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1 Introduction

Environmental models are simplified representations of complex physical systems.
The implementation of any such model, as a computer simulator, involves further
simplifications and approximations. The value of the resulting simulator, in giving
scientific and practical insights into the functioning of the corresponding physical
system, depends both on the nature and degree of these simplifications and also on
the objectives for which the model is to be used.

This chapter provides an introduction to some basic general techniques for as-
sessing the adequacy of a computer model for its intended purpose. There are many
ways to approach this question. We will take the view that the aim of the model is
to provide some, necessarily partial, information about the behaviour of the system,
and we will consider the model adequate for an intended task if the information
that is provided by the simulator is sufficient to allow us to carry out this task. We
would usually prefer precise forecasts of system behaviour but we may often be able
to tolerate probabilistic forecasts, provided that we are able to quantify the level of
uncertainty with which these forecasts should be interpreted, and to confirm that
this uncertainty is not so large as to prevent us from achieving our objectives. This
will, inevitably, be a pragmatic judgement.

Therefore, in our account, we will outline some basic methods for assessing the
degree of uncertainty that it would be reasonable to associate with model outcomes.
It is beyond the scope of this account to produce precise quantifications of predictive
uncertainty, as such analysis requires rather more technical machinery than we have
space to describe. Instead, we offer some basic tools for making order of magnitude
quantifications for such uncertainties, which should indicate whether the limitations
of the model are likely to render it unfit for the task at hand.

This is by no means a complete account, even for our stated goal, as such anal-
ysis is strongly dependent both on the scientific context and also on the size and
complexity of the model. In the next section, we outline the general methods that
we suggest and, in the following sections, we illustrate how the methods can be used
in practice, by applying them to a rainfall runoff model.



2 General issues in assessing model adequacy

For the purposes of this chapter, we consider that a model is a description of how
system properties affect system behaviour. We may represent the model in the
general form

y = f(x) (1)
where model inputs x corresponds to a vector of system properties; for example,
in a rainfall runoff model, x might be a description of the physical characteristics
of a particular catchment area. Some of the elements of x might be control or
tuning parameters. To simplify our account, we will not make such distinctions.
The model output vector y is a description of corresponding system behaviour; for
example, y might be a time series description of water flows in the catchment area.
The function f is a description of the way in which system properties determine
system behaviour, based partly on the mathematical equations which determine y
from z and partly from relevant initial and boundary conditions, forcing functions
and so forth. Usually, f is implemented in the form of a computer simulator. We
suppose also that we have some system field data z comprising observations made
on the system corresponding to some sub-vector of y.

There are two main reasons for interest in such a model. Firstly, we may want
to gain insights into the general behaviour of the model; for example, to assess
which features of the system properties are most important for determining the
system behaviour, how sensitive are such relationships to mis-specification and other
factors. If f in (1) is a new version of a pre-existing model, then we will want to
assess the form and magnitude of the changes between versions. Similarly, we may
want to compare the model to other pre-existing models for the same phenomenon.
There are many ways to gain such insights. One of the simplest, if the model is fast
to evaluate, is to make many evaluations of the model at widely differing choices
of input parameters and to carry out a careful data analysis of the resulting joint
collections of input and output values. In such an analysis, we will also look for
anomalous and counter-intuitive behaviour in the model which may enable us to
detect errors in the computer simulator, namely features which are wrong in ways
that we are able to fix. These may be simple coding errors, data transcription errors,
mistakes in our implementation of numerical solvers or problems with the science
used in our problem formulation for which we can see ways to formulate effective
alternatives within the limitations of time and resource which are available.

Secondly, when we have completed this analysis, then we often pass to a further
stage of using the model to make inferences about specific physical systems; for
example, to help to understand actual water flow for specified catchment areas. We
will have much greater confidence in our use of model predictions for an actual
system if we have a good intuitive feel for the general behaviour of the model, and
we have carried out a careful error analysis for the code. In this chapter, we will
focus attention on this second stage, as it is natural to consider model adequacy in
the context of practical purposes for which the model is to be used.

We therefore consider whether a model is adequate to represent a given physical
system for some specified purpose. In all but the most elementary problems, the
behaviour of the model will not be precisely the same as the behaviour of the system.



Partly, this is because we must simplify our description of the system properties,
partly because we cannot fully describe the science determining the effect of system
properties on system behaviour, partly because, even with the simplified science
that we choose to implement, we will typically need to approximate the solution
of the equations required to determine the relationships between system properties
and behaviour and partly because the forcing functions, initial conditions, boundary
conditions and so forth are rarely known with certainty. This irresolvable difference
between the output of the model and the performance of the physical system is often
termed model discrepancy.

A crucial part of the assessment of model adequacy comes from assessing the
magnitude of model discrepancy and then deciding whether it is so large that this
renders the model unfit for the intended uses. It is rare that we can place a precise
value on this discrepancy, as, otherwise, we would have incorporated this assessment
directly into the model itself. Therefore, we must usually carry out an uncertainty
analysis. Rather than considering that the model makes deterministic predictions
about system behaviour, we consider that the model offers probabilistic predictions
for such behaviour. The level of uncertainty associated with these predictions will
determine whether the model is adequate for the intended purposes.

