Emulating expensive decision choices with application to computer models of complex physical systems

Jonathan A Cumming and Michael Goldstein

July 2012
General Problem Description
We are considering problems with the following general structure:

- We are interested in some complex system, y
- We want to make a decision, δ, that may or may not affect the system
- We enact that decision, and take observations of the system z
- Using what we learn from z, we make a final decision and take action α
- Depending on δ, α, and the system y, we receive some ultimate reward expressed as a utility
- We want to find good choices of δ
Our First Decision and the System

- In the real world, we have a complex system.
- Denote the state of the complex system as θ, and the portion of the system that is observable (and interesting) as y.
In the real world, we have a complex system.

Denote the state of the complex system as θ, and the portion of the system that is observable (and interesting) as y.

We make the decision δ and do it.
Our First Decision and the System

- In the real world, we have a complex system.
- Denote the state of the complex system as θ, and the portion of the system that is observable (and interesting) as y.
- We make the decision δ and do it.
- The decision δ may be active, e.g. an intervention, and so may change the state of y.
In the real world, we have a complex system. Denote the state of the complex system as \(\theta \), and the portion of the system that is observable (and interesting) as \(y \). We make the decision \(\delta \) and do it. The decision \(\delta \) may be active, e.g. an intervention, and so may change the state of \(y \). Alternatively, \(\delta \) could be passive, e.g. an observation, which would not affect \(y \) but would affect how and what we see of \(y \), via \(z \).
In the real world, we have a complex system.

Denote the state of the complex system as θ, and the portion of the system that is observable (and interesting) as y.

We make the decision δ and do it.

The decision δ may be active, e.g. an intervention, and so may change the state of y.

Alternatively, δ could be passive, e.g. an observation, which would not affect y but would affect how and what we see of y, via z.

Additionally, our decision may not be perfectly executed so there could be some uncertainty on what action was really taken in the world.
Having made our decision δ, we observe the (possibly changed) system, z
Our Second Decision

- Having made our decision δ, we observe the (possibly changed) system, z
- Depending what we learn from the observations, we take the action α
Our Second Decision

- Having made our decision δ, we observe the (possibly changed) system, z
- Depending what we learn from the observations, we take the action α
- Action α will give us utility $U(\delta, \alpha, \theta)$ – a combination of the costs of performing the decisions we chose, and the rewards for doing so
Our Second Decision

- Having made our decision δ, we observe the (possibly changed) system, z
- Depending what we learn from the observations, we take the action α
- Action α will give us utility $U(\delta, \alpha, \theta)$ – a combination of the costs of performing the decisions we chose, and the rewards for doing so
- $U(\delta, \alpha, \theta)$ depends on the actions we have taken and the true state of the system
Decisions, Decisions

- The first decision, δ, is directly controllable
Decisions, Decisions

- The first decision, δ, is directly **controllable**
- The second decision, α, is determined by **what we learn of the unknown state of the system**
Decisions, Decisions

- The first decision, δ, is directly controllable
- The second decision, α, is determined by what we learn of the unknown state of the system
- In the real world, we will only get to do this once
Decisions, Decisions

- The first decision, δ, is directly controllable.
- The second decision, α, is determined by what we learn of the unknown state of the system.
- In the real world, we will only get to do this once.
- So what is a good choice for δ?
Decisions, Decisions

- The first decision, δ, is directly **controllable**
- The second decision, α, is determined by **what we learn of the unknown state of the system**
- In the real world, we will only get to do this **once**
- So what is a good choice for δ?
- To answer this, we will use a **computer model for y**
Enter the simulator

- The computer model f will mimic the behaviour of y
Enter the simulator

- The computer model f will mimic the behaviour of y, and by adding some noise z
Enter the simulator

- The computer model f will mimic the behaviour of y, and by adding some noise z
- The simulator takes two sets of parameters
 - x, the usual input parameters
Enter the simulator

- The computer model f will mimic the behaviour of y, and by adding some noise z
- The simulator takes two sets of parameters
 1. x, the usual input parameters
 2. d, the decision as enacted in the model
Enter the simulator

- The computer model f will mimic the behaviour of y, and by adding some noise z
- The simulator takes two sets of parameters
 1. x, the usual input parameters
 2. d, the decision as enacted in the model
- We have obvious connections to the system state θ and the chosen decision δ in the real world
Emulation

- We can explore the behaviour of f over d and x by making many evaluations of d and x.
Emulation

- We can explore the behaviour of f over d and x by making many evaluations of d and x – but learning about f isn’t really the goal
Emulation

- We can explore the behaviour of f over d and x by making many evaluations of d and x – but learning about f isn’t really the goal.
- Ideally, we want to propagate our model runs through the decision process.
Emulation

