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Abstract: Initially, this thesis introduces a new graphical tool, that can be used to

summarise data possessing a mixture structure. Computation of the required summary

statistics makes use of posterior probabilities of class membership obtained from a fitted

mixture model. In this context, both real and simulated data are used to highlight the

usefulness of the tool for the visualisation of mixture data in comparison to the use of

a traditional boxplot.

This thesis uses localised mixture models to produce predictions from time series data.

Estimation method used in these models is achieved using a kernel-weighted version

of an EM–algorithm: exponential kernels with different bandwidths are used as weight

functions. By modelling a mixture of local regressions at a target time point, but using

different bandwidths, an informative estimated mixture probabilities can be gained

relating to the amount of information available in the data set. This information is

given a scale of resolution, that corresponds to each bandwidth. Nadaraya-Watson and

local linear estimators are used to carry out localised estimation. For prediction at a

future time point, a new methodology of bandwidth selection and adequate methods are

proposed for each local method, and then compared to competing forecasting routines.

A simulation study is executed to assess the performance of this model for prediction.

Finally, double-localised mixture models are presented, that can be used to improve

predictions for a variable time series using additional information provided by other

time series. Estimation for these models is achieved using a double-kernel-weighted
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version of the EM–algorithm, employing exponential kernels with different horizontal

bandwidths and normal kernels with different vertical bandwidths, that are focused

around a target observation at a given time point. Nadaraya-Watson and local linear

estimators are used to carry out the double-localised estimation. For prediction at

a future time point, different approaches are considered for each local method, and

are compared to competing forecasting routines. Real data is used to investigate the

performance of the localised and double-localised mixture models for prediction. The

data used predominately in this thesis is taken from the International Energy Agency

(IEA).
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Chapter 1

Introduction

1.1 Overview

The use of finite mixture models is a source of much debate mainly, because of the

flexibility of the models across a wide variety of random phenomena, and the increase

in available computing power. Finite mixture models have been successfully applied in

many fields. For example, according to Mclachlan and Peel [62], applications of finite

mixture models have been used in astronomy, biology, medicine, psychiatry, genetics,

economics, engineering, and marketing, among many other fields in the biological,

physical, and social sciences. In addition, finite mixture models have applications

including cluster and latent class analyses, discriminant analysis, image analysis and

survival analysis [62].

The use of finite mixture models has increased considerably over the past decade and

the use of these models has continued to receive increasing attention in the years, both

from a practical and theoretical point of view. In the 1990s, finite mixture models were

extended by mixing standard linear regression models as well as generalised linear

models [90]. Lindsay [57] discusses the non-parametric and semi-parametric maximum

likelihood estimation used in mixture models, while Mclachlan and Peel [62] discuss

the major problems relating to mixture models. Some issues discussed by both include

identifiability problems, the EM–algorithm, the properties of the maximum likelihood

estimators so obtained, and the assessment of the number of components used in the

mixture.

1



1.1. Overview 2

One of the most popular mixture models is the mixture of Gaussian distributions due

to its applications in various fields. This model is classed as the first mixture model as

used by Karl Pearson [65]. Pearson fits a mixture of two Gaussian probability density

functions with different means and variances. In fact, Gaussian mixture models are

used in the investigation of the performances of certain estimators as departures from

normality [62]. Consequently, Gaussian mixture models have been used in the devel-

opment of robust estimators [62]. For example, under the contaminated normal family

as outlined by Tukey [81], the density of an observation is taken to be a mixture of two

univariate Gaussian densities with the same means but where the second component

has a greater variance than the first.

The initial focus of this thesis is to develop a new graphical tool, that can be used

to visualise Gaussian mixture data. This new graphical tool can provide additional

information to the data analyst, where traditional plots cannot. Notably, this new plot

can be applied to data, which belongs to any mixture of density distributions. This

idea will be discussed in more detail in Chapter 2. In addition, a mixture of local

regression models is developed for prediction from time series using two approaches.

