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Abstract

The waterhammer equations are a pair of partial differential equations that
describe the behaviour of an incompressible fluid in a pipeline. We generalise
these equations to account for uncertainty in (1) the description of the liquid
and the pipeline, (2) the behaviour of the pipeline boundaries, and (3) the
method of solution. We illustrate applications of our model to pipeline design
and to real-time pipeline monitoring, e.g. for leak-detection, and discuss the
general features of our approach to the careful sourcing of uncertainty in

deterministic models.

Keywords: Random field; Dynamic Linear Model; Real-time Leak Detection;

Waterhammer.

1 Introduction

The analysis of fluid flow in pipelines is typically conducted by a deterministic
analysis that takes as known the parameters that describe the interaction of the
fluid and the pipe. This analysis is used both on-line, to model the behaviour
of pipelines in order to detect leaks, and off-line, to examine the response of the

pipeline to sudden changes in operating conditions. In either case an incomplete
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human casualties and environmental catastrophe.

What is not known, except through experiment in certain special cases, is the
accuracy of the deterministic analysis. There are three sources of uncertainty. First,
the coefficients that describe the pipeline are uncertain, and also non-constant in
both space and time. Second, the boundaries are uncertain. These boundaries
comprise the initial state of the pipeline, and the behaviour of the upstream and
downstream terminals. Third, the method of solution introduces truncation errors.
In practice these three uncertainties are agglomerated into a margin-for-error. This
is far from ideal because a simple margin fails to respect the varying sources of
uncertainty, and the way in which they interact, both separately and together, with
the physics of fluid flow.

In this paper we show how these uncertainties may be included by generalis-
ing the deterministic analysis, and embedding the resulting stochastic formulation
within a dynamic model evolving through time. This dyanamic model, suitably
linearised, provides a framework for prior analysis of uncertainty, i.e. as required in
pipeline design, and also for real-time pipeline monitoring, using Bayesian learning
from noisy data collected from the pipeline through time. While our analysis is spe-
cific to pipelines, it is suggestive of a more general approach to physical modelling,
in which uncertainty is carefully sourced within a system of PDEs, and then carried
through into a discrete-time solution amenable to a Bayesian analysis. We discuss

this further in the final section of the paper.

2 The waterhammer equations

Wylie and Streeter (1993) gives detailed descriptions of modelling fluid flow in
pipelines, while Massey (1989) provides an outline within the context of fluid me-
chanics. A model of fluid flow in a pipeline relates two state variables, pressure
and flow, over two spatial variables, one measuring the distance along the pipeline,
the other, time. We use A’ for pressure (metres of piezometric head), v’ for mean

flow (metres per second), z' for distance along the pipeline from the upstream end
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scale, as we will shortly be switching to a more convenient ‘unitless’ scale. These
scalings are described in Section 5.

The two equations that describe the relation between pressure and flow in space
and time are known as the waterhammer equations, and they are applicable for low
mach-number flow of any incompressible fluid. The waterhammer equations form a
quasi-linear hyperbolic PDE system in A’ and v', which we give in their dimensionless
form (e.g., Liou and Tian, 1995; Basha and Kassab, 1996), i.e. with state and spatial

variables suitably re-scaled and primes dropped,
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The unitless coefficient &, often termed the ‘pipeline coefficient’, can have both z-

and t-extent, and describes the frictional damping due to roughness at each location

along the pipeline at any given time.

2.1 Solution for pressure and flow

The waterhammer equations may be given an alternative representation using the
method of characteristics (Ames, 1965, sec. 3.1, 7.21), as outlined in Appendix A.1.

This method gives rise to the following pair of total differential equations,

dh d d
:|:—+—U+§v|v|=0, v

==£1 2
dt  dt @)

pri
where each equation is valid only in the given (z,t) direction. In this representation,
equations are solved on the vertices of a diagonal lattice in space and time, where
the edges correspond to characteristics. Figure 1 shows a grid of n reaches (where
it is convenient to choose n odd) in which the space- and time-steps are of equal
size. The diagonal arrows represent the positive (heading downstream) and negative
(heading upstream) characteristics, while the vertical arrows at the upstream end
represent boundary conditions (to be discussed below).

