MUCM Presentation

Jonathan Cumming

November 22, 2006
Who am I?

- Jonathan Cumming
- Research Associate at Durham University
- Working on WP1.3: *Multiscale Analysis* with Michael Goldstein
Who am I?

- Jonathan Cumming
- Research Associate at Durham University
- Working on WP1.3: *Multiscale Analysis* with Michael Goldstein
- PhD in Statistics (2006) - *Clinical Decision Support*
 - Longitudinal data analysis
 - Variable selection
 - Visualisations
All computer models have an intrinsic level of complexity
All computer models have an intrinsic level of complexity

More complex models are typically slower and more expensive, but also more accurate
All computer models have an intrinsic level of complexity

More complex models are typically slower and more expensive, but also more accurate

Differences in model complexity can be attributable to:

- Finer (coarser) grid resolutions
- More (less) accurate solver
- More (less) complex underlying mathematics
Multiscale Models

■ All computer models have an intrinsic level of complexity

■ More complex models are typically slower and more expensive, but also more accurate

■ Differences in model complexity can be attributable to:
 ◆ Finer (coarser) grid resolutions
 ◆ More (less) accurate solver
 ◆ More (less) complex underlying mathematics

■ These differences in complexity can result in sets of different but closely related models

■ Results from models of one level of complexity will be related to those of a higher (lower) level
Linked Approach

- Could treat each of these models independently, but discards a wealth of interesting properties
Linked Approach

- Could treat each of these models independently, but discards a wealth of interesting properties
- We have simulators which are linked, so create linked emulators for these models
- How can we do this
 - Link via regression coefficients of emulators for the models
 - Link via emulating the difference between the fast and the slow models
Could treat each of these models independently, but discards a wealth of interesting properties

We have simulators which are linked, so create linked emulators for these models

How can we do this

- Link via regression coefficients of emulators for the models
- Link via emulating the difference between the fast and the slow models

Used linked emulators to exploit cheapness of low-level models to inform us about high-level model

Emulators over small regions of input space require fewer model runs to reproduce output accurately
Goals

- Develop linked emulation methodology
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction - use many runs of the fast model combined with to inform us about the slow complex model
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction - use many runs of the fast model combined with to inform us about the slow complex model
- Optimisation
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction - use many runs of the fast model combined with to inform us about the slow complex model
- Optimisation - what resolution provides the best value for money?
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction - use many runs of the fast model combined with to inform us about the slow complex model
- Optimisation - what resolution provides the best value for money?
- What resolution do we need to attain specified levels of accuracy?
Goals

- Develop linked emulation methodology
- Incorporate and exploit spatio-temporal features
- Prediction - use many runs of the fast model combined with to inform us about the slow complex model
- Optimisation - what resolution provides the best value for money?
- What resolution do we need to attain specified levels of accuracy?

Related problems:

- Design for multiscale models
- Calibration of multiscale models
Progress to date has been in three main areas:

1. Familiarisation with existing methodology in the literature
Progress to date has been in three main areas:

1. Familiarisation with existing methodology in the literature
2. Development of a ‘simple’ computer model
So far...

Progress to date has been in three main areas:

1. Familiarisation with existing methodology in the literature
2. Development of a ‘simple’ computer model
3. Exploration and implementation of emulation methods
The Daisyworld Model

The Daisyworld Model

- The original Daisyworld is composed of:
 - A zero-dimensional planet of unit area illuminated by a sun
 - Two distinct species of vegetation covering the planet’s surface - black daisies and white daisies
The Daisyworld Model

- The original Daisyworld is composed of:
 - A zero-dimensional planet of unit area illuminated by a sun
 - Two distinct species of vegetation covering the planet’s surface - black daisies and white daisies

- The key feature of the model is the different colour of daisy - different colours mean different *albedos*

- White daisies reflect more heat and so are cooler; black daisies absorb more heat and so are hotter

- This creates local temperature variation which affects the temperature of Daisyworld as a whole
The Daisyworld Model 2

- Inputs:
 - Initial size of daisy populations
 - Daisy albedos, bare earth albedo
 - Insolation - ‘sun strength’
 - Other parameters: death rate, optimal growth temperature, heat absorption factor, etc.
The Daisyworld Model 2

- **Inputs:**
 - Initial size of daisy populations
 - Daisy albedos, bare earth albedo
 - Insolation - ‘sun strength’
 - Other parameters: death rate, optimal growth temperature, heat absorption factor, etc.

