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ABSTRACT

We consider the adjustment of a finite sequence of second-order exchangeable
vectors, and show that the adjustment shares the same powerful properties as in
the infinite case discussed by Goldstein & Wooff (1998). The types of information
we gain by sampling are identified with the orthogonal canonical directions and
we show that the canonical directions for the adjustment of the population mean
collection are the same for each sample size. These canonical directions share the
same co-ordinate representation for all population sizes N > 2 enabling simple
comparisons between both the effects of different sample sizes and of different
population sizes. If the finite sequence may be embedded in an infinite sequence,
we compare the adjustment of the population mean collection with the underly-
ing population mean collection in the infinite case showing that the differences
are quantitative rather than qualitative in that the respective canonical direc-
tions share, up to a scale-factor, the same co-ordinate structure. The adjusted
variances for the canonical directions in the finite sequence may be obtained from
those in the infinite sequence via multiplication of a finite population correction.

Keywords: Bayes linear methods; canonical directions; canonical resolutions; finite second-
order exchangeability; finite population correction.

1 Introduction

Goldstein & Wooff (1998) investigated second-order exchangeable belief adjustment when the
sampling population was judged to be infinite. In sampling n independent and identically
distributed (iid) quantities, the variance of the sample average is (1/n) times the variance of
a single such quantity and as such is is often easy to gauge the relationship between sample
size and variance reduction of the population mean. Goldstein & Wooff (1998) show that
for second-order belief adjustment there is a natural generalisation when we adjust beliefs
about a vector of population means, preserving the simplicity of the relationship between
sample size and variance reduction.

In practice however, the assumption of a sequence being potentially infinite is a modelling
simplification, for it is usually possible to give an upper bound on the length of the sequence
under consideration. However, it is not always easy or straightforward to specify accurately



the upper bound and so it is often easier to proceed with the simplification that the sequence
was of potentially infinite length.

As with any modelling assumption, we would like to investigate the consequences of the
infinite approximation and how it effects both our modelling and learning. In sampling n iid
quantities from a population of size N, the link between the finite and the infinite is through
the multiplication of the (infinite) variance by the finite population correction (1 — (n/N))
(see Barnett (1974; p26)). In this paper we show that a similar relationship holds when we
perform a second-order belief adjustment for a vector of population means drawn from a
finite population compared to the infinite assumption.

This approach assumes that the finite second-order exchangeable sequence may be em-
bedded in or extended to an infinite sequence of similarly defined collections. Of course, not
every finite sequence may be embedded into a longer, possibly infinite, sequence and so the
direct study of finite sequences has a broader scope than the study of infinite sequences for
it will include sequences that have no analogue in the infinite framework.

We proceed as follows. We recall the representation theorem for finite second-oder ex-
changeable beliefs and discuss the geometry underpinning the Bayes linear approach. The
resolution transform is the tool used to analyse the relationships between a collection of
Bayes linear belief adjustments and we show that the transform for the population mean
collection, relating to a population of size IV, has essentially the same form whatever the
sample size. We then show that the results of this analysis may be obtained by studying
the population structure of a population of size 2, enabling us to draw simple comparisons
between different population sizes. Finally, we consider the relationship between the finite
reality and the infinite assumption, showing that the qualitative features of the adjustment
of the respective population mean collections are the same and the quantitative differences
may be obtained via the use of a finite population correction. The theory is illustrated by
an example.

2 Second-order exchangeable beliefs

We wish to make a series of measurements on a sample of individuals; our interests lie in
traits common to the individuals and so we elect to make the same series of measurements
on each individual. We gather these together as the collection ¢ = {X;, X3, ...}, finite
or infinite, where each X, is a real valued function of the quantities that will be measured
on the individuals. The collection for each individual is generated from C by letting C; =
{X14, X2i, - - .} be the measurements for the ith individual. The full population collection is
formed as the union of all of the elements in all of the individual collections, C;, and denoted
by C*.

The prior means, variance and covariance for each pair of quantities are specified directly.
Thus, expectation is treated as a primitive quantity; de Finetti (1974) provides a detailed
explanation of this approach. We regard a sequence of quantities as second-order exchange-
able if our first and second-order beliefs about the sequence are unaffected by permuting the
order of the sequence.

