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Sampling from probability distributions – why?

Monte Carlo essentially avoids the quandry of choosing an
accurate but intractable model versus a simple but computable
one.

May want to answer:

• Probabilistic questions
• simulate physical random processes
• concerned with some corresponding random outcome
• may be inherent or perceived randomness
• eg simulation of shuttle launch

• Deterministic questions
• most often, boils down to computation of high dimensional
integrals

• use ‘experimental’ methods to answer ‘theoretical’
question
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Bayesian inference (recall Georgios Karagiannis’ talk)

• Data: t = {t1, . . . , tn}
• Model: t is the realisation of a random vector T having
probability density πT | Ψ(· |ψ), where ψ is an unknown
parameter. πT | Ψ(t | ·) is the likelihood.

• Prior: all knowledge about ψ which is not contained in t is
expressed via prior density πΨ(ψ).

• Posterior: Bayes’ Theorem enables us to rationally update
the prior to our posterior belief in light of the new evidence
(data).

Bayes’ Theorem

πΨ | T (ψ | t) =
πT | Ψ(t |ψ) πΨ(ψ)∫

Ω πT | Ψ(t |ψ) πΨ(dψ)
∝ πT | Ψ(t |ψ) πΨ(ψ)
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Everything is about expectations …

Recall, for a random variableX ∈ Ω having probability density
π(x),

E[f(X)] :=
∫

Ω
f(x)π(dx) ≜ µ

Pretty much all statements of probability can be phrased in
terms of expectations.

• X ∈ R,

P(X < a) =
∫ a

−∞
π(dx) =

∫ ∞

−∞
I(−∞,a)(x)π(dx) = E[I(−∞,a)(X)]

• X ∈ Ω, A ⊆ Ω,

P(X ∈ A) =
∫

A
π(dx) =

∫
Ω
IA(x)π(dx) = E[IA(X)]

ie for statements of probability define f(x) := IA(x)
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Bayesian inference again

• May want samples directly from the posterior;
• marginal kernel density estimates;
• posterior predictive simulation;
• etc

• Or may want to answer question about a probability under
the posterior

P(ψ ∈ A | t) =
∫

A
π(dψ | t)

=
∫

Ω IA(ψ)π(t |ψ) π(dψ)∫
Ω π(t |ψ) π(dψ)

=
∫

Ω
IA(ψ)π(dψ | t)
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So … just do numerical integration?

Midpoint Riemann integral in 1-dim using n evaulations:∫ b

a
f(x)π(dx) =

∫ b

a
g(x) dx ≈ b− a

n

n∑
i=1

g(xi)

where
xi := a+ b− a

n

(
i− 1

2

)

It is easy to show the error is:∣∣∣∣∣
∫ b

a
g(x) dx− b− a

n

n∑
i=1

g(xi)
∣∣∣∣∣ ≤ (b− a)3

24n2 max
a≤z≤b

|f ′′(z)|

Clearly, (b−a)3

24 maxa≤z≤b |f ′′(z)| is fixed by the problem, so we
achieve desired accuracy by controlling n−2.
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So … just do numerical integration?

• error in midpoint Riemann integral in 1-dim:

O(n−2)

but

• error in midpoint Riemann integral in d-dim:

O(n−2/d)

so-called ‘curse of dimensionality’
• error in Monte Carlo integration:

O(n−1/2)

ie independent of dimension

Simpson’s improves this to O(n−4/d), but in general
Bakhvalov’s Theorem bounds all possible quadriture methods
by O(n−r/d) … quadriture can’t beat curse of dimensionality.
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Note: this is the order of error, not absolute error!
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Monte Carlo to the rescue?

Monte Carlo integration in d-dim using n evaulations:

µ ≜
∫
f(x)π(dx) ≈ 1

n

n∑
i=1

f(xi) ≜ µ̂

where xi ∼ π(·)

The root mean square error is:√√√√√E

(∫ f(x)π(dx) − 1
n

n∑
i=1

f(xi)
)2
 = σ√

n

where σ = Varπ (f(X)).

