The General Problem

- We start with the physical system and denote the system value as \(y \in Y \). We often have observations on \(y \), denoted as \(z \), where \(z = H y + e \), where \(H \) is the incidence matrix, and \(e \) is the measurement error which is treated as independent of all other quantities.
- The simulator is a deterministic complex computer model for the physical system. We denote the simulator as \(f : X \rightarrow Y \), where \(x \in X \) are uncertain model parameters.
- We have \(n \) evaluations of the simulator at inputs \(X = \{x_1, \ldots, x_n\} \), and we denote the resulting evaluations as \(F = \{f(x_1), \ldots, f(x_n)\} \).
- We can also partition these quantities into historic values and future values to be predicted, i.e. \(F = (f_s, f_{\text{p}}) \).
- The emulator is then summarised by the mean function and variance function of \(f^* \), obtained from the mean function and variance function of the emulator for \(f \) (denoted \(\mu(x) \triangleq E[f(x)] \) and \(\kappa(x, x') \triangleq \text{Var}[f(x), f(x')] \)), which are the only features of the emulator that we are required to specify.
- Using these values we can then compute the unconditional mean and variance of \(f^* \) by first conditioning on \(x^* \) and then integrating out with respect to the prior distribution.
- Given \(E[f^*] \) and \(\text{Var}[f^*] \), it is then straightforward to compute the joint mean and variance of the collection \((y, z) \) with no gaussian requirement on the error terms.
- We can now evaluate the adjusted mean and variance for \(y \) adjusted by \(z \) using the Bayes linear adjustment formulae.

Bayes or Bayes Linear?

- Full Bayesian Methods
 - Gives a joint distribution for \((x^*, y) \);
 - Requires strong distributional choices for \(f \) and \(e \), as well as for \(x^* \);
 - In all but small problems, tractability requires a gaussian distribution for \(\{f, e\} \);
 - Even then, large problems can be prohibitively expensive;
 - Very intricate computations may be able to reduce this expense, if the application is important enough;
- Bayes Linear
 - Requires full specification for \(x^* \), but only mean and covariance specification for \(f(x^*) \) and \(y \);
 - Much more tractable for larger problems.

Implausibility and Refocusing

- Calibration is learning about \(x^* \) using the simulator evaluations and \(z \).
- Using the emulator we can obtain, for each set of inputs \(x \), \(E[f_s(x)] \) and \(\text{Var}[f_s(x)] \).
- We seek to rule out regions of \(x^* \in X \) which are unlikely to have given rise to \(z \).
- To achieve this, we calculate the implausibility: \(I_{\text{ly}}(x) = |E[f_s(x)] - z|/\sqrt{\text{Var}[f_s(x)] - z} \) for each component.
- This calculation can be performed univariately - there is no need for a full multivariate specification.
- The implausibilities are then combined, such as by using \(I_{\text{ly}}(x) = \max_i I_{\text{ly}}(x) \), and can then be used to identify regions of \(x \) with large \(I_{\text{ly}}(x) \) as implausible.
- With this information, we can then refocus our analysis on the non-implausible regions of the input space.

The Hat Run

- In calibrated prediction, we reintroduce calibration to the process whilst retaining tractability.
- We first find the Bayes Linear estimate of the best input \(x^* \) by using: \(\hat{x} = E[f^*] \).
- Next, we evaluate the simulator \(f \) at this estimate: \(\hat{x} = f(\hat{x}) \). This is called the hat run.
- By using the emulator, we then determine the mean and variance of \(f \) and the covariance between \(f \) and \((z, y) \).
- Using all this information, we can now predict \(y \) by finding the adjusted mean and variance for \(y \) using both \(z \) and \(f \).
- The hat run introduces specially-identified local knowledge about \(f(x^*) \), as opposed to the global knowledge we get from general runs of the simulator.

Reification

- Reification concerns relating one or more simulators, \(\{f, f', \ldots\} \), to the underlying system \(y \).
- We link the existing simulators to the system by the reified simulator \(f^* \), which is an unknown simulator with higher accuracy than any of \(\{f, f', \ldots\} \) and which separates those simulators from the system.
- Advantages of reified modelling: \(x^* \) goes into \(f^* \) not \(f \); provides a coherent unification of several models (easy if they have markov relationship); does in two intuitive steps what we previously had to do in one.

Uncalibrated Forecasting

- The Bayes Linear approach is simpler in terms of belief specification and prediction.
- The key equations in the Bayes Linear approach are:
 \[
 E[y] = E[y] + \text{Cov}[y, z] \text{Var}[z]^{-1} (z - E[z]),
 \]
 \[
 \text{Var}[y] = \text{Var}[y] + \text{Cov}[y, z] \text{Var}[z]^{-1} \text{Cov}[z, y],
 \]
 where \(E[y] \) is the expectation for \(y \) adjusted by \(z \), and \(\text{Var}[y] \) is the variance of \(y \) adjusted by \(z \).

Figure 1: Independence graph representing the Best Input Approach

References