Definition 1 (Goldstein (1986a)) The collection of measurements C is second-order ex-
changeable over the full collection C* if

E(Xyi) = my Yo,i; (1)
CO'U(Xvi;Xwi) = dyy YV, w,1%; (2)
Cov(Xyi, Xuj) = Cyw YU, w,i# j. (3)



Thus, as Goldstein (1986a) emphasises, irrespective of the total number of individuals in the
population, all that is required is the cogitation of two individuals with all other specifications
following from the perceived symmetries in the population. Definition 1 applies whether the
full collection C* is finite or infinite. The definition of second-order exchangeability involves
a much more limited and achievable prior specification than that for full exchangeability, see
for example Lad (1996; Definition 5.14), which although it reduces the prior specification
burden is still far more detailed than we would ever reasonably be able to make. Goldstein
(1986a) derives the representation theorems for second-order exchangeable beliefs for the
separate cases when the sampling population, C*, is infinite and when it is finite. These
representations are constructed directly from the specifications (1) - (3) and so are consistent
with our beliefs about observables. The finite population representation theorem is given
below; the infinite population representation theorem may be deduced in the limit N — oo,
the limit being in mean square.

Theorem 1 (Goldstein (1986a)) If the population collection consists of N individuals, that

is C* = UN ,Ci, and C is second-order exchangeable over C*, then we may introduce the
further collections of random quantities MIN(C) = {MIN(X;), MIN(X5), ...}, and, for
eachi=1,..., N, REN] €)= {REN](Xl), REN](XQ), ...}, and write

X, = MM, +RM(X,), (4)

where MINI(X,) = (1/N) SN, X,i. The collections MNI(C) and ’REN] (C) satisfy the fol-
lowing relationships

EM™N(X,) = my Yo (5)
(R[N (X)) = 0 V,i; (6)
Coo(MN(X,)), MI(X ) = cpuw + %(dw — Cow) YU, w; (7)
Coo(MN(xX,), RV (X)) = 0Wv,w,j; (8)
N-—1 oy .
VN [NV] _ —(de - va) if i = j Yo, w;
Cou(R; ( o) R (Xu)) = { —N% (dyw — Cow)  oOtherwise. ©)

This representation theorem expresses each individual measurement as the sum of a popula-
tion mean quantity and a residual from this mean quantity. M (C) is the population mean
collection for the individuals and REN] (C) the discrepancy for the ith individual from the
overall mean. Notice that, from equation (8), the population mean collection is uncorrelated
with each individual residual collection, REN] (C). The residual collections, see equation (9),
are correlated (to order (1/N)) but in the limit N — oo are uncorrelated. This limit provides
the situation of infinite second-order exchangeability discussed by Goldstein & Wooff (1998).
The population mean collection are denoted by M(C) and the residual collection for the ith
individual is denoted by R;(C). These two collections are unobservable, with M(C) acting
as underlying population mean collection and R;(C) the ith discrepancy from the underlying
average. Contrast this with the observability of M (C) and each REN] ©).

We may extend Theorem 1 over the natural linear space by letting (C) denote the col-
lection of finite linear combinations, X = ) a,X,,, where {v;,v2,...} is a general finite
subset of integers, of elements of C. For each individual i, we construct the value of X, and
denote this by X; = 3, @, X,,i- Let (Ci), (MIN(C)), (REN](C)), foreach i = 1, ..., N,
be, respectively, the collection of finite linear combinations of elements of C;, MN(C) and



RN (C), then for each X € (C), for each individual ¢, we have

A= M@+ RN ), (10)

where MIM(X) = 3 a, MM (X,.) and RV (X) = T 0, RNV (X,).

