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Motivation

Sampling from probability distributions — why?

Monte Carlo essentially avoids the quandry of choosing an
accurate but intractable model versus a simple but computable
one.
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Motivation

Sampling from probability distributions — why?

Monte Carlo essentially avoids the quandry of choosing an
accurate but intractable model versus a simple but computable
one.

May want to answer:

 Probabilistic questions

« simulate physical random processes

« concerned with some corresponding random outcome
» may be inherent or perceived randomness

« eg simulation of shuttle launch

» Deterministic questions

« most often, boils down to computation of high dimensional
integrals

+ use ‘experimental’ methods to answer ‘theoretical’
question

3/37



Motivation

Bayesian inference (recall Georgios Karagiannis’ talk)

» Data: t = {t1,...,tn}

« Model: ¢ is the realisation of a random vector 7" having
probability density 77|y (- | 1), where 1 is an unknown
parameter. 77|y (t|-) is the likelihood.

* Prior: all knowledge about ¢» which is not contained in ¢ is
expressed via prior density 7y (¢)).
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probability density 77|y (- | 1), where 1 is an unknown
parameter. 77|y (t|-) is the likelihood.

* Prior: all knowledge about ¢» which is not contained in ¢ is
expressed via prior density 7y (¢)).

* Posterior: Bayes’ Theorem enables us to rationally update
the prior to our posterior belief in light of the new evidence
(data).

Bayes’ Theorem
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* Prior: all knowledge about ¢» which is not contained in ¢ is
expressed via prior density 7y (¢)).

* Posterior: Bayes’ Theorem enables us to rationally update
the prior to our posterior belief in light of the new evidence
(data).

Bayes’ Theorem
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Motivation

Everything is about expectations ...

Recall, for a random variable X € € having probability density
(),

E[f(X)] = /Q f@)r(de) 2 p
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Motivation

Everything is about expectations ...

Recall, for a random variable X € € having probability density
(),

MAxwzlg@MMMéu

Pretty much all statements of probability can be phrased in
terms of expectations.

- X €R,

a

POX<a)= [ n(de) = [ T swn)(@)n(de) = Bl -so(X))
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Motivation

Everything is about expectations ...

Recall, for a random variable X € € having probability density
(),

E[f(X)] = /Q f@)r(de) 2 p

Pretty much all statements of probability can be phrased in
terms of expectations.

. X €R,
POX<a)= [ n(de) = [ T swn)(@)n(de) = Bl -so(X))
« XecQ ACQ,

MXG@:lf@m:AM@h@@:MhMH

ie for statements of probability define f(z) := [4(z)
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Motivation

Bayesian inference again

« May want samples directly from the posterior;

« marginal kernel density estimates;
e posterior predictive simulation;
. etc
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Motivation

Bayesian inference again

« May want samples directly from the posterior;

« marginal kernel density estimates;
e posterior predictive simulation;
. etc

¢ Or may want to answer question about a probability under
the posterior

P eAlt)= [ m(awy

_ Jola(@)m (t\%b) m(di)
Jam(t]¥) m(dy)

_/HA dw\t
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Motivation

So ... just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

[ st = [ g~ ""0 3 gt

where
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Motivation

So

.. just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:

[ st = [ g~ ""0 3 gt

+b—a<. 1)
T;=a i — =
’ n 2

It is easy to show the error is:
b
L

Clearly, & (2)| is fixed by the problem, so we
achieve des1red accuracy by controlling n 2.

where

n

<0 o 1)
- 24712 a<z<b

7/37



Motivation

So ... just do numerical integration?

e error in midpoint Riemann integral in 1-dim:

O(n™?)
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So ... just do numerical integration?

e error in midpoint Riemann integral in 1-dim:
O(n™?)
but
e error in midpoint Riemann integral in d-dim:
(’)(n*Q/ 4y

so-called ‘curse of dimensionality’
e error in Monte Carlo integration:

O(n~1/?)

ie independent of dimension
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Motivation

So ... just do numerical integration?

e error in midpoint Riemann integral in 1-dim:
O(n™?)
but

e error in midpoint Riemann integral in d-dim:
O(an/d>

so-called ‘curse of dimensionality’
e error in Monte Carlo integration:

O(n71/2)
ie independent of dimension
Simpson’s improves this to O(n~*/¢), but in general

Bakhvalov’s Theorem bounds all possible quadriture methods

by O(n~"/%) ... quadriture can’t beat curse of dimensionality. -



Motivation

Method
Monte Carlo d-dim
— Riemann 2-dim
Riemann 6-dim

Order of error

BER

100 1000 10000
n

Note: this is the order of error, not absolute error!
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Motivation

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:
A
p2 [ f@)nda) ~

where z; ~ 7(-)
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Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

pe [~ 3 ) 2

where z; ~ 7(-)

The root mean square error is:

where o = Var, (f(X)).