The sources of uncertainty that we must usually deal with are: (i) input un-
certainty, as we are unsure as to which is the appropriate value of the inputs at
which to evaluate the model, or even whether there is any meaningful choice of
input parameters; (i) functional uncertainty, as, for complex, slow-to-run models,
there will be large areas of the input space which will be explored only very lightly;
(iii) observational error, complicating our ability to assess the quality of model fit to
historical field data; (iv) forcing function, initial condition and boundary condition
uncertainty; (v) general aspects of model uncertainty, for example problems arising
when we train a model on data in one context but we intend to use the model in
a very different context. We may view a model as adequate in principle if model
discrepancy is small. However, all sources of uncertainty should be included in a
composite uncertainty analysis, as the model will only be adequate in practice if we
can control all of the relevant sources of uncertainty to a level where predictions are
sufficiently accurate for the purpose in hand.

There are different views as to what constitute appropriate formulations for an
uncertainty analysis. We shall describe our analysis from a Bayesian viewpoint. In
this view, all uncertainties may be expressed as best current judgements in proba-
bilistic form and then combined with observational data by the usual probabilistic
rules. The advantage of this approach is that it places all of the uncertainties in
relating model to system behaviour within a common framework and produces a
probabilistic assessment which represents the best current judgements of the expert
in a form which is appropriate for use in subsequent decision analysis.

As with any other aspect of the modelling process, we can make such a prob-
abilistic assessment with different degrees of detail and care. It may be enough to
make a rough order of magnitude assessment of the most important aspects of model
discrepancy or we may need to carry out a more careful analysis. As a simple rule
of thumb, the more that we intend to rely on the model to make decisions with
important consequences, under substantially different conditions to those for which



we have available historical data, for example, to extrapolate over large time scales,
then the more careful we will need to be in our assessments of model discrepancy.
We will also be limited in our ability to make a full uncertainty analysis by factors
such as the dimension and complexity of the model, the time that it takes to carry
out a single model evaluation, whether there are any other models against which we
may compare our analysis and the nature and extent of any historical data which
we may use to assess the performance of the model. In our account, we will intro-
duce some basic analyses that we may wish to carry out. The uncertainties that we
shall refer to may be assessed as variances, as full probability distributions or as an
uncertainty description at some intermediate level of complexity. In our example
analyses, we will illustrate some particular forms that such calculations might take.

There are two basic aspects to model discrepancy. First, we may assess intrin-
sic limitations to the model whose order of magnitude we may quantify by direct
computer experimentation. We refer to these as internal model discrepancies, and
quantify them by analysis of the computer output itself. There are two general
types of internal discrepancy. The first type is due to lack of precise knowledge of
the values of certain quantities which are required in order to evaluate the model,
but which it is inappropriate to treat as part of the model input specification x. For
example, if we judge that the elements of the forcing function for the system are
only determined within, say, 10%, then we may assess the effect on the output of
the model of making a series of model evaluations with varying values of the forcing
function within the specified limits. The second type of internal discrepancy is due
to acknowledged limitations in the ways in which the model equations transform sys-
tem properties into system behaviour. For example, a common practical modelling
structure is to determine a spatio-temporal series of system responses by propagat-
ing a state equation across time and space. Each propagation step involves a level
of approximation. Provided that we have access to the governing equations of the
model, we can directly assess the cumulative effect of such approximations by intro-
ducing an element of uncertainty directly into the propagation step in the equations
for the system state, reimposing system constraints as necessary after propagation,
and making a series of evaluations of the model based on simulating the variation
in overall system behaviour with differing levels of propagation uncertainty:.

The second aspect of model discrepancy concerns all of those aspects of the differ-
ence between the model and the physical system which arise from features which we
cannot directly quantify by operations on the computer model. We refer to such as-
pects as external model discrepancies. Some external discrepancies may correspond
to features which we acknowledge to be missing from the model and whose order of
magnitude we may consider directly, at least by thought experiments. However, our
basic means of learning about the magnitude of many aspects of external discrepancy
is by comparing model outputs to historical field data. The difference between the
historical field observations z on the system and the corresponding model outputs
f(z), when evaluated at the appropriate choice of inputs to represent the system
properties, is the sum of the observational error and the internal and external model
discrepancy errors. Provided that we have already quantified uncertainty for obser-
vational and internal model error, any further lack of fit is due to external model
error, and the magnitude of such mismatch between model output and field data is



therefore a guide to external model uncertainty, for historical outcomes. The extent
to which this may be considered informative for such uncertainties when using the
model to forecast future outcomes is a matter of scientific judgement dependent on
the context of the problem in question.

In practice, we usually do not know the appropriate choices of inputs at which
to evaluate the model, as achieving a good fit to historical observations is itself a
common method for estimating appropriate values of the input parameters. Model
calibration or tuning is a subject with an extensive literature; see, for example,
Rougier (2009) and Kennedy and O’Hagan (2001). All that we are looking for at
this stage is to be reasonably confident that the model is sufficiently reliable to merit
such a tuning effort. A simple approach for making such an assessment is to make
many evaluations of the model using a space filling design in the input parameters
and to determine which choices of input parameter lead to the best fits to the field
data. For high dimensional input spaces, it may not be directly feasible to make
evaluations over all areas of the input space to an acceptable level of concentration.
In such cases, we often use an iterative design, eliminating all input choices within
the first stage design which give very poor fits and placing second stage designs
centred on those evaluations which have given more reasonable fits and continuing
in this manner until a collection of relatively good fits have been found.