The pressure and flow at each of the ‘child’ node can be solved in terms of the
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Figure 1: Space and time grid of n reaches, x = 0 is upstream.

pressure and flow at the ‘parent’ nodes. Appendix A.2 shows that the waterhammer
equations may be solved for pressure and flow at the interior points of this grid at

time ¢ using data available from time ¢t — 1 as
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for t even and 1 = 2,4,...,n— 1; or for t odd and i = 1,3,...,n — 2. The ‘+’ and
‘—’ superscripts pertain to the positive and negative characteristics, respectively.
There are two new terms in this expression. The ‘2’ terms are line integrals over

the pipeline coefficient. They are indexed by the location in space and time of their

point of origin, and by their direction, thus

At

zh = E(+7,t+7)dT,
0

i.e. the value of £ integrated along the positive characteristic dz/dt = 1 from (3, t) to
(1+At, t+At). The ‘¢’ terms we label ‘modelling errors’ as they describe the incom-
pleteness of our mathematical representation and solution of the pipeline. A large
part of their composition are truncated terms from the line integral approximation,
hence they are indexed similarly to the z terms. However, the modelling errors must
also capture any imperfections in the waterhammer equations themselves, e.g. the

slight compressibility of many liquids that we treat as incompressible (like water).
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In the standard deterministic formulation the modelling errors, ¢, are ignored, and
the pipeline coefficient £ is assumed known and, usually, constant. In this case the

solution simplifies considerably because
2 =2; = (At)r

where &(z,t) = r for all x and t. The solution for interior points is now entirely
deterministic. In contrast, we retain the € errors and acknowledge uncertainty about
the pipeline coefficient £. For a pipeline in operation, the value of the pipeline coeffi-
cient varies in both space and time in a manner which is generally unobservable and
highly dependent upon local conditions, particularly when allowing for the transi-
tory effects induced by fluid-structure interactions (Tijsseling, 1996; Freitas Rachid
and Costa Mattos, 1998). While it is possible to provide complex deterministic
models of these effects we prefer instead to acknowledge our limited information by
modelling the pipeline coefficient £ as a random field in space and time, with an

assigned mean function r(z,t) = E (£(z,t)) and a covariance kernel

k((z,t), (¢',1')) = Cov (&(, 1), £(2, 1))

It follows that z;; and z; are not known constants, but are themselves random
quantities with means, variances and covariances that follow directly from our choice
of the functions r and x:

At

E (2}) :/T(i+7',t+7')d7'

0
At At

Cov (2, zp) = //K,((i-i-T,t-i-T), (@ =7t + 7)) drdr’

0 0

(see, e.g., Parzen, 1962).
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The waterhammer equations on their own cannot provide solutions for pressure and
flow at the two boundaries. This is because the relation between pressure and flow at
the boundary will depend upon the equipment that is installed there. For example,
the downstream end of a pipeline is often a valve, in which case the pressure and flow
at the downstream end are related in the form vy, o /A, where the proportionality
depends upon the setting of the valve. This relation can be combined with a positive
characteristic from node n — 1 in order to determine both pressure and flow at node
n for alternate time-points (¢ odd in Figure 1). An alternative is simply to provide
a value for one of pressure or flow and then solve for the other, using the available
characteristic. For example, at the upstream end of the pipeline there is sometimes a
pressure meter. In applications the data from this meter is used directly to compute
flow at node 0 (for ¢ even in Figure 1).

Both of these practices introduce errors into the deterministic analysis. The
absence of any error in the description of the downstream valve is not consistent with
the mainly empirical results that describe the precise relation between pressure and
flow at different valve settings, often repesented in graphical form (e.g. Wylie and
Streeter, 1993, Appendix C). Likewise, imperfect meters should not have their data
fed directly into a deterministic algorithm. Therefore we specify stochastic models
at the pipeline boundaries, and leave the assimilation of data to a later stage. At an
upstream boundary fed from a reservoir, for example, we might model pressure as
a random walk, while at a downstream boundary exiting through a valve we would
introduce an error term into the relation between pressure and flow. This is the
reason behind the different treatment of the two boundaries in Figure 1. Details of

these two models are given in Appendix A.3.

3 Solution as a dynamic model

In this Section we show that the stochastic waterhammer equations described in
Section 2 can be represented within a linearised dynamic model. Due to the diagonal

lattice, the state equations of the dynamic model must vary according to whether ¢
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forwards will ‘zig-zag’ through time, as should be clear from Figure 1.