Again, o is (mostly) inherent to the problem, so we achieve
desired accuracy by controlling n /2
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Motivation

Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

pe [~ 3 ) 2

where z; ~ 7(-)

The root mean square error is:

where o = Var, (f(X)).

Again, o is (mostly) inherent to the problem, so we achieve
desired accuracy by controlling n /2

Recall we can set f(x) := [4(z) to compute probabilities. 1057



Motivation

Monte Carlo — the practicality

Remarkably:

¢ No dependence on d.
» No dependence on smoothness of integrand.

* 75 can itself be directly estimated from the samples
drawn.
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Motivation

Monte Carlo — the practicality

Remarkably:

¢ No dependence on d.
» No dependence on smoothness of integrand.

[ea

* 75 can itself be directly estimated from the samples
drawn.

but ... the crux of the last slide was:
“where z; ~ 7(-)”

Methodological research in Monte Carlo is largely preocupied
with how to achieve this for complex probability distributions.
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Motivation

Monte Carlo — achieving desired accuracy

A simple application of Chebyshev’s inequality allows us to
bound how certain we are in a fully quantified way,

Plap—plze) < ——F—"—=—

12/37



Motivation

Monte Carlo — achieving desired accuracy

A simple application of Chebyshev’s inequality allows us to
bound how certain we are in a fully quantified way,

Plap—plze) < ——F—"—=—

Or indeed, invoking the iid central limit theorem we can
asymptotically state,

pETE <L) n2 (2
o172

and so form confidence intervals for i based on large n
samples.
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Simple MC
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Simple MC

The setting

Almost all Monte Carlo procedures start from the assumption
that we have available an unlimited stream of independent
uniformly distributed values, typically on the interval [0, 1].

We now want to study how to convert a stream
u; ~ Unif(0, 1)

into a stream
zj~ ()

where z; is generated by some algorithm depending on one or
more u;. In more advanced methods (see MCMC), x; may also
dependon z;_; orevenxy,...,z;_1.
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Simple MC
Inverse sampling

Let F(z) := P(X < z) be the cumulative distribution function
for our target probability density function 7 (+).

Inverse Sampling

@ Sample U ~ Unif (0, 1).
@ Set X = F1(U).
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Simple MC
Inverse sampling

Let F(z) := P(X < z) be the cumulative distribution function
for our target probability density function 7 (+).

Inverse Sampling

@ Sample U ~ Unif (0, 1).
@ Set X = F1(U).

Why is X ~ 7(-)?

To avoid problems with discrete distributions, we must define 8

F~l(u) = inf{z: F(z) > u}, Yu €[0,1]
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Simple MC
Rejection sampling

Seek a density 7(-) we can sample from and such that
m(z) < cit(z) Vo
where ¢ < co. 7(-) and 7(-) need not be normalised.
Rejection Sampling
@ Sample Y ~ 7(-) and U ~ Unif(0, 1).

O IfU < ;(()Q) ,return Y, else return to 1.
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Simple MC
Rejection sampling

Seek a density 7(-) we can sample from and such that
m(x) < cn(z) Vo

where ¢ < co. 7(-) and 7(-) need not be normalised.

Rejection Sampling

@ Sample Y ~ 7(-) and U ~ Unif(0, 1).

O IfU < ;(()Q) ,return Y, else return to 1.

This is not perfectly efficient as we must iterate 1 & 2 a random
number of times until acceptance, with sa

P(accept) = !
C
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Simple MC
Rejection sampling — caution, a low-d method

Consider a multi-variate Normal distribution centered at 0,
1
7(x) = det(27%) "2 exp (—2XT21X)

Say want to produce samples for target where

1 09 --- 09

09 1 --- 0.9
= . . . =Q"Q

09 09 --- 1
using a proposal 7(-) where ¥ = o1.

If o < max{\;}, c = oc.

¢ minimal for o = max{\;}.
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Motivation

Simple MC

Acceptance Probability

le-01-

le-04 -

le-07 -

[ ]
[ ]
[ ]
[ ]
[ ]
[ ]
[ ]

[ ]

3 4 5 6 7 8 9 10
Dimension
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Simple MC
Rejection sampling — demo

Shiny demo for rejection sampling with:
m(z) o< (z — 5)° cos (x_1/4>

and

Thus,
c~49 and P(accept)~ 0.204

19/37



Simple MC
Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to (),
then we can produce a weighted set of samples. sl
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Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to (),
then we can produce a weighted set of samples. sl

Importance Sampling

@ Sample X ~ 7(+)
® Sample is z; = X, with weight w; = gg)

—
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Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to (),
then we can produce a weighted set of samples. sl

Importance Sampling

@ Sample X ~ 7(+)