This process is sometimes referred to as history matching; see, for example, Craig
et al. (1997). We are not trying to determine the best choice of input parameters but
simply to determine if there is some sub-collection which gives an acceptable match
to historical data. It might be that every evaluation that we make of the model
provides such a poor fit to the historical data that we reach the conclusion that
external discrepancy is so large as to render the model unacceptable for practical use.
Otherwise, assessment of the order of magnitude discrepancy between model and
data in regions of good fit gives us a guide to the magnitude of external discrepancy.
This method of tuning is only likely to give meaningful results if we have access
to a large quantity of field data relative to the number of parameters that we may
vary; otherwise, it is highly likely that we will over-fit the model to the data. If
our assessment of external variance appears to be negative for many components of
z, because the differences between f(z) and z are small compared to observational
plus internal discrepancy errors, then this suggests we have possibly over-fitted the
model, and further investigation may be required.

In order to carry out the above analysis, we must make many evaluations of
the model within a reasonable length of time. For many problems, this is not a
realistic possibility. In such cases, we may employ the method of model emulation.
Emulation refers to the expression of our beliefs about the function f(z) by means
of a fast stochastic representation, which we can use both to approximate the value
of the function over the input space and also to assess the uncertainty that we have
introduced from using this approximation. For example, we might represent our
beliefs about the i-th component of f(z) in the form

filw) = g;(x) By + wilx) (2)
J
where each g;(z) is a known deterministic function of z, for example a polynomial
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term in some sub-collection of the elements of z, the 3;; are unknown constants to
estimate and u;(x), the residual function, is specified as having zero mean and con-
stant variance o? for each x, with a correlation function ¢;(z, z’) = corr(u;(x), u;(z"))
which only depends on the distance between x and 2’. There are many possible
choices for the form of the ¢;(z, 2’). If we want to carry out a full probabilistic anal-
ysis, then we may suppose, for example, that w;(z) is a Gaussian process, so that
the joint distribution of any sub-collection of values of u;(x) for different choices of
x is multivariate normal.

There is an extensive literature on the construction of emulators for computer
models, based on a collection of model evaluations.; see, for example, O’'Hagan (2006)
and MUCM (2009). Given these evaluations, we may choose our functional forms
gj(x) and estimate the coefficients (;; using standard model building techniques
from multiple regression, and then assess the parameters of the residual process u(z)
using, for example, variogram methods on the estimated residuals from the fitted
model. Given the emulator, we can then carry out the history matching procedures
described above, but, instead of evaluating the function at each input choice, we
evaluate the emulator expectation E[f;(z)] at each chosen x. We therefore need to
add the emulator variance Var[f;(z)] to the observational variance and model error
variance terms when making the comparison between z; and E[f;(z)], but otherwise
the analysis is the same as for fast-to-run models.

3 Assessing model adequacy for a fast rainfall runoff model

We consider a rainfall runoff model described in Iorgulescu et al. (2005) (henceforth
IBM), that simulates fluctuations in water discharge and Calcium and Sodium con-
centrations over time. We illustrate our methods with its application to a particular
sub-catchment of the Haute-Mentue research catchment (Switzerland); see IBM who
refer to other studies and runoff models. Each model run simulates three time series:
discharge (D) and the tracers Calcium (Ca) and Silicon (Si) over 839 consecutive
hours. Any such simulation may be compared to the corresponding 839 hours of
field data collected at the sub-catchment between August and September 1993. The
field data also includes hourly rainfall which is used as a forcing function (RAIN) to
the model. There is a second forcing function, actual evapotranspiration (AET), an
evaporation rate, which is modelled as a deterministic sinusoidal function of time.

3.1 Mathematical Model

The model, depicted in Fig. 1, comprises three compartments with parallel transfer,
whereby water, input as rain, may enter three compartments representing three dif-
ferent soil types, “Direct Precipitation” (DP), “Acid Soil” (AS) and “Ground Water”
(GW). The water is stored in each compartment for a fast or slow amount of time be-
fore being discharged into the streams. The water can instead enter the “Ineffective
Storage” compartment, in which case it will not be discharged and can only leave the
system via actual evapotranspiration (AET). Six parameters asoi1, bsoits Ksoits Psoils cfm.l
and ¢, characterise the fluid dynamics of water flow through each soil (DP, AS,
GW), subject to the constraint kpp + kas + kgw = 1, leaving 17 functionally inde-
pendent input parameters. Details of parameter descriptions, ranges and units are



given in IBM.

Figure 1: Three compartment rainfall runoff model.

Thus, in terms of the general description given in Section 2, the input vector z
has 17 components, y represents the three time series for discharge, Calcium and
Sodium, and z represents the corresponding field data. The function f(-) relating y
to x develops as follows:

There is a fast f and a slow s sub-compartment for each of the three soil-type
compartments DP, AS and GW. Updating the effective water stored from hour ¢ to
t + 1 for each sub-compartment is governed by the equations

Esgoil(t +1) = Esgoil(t) + Tsoil (t)pfoil RAIN(t) — CfoilEsfou(t)
Salt+1)=ESS (1) + rei(t)pi,; RAIN(t) — ¢, ESs, (1)

soil soil SOl soil

where soil is one of DP, AS and CW, p/ . +ps, =1

ksoil
N 1 + €exp [asoil - bsoils(tﬂ

Tsoil <t>

with kpp + kas + kgw = 1 and S(t), the total water stored in the system at time ¢
is given by
S(t) = Y [ESLy(t) + ESs,u ()] + 1S(t)
soil
That is, the total water storage S in the system at any time is the sum of the effective
storages for each soil type, both fast and slow, plus the overall residual ineffective
storage 1S. Physical interpretations of the six parameters for each compartment



will emerge in the next subsection. Updating the total storage from ¢ to t + 1 is
governed by the equation