The state vector itself must contain more then just pressures and flows. The so-
lution of the waterhammer equations, eq. (3), indicates that the z variables, which
represent the pipeline friction term, must also be included, as the solution for pres-
sure and flow at time ¢ is conditional upon the values of z; ; which are, in general,
unknown. If we assume that £ is a gaussian random field, the collection {z;_1, 2:}
is jointly gaussian and we can use the standard linear updating rule to compute the

mean and variance of z; given z; i:

=+ Az + G

where A; = Cov (2, 2;_1) Var (zt_l)_l, a; = E(z;) — AyE(2_1), and (;_1 is a mean
zero error term with Var ((;_1) = Var(z) — A; Cov (24_1, 2:). The error term (; 4
is written lagged in keeping with our convention that variables defined over time
are labelled by their time of origin. As an alternative to modelling £ as a gaussian
random field, the pipeline engineers may prefer to state their beliefs directly as a
covariance structure on the collection {z;_1, z;}, in which case the Bayes linear ap-
proach (Farrow and Goldstein, 1993; Goldstein, 1999) provides another justification
for these relations. Section 4 provides more details about modelling the evolution
of z.

Technically the e terms should also be included among the state vectors for
the same reasons as the z terms. However at this point we make the simplifying
assumption that these errors can be treated as independent in time with mean zero
and state-invariant variance structure. In Appendix A.2 it is shown that €_q; ~
O((Avti)?’), where Auwy; is the change in flow along the appropriate characteristic,
hence €;_1; ~ O(n™?). Even in the worst case in which all n components are perfectly
correlated the ignored structure in € is only O(n~?), and therefore this simplification
is reasonable except when n must be small. Where this is unavoidable the € terms
can be modelled in the same manner as the z terms.

Collecting the variables h; and v; together into the state vector #;, the dynamic
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0, = gt(gt—la Zt—1, €t—1)- (4)

Linearising (4) around E (6,—;) = 0,_1, E(2-1) = %1 and E () = 0 allows us
to write the full fluid flow model, i.e. including the evolution of beliefs about &,

approximately as a Dynamic Linear Model (West and Harrison, 1997, ch. 13),

0, _ t N G! G} 01 N W1 5)

2t ay 0 A Zt-1 Ct—1

where (GY, G7, G) is the jacobian matrix of g; with respect to (6, z, €) evaluated

at (0_?5—17 zt—b O)a

fr=900-1, 21, 0) — (Gf Gf) .

and Var (wy) = G§ Var (e,-1) (GS)*.

In order to assess the impact of linearisation we consider the effect of the non-
linear terms of the form |vy|zy in (3). These terms will be small, giving rise to
an effectively linear system, whenever z; ~ (At)£ is small (where £ is the mean
pipeline coefficient, discussed in Section 4). As At = 1/n we can be confident in
our linearisation if we can afford to use a large number of nodes or if we have a
smooth pipe. Under these conditions we would make little or no modification to the
size of the variance of w;_;. Otherwise we may choose to increase this variance in
order to account for the truncation error of the linear approximation. In extreme
circumstances, e.g. a very long and very rough pipeline, it may be necessary to aban-
don linearisation altogether and switch to a real-time simulation-based approach (as
outlined, for example, by Liu and Chen, 1998).

What we achieve in writing the waterhammer equations as a dynamic linear
model is to introduce uncertainty explicitly into the modelling of fluid flow in

pipelines. While it would be possible simply to add an error term to the deter-
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intricate space-time structure that is implied by the physical model. By introducing
the different sources of uncertainty at their appropriate points in the development
of the model we allow this uncertainty to propogate through time and space in a
manner consistent with the physical process. The consequence of this will be most
clearly seen in the correlation structure of the state vector. It is a reasonable simpli-
fication to say that information passes through the pipeline along the characteristics.
Therefore the diagonal lattice in Figure 1 reflects the correlation structure of data
at the nodes over space and time. In the absence of any data, the dynamic linear
model will update the mean of the state vector in exactly the same way as the
deterministic approach. Therefore the function of the model is to propagate the
variance of the state vector in a way that is consistent with the physics of fluid flow
in pipelines. This is illustrated in Section 5. In the presence of data, possibly taken
with error, the stochastic model allows the updating of beliefs about the state vector
using the data values. This includes not just updated values for pressure and flow at
the nodes along the pipeline, but also about the pipeline coefficient, &, represented
in the z terms. This updating follows the standard procedure for dynamic linear

models (e.g., West and Harrison, 1997), and is illustrated in Section 6.