® Sample is x; = X, with weight w; = (X

7(X)

—

Monte Carlo estimator is slightly modified to account for
weights:

= /f d:cw—Zwa:c,éA
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Simple MC
Importance sampling (I)

If we have a probability density 7(-) which is ‘close’ to (),
then we can produce a weighted set of samples. sl

Importance Sampling

@ Sample X ~ 7(+)

® Sample is x; = X, with weight w; = (X

7(X)

—

Monte Carlo estimator is slightly modified to account for
weights:

= /f d:cw—Zwa:c,éA

Standard Importance Sampling Properties

E[p] = p, Var(p) = % where o5 = /
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Importance sampling (II)

Consequently, can show optimal proposal for importance

sampling is:
s — @)
P o f (@) (da)
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Importance sampling (II)

Consequently, can show optimal proposal for importance

sampling is:
s — @)
P o f (@) (da)

Hence, importance sampling shows how to beat naive Monte
Carlo when estimating expectations of non-identity
functionals — in practice, we can never compute the optimal

().
Can still provide a nice guide ... s
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Simple MC

Importance sampling — unnormalised 7(-)

We can still perform importance sampling if 7 (-) and 7 (-) are
only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised
importance sampling estimate becomes:

~ i f(@i)w;
/ flym(de) m ST
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Simple MC

Importance sampling — unnormalised 7(-)

We can still perform importance sampling if 7 (-) and 7 (-) are
only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised
importance sampling estimate becomes:

/f(x)w(dx) ~ > flxi)w;

n
i=1 Wi

Self-normalised Importance Sampling Properties
_ 4 HVar(W) — Cov(W, W f(X))

n

+0(n™?%)

Y wi(f(zi) = p)* and 7(x)opt o< | f(2) — plm(z)

=1

=
=
B
2
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Simple MC

Importance sampling — simple diagnostic

Equate variance of importance sampling estimate to Monte
Carlo variance for a fixed sample size n.:

Var< i1 f(l‘i)wz') _ a?
Z?:1 wj e
Var (31 f(zi)wi)  o*

(S ws)? e
o230 w? B o?
(S wi)® e
g
)

 balanced weights are desirable.
 small n. = diagnose a problem with IS
e large n. # all is ok with IS
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MCMC

MCMC
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MCMC

Markov Chain Monte Carlo

« Standard Monte Carlo methods indeed have the nice
O(n~1/?) convergence rates

 no dependence on dimension d
 Constant in the error term still depends on dimension!
* no completely free lunch

» But there are methods which control the error term better
than standard Monte Carlo

e MCMC, introduced in 1953, constructs a Markov Chain
whose stationary distribution is the target distribution of
interest, 7(-).
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MCMC
Markov Chains

Saw Markov Chains in an imprecise probability context
yesterday morning (Gert de Cooman’s talk).

Recall, a process (X7, X, ...) is a continuous state space,
discrete time Markov Chain if

P(Xt S A’Xl =21y, X1 = .It_1> = P(Xt S A’Xt_l = 1't_1)
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MCMC
Markov Chains

Saw Markov Chains in an imprecise probability context
yesterday morning (Gert de Cooman’s talk).

Recall, a process (X7, X, ...) is a continuous state space,
discrete time Markov Chain if
P(Xt c A ’ Xi=x1,..., X1 = .It_1> = P(Xt cA ’ X1 = 1't_1)
The transition probabilities from a current state are defined by
a kernel function K (z, -), such that,

P(X; € A| Xio1 = w1_1) = /AK(xt_l,dy) 2 K(zs1, A)

Under certain conditions, these chains will have a stationary
distribution. We are interested in constucting Markov Chains
with the stationary distribution we want to target, ie

| wlda) K (@) = 7(»)
Q
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MCMC

Diving straight in ...

There is a rich and interesting theory of Markov Chains, but
we’ll fast-forward to the action for today.
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MCMC

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct
K (z,-) such that = (-) will be stationary distribution.
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MCMC

Diving straight in ...

Metropolis-Hastings is a method to algorithmically construct
K (z,-) such that = (-) will be stationary distribution.