S(t+1) = S(t) + RAIN(t) — AET(t) = > Foult)

soil

where the Fi(t) = ¢/ ES! (t) + ¢, ES? ,(t) are the flows out of each soil-type
compartment. Similarly, updating the ineffective storage from ¢ to ¢ 4+ 1 is governed
by the equation

IS(t+1) = IS(t) + RAIN()[1 — ) reult)] — AET(2)

soil

Hourly model outputs, discharge D(t), Calcium Ca(t) and Silicon Si(t) are given
by

D<t> = Z Fsoil (t)

CCL(t) = Z soleSOll /D

soil

57’(75) = Z soleSOZl /D

soil

where the T govern the tracer concentrations of Ca and Si emanating from
each soil-type compartment.

Thus, to run the model y = f(z) we need (i) a computer code implementation
of f(-); (ii) valid values for the 17 Components of x; (iii) the forcing functions RAIN
and AET; (iv) the initial conditions ES? ~ES® . and IS at t = 0; and (v) the

soil?
values of the six tracer concentrations T %"

soil

3.2 Informal model exploration

As an illustration of the many types of data analysis that we may carry out to
explore the qualitative behaviour of the model, we focus on the water discharged at
hour 620, and investigate its sensitivity to changes in a selection of some of the 17
model input parameters.

We illustrate the process by observing in Fig. 2 (left panel) how the logarithm
of discharge at hour 620 varies over the range of ¢}, , for a selection of four values of
pr p and in Fig. 2 (right panel) how it varies with bug for four values of %4, where
in both illustrations the other inputs were held fixed at their mid-range values.

As hour 620 is shortly after a large rainfall between 610 and 619 hours, peaking at
hour 615, increasing ch p from its minimum value of 0.1 initially increases discharge,
as more Water will flow out of the fast DP compartment; see Fig. 2. However,
increasing cD p past 0.2 leads to a decrease in discharge, because lots of the water
will have drained away before 620, resulting in less flow. Increasing pD p increases
the amount of water entering the fast DP compartment (as opposed to the slow DP
compartment), which leads to a corresponding increase in discharge.

Fig. 2 (right panel) shows that as bag is increased, the system approaches sat-
uration and more water is directed into the fast and slow AS sub-compartments,

8



with less going into the ineffective storage (IS) compartment. This leads to larger
flows out of the AS sub-compartments, resulting in an increased discharge, which
tends to an asymptotic value. Increasing c’ ¢ increases the flow out of the slow AS
compartment, which results in a small increase in discharge. Several additional plots
were considered and they all demonstrated sensible model behaviour.
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Figure 2: Left panel: logarithm of discharge at hour 620 versus ch p for four different
values of p{) p- Right panel: logarithm of discharge at hour 620 versus bug for four
different values of ¢ 4.

3.3 Internal model discrepancy

We consider assessment of the internal model discrepancy contribution to overall
model discrepancy for the runoff model. To do this, we perturb different features
of the model and focus on how they perturb the discharge output D(t). There
are several distinct model features that we consider perturbing, including the six
input parameters for each soil-type compartment, the initial flow conditions and
the output tracer concentrations, the transfer functions r4,;(t) and the two forcing
functions RAIN and AET.

To illustrate our approach, we focus on perturbing (a) the initial conditions; (b)
the forcing function RAIN; (c) the parameters ag,; in the transfer functions rg;(t)
which influence the amount of water entering each compartment; and (iv) the input
parameters Cﬁoil and ¢, governing the flow rates out of the three compartments.
Note that (c) is a simple example of perturbing the propagation step in the equations
for the system state, while retaining the water conservation constraint.

We adopt a similar formulation for each of the four perturbations.

3.3.1 Initial condition contribution

First consider the condition specified by IBM that the initial flow out of the slow
groundwater sub-compartment equals the observed initial discharge and the other



initial flows are all zero. This implies that the initial storage of water in each of
the 7 sub-compartments is zero except for the slow, ground water sub-compartment
(ESE&y, (t = 0)), which is chosen to ensure that initial flow matches the observed flow.
This is not an unreasonable specification, as there was an extensive dry period prior
to the study. We will perturb the initial slow groundwater content ESg, (t = 0),
which we write as w. We do this by replacing w by nw, where 7 is a positive random
quantity with expectation E[n] = 1 and standard deviation SD[n] = p corresponding
to a small percentage, such as 100p = 5%. Thus, E[nw] = w and SD[nw| = pw.
We further assume, for convenience, that 1 has a log-normal distribution; that is,
log 7 has a normal distribution with some mean p and variance o2. It is reasonably
straightforward to show that our expectation and standard deviation conditions on
n imply that u = —0.5log(1 + p?) and % = log(1 + p?). Thus, a convenient way to
sample a value of 7, is to sample logn from the normal distribution with this mean
and variance, and then exponentiate the result.