3 Geometric representations; Bayes linear methods

De Finetti (1974; Sections 2.8, 4.17) formulated a geometric interpretation of an individual’s
current expectations. For a general collection of random quantities B = {By, Ba, ...}, of
interest, construct the space (B) of finite linear combinations of the elements of B with
the unit constant, By, added. We view (B) as a vector space by considering each B, as a
vector with linear combinations of random quantities represented as the corresponding linear
combination of vectors. The geometric framework is added by forming the inner product
space [B] from the minimal closure of (B) by imposing the following inner product and norm

for A, At € (B),

(A, AN Cov(A, A!); (11)
lA|*> = Var(A). (12)

We restrict B to elements with finite prior variance and the inner product is formed over the
closure of the equivalence classes of random quantities which differ by a constant. Goldstein
(1981; p108) follows the convention of standardising every quantity A by subtracting its prior
mean. Goldstein (1986b; p200) shows how the standardised inner product representation
may be linked to the (unstandardised) random quantities via a projection operation. For
two subspaces, [B] and [B*], if every element of the collection B! is uncorrelated with every
element of B* then [B'] and [B*] are said to be orthogonal, written [Bf] L [B*].

Suppose we are to receive the values of a data collection D = (Dy, Ds, ...) where the
inner product [B U D] is specified. In a Bayes linear analysis, we are interested in what
happens to the elements of the geometric structure following the receipt of D. For a random
quantity A € (B), the element A* € [D] which minimises || A — A?* || is termed the adjusted
expectation of A given D, written Ep(A). Thus, Ep(A) is the orthogonal projection of A
into [D]. The squared orthogonal distance from A to [D] is termed the adjusted variance of
A given D, written Varp(A). Thus, we may decompose A into the sum of two uncorrelated
components, A = Ep(A)+ {A — Ep(A)}. Taking the variance we have

Var(A) = Var(Ep(A)) +Varp(A). (13)

Var(Ep(A)) is the variability of .4 which is accounted for by the variability in D and is
often called the resolved variance, RV arp(A). Intuitively, the observation of D is expected
to be informative for A if RVarp(A) is large relative to Var(A). Thus, the resolution,

RVarp(A)  Var(A) —Varp(A)
Var(A) Var(A)

Rp(A) , (14)
is a simple, scale free, measure of the impact of the adjustment upon A. If Rp(A) is near
zero, then, relative to our prior knowledge about A, we do not expect the Bayes linear
analysis of the data to be informative for A. A value of Rp(A) close to one suggests that
the analysis is expected to be highly informative.

An overview of the Bayes linear methodology may be found in Goldstein (1999), whilst
Goldstein (1994, 1997) concentrates upon foundational aspects. As Hartigan (1969; p447)



points out, if B U D is multivariate normal then, for each A € (B), Ep(A) = E(A|D) and
Varp(A) = Var(A|D).

We return now to exchangeable beliefs discussed in Section 2. We consider the observation
of a sample of n < NV exchangeable collections, which we label for convenience, C, .. ., C,, and
we let C(n) = UT_,C;. We want to use this data to revise our beliefs over the mean collection,
MINI(C). We are also interested in learning about future collections of individuals and we
shall comment upon this in Section 10. For each X € (C), denote the average of the first n
values by S, (X) = (1/n) Y., X;. The collection of sample averages are denoted by S,(C) =
{8n(X1), Sn(X2), ...}. We have the following theorem; the proof is in the appendix.

Theorem 2 IfC is second-order exchangeable over C* = UY_,C;, then S,,(C) is Bayes linear
sufficient for C(n) for adjusting the collection MN1(C).

A detailed discussion of Bayes linear sufficiency may be found in Goldstein & O’Hagan
(1996); the meaning is that having performed a linear fit on S,,(C), we can obtain no further
reduction in adjusted variance by linear fitting the mean collection on the full sample C(n).

4 Coherency relations between different sample sizes in
finite sampling

The resolution transform for general collections B given a data collection D for each A € [B]
is defined to be T'p(A) = Ep{Ep(A)}. Thus, for each A € [B], Tp(A) is the point in
[B] which is closest to Ep(A). Goldstein (1981) shows that Tp is a bounded, self-adjoint
operator on [B], satisfying for each A € [B],

Varp(A) = Var(A) — Cov(A,Tp(A)). (15)
Hence, substituting equation (15) into equation (14), we have that

Cov(A,Tp(A))