4 Modelling the pipeline coefficient

Using the mean function and covariance kernel of £, we can compute the conditional
mean and variance of z; | z; 1 for all ¢. In general this will require 3n(n + 1)/2
numerical integrations at each time-step (a new mean vector, a new variance matrix
and a covariance matrix). To have to repeat this every time-step with large n would
defeat the object of being able to compute beliefs about the fluid state in real-time.

We propose a model for the mean and covariance kernel of £ which is sufficiently

general to allow the pipeline engineers some control over the time-extent of the
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r(z,t) = pyr(z)

K((@.1), (2,#)) = of k(. 2") o (|t = ¥')),

where k1(+,-) and ko(-) are known correlation functions, and, for our purposes, t'
is either ¢ or ¢ + 1. The functions u; and o7 may be taken as known constants for
the duration of a single timestep, although in practice they are slowly varying in
time. In these two models the z-extent has been favoured at the expense of the t-
extent. This is on account of the much greater information available to the pipeline
engineer concerning the nature of the pipeline along the pipeline. The temporal
belief structure o7 ko(-) is taken to be effectively stationary over short periods of
time, and therefore the time-evolution of z; depends only upon whether ¢ is even or
odd. Consequently, the necessary numerical calculations need be performed once on
initialisation, and then periodically rescaled to account for drift in y; and o;.
Operationally, it is common to refer to ‘the pipeline coefficient’ as a single ag-

gregate quantity,

1
& = / £(z,1) da,

where the pipeline length is re-scaled to 1. For example, Liou et al. (1992) document
the coefficients of 209 pipelines (which typically take values in the range 0 to 10).
For this purpose it is helpful to normalize r(z) so that fol r(z)dxr = 1, implying
E (5,5) = uy, the expected pipeline coefficient at time ¢. Similarly, in order to make
the quantity o a direct measure of uncertainty about the pipeline coefficient at time

¢ we also normalize k1 so that Var (&) = o?.

5 Example: Valve transients

A major use of pipeline flow modelling is to calculate the pressure response along the
pipeline that is induced by specific boundary conditions, most notably valve closure.

Rapid closure of a valve, for example to isolate a faulty component, causes a pressure

10
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of the pipeline, in order to determine the thickness and composition of a pipeline
wall of sufficient strength to withstand the rapid changes in pressure, and also in
real-time pipeline monitoring. To date the calculations have been performed using a
deterministic analysis, perhaps using several alternative pipeline coefficient values.
Our approach allows the deterministic analysis to be supplanted by a stochastic
analysis in which uncertainties about the pipeline model and the pipeline coefficient
translate directly into uncertainty about the pressure and flow at every point in

space and time.

5.1 Pipeline description

We reconsider the experimental data of Simpson (1986), discussed in Wylie and
Streeter (1993), p. 50. In this experiment a initially-open valve at the end of a
copper pipe is rapidly closed, and the resulting pressure behaviour at the valve is
monitored. The pipeline is [ = 36 m long with diameter d = 19.05 x 10~3 m and
friction factor A = 0.0325. Denoting natural units (as opposed to the re-scaled units
used in the differential equations) with primes, a pressure head of hj = 24.18 m gives
rise to a steady state flow rate of vy = 0.239 m/s. The fully-open loss coefficient of
the valve is 3 = 8,235. These values taken together satisfy the Darcy equation for

steady state flow

Al (vg)?
r_ [N ' 0
h°_<d+ﬂ°> 2g

where g is gravitational acceleration, taken to be 9.8 m/s. The rescaling of the state

and spatial variables takes the form

where a is the speed of sound in the pipeline, in this case 1280 m/s. On re-

arrangment of the Darcy relation in re-scaled terms, the general steady state relation

11
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Figure 2: Measured head-time curve (solid line) with deterministic simulator values
(squares).

for fixed upstream head h{ and variable valve coefficient f; is

PYRTH
ho = (€ + B;) v} where ¢ == Y% B =

!
Yo r Yo
d 2a’

"9

In this expression £ is the ‘pipeline coefficient’. For the experimental pipeline, £ =
5.73 x 1072 and By = 0.769. The fact that £ < (3, indicates that, even when fully
open, friction losses at the downstream valve dominate friction losses generated by
the roughness of the pipe wall, which is not surprising in this very short pipeline. In
this example we expect that the major source of uncertainty will be the behaviour
of the boundaries, rather than the pipeline coefficient.