Now suppose we (i) fix values for the 17 input parameters x; (ii) sample a
value n; of n; and (iii) run the model with initial condition n;w and inputs z.
Let Di(x),..., Diso(x) denote the resulting discharge output time series: actually,
we take the logarithm of discharge to be the model output y. Now repeat the above
with each of another K —1 independent n values, so that for 7, with initial condition
nrw we have discharge model outputs Df(x), ..., Dkg(z) for k =1,..., K. In our
implementation, we set the components of x to be equal to the middle of the ranges
specified by IBM, p = 0.1 and K = 400

Next, we calculate for each hour ¢ the sample variance V;(x) of D}(z), ..., DE(x).
The 839 x 839 diagonal matrix VNI with diagonal elements Vi(z), ..., Vsso(z) is
an estimate of the initial condition contribution to the overall internal model dis-
crepancy variance. To simplify the discussion, we have chosen not to estimate the
off-diagonal covariance terms, setting them to be zero instead. Fig. 3 plots the stan-
dard deviations SDy(x) = /V;(x) against t. Notice that the effect of perturbing
the initial condition eventually decreases to a constant value.

We repeated the above perturbation exercise for a few other fixed values of
the inputs and discovered that the pattern and magnitude of the initial condition
contribution was essentially the same, the biggest differences occurring at essentially
infeasible input combinations.

3.3.2 RAIN contribution

We treat the forcing function RAIN similarly, except we perturb RAIN(¢) for each
hour £ = 1,...,839 and also introduce a dependency between the perturbations
as follows. Write £(t) = logn(t), where the perturbation is n(t)RAIN(¢) and, as
before, we assume E[n(t)] = 1, SD[n(t)] = p and £(¢) has a normal distribution with
mean 1 = —0.5log(1 + p?) and variance o = log(1 + p*), the same values for each
hour t. We now need to model the distribution of the collection 7(1),...,1(839) or
equivalently the collection £(1),...,£(839).

The simplest assumption would be to treat the £-collection as independent nor-
mal random quantities and proceed as for the initial condition perturbation. How-
ever, it makes sense to introduce a time dependency which we do here by assuming
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the &-collection to have a multivariate normal distribution with a correlation between
&(s) and £(t) for any two hours s and ¢ of the form

s—t\?
exp ( 7 )

where the number of hours 6 is to be chosen. Notice that for any given choice of
0, the correlation decreases as the time difference |s — t| increases. On the other
hand, the correlation decreases as 6 decreases when the time difference is held fixed.
In our implementation, we set p = 0.1 and 6 = 5 hours, reflecting the belief that
the correlation in rainfall measurement error will not persist over the duration of
an average storm. The 839 values of £(t), hence those of n(t), can be simulated,
for example, using the function mvrnorm in the R library MASS; see, Venables and
Ripley (2002). We now run the model at some input x, using the original initial
condition and perturbed forcing function values n(1)RAIN(1),...,n(839)RAIN(839)
and record the perturbed discharge series. We repeat this procedure K times and,
exactly as we did with the perturbation of the initial condition above, estimate a
diagonal variance matrix VEAN Fig. 3 plots the standard deviations (the square
roots of the diagonal elements of VRAIN) against + when the components of x are
chosen to be the mid-range values specified by IBM.

3.3.8  Structural inflow contribution

The amount of water flowing into each soil sub-compartment at each hour ¢ is
governed by its transfer function 7. (t) and pse;. There are many possible pertur-
bations: for illustrative purposes we chose to perturb the three ay,; parameters in a
similar way as we did for RAIN. Specifically, we used the same perturbation process
for n, for app, aas and agy with p = 0.1 and # = 100, reflecting slowly varying
changes in the physical system. As previously noted, this is a simple example of
perturbing the propagation step in the equations for the system state, while retain-
ing the water conservation constraint. Fig. 3 shows the standard deviation of the
logarithm of discharge for each hour for this internal error contribution.

3.8.4  Parameter outflow contribution

The flow out of each soil-compartment is governed by cfoil and ¢} ;. We perturb
these six parameters as we did for the a,,; parameters in Section 3.3.3 using the same
n; process for each of them. Fig. 3 shows the standard deviation in the logarithm of
discharge for each hour for this internal error contribution.

Overall, the patterns of the RAIN, structural and flow contributions to internal
model discrepancy shown in Fig. 3, are similar with flow lagging a few hours behind
the other two: they all increase significantly during periods of heavy rainfall.

Fig. 4 shows three traces: (i) the logarithm of observed discharge; (ii) three stan-
dard deviation intervals of observed error in the logarithm of discharge (which was
chosen to be 5%); and (iii) three standard deviation intervals of internal model dis-
crepancy, where the standard deviations are the root mean square of the variances
of the four contributions: the initial condition, the RAIN forcing function, struc-
tural inflow and parameter outflow. The calculation in (iii) assumes that these four
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contributions are uncorrelated, which was confirmed with further runs of the model.
Note that in Fig. 4, the internal model discrepancy is significantly smaller than the
range of discharges explored by the model output and the observed discharge. This
suggests that the model would not be deemed inadequate due to this level of internal
discrepancy. Since there are many possible further internal error contributions, the
internal model discrepancy based on the four contributions is likely to underestimate
that based on a comprehensive overall assessment.
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Figure 3: Standard deviations of the logarithm of discharge for four contributions to
internal model discrepancy: initial flow condition (red), the RAIN forcing function
(blue), structural inflow (green) and parameter outflow (magenta).

3.4 External model discrepancy

We introduce the notion of implausibility as a basis for assessing the external con-
tribution to overall model discrepancy.