Ep(A) = Var(A) (16)
If either of the collections B or D are finite dimensional, then Goldstein (1981) showed that
we may extract for Tp a set of eigenvectors, Z = {Z;, Z,, ...}, which form a basis for [B] and
corresponding ordered eigenvalues, 1 > Ay > A2 > ... > A, > 0. If both the collections B
and D are infinite then, unless a certain compactness condition holds, the eigenstructure of
Tp may be more complicated (see Goldstein (1981; p114)). The eigenvalue A; is termed the
Jth canonical resolution, and the corresponding eigenvector Z; is termed the jth canonical
direction. The canonical resolutions and directions satisfy the following properties. The Z;
have expectation 0, are mutually uncorrelated, and are scaled to have prior variance 1. As
Z forms a basis for [B], each A € [B] may be expressed as A = 2521 Cov(A,Z;)Z;. In
addition, however, we may use equations (15) and (16) to express the adjusted variance and
resolution for each A € [B] as a linear combination of the adjusted variances and resolutions,
respectively, of the Z; as follows:

r 7, A Cov(A, Z,)?
_ 2. — 1=
Varp(A) = jEZI(l = Aj)Cou(A, Z;)"; Rp(A) = Var(A) (17)
Hence, constrained by being uncorrelated with (Z1, ..., Z;), Z;1 is the element of [B] max-

imising the resolution. Thus, we expect to learn most about elements of [B] having strong



correlations with the directions with large resolutions. The canonical directions thus identify
the types of information that we expect to gain by sampling, with the quantification of how
much we learn in each direction being provided by the canonical resolutions. Thus, we may
gain insights into the benefits of different experimental designs by comparing the canonical
structures across different choices of D. Goldstein & Wooff (1997) adopt such an approach
for choosing sample sizes in balanced designs.

Goldstein & Wooff (1998) examine the adjustment of beliefs based upon second-order
exchangeable samples drawn from infinite populations. Suppose that a sample of size n
is drawn and denote the resolution transform for the mean collection M(C), based on n
observations, C(n), by Th(-) = Erqc){Ecn)(-)}- They demonstrated strong coherence re-
lationships between the adjustments based upon samples of different sizes. The canonical
directions are the same for all sample sizes, and if A is a canonical resolution for a sample
of size 1 with corresponding canonical direction W, then A¢,y = nA/{(n — 1)X + 1} is the
canonical resolution corresponding to the canonical direction W for a sample of size n. The
underlying qualitative features of the adjustment are not effected by sample size and it is
straightforward to use the values A, to simplify design questions for which the sample size
has to be determined which will ensure specific variance reductions for combinations of the
underlying mean components which are of interest.

We now show that there are similar coherence relationships obtained between adjust-
ments based upon second-order exchangeable samples drawn from finite rather than infinite
populations. Denote the resolution transform for the mean collection MIM(C), based on
n observations, C(n) = JI_, C,, by TT[LN](-) = Epume){Ee(ny(1)}- We have the following
theorem, the proof is in the appendix.

Theorem 3 The eigenvectors of TT[lN] are the same for each n. If YIV] is an eigenvector of

TI[N] with corresponding eigenvalue AN, then the corresponding eigenvalue )\[(JTY)] for T,[IN] 18
AN - n(N DY (18)
(n) (n —=1)NXN + (N —n)

Theorem 3 shows that for the adjustment of [M[](C)] by C(n), the canonical directions
Z{N] = Var(Yl[N])_%Yl[N], ZéN] = Var(Yz[N])_%YQ[N], ..., where each Y is an eigenvector
of TT[LN], are the same for each n, and are termed the canonical directions induced by (finite)
exchangeability. The coherence relations discovered for second-order exchangeable infinite
populations by Goldstein & Woofl (1998) are also present in the modelling of second-order
exchangeable finite populations. Notice that from equation (11), for any sample size n, the
adjusted variance for any MIM(X) € [MINI(C)] is given by

)1 — A
Varem(MM(X) = Z(HENI)NZ)U(VI] ?;Vin)comM[N](»c),zEN])% (19)

i

%

and the resolution may be similarly expressed. Thus, in an identical manner to Goldstein
& Woofl (1998), we see how we may exploit equation (18) to simplify design problems for
which we are required to choose the sample size to achieve a specified variance reduction in
elements of interest in the [MIN1(C)]. We have the following corollary.