Again, σ is (mostly) inherent to the problem, so we achieve
desired accuracy by controlling n−1/2

Recall we can set f(x) := IA(x) to compute probabilities.
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Monte Carlo — the practicality

Remarkably:

• No dependence on d.
• No dependence on smoothness of integrand.
• σ√

n
can itself be directly estimated from the samples

drawn.

but… the crux of the last slide was:
“where xi ∼ π(·)”

Methodological research in Monte Carlo is largely preocupied
with how to achieve this for complex probability distributions.



11/37

Motivation Simple MC MCMC In Practice

Monte Carlo — the practicality

Remarkably:

• No dependence on d.
• No dependence on smoothness of integrand.
• σ√

n
can itself be directly estimated from the samples

drawn.

but… the crux of the last slide was:
“where xi ∼ π(·)”

Methodological research in Monte Carlo is largely preocupied
with how to achieve this for complex probability distributions.



12/37

Motivation Simple MC MCMC In Practice

Monte Carlo — achieving desired accuracy

A simple application of Chebyshev’s inequality allows us to
bound how certain we are in a fully quantified way,

P(|µ̂− µ| ≥ ε) ≤ E[(µ̂− µ)2]
ε2 = σ

nε2

Or indeed, invoking the iid central limit theorem we can
asymptotically state,

P
(
µ̂− µ

σn−1/2 ≤ z

)
n→∞−−−→ Φ(z)

and so form confidence intervals for µ based on large n
samples.
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Simple MC
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The setting

Almost all Monte Carlo procedures start from the assumption
that we have available an unlimited stream of independent
uniformly distributed values, typically on the interval [0, 1].

We now want to study how to convert a stream

ui ∼ Unif(0, 1)

into a stream
xj ∼ π(·)

where xj is generated by some algorithm depending on one or
more ui. In more advanced methods (see MCMC), xj may also
depend on xj−1 or even x1, . . . , xj−1.
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Inverse sampling

Let F (x) := P(X ≤ x) be the cumulative distribution function
for our target probability density function π(·).
Inverse Sampling

1 Sample U ∼ Unif(0, 1).
2 SetX = F−1(U).

Why isX ∼ π(·)?

P(X ≤ x) = P(F−1(U) ≤ x)
= P(F (F−1(U)) ≤ F (x))
= P(U ≤ F (x))
= F (x)

To avoid problems with discrete distributions, we must define

F−1(u) = inf{x : F (x) ≥ u}, ∀ u ∈ [0, 1]
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Rejection sampling

Seek a density π̃(·) we can sample from and such that

π(x) ≤ cπ̃(x) ∀x

where c < ∞. π̃(·) and π(·) need not be normalised.

Rejection Sampling

1 Sample Y ∼ π̃(·) and U ∼ Unif(0, 1).
2 If U ≤ π(Y )

cπ̃(Y ) , return Y , else return to 1.

This is not perfectly efficient as we must iterate 1 & 2 a random
number of times until acceptance, with

P(accept) = 1
c
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Rejection sampling — caution, a low-d method

Consider a multi-variate Normal distribution centered at 0,

π(x) = det(2πΣ)−1/2 exp
(

−1
2

xTΣ−1x
)

Say want to produce samples for target where

Σ =


1 0.9 · · · 0.9

0.9 1 · · · 0.9
...

...
. . .

...
0.9 0.9 · · · 1

 = QTΛQ

using a proposal π̃(·) where Σ = σI.

If σ < max{λi}, c = ∞.

cminimal for σ = max{λi}.
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Rejection sampling — demo

Shiny demo for rejection sampling with:

π(x) ∝ (x− 5)2 cos
(
x−1/4

)
and

π̃(x) ∼ N(µ = 4, σ = 3)

Thus,
c ≈ 4.9 and P(accept) ≈ 0.204
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Importance sampling (I)

If we have a probability density π̃(·) which is ‘close’ to π(·),
then we can produce a weighted set of samples.