Figure 2 shows the pressure (m) just above the downstream valve during and
after that valve’s closure, as measured and as computed using the deterministic wa-
terhammer equations based on the above parameter values. This Figure corresponds
to Figure 3-7 in Wylie and Streeter (1993).

In the following Subsections we introduce the two sources of uncertainty sequen-

tially, in order to contrast the deterministic and the stochastic results. We start

12
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each cases introducing an appropriate amount of uncertainty into the prior descrip-
tion of pressure and flow. In Section 6 we use the full structure of the model to
update our beliefs about the state vector of pressures, flows and pipeline coefficient,
using the data as it becomes available. This will demonstrate the more general

application of our approach to real-time pipeline monitoring.

5.2 Uncertainty about the pipeline coefficient

The pipeline coefficient is assumed to be unknown, but constant in space and time,
and we assume initially that there are no modelling errors. We set r(z) = k1 (z,2') =
ko(|t — t']) = 1 to make the pipeline coefficient constant in space and time. The
updating equation for z; is simply 2z; = 2; 1, i.e. a; = 0, A, = I and Var({; 1) = 0.
Initial beliefs about the pipeline coefficient are therefore propagated through time
with no modification (in the absence of data). These initial beliefs are stated in
terms of the ‘mean’ pipeline coefficient, £, which has mean p and variance o2. This
gives initial beliefs E (z9) = u (At) 1 and Var (z9) = 02 (At)? 117, where At = 1/n.
We use the same discretisation as Simpson, implying n = 33. We set p = 5.73x 1073
and o = /2. We do not show the results, as this pipeline is not long enough or rough
enough for uncertainty about the effects of friction alone to have any discernable
effect on the scale of the mean head-time curve: at time ¢ = 140 ms the standard

deviation of downstream pressure due solely to coefficient uncertainty is 0.008 m.

5.3 Modelling errors

Now we additionally introduce modelling errors, ¢;. These are mainly truncation
errors from numerical intregrations, but there are also components that represent
boundary model errors (Appendix A.3 gives the details). Our choices for the size of
the errors are made on the scale of the mean head-time curve. We set the truncation
errors to have standard deviations of 0.1 m and correlate them along the pipeline
using a gaussian covariance kernel with a decay rate that implies a correlation of

0.5 between the two ends. The upstream boundary is modelled as a random walk in

13
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Figure 3: Measured head-time curve (solid line) with 42 s.d. forecast interval made
at time ¢t = 0 (shaded) implied by uncertainty about the pipeline coefficient and the
presence of modelling errors.

pressure, and we set the per-period standard deviation so that after one second of
random walking from a known starting point the standard deviation of pressure is
1.0 m. The downstream boundary is a valve condition for which we use a standard
deviation of 5 m (once the valve has closed this becomes zero). The boundary errors
are not correlated with each other or with the truncation errors. In order to set the
prior variance for the pressures and flows we iterate forward 100 timesteps from an
initial variance of 0, with the two boundary error variances set to one third of the
above values. This temporary reduction in the boundary errors is made because
prior to the experiment the boundaries are quiescent.

The impact of adding modelling errors is shown in Figure 3, while Figure 4
provides more detail about the uncertainty. In Figure 3 the data is shown as a line,
with a shaded polygon showing the +2 s.d. forecast interval for downstream pressure
made at time ¢t = 0 (the mean head-time curve is that of the deterministic analysis,
as shown in Figure 2). The two ‘pulses’ in the forecast interval that occur between

50 ms and 60 ms and between 110 ms and 120 ms are an interesting demonstration

14
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Figure 4: Standard deviation of downstream pressure implied by uncertainty about
the pipeline coefficient and the presence of modelling errors, forecast at time ¢ = 0.

of the interaction between uncertainty and the physical model. At time ¢ = 0
when the valve starts to close we increase the uncertainty on both upstream and
downstream boundary models to their chosen values. At just after ¢ = 50 ms the
extra uncertainty from the upstream boundary arrives at the downstream boundary,
while at just after ¢ = 110 ms the extra uncertainty from the downstream boundary
returns, having been reflected from the upstream boundary. Thus we have ‘waves’
of uncertainty that behave in many respects like pressure waves. We can see them
clearly in this example because the pipeline is so short: with a longer pipeline these

effects would be diluted by additional uncertainty accumulated along the way.