Corollary 1 Suppose that YN is an eigenvector ole[N] with eigenvalue AN > 0. Then the
sample size n required to achieve a proportionate variance reduction of k for YIN!, that is so
that Varc(,y)(YIM) < (1—k)Var(YIN), isn > {s(1= AN} /{AN(1— k) + (1/N) (1= AN}



If the minimal eigenvalue of Tl[N] 18 )\%]n, then to achieve a proportionate variance re-

duction of k for every element of [MIWN(C)] requires a sample size, rounded up, of {k(1 —

AN (1= k) + (1/N) (1 = AV )Y

min min

5 Extendible second-order exchangeable sequences

The use of finite second-order exchangeability is desirable within the subjective framework
as it acknowledges the necessarily finite nature of our actual second-order exchangeability
judgements. The finite sequence could form part of a larger (possibly infinite) sequence of
second-order exchangeable individuals or the sequence cannot be embedded in any longer
sequence of second-order exchangeable collections. The limit to the sequence length may
be theoretical: our second-order judgements may be coherent for a population of size Ni,
but incoherent for a population of size No > N;. For example, if there is a ¢,y < 0, then
equation (7) shows that we could obtain a negative variance in the representation theorem.
Alternatively, the limit may be conceptual: the sequence is of length N and it makes no
sense to think of a longer sequence. An example that covers both of these scenarios is
when we consider drawing a sample without replacement from an urn containing two balls,
one marked 0 and the other marked 1. This example was discussed by Diaconis (1977)
in highlighting that de Finetti’s representation theorem for (fully) exchangeable sequences
required an infinite sequence. In the second-order setting, letting X denote the value on the
ball, we could assess for each individual i, E(X;) = 1/2, Var(X;) = 1/4 and for differing
individuals i, j, Cov(X;, X;) = —1/4. Mathematically, the only coherent second-order
exchangeable sequence having these prior beliefs must have N = 2 since, from equation (7),
Var(MW(X)) = (2— N)/4N < 0if N > 2. Conceptually, the sequence has to be of length
two: there are only two balls in the urn.

In many situations however, the population size may not be known and so we seek
methods to compare the effect of the population size on our calculations. We make the
following definition.

Definition 2 Suppose that the collection of measurements C is second-order exchangeable
over Cx = UN ,C;. The population Cy; is M -extendible if C is second-order exchangeable over
Chym = Ué\gl—MCi-

Thus, our consideration for each case and our considerations between each pair of cases is
the same in the two sequences. We remark that this definition is purely theoretical. We
may view infinite second-order exchangeability as corresponding to the assumption of M-
extendibility for all M > N. Recall that for C to be second-order exchangeable over C*,
all we require is the consideration of two cases with all other cases following by symmetry.
This observation allows us to regard any second-order exchangeable sequence as having been
extended from a second-order collection of length two. We now examine the relationship
between the adjustment of the mean collections [M[2(C)] and [MIM(C)] given a collection
of second-order exchangeable measurements which are (N — 2)-extendible and a sample, of
size one, drawn from the populations.

Theorem 4 Suppose that Y2 = 3" ¢, MP(X,,), where {v1,vs,...} is a general finite sub-

set of integers, is an eigenvector of T1[2], with eigenvalue N2, Then YV = o EMINI(X, )

|

) ) Nl
is an eigenvector of Tl[ , with eigenvalue

\iv_ 2N - 1),\[]‘2\]7+ (2-N) (20)




The eigenvectors of TI[Z] and Tl[N] thus share the same co-ordinate representation, with
easily modified eigenvalues. By combining Theorem 3 and Theorem 4, we have the following
corollary.

Corollary 2 If Y =3 ¢, M2(X,,) is an eigenvector of T, with eigenvalue N2, then
YIN =3 & MINI(X,,) is, for each n < N, an eigenvector of TN with eigenvalue

NN 2n(N —1)2X2 —n(N — 1)(N - 2)
() 7 2(n—=1)N(N = )A2 — (n —2)N(N - 1)’

(21)

Hence, the canonical directions for the adjustment of [MV](C)] by C(n) have, up to a scale
factor to ensure a prior variance of one, the same co-ordinate representation for all N and n,
with simply modified canonical resolutions. Thus, the qualitative information provided by
the adjustment remains the same for all possible sequence lengths and all possible sample
sizes and the quantitative information is easy to compare across this, via equation (21).
Thus, not only is it straightforward to compare the effect of changing the sample size for
learning about [M[M(C)], but we now see that it is straightforward to compare the differences
between learning about the corresponding quantities in differing [MI™(C)]s. For example,
if N1 and N, are feasible sequence lengths we have that

Ny
Ny -1

M
N, —1

(11— Ay = (1 — ANzl (22)
Since the canonical resolutions share the same co-ordinate representation for all feasible
choices of N it is straightforward to compare Re(y,) (MINVi(x)) with Ren) (MINV21(xY) for
any X € {C) and so gauge the effect of the population size on our adjustments.