Importance Sampling

1 SampleX ∼ π̃(·)
2 Sample is xi = X, with weight wi = π(X)

π̃(X)

Monte Carlo estimator is slightly modified to account for
weights:

µ ≜
∫
f(x)π(dx) ≈ 1

n

n∑
i=1

wif(xi) ≜ µ̂

Standard Importance Sampling Properties

E[µ̂] = µ, Var(µ̂) = σπ̃

n
where σπ̃ =

∫ (f(x)π(x) − µπ̃(x))2

f(x)π(x)
dx
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Importance sampling (II)

Consequently, can show optimal proposal for importance
sampling is:

π̃(x)opt = |f(x)|π(x)∫
Ω |f(x)|π(dx)

Hence, importance sampling shows how to beat naïve Monte
Carlo when estimating expectations of non-identity
functionals — in practice, we can never compute the optimal
π̃(·).

Can still provide a nice guide …
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Importance sampling — unnormalised π(·)

We can still perform importance sampling if π̃(·) and π(·) are
only known up to a normalising constant.

Algorithm for sampling is unchanged, but the self-normalised
importance sampling estimate becomes:∫

f(x)π(dx) ≈
∑n

i=1 f(xi)wi∑n
i=1wi

Self-normalised Importance Sampling Properties

E[µ̂] = µ+ µVar(W ) − Cov(W,Wf(X))
n

+ O(n−2)

Var(µ̂) ≈
n∑

i=1
w2

i (f(xi) − µ̂)2 and π̃(x)opt ∝ |f(x) − µ|π(x)
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Importance sampling — simple diagnostic

Equate variance of importance sampling estimate to Monte
Carlo variance for a fixed sample size ne:

Var
(∑n

i=1 f(xi)wi∑n
i=1wi

)
= σ2

ne

=⇒ Var (
∑n

i=1 f(xi)wi)
(
∑n

i=1wi)2 = σ2

ne

=⇒ σ2∑n
i=1w

2
i

(
∑n

i=1wi)2 = σ2

ne

=⇒ ne = nw̄2

w2

• balanced weights are desirable.
• small ne ⇒ diagnose a problem with IS
• large ne ̸⇒ all is ok with IS
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MCMC
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Markov Chain Monte Carlo

• Standard Monte Carlo methods indeed have the nice
O(n−1/2) convergence rates

• no dependence on dimension d

• Constant in the error term still depends on dimension!
• no completely free lunch

• But there are methods which control the error term better
than standard Monte Carlo

• MCMC, introduced in 1953, constructs a Markov Chain
whose stationary distribution is the target distribution of
interest, π(·).
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Markov Chains

Saw Markov Chains in an imprecise probability context
yesterday morning (Gert de Cooman’s talk).

Recall, a process (X1, X2, . . . ) is a continuous state space,
discrete time Markov Chain if

P(Xt ∈ A |X1 = x1, . . . , Xt−1 = xt−1) ≡ P(Xt ∈ A |Xt−1 = xt−1)

The transition probabilities from a current state are defined by
a kernel functionK(x, ·), such that,

P(Xt ∈ A |Xt−1 = xt−1) =
∫

A
K(xt−1, dy) ≜ K(xt−1, A)

Under certain conditions, these chains will have a stationary
distribution. We are interested in constucting Markov Chains
with the stationary distribution we want to target, ie∫

Ω
π(dx)K(x, y) = π(y)
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Diving straight in …

There is a rich and interesting theory of Markov Chains, but
we’ll fast-forward to the action for today.
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Diving straight in …

Metropolis-Hastings is a method to algorithmically construct
K(x, ·) such that π(·) will be stationary distribution.

Metropolis-Hastings
Specify a target, π(·), proposal, q(· |x), and starting point x1.
To sample the Markov Chain, repeat:

1 Sample x⋆ ∼ q(· |xt−1)
2 Compute

α(x⋆ |xt−1) = min
{

1, π(x⋆) q(xt−1 |x⋆)
π(xt−1) q(x⋆ |xt−1)

}
3 Sample u ∼ Unif(0, 1). Set,

xt =
{
x⋆ if u ≤ α(x⋆ |xt−1)
xt−1 otherwise
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Metropolis-Hastings — common proposals

• Random-walk MH: choose some spherically symmetric
distribution g(·) and define

q(x⋆ |x) = x+ ε, where ε ∼ g(·)

• the spherical symmetry means acceptance probability
simplifies:

α(x⋆ |xt−1) = min
{

1, π(x⋆)
π(xt−1)

}
• often, g(·) is zero-mean multivariate Normal

• Independent MH: any choice q(x⋆ |x) = g(x⋆), where the
proposal does not depend on the current state.

