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Abstract. Outside of controlled experiment scope, we have only limited
information available to carry out desired inferences. One such scenario
is when we wish to infer the topology of a system given only data repre-
senting system lifetimes without information about states of components
in time of system failure, and only limited information about lifetimes of
the components of which the system is composed. This scenario, masked
system inference, has been studied before for systems with only one com-
ponent type, with interest of inferring both system topology and lifetime
distribution of component composing it. In this paper we study simi-
lar scenario in which we consider systems consisting of multiple types
of components. We assume that distribution of component lifetimes is
known to belong to a prior-specified set of distributions and our inten-
tion is to reflect this information via a set of likelihood functions which
will be used to obtain an imprecise posterior on the set of considered
system topologies.
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1 Introduction

Masked system inference concerns about carrying out inferences about the un-
derlying system model from system failure time observations, rather than the
more commonly studied situations where life test data is available on compo-
nents. Our inference may concern lifetime distributions of system components
and/or structure of the system. Also, the prior information may be available in
various forms and sometimes prevents us from constructing suitable prior distri-
butions for Bayesian inference.

We will study here a scenario in which we wish to infer unknown structure of the
system from masked system lifetimes given prior distribution on system struc-
ture and a set of credible component lifetime distributions. System structures
will be specified by survival signatures (introduced in [4]) and we will use the-
ory of imprecise probabilities (IP; more in [3]) to describe and obtain inference
results.
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System reliability inferences with survival signatures based on component
failure observations were described in [2] and further extended for IP framework
in [5]. Masked system structural inference in Bayesian framework for single com-
ponent type systems were studied by Aslett in [1], where further elaboration
of the nature of inference on masked system with uncertain structure and its
numerical solution by Monte Carlo algorithms is presented.

2 Problem setting

2.1 Masked system inference

Let 25 be a set of considered systems. We model underlying distribution of
component lifetimes with a parametric model and we index collection of compo-
nent lifetime distributions by multi-parameter 6 € (2. For each combination of
system s and set of distributions indexed by # we assume that we can calculate
the system survival function R(t|s,8) = Pr(Tsys > t).

We further assume that the observables, D, are distributed according to sys-
tem lifetime distribution (elements d; represent observations of system failure
times, r.v. Tyys). With additional assumptions about dependency among obser-
vations (e.g. i.i.d.), we can construct the observation model f(d|6,s) = L(0, s; d),
for inference purposes:
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where specific form of f(d;|6, s) depends on our system model and shall be given
by equation 5.
The system design is considered unknown and is therefore included in the likeli-
hood, which then enables joint inference about the reliability and the topology
of the system.

2.2 Imprecise probability inference of masked systems

In IP inference we operate with set of models (set of priors, set of likelihoods).
For each of singular model of this set, we can carry out standard inference and
analyse the collection partial results. If our aim is to infer probability of some
event of interest, in IP scenario we can calculate the bounds for coherent infer-
ences - lower and upper probabilities, where lower probability is minimal inferred
probability over the models in the set, and similarly for the upper probability.

In system inference with uncertainty about both component lifetime distribu-
tions and system structure, we can choose different uncertainty models for these
respective variables. By imprecision we model situations in which we know only
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possible domain of random variable and are unable to specify prior distribution
for Bayesian inference. Such case will lead to IP inference, where each particular
value of imprecise random variable defines a stochastic model on which standard
Bayesian inference can be performed and the results integrated.

In our case, we assume that we can construct prior distribution on system
structures and know only set in which component lifetime distribution parameter
0 lies. Lower bound on posterior predictive survival function can be obtained as:

L(s,0;d)

mf(sIH)ds, (2)

Pr(Ty > 1D =d) = min [ Ruyu(t]s,6)

where Ry is the system lifetime survival function, £ is the likelihood function
described in equation 1, f is prior density for Bayesian inference and factor Z is
for posterior distribution normalization, i.e. Z(0,d) = [, L(s,0;d)f(s]0)ds.
Upper bound is obtained via maximization of the same expression.