Note also the computational advantage. In order to compare all sample sizes for all
sequence lengths, we need only to consider the transform for a sample of size one and a
sequence of length two.

It should be emphasised that the work in this section remains valid for the two types
of second-order exchangeable sequences of length two. The first when we have only finite
extendibility (for whatever reason) and the second when we have infinite extendibility. We
now proceed by assuming we have infinite extendibility and showing the links between infinite
second-order exchangeable sequences and finite second-order exchangeable sequences.

6 Linking finite and infinite adjustments

Suppose that we have a sequence of two second-order exchangeable collections C; and Cs
and that the sequence is M-extendible for all M, so that there is an infinite collection C}, =
U2, C; over which C is second-order exchangeable. We have the following theorem.

Theorem 5 If Y =3 ¢, MPI(X,,), where {v1,vs,...} is a general finite subset of inte-

gers, is an eigenvector of T1[2], with eigenvalue A2, thenY = D u EuM(Xy, ) is an eigenvector
of T1, with eigenvalue

A= a1 (23)

By combining the results of Theorem 3 of Goldstein & Wooff (1998) and Theorem 5 we have
the following corollary.



Corollary 3 If Y[ = >, EuMBU(X,,) is an eigenvector of Tl[z], with eigenvalue N2, then
Y =3, &M(X,,) is, for each n, an eigenvector of T, with eigenvalue

onA2l —p
2(n — A2 — (n —2)°

/\(n) (24)

Thus, the eigenvectors of T, share the same co-ordinate representation to those of T1[2] and

from Corollary 2 these share the same co-ordinate representation as those of TTQN]. Hence,
the qualitative information for the adjustment of [M(C)] by C(n) is the same as for the
adjustment of [MIM(C)] by C(n). The difference between the infinite assumption and the
finite reality is quantitative rather than qualitative. Notice that by comparing equation (24)
with equation (21) we see that

A = Jim AN (25)

N—oo

and by comparing the proofs of Theorem 4 and Theorem 5, we have for any X € (C),
Remy(M(%)) = lim Re(my(MIN(2)). (26)

Thus, the adjustments of the finite and infinite sequences coalesce as N — oo and the
adjustment of [M(C)] by C(n) may be interpreted as the limit of the adjustment of [MN(C)]
by C(n). All of the coherency conditions derived by Goldstein & Wooff (1998) are driven by
second-order exchangeability rather than the infinite assumption.

We have expressed all our canonical resolutions in terms of A2, This emphasises the
symmetry in our second-order exchangeable beliefs that we really do only need to consider the
beliefs between two individuals. Further, it allows us to include the theory for both infinitely
extendible and finitely extendible sequences together. In many applications, for example
population sampling, the convenient assumption is that NN is infinite. As we have explained,
in the context of the second-order adjustment of population vectors, this assumption leads
to a quantitative difference and we would like to understand this difference. Using equations
(21) and (24), we may write, for any infinitely extendible second-order exchangeable sequence
of length N,

A
N _ Am)
AN = v (27)

By expressing () in terms of A(,), equation (27) may be rearranged as
n
AN = A+ 1= Am)- (28)

Thus, we could consider the quantitative difference between infinite and finite modelling to
be that for the finite case we need a finite model correction term for the canonical resolutions;
this correction term is (n/N)(1 — A(,)). Notice the multiplication by the sampling fraction,

(n/N). If vVig an eigenvector of TIM with eigenvalue )\EJZ)]S and Y5, A(n)s the corresponding
eigenvector and eigenvalue for T,,, then from equation (16) and using (28) we have that