Metropolis-Hastings

Specify a target, 7 (-), proposal, ¢(- | z), and starting point z;.
To sample the Markov Chain, repeat:

©® Sample 2* ~ g(- | z4-1)
® Compute

a(z* |zi—1) = min {1,

m(2*) q(xp—1 | 2*) }

m(we-1) q(z* | we-1)
® Sample u ~ Unif (0, 1). Set,
* 1 < *
xt:{ 5 ifu <a(z*|zi—1)

z;—1 otherwise
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MCMC

Metropolis-Hastings — common proposals

« Random-walk MH: choose some spherically symmetric
distribution g(-) and define

q(z*|z) = x + ¢, wheree ~ g(-)

¢ the spherical symmetry means acceptance probability
simplifies: s

o(a* | 4_1) = min {1, n(a*) }

m(Ti—1)

* often, g(-) is zero-mean multivariate Normal
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MCMC

Metropolis-Hastings — common proposals

« Random-walk MH: choose some spherically symmetric
distribution g(-) and define

q(z*|z) = x + ¢, wheree ~ g(-)

¢ the spherical symmetry means acceptance probability
simplifies: s

o(a* | 4_1) = min {1, n(a*) }

m(Ti—1)

* often, g(-) is zero-mean multivariate Normal

+ Independent MH: any choice ¢(z* | z) = g(«*), where the
proposal does not depend on the current state.
- generally not a good choice, easy to construct non-ergodic
chains

29/37



MCMC
Convergence results

We use the same estimator as standard Monte Carlo,
p2 [ @) ~

where now z; are MCMC draws.
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MCMC
Convergence results

We use the same estimator as standard Monte Carlo,

p2 [ f@mldn) = 23 g 2

where now z; are MCMC draws.

However, we no longer have iid samples from 7 (-), so standard

Monte Carlo convergence results do not apply. Under some

mild assumptions, we can state similar results for MCMC:
Vn(f = p) “== N(0,07)

where

o? = Var(f(X1)) + Zi Cov(f(X1), f(X3))

=2
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MCMC

Estimating the variance

It is hard to estimate 2 in the MCMC setting, but essential to
be able to quantify accuracy of estimates.

+ Simple option: always examine ‘autocorrelation’ plots.
These will alert you to situations where the infinite sum is
contributing substantially to the variance in your estimate.

 Better option: use methods such as batch means to
estimate o2 from the Markov Chain output. See mcmcse R
package for easy functions.
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MCMC

Choosing a proposal

« Counter-intuitively, high acceptance rates in MCMC are a
bad thing!

« strongly correlated draws reduce the efficiency of the
estimator by inflating the variance
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estimator by inflating the variance

 But, need to move enough to explore the target

« long range jumps which reduce correlation have very low
acceptance rates
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MCMC

Choosing a proposal

« Counter-intuitively, high acceptance rates in MCMC are a
bad thing!

« strongly correlated draws reduce the efficiency of the
estimator by inflating the variance

 But, need to move enough to explore the target

« long range jumps which reduce correlation have very low
acceptance rates

» Need to balance these concerns

« a famous result shows that in the limit as d — oo, the
optimal acceptance rate for a symmetric product form
target density is 0.234

 empirically this works well in lower dimensions and other
targets, though for very small d should be increased (eg
~ 0.44in 1D)
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MCMC
Demo

Enough talk ...

©® Example Metropolis-Hastings sampler in R (MCMC.R)
® MCMC convergence Shiny demo (Shiny/MCMC>R)
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.

We can learn from the samples we have already seen to
automatically improve our proposal distribution.

@ (- |ze-1) = q(- |21, {x1, . 201 })
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.

We can learn from the samples we have already seen to
automatically improve our proposal distribution.

at(-[we-1) = q(- |2e—1, {21, - s 241 })
Warning: this breaks Markov property!
Adaptive MCMC Conditions

« Stationarity: «(-) must be stationary for ¢, (- | z;—1) V¢
« Diminishing adaptation:

Jim sup [ Ki(-2) = Ko (- |2)] = 0

« Containment: Time to stationarity from any point in
chain with adapted kernel bounded in probability.
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MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?
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MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?

2.382 .
Qt(' |33t—1) ~ N (xt—la Et)

This doesn’t quite work, use

2 2
@(-lre-1) = (1= B)N (Iﬂtl, 2':;8 fh) + BN (fﬁtb 01])

d

to satisfy adaptive conditions.
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MCMC

Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?

2.382 .
Qt(' |33t—1) ~ N (xt—la Et)

This doesn’t quite work, use

2.382 . 0.12
q(-|ze—1) = (1= B)N <5Et1a pi Et) + 8N (fﬂth dI>

to satisfy adaptive conditions.

2.382/d is the optimal scaling in certain theoretical
circumstances. Alternative, scale to target an acceptance rate:

o & 0.1
@(-lze-1) = (1= B)N (Cﬂtfl,e b Et) + BN | z¢-1, TI
where split into batches b of size 50, say, with

Yo =1 + (—1)H-1<04) 1in 10,01, n 2}
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In Practice

In Practice
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In Practice

Software

« mcmc R package

* metrop for the kind of MCMC shown today
« temper to handle multi-modality sa

e Stan

* www.mc-stan.org
¢ Hamiltonian Monte Carlo
« several languages

» Birch

* www.birch-lang.org

 Sequential Monte Carlo

 brand new and particularly exciting probabilistic
programming language
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