- **Outputs:**
 - Planetary temperature
 - Daisy population size
The Daisyworld Model 2

- **Inputs:**
 - Initial size of daisy populations
 - Daisy albedos, bare earth albedo
 - Insolation - ‘sun strength’
 - Other parameters: death rate, optimal growth temperature, heat absorption factor, etc.

- **Outputs:**
 - Planetary temperature
 - Daisy population size
 - Can be:
 - Time series, e.g. if forcing the model
 - Single values, e.g. equilibrium state
The Original Experiment

Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2

The Original Experiment

Daisyworld+
Daisyworld+ 2
Some early results
Multiscale Emulation
Multiscale Emulation

What’s next?
Daisyworld can be ‘easily’ extended to a more interesting model:

- Multiple types of daisies:
Daisyworld can be ‘easily’ extended to a more interesting model:

- **Multiple types of daisies:**
 - Introduces a multiscale dimension to the model
 - No longer just 2 daisies
 - Have ‘families’ of black and white daisy species of varying colour
 - Now a multiscale model
Daisyworld+ 2

- Introduce extra trophic levels:
Introduce extra trophic levels:

- Bunnies!
Introduce extra trophic levels:
- Bunnies! - rabbits eat daisies
Introduce extra trophic levels:

◆ Bunnies! - rabbits eat daisies
◆ Foxes!
Introduce extra trophic levels:

- Bunnies! - rabbits eat daisies
- Foxes! - foxes eat rabbits
Introduce extra trophic levels:

- Bunnies! - rabbits eat daisies
- Foxes! - foxes eat rabbits
- Rabbits can control daisy populations allowing for a more interesting equilibrium state
- Foxes can control rabbit populations
- Both cause changes in the model’s output
Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2
The Original Experiment
Daisyworld+

Daisyworld+ 2

Some early results
Multiscale Emulation
Multiscale Emulation
What’s next?

Introduce extra trophic levels:

- Bunnies! - rabbits eat daisies
- Foxes! - foxes eat rabbits
- Rabbits can control daisy populations allowing for a more interesting equilibrium state
- Foxes can control rabbit populations
- Both cause changes in the model’s output
- Model vs. reality
Introduce extra trophic levels:

- Bunnies! - rabbits eat daisies
- Foxes! - foxes eat rabbits
- Rabbits can control daisy populations allowing for a more interesting equilibrium state
- Foxes can control rabbit populations
- Both cause changes in the model’s output
- Model vs. reality

Available for all to enjoy!
Some early results

The model:

- 2 daisy model - daisy albedos are inputs, equilibrium planetary temperature is output
- 2 levels of complexity - coarse solver and fine solver
- Use Kennedy and O’Hagan (2000) framework:

\[z_1(x) = \delta_1(x)z_2(x) = \rho_1 z_1(x) + \delta_2(x) \]

where (conditional on hyperparameters) \(\delta_t(x) \) is a stationary GP with mean \(h(\cdot)^T \beta_t \) and covariance function \(c_t(x, x') = \text{Cov}[\delta_t(x), \delta_t(x')] \).

- Include linear terms and linear interactions in mean function
- Captures majority of variation \((R^2 \approx 0.9) \)
Multiscale Emulation

Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2
The Original Experiment
Daisyworld
Daisyworld+ 2
Some early results

Multiscale Emulation

Multiscale Emulation

What’s next?
Multiscale Emulation

Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2
The Original Experiment
Daisyworld+
Daisyworld+ 2
Some early results

Multiscale Emulation

Multiscale Emulation

What’s next?
Multiscale Emulation

Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2
The Original Experiment
Daisyworld+
Daisyworld+ 2
Some early results

Multiscale Emulation
Multiscale Emulation

What’s next?
Introduction

The Project

Progress

So far...
The Daisyworld Model
The Daisyworld Model 2
The Original Experiment
Daisyworld+
Daisyworld+ 2
Some early results
Multiscale Emulation

Multiscale Emulation

What’s next?
Introduction

The Project

Progress

So far...
The Daisyworld Model
Model 2
The Original Experiment
Daisyworld+
Daisyworld+ 2
Some early results
Multiscale Emulation

What’s next?
What’s next?

- Explore different methods
- Look more carefully at the performance of the various methods
- Try out different models
- Develop a simplified linked emulation framework for multiscale simulators