Similarly we can also introduce the lower posterior distribution on system
structure as:

(5 = sID = d) = uin D p(s1) 3)

with respective maximizations in case of upper bound.

2.3 Survival signatures for system state modelling

Via component state space decomposition, we can express the system survival
function for systems consisting of K distinct types of components, with My
components of type k with i.i.d. lifetimes for each component type k, as:

Rays(tls,0) = Pr(Ty,s > t|C(t) = 1,5,0)Pr(C(t) = U]s,6)
l

- (4)
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where ¢5(1) = Pr(Tsys > t|C(t) =1, s) is called survival signature of system s,
random vector C(t) represents number of functioning components of each re-
spective type at time ¢ (i.e. C; is number of functioning components of type ),
summation is over all possible combinations ! of numbers of functioning compo-
nent of each type. Survival functions Ry, and cumulative distribution functions
(CDFs) Fp ), indexed by component type k and (multi-)parameter 6 denote re-
spective lifetime distribution characteristics for distinct component types.

The single observation density for systems described by survival signatures
is therefore given by:
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where f9$k(.) is probability density function of kth component type lifetime.

We have derived everything necessary to be able to compute both the im-
precise posterior and posterior predictive distributions in the setting where only
masked system lifetime data are available and when the system design may be
unknown. This allows us to perform joint inference on the component lifetime
parameters and the topology of the system using imprecise probability.

In the remainder of the paper we will demonstrate the method for inference of
system structure and predictive system lifetime. Inference on A, is not further
considered in this paper.

3 Examples

In the experiments, we shall assume that the real system structure is one of those
described by survival signatures in Table 1 (those are all simply connected sys-
tems of order 4, as defined and listed in [1], each with a random component type
assignment). These systems consists of K = 2 types components, 2 components
of each type (M; = M, = 2). Underlying component type lifetime distribu-
tions are assumed to be exponential with rates A\; = 0.45 and Ay € [0.06,1.12]
(R0 = 24, ® 24,). Prior distribution on systems (f(s]0) in equations 2 and 3)
is chosen to be uniform for all choices of A5 .

The data, observed system failures, for experiments are simulated from system
labeled as 6, which will be hereon referred to as the “ground truth” system.
Ground truth hazard rate for components of type 2 is chosen to be Ao = 0.32.

Cl1 C2| 1 2 3 4 5 6 7 8 9 10 11
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 0.50 0.50 1.00
0.00 0.00 0.00 1.00 0.00 0.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.50 1.00
0.00 0.00 0.25 0.50 0.50 0.75 0.50 0.50 0.75 1.00 1.00
0.00 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00
0.00 0.00 0.00 0.00 0.00 0.00 1.00 0.00 1.00 1.00 1.00
0.00 0.50 0.50 0.50 1.00 1.00 1.00 1.00 1.00 1.00 1.00
1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00 1.00

NN == OO
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Table 1. Survival signatures of systems in {2s. Zero row is being omitted (¢5(0) = 0).
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3.1 Survival predictions are not monotonic, nor convex in Ay

Since the predictions are defined by
their bounds, it is necessary to ac-

1.0 — t=0.07

quire them by optimization. Opti- t=0.96
mization problems are greatly sim- 08 , EEZE
plified for monotonic functions (we — =50

only need to investigate bounds of 5" \nggé
the set) and/or convex/concave func- =,

tions (where efficient gradient based w
algorithms may be employed). Al- > W
though the survival function predic- s ———————_
tions are monotone in case of know 02 04 o o8 10
system structure (|f25] = 1), neither

of these desu".ed prf)pertles could be Fig. 1. Dependency of posterior survival
proven analytically in general for pre-  fypction predictions for various selected
dictions with unknown system struc-  times on imprecise A2 obtained by analysing
ture. Conducted experiment (see Fig- 250 data samples

ure 1) provides a counterexample for

monotonicity, convexity and concav-

ity of posterior predictions in case of unknown system structure. Furthermore,
Figure 3 provides a counterexample for the same in case of system structure
posterior inference.