Vargpy(Y,M) = (1= (n/N))Varee (Y;)- (29)

The multiplier (1 — (n/N)) is the same for each eigenvector of TN and may be recognised
as the finite population correction. In the same way of sampling n iid quantities from a



population of size IV, the link between the finite and infinite populations when we perform a
second-order belief adjustment for a vector of population means is by multiplication of the
adjusted variances for each of the canonical directions by the finite population correction
to obtain the adjusted variance for each of the canonical directions in the finite setting.
As the finite population correction attaches itself to each eigenvector of T, the sampling
fraction, (n/N), provides a simple ‘rule of thumb’ for assessing the validity of the infinite
approximation to the finite judgement; the smaller the value of (n/N), the greater the validity
of the approximation.

If we are interested in a given direction in [MV](C)], which does not correspond to a
canonical resolution of TT[LN] then we may directly compare the adjustment of MM (X) and
M(X) by C(n) for any X € (C). Suppose that Z, =Y, = > &M(X;,) is a canonical
direction of T),, with canonical resolution A(,),. Hence, the ;s have been chosen so that

Var(Y;) = 1. Then, by Theorem 5 and Theorem 4, ZV = 4, YN is a canonical direction

of TT[LN] with canonical resolution )\EIZ)]S. a, is chosen to ensure that Z£N]

1, so that a, 2 = Var(YS[N]). Now Z; € [M(C)] so Z; = M(Z,) for some Z,; € (C). From the
second-order specifications and the corresponding representation theorems (see Goldstein
(1986a)) we may write, for any X € (C),

has prior variance

Coo(MN(2,), MN(X)) = Con(M(Z,), M) + x-Coo(Ra( Z,), Ri( X)) (30)
Hence, a, = {1 + (1/N)Var(Ri(Z,))}~ 2, and using equation (16) we may write, for any
X € (C),

Varey(MPM(x)) =

n {Cov(M(Z,), M(X)) + (1/N)Cov(Ri(Z5), Ri(X))}*
(1 B N) 2. (1= Aas) {1+ (1/N)Var(Ri(Z,))}

.(31)

s

Equation (31) thus expresses the adjusted variance for any MIN(X) € [MIN(C)], having
observed a sample of size n, for any (potentially) infinitely extendible second-order exchange-
able sequence of length N in terms of relationships and adjustments of quantities purely in
the infinite sequence. By noting that,

Varemy(M(X)) = Y (1= Ams){Cov(M(Z;), M(X))}?, (32)

8

it is straightforward to compare the effect of the infinite approximation for any sample size
n and any sequence length N. Notice the rather simple dependence upon (1/N). By letting
N — o0, it is easy to confirm equation (26). Thus, not only do we know that qualitatively
TT[LN] and T,, provide the same information, but also that the quantitative differences are
straightforward to calculate via equations (31) and (32), providing an easy way to assess the
differences between the more realistic modelling framework of finite second-order exchange-
ability, where the difficulty may lie in determining N, and the convenient use of infinite
second-order exchangeability.

7 A note on the prediction of future individuals

Suppose that we wish to consider the effect of observing n individuals for predicting the values
for a further r individuals who are second-order exchangeable with those in the sample. This

10



adjustment is driven completely by the relationships between the individuals and as such we
may consider the collection of individuals, C}, ., to form a finite second-order exchangeable
sequence of length n + r. Whether of not C}, . is extendible or not is irrelevant for this
prediction. Goldstein & Wooff (1998; Section 8) consider prediction in the case when C
is M-extendible for all M, so that the total population is potentially infinite. They show
that the canonical directions of the predictive adjustment share, up to a scale factor, the
same co-ordinate representation as for the adjustment of the underlying mean components.
All that is relevant for the prediction is the finite sequence C; . and so these results cross
over in the case of the total population being finite rather than infinite. Indeed, we may
view the qualitative similarity between prediction and learning about the underlying mean
components in the infinite sequence to be a consequence of the qualitative similarity between
finite and infinite learning as discussed in Section 8.
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Appendix: Proof of theorems

Proof of Theorem 2 - The collection of individuals C(n) form a finite second-order ex-
changeable sequence of length n and applying Theorem 1 allows us to express each X,; € C(n)

as Xy = Sp(Xy) + 7;["] (Xy). The collection of residuals of the ith sampled individual from
the collection of sample means is 7, (C) = {TF"(Xy), T (X2), ...}. For each i = 1,