Suppose we observe a system at N equally-spaced time points ¢t = 1,2,..., V.
In the runoff model, there are N = 839 consecutive hourly discharge measurements
for the 35 days between 19 August and 22 September 1993. Denote by z; a field
observation at time ¢. In the runoff model, z1, 2o, . . ., 2y are the logarithms of water
discharge at each of the 839 hours. Denote by fi(z) the model output at time
t when the model is evaluated at input z. In the runoff model, fi(z),..., fx(x)
are the 839 logarithms of water discharge simulated by the runoff model at input z,
where z comprises 18 parameters subject to their range constraints and a sum-to-one
restriction for three of them, leaving 17 inputs that can be varied independently.
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Figure 4: The upper panel shows the logarithm of observed discharge, three stan-
dard deviation traces of observation error and of corresponding internal model dis-
crepancy, assessed by perturbing an initial condition, the RAIN forcing function,
structural inflow and parameter outflow. The lower panel shows three-sigma limits
for both the internal model discrepancy and the measurement error.

3.4.1  Implausibility
We have structured our uncertainty specification in general form, in which
e =y — fu(z") (3)

is the model discrepancy at time ¢, where x* is taken to be the appropriate model
representation of the actual system properties, and which correspond to the actual
unobserved system output y;. We regard the values of z* and the y; as random
quantities, as their values are unknown. Next, we write

2y =Y + € (4)

where z; is the measurement of y; and ¢; is the associated measurement error. Fur-
thermore, we have decomposed the overall model discrepancy into the sum of internal
and external components, which we write as

5t:51z+5Et (5)
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Putting these relationships together, we obtain
Zt = ft(l'*) —+ Er, + ER, + €t (6)

We regard the discrepancy and error terms ¢y,, eg,and e; to be uncorrelated ran-
dom (uncertain) quantities each with expectation zero and respective variances ai,
oz, and o2. We will assume that the value of the measurement error variance o7 is
known, whereas cri and O'%t need to be carefully assessed, preferably in conjunction
with a system expert, taking into account the limitations of the model in describing
the actual system. We define the implausibility /(z) of a model input z to be

1) = | ®
where
o; = Var[(z — fi(z*))] = 0] + op, + 07 (8)

Note that I(z) is scale-free and the o7 do not depend on x. Other definitions
of implausibility are possible; for example, the average of the deviations in (7) or
the average of their squares. The definition in (7) is more stringent than these
two: imposing a constraint upon I(z) would demand that the maximum deviation
between model output and observed data was small.

Our aim is to “rule out” any input x for which (z) is “too large” when compared
to a threshold based on a reasonable calibration for I(z). One such calibration is
based on assuming independent standard normal distributions for the signed stan-
dardised deviations in (7), deeming an input = to be implausible if say I(z) exceeds
the upper 5% point of its distribution in the null case when x = z*. Then, the
distribution of I(x) is such that

p = P[I(x)>m|z=2a*]=1—[20(m) — 1]~ (9)

where ®(-) is the cumulative distribution function of the standard normal distribu-
tion. Hence, we want to choose m so that the probability p in (10) is “small”; that
is, choose m such that

L+ (1 -p""

2

When p = 0.01 and N = 839 we find that m = 4.38. At the other extreme, when
the signed standardised deviations in (7) are completely dependent, corresponding
to N =1 in (10), we find that m = 2.58 when p = 0.01. The actual result will be
somewhere between these two extremes. The corresponding values of m for p = 0.05
are 4.01 and 1.96. We adopt the conservative, stringent independence assumption
with p = 0.01. Thus, we deem an input = implausible if I(z) > 4.38.

We applied this implausibility criterion to the logarithm of discharges from
100,000 runs of the runoff model, where the inputs were from a subset of a Latin
hypercube design chosen to accommodate the sum-to-one restriction. The o2 in (7)
were modified to be the sum of the measurement error variance and the internal
model discrepancy variance contribution to the overall component-wise model dis-

crepancy variance; that is, o7 = o7 + ¢Z2. The intention was to see if we could find

O(m) = (10)
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some non-implausible inputs (without introducing any external model discrepancy)
to help assess the external discrepancy variance contribution to the overall model
discrepancy. However, we found that without the external discrepancy, every one of
the 100,000 inputs were implausible (given zero external model discrepancy): the
lowest implausibility is about 4.7 with only two runs less than 5.0. In fact, we ob-
served that for all 100, 000 runs the model consistently over-reacted to short periods
of rain and reacted too quickly (or too slowly) to major peaks in rain, demonstrat-
ing that its predictive adequacy may be regarded as questionable for such rainfall
patterns.

To obtain an order of magnitude assessment of the external model discrepancy
U?Et, we might choose a small number n of the least implausible inputs zy, ..., x, of
the 100,000 runs, and consider the corresponding model outputs f;(x;). We then

choose o, in (8) so that

2 — fi(x)

O

max
1<i<n

<3 (11)

Note that this choice of 07, can be zero. Fig. 5 shows the results when we choose
n = 8. The upper panel shows plots for the logarithm of observed discharge z,
the mean f; of the corresponding eight model outputs and the 3¢, limits about
that mean. The lower panel shows the residual plot z; — f,, the same 30, limits
as in the upper panel and three-sigma limits for both the internal and the external
discrepancy. Note how frequently the external discrepancy is zero.

A large external model discrepancy standard deviation op, indicates that the
model fails to predict well for reasons not explained by measurement error or internal
error. These occur here mainly when either the model reacts too quickly or too slowly
during heavy rainfalls, for example around 490 hours, or when the model overreacts
to smaller rainfall events, such as at 395 and 690 hours. We might expect such
deficiencies in a simple compartment model of a complex physical runoff system.