3.2 Imprecise structure posterior and system identification

Two basic inferences of our interest are for the system lifetime survival func-
tion (via equation 2), and for posterior system distribution (via equation 3). An
example of predictive and structure inferences are shown in Figure 2. On the
left side, the intervals for each system represents lower and upper bounds for
posterior on the set {2g. On the right picture, one set of prediction bounds for
prior distribution on system structures (before updating by observations) and
another for posterior obtained via Bayesian updating are compared with the
Kaplan-Meier estimate and the ground truth survival function.

The system identification, which would be done by comparing system poste-
rior probabilities in Bayesian decision making, has to be done in IP setting. As
can be seen in Figure 2, left, upper probabilities for multiple systems approach
1 in this experiment whilst the lower remain near 0. Therefore, there are sev-
eral systems for which we are indecisive. The explanation of this wide range is
illuminated in Figure 3, where we plot system posterior distributions obtained
for various fixed A\ by standard Bayesian inference (i.e. inner function which is
optimized in equation 3). In different regions of {2o, one system becomes domi-
nant over others and this effect is further increased with increasing sample size.
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Fig. 2. Inference results with imprecise distribution parameter A2 for sample sizes
50 (top) and 250 (bottom). Left: imprecise posterior distribution on systems. Right:
predictions of system lifetime survival function.

We can observe that an useful informative inference, we might obtain in IP
setting, is that of rejection of several system structures. As is apparent from
Figure 2 and also from Figure 4, upper posterior probability for some of the
systems tends to approach 0, which indicates their unfitness to observations.
Although, further analyses have to be performed to investigate properties of
these rejections in IP decision-making framework(s), which is out of the scope
of this paper.

3.3 Response to varying the support of A,

Next example investigates differences between disjoint choices of underlying sup-
port set 29. We perform two imprecise inferences separately for Ay support
divided by the value of (known) A;. The resulting imprecise system posteriors
are shown in Figure 4.

From Figure 4 it is apparent, that some structures like 3 and 10, which were com-
parable by the means of inference in original support set (Figure 2, left), exhibit
significant differences in case when the support is focused because the likelihood
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Fig. 3. Dependency of system structure posterior distributions on fixed A2 . Each ver-
tical slice at selected A2 represents system posterior distribution (i.e. sums to 1). Left
image for 50 data samples, right for 250. Thick curve denotes the evolution of posterior

distribution of the ground truth system.

of these systems is small in these regions (see Figure 3). Similar behaviour was
also observed in case of simply narrowing the Ao support where upper posterior
probability of many systems approached 0. These results are being omitted here

due to space limitations.
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Fig. 4. Influence of choice of the support set for A2 on structure posterior distribution.
In the left picture, the GT A2 lies in investigated set, in the right one it does not.

This scenario might be applicable for purposes of experimental design to-
wards inference about adversarial systems. Proper choice of the support set {2¢g,
and therefore the experimental settings, seems to influence identifiability of un-

derlying unknown system structure.
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4 Concluding remarks

We have demonstrated a novel methodology for inference in limited prior knowl-
edge scenario, which allows us to avoid introducing some redundant and possibly
unjustified modelling assumptions.

For the described situation, we have shown that the optimized functions of

interest are nor monotone nor convex and, so far, have to be solved by general
optimization procedures (in section 3.1).
It has also been indicated in section 3.2 and 3.3, that IP inference cannot gen-
erally serve for proper system identification, as IP reasoning allows for indeci-
siveness, but rather as a tool for system rejection in case of low upper posterior
probability.

The behaviour which was presented was observed among multiple experi-
ments that were conducted, although no analytical guarantees may be given
at this stage of research. A follow-up generalizing study which would take into
account even aspects which were only touched here (symmetrical properties of
systems and rigorous IP decision theory) is necessary to further understand ad-
vantages and limitations of proposed methodology.
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