.., n, the representation theorem gives [S,(C)] L [7;["] (C)] and we may easily check that
[MIN(C)] L [Ti™(C)]. Noting that [C;] C [Sn(C)] U [Ti™(C)] we adjust [MN(C)] by C(n)
in two stages, first by 7"(C) = U, 7;[”] (C) and then by S,,(C). The stated orthogonalities
(see Goldstein (1990)) yield the result. O

Proof of Theorem 3 - The proof proceeds in a similar way to the proof of Theorem 3 of
Goldstein & Wooff (1998; p53). Y is an eigenvector of TI[N] with eigenvalue AN if and
only if, for all X € [C],

1 =AM Cou(YINM, MIN(x)) = Cov(RM Uy ), RIV (X)), (33)

where Ec(l)(Y[N]) = MUy v1) + RN (Uyiv)) for some Uyin) € [C]- Similarly, YN is an
eigenvector of 7'M with eigenvalue p, if and only if, for some Zyn; € [C],

1 n
Bemy@™) = wy™ 4 =3 RN (Zym), (34)
i=1
or equivalently, if and only if, for all X € [C]
n

(1= wCov(¥ ™M, MN(x)) = cov(%ZR[N](zym,%iREN]w)). (35)

i

Then as:
cov(lzn:REN](U) 1zn:R[N](V)) = W) e @My, RNV (36)
n& ’ni:1 ¢ n(N —1) ! e

for all U,V € [C], we have that Uy~ satisfies (33), with eigenvalue AV if and only if

B n(N —1)
~ (n—=1)NAN + (N —n) Uy (37)

Zy v

satisfies (35) with eigenvalue pu = )\EIZ)] O

Proof of Theorem 4 - From the proof to Theorem 3, we have that Y2 is an eigenvector
of Tl[z] if and only if, for all X € [C]

1 = A2hCow(YA, M (X)) = Cov(RE (Uyr), RE (X)), (38)
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where
B (VP) = MA(Uye) + RO Uyw) = AV 4+ RE Uy m). (39)
Similarly, Y] is an eigenvector of TI[N] if and only if, for all X € [C]
1 =AM o™, M) = CovRM Uyim), RV (X)), (40)
where
Ey (YN = MM @y ) + R Oym) = ANYIN 4 RV @y 0. (41)

Now, from equation (9), we have

Cov(RM(x,), RV (X)) = WCOU(R?] (X.), RP (X)) (42)
so that
Co(RM W), RV (0)) = 2D o (RBwy), RE (). (43)

Similarly, from equation (7), we have
CooMWN(x,), MN(X,) =
2—N
Coo(MPI(X,), MP(X,) + ==—Cov R (x,), R (X.)). (44)

From equation (41) we have that
1
Coo(Y ™M, MM(X)) = s Con(MM (Uyim), MIM()), (45)

so that, by equation (44), we have

2-N

NN COU(R[E](Uy[21),R[12](X)). (46)

Cov(YINM MIM(x)) = Cov(Yd, MP()) +
By substituting equations (43) and (46) into equation (40), we have that Y™ is an eigen-
vector of Ti™ if and only if, for all X € [C]

NAM — (2 - N)

ST Cov(RY Uy ), RYI(X)). - (47)

(1 = AMYCou(vE, MPEI(X)) =

We thus have that Uy satisfies equation (38), with eigenvalue A, if and only if Uy~ =
aly 2 satisfies equation (47), with eigenvalue AV where

NAM — (2 - N) 1

NAN(1 -V ¢ T 1 (48)

Using equations (41) and (39) we have that
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Substituting equation (49) into equation (48) and rearranging gives

2(N —D)A2 + (2 - N)

[N
A N ,

and hence the result.

Proof of Theorem 5 - By noting that,

Cov(M(X,),M(X,)) = Cov(ME(X,), MA(X,)) -

Cov(RP(X,), R (X,));

Cov(Ri(X,), Ri(Xu)) = 2000(RPI(X,), RP(X.)),

the result follows in a similar way to Theorem 4.
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