\right)
$$

where

$$
\sigma^{2}=\operatorname{Var}\left(f\left(X_{1}\right)\right)+2 \sum_{i=2}^{\infty} \operatorname{Cov}\left(f\left(X_{1}\right), f\left(X_{i}\right)\right)
$$

Estimating the variance

It is hard to estimate σ^{2} in the MCMC setting, but essential to be able to quantify accuracy of estimates.

- Simple option: always examine 'autocorrelation’ plots. These will alert you to situations where the infinite sum is contributing substantially to the variance in your estimate.
- Better option: use methods such as batch means to estimate σ^{2} from the Markov Chain output. See mcmcse R package for easy functions.

Choosing a proposal

- Counter-intuitively, high acceptance rates in MCMC are a bad thing!
- strongly correlated draws reduce the efficiency of the estimator by inflating the variance

Choosing a proposal

- Counter-intuitively, high acceptance rates in MCMC are a bad thing!
- strongly correlated draws reduce the efficiency of the estimator by inflating the variance
- But, need to move enough to explore the target
- long range jumps which reduce correlation have very low acceptance rates

Choosing a proposal

- Counter-intuitively, high acceptance rates in MCMC are a bad thing!
- strongly correlated draws reduce the efficiency of the estimator by inflating the variance
- But, need to move enough to explore the target
- long range jumps which reduce correlation have very low acceptance rates
- Need to balance these concerns
- a famous result shows that in the limit as $d \rightarrow \infty$, the optimal acceptance rate for a symmetric product form target density is 0.234
- empirically this works well in lower dimensions and other targets, though for very small d should be increased (eg $\approx 0.44 \mathrm{in} 1 \mathrm{D}$)

Demo

Enough talk ...
(1) Example Metropolis-Hastings sampler in R (MCMC.R)
(2) MCMC convergence Shiny demo (Shiny/MCMC>R)

Adaptive MCMC

Clearly there is an issue: we may get terrible results by making a poor choice of proposal.

Adaptive MCMC

Clearly there is an issue: we may get terrible results by making a poor choice of proposal.

We can learn from the samples we have already seen to automatically improve our proposal distribution.

$$
q_{t}\left(\cdot \mid x_{t-1}\right)=q\left(\cdot \mid x_{t-1},\left\{x_{1}, \ldots, x_{t-1}\right\}\right)
$$

Adaptive MCMC

Clearly there is an issue: we may get terrible results by making a poor choice of proposal.
We can learn from the samples we have already seen to automatically improve our proposal distribution.

$$
q_{t}\left(\cdot \mid x_{t-1}\right)=q\left(\cdot \mid x_{t-1},\left\{x_{1}, \ldots, x_{t-1}\right\}\right)
$$

Warning: this breaks Markov property!

Adaptive MCMC Conditions

- Stationarity: $\pi(\cdot)$ must be stationary for $q_{t}\left(\cdot \mid x_{t-1}\right) \forall t$
- Diminishing adaptation:

$$
\lim _{n \rightarrow \infty} \sup _{x \in \Omega}\left\|K_{t}(\cdot \mid x)-K_{t+1}(\cdot \mid x)\right\|=0
$$

- Containment: Time to stationarity from any point in chain with adapted kernel bounded in probability.

Adaptive MCMC - Haario et al / Roberts \& Rosenthal

Idea?

$$
q_{t}\left(\cdot \mid x_{t-1}\right) \sim N\left(x_{t-1}, \frac{2.38^{2}}{d} \hat{\Sigma}_{t}\right)
$$

Adaptive MCMC - Haario et al / Roberts \& Rosenthal

Idea?

$$
q_{t}\left(\cdot \mid x_{t-1}\right) \sim N\left(x_{t-1}, \frac{2.38^{2}}{d} \hat{\Sigma}_{t}\right)
$$

This doesn't quite work, use

$$
q_{t}\left(\cdot \mid x_{t-1}\right)=(1-\beta) N\left(x_{t-1}, \frac{2.38^{2}}{d} \hat{\Sigma}_{t}\right)+\beta N\left(x_{t-1}, \frac{0.1^{2}}{d} I\right)
$$

to satisfy adaptive conditions.

Adaptive MCMC - Haario et al / Roberts \& Rosenthal

Idea?

$$
q_{t}\left(\cdot \mid x_{t-1}\right) \sim N\left(x_{t-1}, \frac{2.38^{2}}{d} \hat{\Sigma}_{t}\right)
$$

This doesn't quite work, use

$$
q_{t}\left(\cdot \mid x_{t-1}\right)=(1-\beta) N\left(x_{t-1}, \frac{2.38^{2}}{d} \hat{\Sigma}_{t}\right)+\beta N\left(x_{t-1}, \frac{0.1^{2}}{d} I\right)
$$

to satisfy adaptive conditions.
$2.38^{2} / d$ is the optimal scaling in certain theoretical circumstances. Alternative, scale to target an acceptance rate:

$$
q_{t}\left(\cdot \mid x_{t-1}\right)=(1-\beta) N\left(x_{t-1}, e^{\gamma_{b}} \hat{\Sigma}_{t}\right)+\beta N\left(x_{t-1}, \frac{0.1^{2}}{d} I\right)
$$

where split into batches b of size 50 , say, with

$$
\gamma_{b}=\gamma_{b-1}+(-1)^{\mathbb{I}\left(\alpha_{b-1}<0.44\right)} \min \left\{0.01, n^{-1 / 2}\right\}
$$

In Practice

Software

- mcmc R package
- metrop for the kind of MCMC shown today
- temper to handle multi-modality
- Stan
- www.mc-stan.org
- Hamiltonian Monte Carlo
- several languages
- Birch
- www.birch-lang.org
- Sequential Monte Carlo
- brand new and particularly exciting probabilistic programming language