• generally not a good choice, easy to construct non-ergodic
chains
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Convergence results

We use the same estimator as standard Monte Carlo,

µ ≜
∫
f(x)π(dx) ≈ 1

n

n∑
i=1

f(xi) ≜ µ̂

where now xi are MCMC draws.

However, we no longer have iid samples from π(·), so standard
Monte Carlo convergence results do not apply. Under some
mild assumptions, we can state similar results for MCMC:

√
n(µ̂− µ) n→∞−−−→ N(0, σ2)

where

σ2 = Var(f(X1)) + 2
∞∑

i=2
Cov(f(X1), f(Xi))
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Estimating the variance

It is hard to estimate σ2 in the MCMC setting, but essential to
be able to quantify accuracy of estimates.

• Simple option: always examine ‘autocorrelation’ plots.
These will alert you to situations where the infinite sum is
contributing substantially to the variance in your estimate.

• Better option: use methods such as batch means to
estimate σ2 from the Markov Chain output. See mcmcse R
package for easy functions.
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Choosing a proposal

• Counter-intuitively, high acceptance rates in MCMC are a
bad thing!

• strongly correlated draws reduce the efficiency of the
estimator by inflating the variance

• But, need to move enough to explore the target
• long range jumps which reduce correlation have very low
acceptance rates

• Need to balance these concerns
• a famous result shows that in the limit as d → ∞, the
optimal acceptance rate for a symmetric product form
target density is 0.234

• empirically this works well in lower dimensions and other
targets, though for very small d should be increased (eg
≈ 0.44 in 1D)
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Demo

Enough talk …

1 Example Metropolis-Hastings sampler in R (MCMC.R)
2 MCMC convergence Shiny demo (Shiny/MCMC>R)
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Adaptive MCMC

Clearly there is an issue: we may get terrible results by making
a poor choice of proposal.

We can learn from the samples we have already seen to
automatically improve our proposal distribution.

qt(· |xt−1) = q(· |xt−1, {x1, . . . , xt−1})
Warning: this breaks Markov property!

Adaptive MCMC Conditions
• Stationarity: π(·) must be stationary for qt(· |xt−1) ∀t
• Diminishing adaptation:

lim
n→∞

sup
x∈Ω

∥Kt(· |x) −Kt+1(· |x)∥ = 0

• Containment: Time to stationarity from any point in
chain with adapted kernel bounded in probability.
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Adaptive MCMC — Haario et al / Roberts & Rosenthal

Idea?

qt(· |xt−1) ∼ N

(
xt−1,

2.382

d
Σ̂t

)

This doesn’t quite work, use

qt(· |xt−1) = (1 − β)N
(
xt−1,

2.382

d
Σ̂t

)
+ βN

(
xt−1,

0.12

d
I

)
to satisfy adaptive conditions.

2.382/d is the optimal scaling in certain theoretical
circumstances. Alternative, scale to target an acceptance rate:

qt(· |xt−1) = (1 − β)N
(
xt−1, e

γb Σ̂t

)
+ βN

(
xt−1,

0.12

d
I

)
where split into batches b of size 50, say, with

γb = γb−1 + (−1)I(αb−1<0.44) min{0.01, n−1/2}
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In Practice
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Software

• mcmc R package
• metrop for the kind of MCMC shown today
• temper to handle multi-modality

• Stan
• www.mc-stan.org
• Hamiltonian Monte Carlo
• several languages

• Birch
• www.birch-lang.org
• Sequential Monte Carlo
• brand new and particularly exciting probabilistic
programming language
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