The forms of the external and internal model discrepancy traces are very differ-
ent, as they are measuring different things. The green trace, which shows the sum
of the total model discrepancy and the measurement error, is of primary interest
in assessing model adequacy. Even though it is large in places, it is much smaller
than the overall range of both the observed and model discharge, suggesting that
that the model is mostly adequate for describing discharge, except during periods
of heavy rainfall, where the green trace spikes, which is particularly evident in the
residual plot, displayed in the lower panel.

4 Slow computer models

The above analysis was based on an ability to modify the computer code and to
carry out very many evaluations of the model. We now describe how to modify our
analysis when neither of these conditions applies. For purposes of comparison, we
re-analyse the runoff model of Section 3, but we now suppose that we have no access
to the computer code and that the runoff model has a long run time. Therefore, we
used only 250 carefully chosen training runs with which to build an emulator of the
computer code implementation of the model. As discussed in Section 2, an emulator
is a fast stochastic approximation of the model. We can evaluate the expectation
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Figure 5: The upper panel shows the logarithm of observed discharge, the mean of
the corresponding eight ‘best’ model outputs and overall three-sigma limits (30;)
about that mean; while the lower panel shows the residual about about that mean,
the same three-sigma limits as in the upper panel and three-sigma limits for both
the internal and the external discrepancy. See the text for the definition of each
sigma.

and variance of the emulator: the former mimics the model’s behaviour while the
later represents our uncertainty in the approximation; see, for example, Craig et al.
(1997), Craig et al. (2001), Kennedy and O’Hagan (2001), O’Hagan (2006) and
MUCM (2009).

To illustrate emulation, we consider the logarithm of the discharge at each of the
13 equally-spaced hours 100, 160, ...,760,820. The following procedure is used to
construct an emulator for the logarithm of discharge at each of these 13 hours.

(i) We select a Latin hypercube of 250 points over the 17 functionally independent
inputs and run the model at each of them. To construct a Latin hypercube of
n points, the range of each of the inputs is divided into n equal intervals, and
the points are then chosen randomly so that no two points occupy the same
interval for any of the inputs.; see, for example, MUCM (2009).
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(i)

(i)

Next we fit a linear model of the form (12) to the logarithm of the 250 model
discharges, using the 1lm function in R; see the R Development Core Team
(2008). Each model input choice z has 17 components "), ... 207 and, in
the first instance, we choose g;(z) = 2\ for j =1,...,17 and go(z) = 1.

We then use the step function in R to carry out a backward step-wise selection
procedure to identify a subset of active inputs x, of the inputs x that account
for a high percentage of the total variation in the logarithm of model discharge
in relation to the fitted model. A further reduction of the subset can be
achieved by removing statistically significant inputs which otherwise have little
practical impact on model output. For simplicity, we kept the same number
of active inputs for each output, and found that 12 inputs were sufficient,
although a different 12 were chosen for each of the 13 outputs.

We then fit a quadratic in the active inputs determined in (iii); that is, with
the g(-) in (12) of the form g;;(z,) = %5 for 0 < i < j, where goo(,) = 1
and go;j(z.) = z)

If the multiple correlation R? for the fitted quadratic model is substantial, in
excess of 90% say, then it should be a useful predictor of model output at
untried inputs. However, as an emulator of the model, the quadratic regres-
sion fit will not agree with the model outputs at the 250 inputs. As explained
after (12), current emulator research treats the residuals as a “smooth” ran-
dom process instead of the “rough” residuals from the quadratic regression
fit, acknowledging that the model is likely to be a continuous, differentiable
function of the inputs z. Thus, the emulator for a single output f(x) of the
runoff evaluated at x, has the form

fle) =" 2P0 8 + u(x) (12)

0<i<j<12

The actual emulator for the computer model at any input x is obtained by
assessing (a) 02 to equal the residual mean square from the least squares fit to
(12); (b) the f;; to equal to their least squares estimates; and (c) the variances
and covariances of the (3;; to equal their estimated values resulting from the
least squares fit.

Furthermore, we usually decompose u(z) to be of the form u(z) = €(z,) +v(x),
where v(z), called a‘“nugget” residual, accounts for the absence of variation due
to the inactive inputs: two different inputs = and =" may have the same values
for their active input components. We assume that v(x) has zero expectation
and variance do? for all z, and v(x) and v(z') are uncorrelated, unless 2 = 2’
when they are perfectly correlated: we take § = 0.05. The other residual
component €(x,) has zero expectation and variance (1 — d)o? for all x,, and
the correlation between any two residuals €(x,) and e(z,) is taken to be of the

form ,
(k) "(k)
xa - :L‘a
oxp |- 3 <_Qk )

k
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for any two inputs z and z’ with active input components xgk) and .I;(kz where

0, which is either chosen or estimated, controls the contribution to the overall
correlation between the corresponding two outputs in the direction of the kth
active input component a:((lk). We chose each 6, = 0.33, one-third of the length
an input interval, a choice based on previous experience of fitting quadratics
to computer model output