- We can explore the behaviour of f over d and x by making many evaluations of d and x – but learning about f isn’t really the goal.
- Ideally, we want to propagate our model runs through the decision process.
- So we need many evaluations over d and x and a mechanism for pushing them through the decision process.
- At the end, we get utilities which are a function of d and θ.
Emulation

- We can explore the behaviour of f over d and x by making many evaluations of d and x – but learning about f isn’t really the goal.
- Ideally, we want to propagate our model runs through the decision process.
- So we need many evaluations over d and x and a mechanism for pushing them through the decision process.
- At the end, we get utilities which are a function of d and θ.
- So we emulate and optimise $\mathcal{U}(\delta)$.
The problem as a decision tree

Decision

Observation

Action

System

$U(\delta, \alpha, \theta)$
The decision problem has shifted the focus of the analysis from f to \mathcal{U}.

Broad objectives

1. Construct a design over (x, d) space
2. Evaluate the simulator $f(x, d)$ at every point in the design
3. For every $z(x, d)$, run of the simulator into actions
4. For each run, evaluate the expected utility value, $U(\delta, \alpha, \theta)$, for each run
5. Emulate $U(\delta)$ over the decision space as the 'output' of the model
Broad objectives

- The decision problem has shifted the focus of the analysis from f to \mathcal{U}
- Our general approach to this type of problem will be as follows:
Broad objectives

- The decision problem has shifted the focus of the analysis from f to u
- Our general approach to this type of problem will be as follows:
 1. Construct a design over (x, d) space
Broad objectives

- The decision problem has shifted the focus of the analysis from f to \mathcal{U}
- Our general approach to this type of problem will be as follows:
 1. Construct a design over (x, d) space
 2. Evaluate the simulator $f(x, d)$ at every point in the design
The decision problem has shifted the focus of the analysis from f to \mathcal{U}

Our general approach to this type of problem will be as follows:
1. Construct a design over (x, d) space
2. Evaluate the simulator $f(x, d)$ at every point in the design
3. For every $z(x, d)$, run of the simulator into actions
Broad objectives

- The decision problem has shifted the focus of the analysis from f to \mathcal{U}
- Our general approach to this type of problem will be as follows:
 1. Construct a design over (x, d) space
 2. Evaluate the simulator $f(x, d)$ at every point in the design
 3. For every $z(x, d)$, run of the simulator into actions
 4. For each run, evaluate the expected utility value, $\mathcal{U}(\delta, \alpha, \theta)$, for each run

Steps 1, 2, and 5 are standard emulation
Steps 3 and 4 are different and introduced by the decision analysis

In order to apply this methodology we need to be able to transform each of our runs into actions
Broad objectives

- The decision problem has shifted the focus of the analysis from f to U
- Our general approach to this type of problem will be as follows:
 1. Construct a design over (x, d) space
 2. Evaluate the simulator $f(x, d)$ at every point in the design
 3. For every $z(x, d)$, run of the simulator into actions
 4. For each run, evaluate the expected utility value, $U(\delta, \alpha, \theta)$, for each run
 5. Emulate $U(\delta)$ over the decision space as the ‘output’ of the model
The decision problem has shifted the focus of the analysis from f to \mathcal{U}.

Our general approach to this type of problem will be as follows:

1. Construct a design over (x, d) space
2. Evaluate the simulator $f(x, d)$ at every point in the design
3. For every $z(x, d)$, run of the simulator into actions
4. For each run, evaluate the expected utility value, $\mathcal{U}(\delta, \alpha, \theta)$, for each run
5. Emulate $\mathcal{U}(\delta)$ over the decision space as the ‘output’ of the model

Steps 1, 2, and 5 are standard emulation
Broad objectives

- The decision problem has shifted the focus of the analysis from f to U
- Our general approach to this type of problem will be as follows:
 1. Construct a design over (x, d) space
 2. Evaluate the simulator $f(x, d)$ at every point in the design
 3. For every $z(x, d)$, run of the simulator into actions
 4. For each run, evaluate the expected utility value, $U(\delta, \alpha, \theta)$, for each run
 5. Emulate $U(\delta)$ over the decision space as the ‘output’ of the model
- Steps 1, 2, and 5 are standard emulation
- Steps 3 and 4 are different and introduced by the decision analysis
The decision problem has shifted the focus of the analysis from f to \mathcal{U}.

Our general approach to this type of problem will be as follows:

1. Construct a design over (x, d) space
2. Evaluate the simulator $f(x, d)$ at every point in the design
3. For every $z(x, d)$, run of the simulator into actions
4. For each run, evaluate the expected utility value, $\mathcal{U}(\delta, \alpha, \theta)$, for each run
5. Emulate $\mathcal{U}(\delta)$ over the decision space as the ‘output’ of the model

Steps 1, 2, and 5 are standard emulation.

Steps 3 and 4 are different and introduced by the decision analysis.

In order to apply this methodology we need to be able to transform each of our runs into actions.