6 Bayesian learning

So far our data have been used simply to evaluate the model in the light of its
various uncertainties. For issues of design there are no data available, and the
pipeline engineer uses the prior uncertainty engendered by an incomplete knowledge

of the pipeline to determine likely ranges for pressure and flow under various types of

15
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time monitoring. In this case we would like to use our data, collected at specified
locations in space and time, to refine our beliefs about the pressure and flow at all
points along the pipeline. We would also like to learn about the pipeline coefficient,
as embodied in z;, a process that is sometimes described as ‘tuning’ the model to
the pipeline. It is not possible to learn very much about the pipeline coefficient in
our particular pipeline, because it is very short. Therefore we demonstrate learning

about pressure and about flow.

6.1 Downstream pressure

First, we illustrate learning about downstream pressure, which is also the source of
our data. We sample the data at an interval of 10 ms. We assume that this time
separation is sufficiently large that we may ignore any correlation in measurement
errors. The measurement error is assumed to have a standard deviation of 1 m. The
results are shown in Figure 5, where the shaded forecast interval, using the latest
available data, may be compared with the prior forecast interval made at time ¢ = 0,
indicated by dashed lines.

Figure 5 provides another illustration of the interaction of uncertainty and the
physical model. At the point of data collection the variance of downstream pres-
sure is reduced to at most meter precision. The rate at which uncertainty increases
following each datum depends in part on the boundary model. Information passes
along the diagonal characteristics: it is specifically not the case that information
flows ‘up’ the boundaries through time, except insofar as the boundary models
themselves permit. The downstream boundary model imposes a simultaneous re-
lationship on pressure and flow, and so does not directly transmit the information
supplied by each datum ‘up’ the boundary.

A second feature of interest in Figure 5 is the returning wave. In the first low
pressure phase a second set of information is superimposed upon the downstream
pressure (seen as a second set of ‘notches’). This is a result of the early data, which

have travelled up the pipeline to be reflected at the upstream end. Were we to

16
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Figure 5: Measured head-time curve (solid line, with sampled data circled) with
+2 s.d. forecast interval (shaded) using the latest available data. The dashed lines
indicate the forecast interval at time ¢ = 0 (as shown in Figure 3). The ‘v’ shape of
each notch is an artefact of the discrete time-steps.
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Figure 6: Upstream pressure, as a £2 s.d. forecast interval using the latest available
data (mean as dotted line). The dashed lines indicate the forecast interval at time
t=0.

prolong the simulation we would see further superimpositions of reflected informa-
tion which, when taken together, would gradually reduce the aggregate uncertainty

about downstream pressure.

6.2 Upstream pressure and flow

We also illustrate learning about quantities away from the data. The forecast for
upstream pressure is shown in Figure 6. The contemporaneous upstream and down-
stream pressures are reasonably correlated (0.55 at ¢ = 0), and therefore each datum
has an immediate impact. As we model the upstream boundary as a random walk
in pressure, this information can be passed ‘up’ the boundary as well as diagonally
along the characteristics, unlike at the downstream end. Consequently the reduction
in uncertainty that follows the aquisition of new pressure datum is passed forwards
to later time-points. This explains the different shape of the intervals in Figures 5
and 6.

The upstream flow rate is shown in Figure 7. There is less contemporaneous

18
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Figure 7: Upstream flow, as a £2 s.d. forecast interval using the latest available
data (mean as dotted line). The dashed lines indicate the forecast interval at time
t=0.

correlation between upstream flow and downstream pressure (0.34 at ¢ = 0), with
the result that there is little immediate impact from each datum. We tend to learn
about upstream flow with a time-lag of fixed length that represents the propogation
of information from the downstream valve up the pipeline to the upstream reservoir.
Furthermore there is no direct mechanism for propagating flow information ‘up’
the upstream boundary. As with downstream pressure, the superimposition of the
returning wave of uncertainty (having made three trips along the pipeline) is clear

in the second high flow phase.