(vii) We check emulator accuracy by evaluating it at the inputs of an additional set
of evaluation or diagnostic model runs to see whether the emulator evaluations
at these inputs are “close” to the corresponding model outputs, where for each
evaluation, closeness is assessed with respect to the standard deviation of the
emulator at the evaluation input. We would normally choose a small number
of diagnostic runs (about 100) with inputs in a Latin hypercube, modified to
accommodate the sum-to-one restriction. However, for demonstration purposes
we use the 13 emulators to obtain emulator expectation and variances at the
same 100,000 points used in Section 3 to obtain a more detailed assessment of
the emulators in comparison with the model outputs. Fig. 6 illustrates results
(using just 1,000 randomly selected points from the 100, 000) for the emulators
at 460 hours (left panel) and 820 hours (right panel). Each panel shows the
emulated logarithm of discharge with three emulator standard deviation limits
versus the corresponding 100,000 model values, the 45 degrees line and the
field observation value with three measurement error standard deviation limits.
Clearly the emulator at 460 hours is more accurate than that for 820 hours. It
can also be seen that both emulators are satisfactory in that a large number of
prediction intervals (red) do indeed cover the correct model discharge values
represented by the green line. Notice that for both hours there are model runs
which match the field data within the measurement error limits, suggesting
good fits. However, while we find that this is also true for the other 11 hours,
we cannot be sure there is a common set of inputs at which the model runs
for all 13 hours fit well, or indeed for all 839 hours, a point we address in the
next section.

4.1 Implausibility

The definition of implausibility for slow computer models is similar to that for fast
models given in (7); see, for example, Craig et al. (2001). We define the implausibility
I(z) of an input x to be

(13)

I(x) = 11%1%}](\[

ct E[ft(x)]’

o)

where E[f;(z)] denotes the mean of the emulator at time ¢ for input = and o?(z)
is the sum of three variances, those of measurement error, model discrepancy and
the emulator at x: in our example N = 13. Cut-off considerations for I(x) are
similar to those for fast models. Note that, as internal model error assessment is
not possible for slow computer models, external model error implicitly includes the
internal contribution.
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Figure 6: Emulated logarithm of discharge (blue dots) with three emulator standard
deviation limits (red line segments) versus the corresponding randomly chosen 1000
runoff model values from 100,000 runs; the 45 degrees line (green); and field ob-
servation value (black line) with three measurement error standard deviation limits
(black dotted lines) for the emulators at 460 hours (left panel) and 820 hours.

Since an emulator run time will be fast compared to that for the computer model
it emulates, we can evaluate it at many inputs (as we did for fast models) to help
determine implausible inputs. As for fast models, we set the model discrepancy
variance component term of o7(z) in (13) equal to zero to help identify some “non-
implausible” inputs with which to help assess model discrepancy error, which in
turn can be used to assess whether the model is worth calibrating and adequate for
prediction.

In the runoff example, we selected 203 candidate runs from the emulated values
at the 100,000 point design used in Section 3.4.1, using an implausibility cut-off
value of 6.5. We then evaluated these 203 runs on the actual runoff model and
computed the implausibility in (7) with o? equal to measurement error variance,
and found that their implausibility values were all greater than 8.5. We then chose
the eight best of these 203 runs having implausibility less than 10 . These eight
runs were used to assess the external model discrepancy, exactly as in Section 3.4.1.
Fig. 7 shows the results.

The upper panel in Fig. 7 shows the 250 runs used to build the 13 emulators,
the 203 candidate runs and the observed discharges: the error bars are based on the
sum of the external model discrepancy and measurement error.

The lower panel in Fig. 7, summarised in Table 4.1, compares the fast and slow
model results and shows standard deviations for fast internal model discrepancy, fast
external model discrepancy, fast total model discrepancy and slow external model
discrepancy, the later equaling the slow total model discrepancy, as there is no in-
ternal model discrepancy. Observe that the fast total model discrepancy and slow
external model discrepancy are of a similar order of magnitude, with the fast total
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model discrepancy being mostly larger due to the fast internal discrepancy contri-
bution, which could not be assessed in the slow model situation. Other deviations
are due to the best run selection process being slightly different in the fast and slow
cases: in particular, the presence of the internal discrepancy alters the definition of
an acceptable run.

As a further check on the quality of the emulators, we found that the 203 candi-
date runs suggested by the emulator did in fact include the best 8 runs that would
have been found had we evaluated all 100,000 runs used in Section 3.4.1 using the
runoff model directly. Thus, using the 13 emulators we have only had to evaluate
the runoff model 453 = 250 4 203 times to achieve the same results as running the
runoff model 100,000 times! As the model discrepancy is similar in magnitude to
that for the fast simulator, our conclusions regarding model adequacy are consistent
with those given in Section 3.4.1.

- — Observed Dis&:harge '
—— 250 Original Runs '
—— 203 Candidate Runs | .
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Figure 7: The upper panel shows the 250 runs used to build the 13 emulators (blue),
the 203 candidate runs (red), the observed discharges (black) and the error bars are
based on the sum of the external model discrepancy and measurement error. The
vertical dotted lines are the 13 emulator hours. The lower panel compares the
fast and slow model results, showing standard deviations for fast internal model
discrepancy (blue) , fast external model discrepancy (turquoise), fast total model
discrepancy (black) and slow external model discrepancy (green).
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100 160 220 280 340 400 460 520 580 640 700 760 820

Fast Internal .15 .16 .16 .06 .06 .07 .06 .23 .20 .16 .12 .05
Fast External .14 .00 .00 .00 .00 .08 .00 .00 .00 .00 .10 .00
Fast Total .21 .16 .16 .06 .06 .11 .06 .23 .20 .16 .16 .05
Slow External .15 .09 .10 .06 .06 .11 .07 .15 .15 .09 .15 .15

.04
.02
.05
13

Table 1: Standard deviations of internal, external and total model discrepancy at
13 different hours for the fast model and of external model discrepancy for the slow
model, as depicted in Fig. 7.
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