7 Discussion

Although this paper concerns stochastic modelling for pipelines, there are general
features of our approach which are of wider applicability. We have turned a deter-
ministic physical model into a stochastic dynamic linear model, in order that we

might use this model for real-time Bayesian learning. In so doing, we have taken

19
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1. We represent parameter uncertainty as a random field in the spatial variables,

by specifying a mean function and a covariance kernel.

2. We solve the deterministic form of the physical model for a discrete (in space
and time) representation in the presence of parameter uncertainty. Thus we
create discrete random quantities with mean and covariance structures that
follow from our uncertainty about the parameters interacting with the physical

process.

3. We provide stochastic models for the evolving boundary conditions. In this

way we create a stochastic dynamic model for the physical process.

4. We linearise the dynamic model. The result is a stochastic representation in
which the mean of the state vector will evolve in exactly the same way as in
the original determinstic model. The difference is that in our model we can

also evolve a variance for the state vector from an initial variance.

5. We incorporate the data by updating beliefs about the state vector with due

allowance for measurement errors.

In our example we have given several instances of the highly-structured interac-
tion that can exist between parameter and boundary uncertainty and the physical
model. Whether it is worth the computational effort required to implement our gen-
eral approach in specific cases depends upon the importance of obtaining accurate
assessments of uncertainty for each case.

We conclude by outlining the benefits of our stochastic approach for the real-time
modelling of pipelines in the context of a typical use of pipeline models, namely leak
detection. The usual arrangement for such problems is to have one meter providing
boundary data for a deterministic model, and other meters providing reference data.
If the reference data and the prediction of the deterministic model disagree, then it
is possible that a non-simulator event such as a leak has occurred. Unfortunately

arrangements of this type provide little guidance about how big a discrepancy is
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tempt to pool discrepancies across meters and across time (see, e.g., Mears, 1993;
Liou and Tian, 1995).

Our stochastic approach offers the following important advantages. First, there
is no distinction between boundary meters and reference meters, and all their data
can be used both for diagnosis and for learning, so that, for example, it is possible
to have a leak detection system that uses just a single meter. Second, due allowance
is made for meter imprecision, avoiding the dubious practice of feeding inaccurate
data directly into a deterministic system. Third, our approach is ‘self-tuning’. In
long pipelines, in which the pipeline coefficient is an important determinant of fluid
behaviour, it is possible to learn about its value and to permit this value to evolve
spatially. Finally, probability itself can be used as a metric when evaluating the
data. The stochastic simulator we have developed here is part of the likelihood
function when expressed over a parameter space describing the number of leaks,
and, for each leak, the leak’s location, size and and time of occurence (generalising
the simulator to include leaks is quite straightforward). The role of the simulator as
likelihood function paves the way for a fully Bayesian analysis of leak detection, in
which it is possible for experts to incorporate detailed beliefs about the ‘leakiness’
of the pipeline, and, given data from the meters, to derive probabilistic descriptions

of the leak or leaks that might have occurred.

A Appendix
A.1 Method of characteristics

The characteristics representation is a standard approach for solving the waterham-

mer equations. We start with the PDEs

hy + v+ Evjv| =0 hi +v, =0
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derivatives. Now consider some scalar quantity 7, and the combined equation

<hm+vt+§v\v|> +’y(ht+vm) = 7(%hw+ht) + (vvw-l-vt) + &)

which must equal zero for all values of v. We will be able to replace the parenthetical

expression in v with a total derivative if and only if

dv—vdx+v— Uy + 0
dt_wdt t_’ya: t

which implies that we require v = dx/dt. Likewise, we will be able to replace the

parenthetical expression in h with a total derivative if and only if

dh dz

1
— =hy— 4 h=—hy+h
dt a v +

which implies that we require 1/y = dx/dt. It follows that v = dx/dt = +1 is the
only solution that allows both expressions to be replaced with total derivatives. By
substituting v = +1 and simultaneously enforcing the constraint dz/dt = +1 we

derive the characteristics representation

i@+d—v+§v\u|—o d—x—ﬂ
dt  dt 7 dt

as given in (2).

A.2 Solving for pressure and flow

The solution method outlined here is a generalisation of Wylie and Streeter (1993),
pp. 40-1. Consider the arrangement of the points B and P in (z, t)-space relative to

point A so that the three points conform to the positive and negative characteristics
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ZA Ta+Ar x4 +2A2

for some time increment At, such that tp = t4+At, 2p =24+ Az, xp = 4+2 A2
and Az = At. Integrating along the positive characteristic from A to P gives the

relation

P

(hp — ha) + (vp — v4) +/A £ololdt = 0.

Evaluate the integral by parts to give, writing the indefinite integral of & as z =

J&dt,

P P P dv
Afv\v\dtzv\v\z]A—/A z2\v\adt

= vp|vp| zp — valval 24 + (vp — va) (2alva| + zp|vp|) + €

=val|vp|zp — Up|va| 24 + €

where € is the O((v p—U A)3) integration error that follows from applying the trapez-
ium rule using the two endpoints (see, e.g., Davis and Rabinowitz, 1984, ch. 2). Now
v4 and vp are usually close in value (for a sufficiently fine grid), and so the only time
they differ in sign is when they are both close to zero. Consequently v4|vp| & vp|v4|,

and we simplify the integral further, to give the result

P P
/ §v|v|dt=vp|vA|(zP—zA)+6:vp|vA|/ Edt +e.
A A

Writing 2} = ff& dt and €} for the corresponding error term, and using the same
notation for the negative characteristic from B to P, the the two characteristics

equations together give the solution for (hp, vp)” in terms of values available at the
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hp 1 1+ |valzf ha+va— €}
vp —1 1+‘UB|Z;3 —hB-}-UB—EZ?

A.3 Boundary models

There are many different types of boundary model. Here we illustrate the cases of
a reservoir at the upstream end of the pipeline and a valve at the downstream end
of the pipeline. In both cases we have to distinguish even and odd time-points, due
to the availability of an incoming characteristic (see Figure 1). For simplicity, we
retain the A, B and P subscripts on the understanding that on the boundaries A,
B and P form a rightangled triangle in space and time with the hypotenuse aligned
with the incoming characteristic. Errors on the two boundary models are written
as € terms without a ‘+’ or ‘—’ superscript.

For the upstream boundary when #p is even, the two relations are a random walk

in pressure

hp —hsg+€e4 =0

as a simple reservoir model, plus the negative characteristic,

—hp + hp+vp —vp+vp|vplzg+e5=0

Solving these equations gives

-1

h/P 1 0 hA — €4

Up —1 1+|UB|ZE —hB—}‘UB—Gl_;

For tp odd, the reservoir model gives us a solution for hp but the value of vp is
undefined.

For the downstream boundary when ¢p is odd, the two relations are a valve
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hp — Bpvp +eg =0

where [(3p is the valve setting at time ¢p, plus the positive characteristic

hp —ha+vp —va +vp|val 2f + € = 0.

Solving these equations gives

hp = ﬁPUJZJ — €B
(1+ |val 2f) + \/(1 + |val25)2 —4B8pc
2 Bp

where c = —eg—hy —U,ﬁ—ej. For tp even neither pressure hp nor flow vp is defined.
In the limit as fp — oo, which represents complete closure, the valve model switches
to the simpler vp = 0, from which the head at the valve solves as hp = hy +v4 — ej

for tp odd, with eg = 0 in this case.
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Figure 1: Space and time grid of n reaches, x = 0 is upstream.

Figure 2: Measured head-time curve (solid line) with deterministic simulator values

(squares).

Figure 3: Measured head-time curve (solid line) with 2 s.d. forecast interval made
at time ¢t = 0 (shaded) implied by uncertainty about the pipeline coefficient and the

presence of modelling errors.

Figure 4: Standard deviation of downstream pressure implied by uncertainty about

the pipeline coefficient and the presence of modelling errors, forecast at time ¢ = 0.

Figure 5: Measured head-time curve (solid line, with sampled data circled) with
+2 s.d. forecast interval (shaded) using the latest available data. The dashed lines
indicate the forecast interval at time ¢ = 0 (as shown in Figure 3). The ‘v’ shape of

each notch is an artefact of the discrete time-steps.

Figure 6: Upstream pressure, as a £2 s.d. forecast interval using the latest available
data (mean as dotted line). The dashed lines indicate the forecast interval at time

t=0.

Figure 7: Upstream flow, as a £2 s.d. forecast interval using the latest available
data (mean as dotted line). The dashed lines indicate the forecast interval at time

t=0.
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