In the first approach, a mixture of local regression model is developed for prediction

using past information from a target time series. This will be discussed in more detail

in Chapter 3. Moreover, in the second approach, additional information is used from

other time series, that is relevant to the target time series, in order to stabilise the

prediction of the target time series in comparison with other time series models. This

problem will be investigated in Chapter 4.

This first chapter will review local modelling as represented in local polynomial re-

gression, and local likelihood methods. Previous research about mixture models used

unknown distributional shapes of data will be presented and one of the most impor-

tant classes of mixture models, a mixture of non-parametric regression models, will be

discussed. In addition, popular estimation methods used in mixture models, such as

the EM–algorithm and its application on mixtures of non-parametric regression mod-

els will be explained in more detail. This thesis examines the EM–algorithm in more

detail in Chapter 2 and more advanced versions of the EM–algorithm in Chapters 3

and 4. In addition, several methodologies used for prediction are reviewed such as the
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ARIMA and Holt models, which can be compared with the newly proposed methods

for prediction as outlined in Chapters 3 and 4. This context is used to develop the new

graphical tool for visualising mixture models and prediction from time series using new

methodologies based on mixtures and local regression models.

1.2 Local modelling

Regression is one of the most commonly used statistical methods, simply because it

can be applied across many research fields, including: econometrics, social science,

medicine, and psychology. Linear regression is a classical and widely technique used,

in order to study the relationship between variables and to fit a line through data. A

simple linear regression model for given pairs of data such as (xi, yi), i = 1, . . . , n takes

the form as follows:

y = β0 + β1x+ ε (1.2.1)

where β0 and β1 are the parameters, that represent the intercept and slope of the

model, respectively. If the observed data has a linear trend, then the model (1.2.1) can

be said to fit the data well, and parameters can be estimated using the least squares

method. However, when the observed data takes a more complex shape, and cannot be

converted into a linear relationship using transformation, then linear regression may not

be an appropriate method to use. Consequently, a non-parametric regression model is

considered to be a more useful technique for relaxing linearity assumption, and to avoid

the restrictive assumptions relating to the functional form of the regression function

[23]. Indeed, non-parametric regression belongs to a class of regression techniques

whereby, according to Wand and Jones [85], the model is shaped completely based on

the data. The non-parametric method is particularly useful to use when a parametric

model becomes too restrictive.

There are several different non-parametric regression techniques, that can be used, and

these can, generally, be split into the categories of spline-based and local methods [23].

Thus, instead of solving a parametric problem as demonstrated in the model (1.2.1),

we can solve many linear regression problems using only two parameters β0(x) and

β1(x), and using local linear regression. For example, if h is the size of the local
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neighbourhood, known as a bandwidth or a smoothing parameter, then the local linear

regression model can be defined as follows:

yi = β0(x) + β1(x)xi + εi, x− h ≤ xi ≤ x+ h

where β0(x) and β1(x) are the parameters that depend on x.

A general non-parametric regression model can be written as:

yi = m(xi1, xi2, . . . , xiq) + εi

wherem(·) is known as the regression function, while xi1, xi2, . . . , xiq are q predictors for

the i-th of n observations. The errors εi are assumed to be independently distributed,

with a mean of 0 and a constant variance of σ2 [26]. However, most methods of non-

parametric regression implicitly assume, that m(·) is a smooth continuous function

[26]. One important instance of non-parametric regression is known as non-parametric

simple regression, where there is only one predictor [23]:

yi = m(xi) + εi (1.2.2)

This type of non-parametric regression is often called ‘scatterplot smoothing’ , because

it traces a smooth curve through a scatterplot of y against x [26]

An important issue, that must be settled before using a local fitting technique is deter-

mining the ‘local neighbourhood’ or the window, which is commonly described using

the kernel function W and the bandwidth parameter h [23]. The kernel function W is

a weight function, that it weighs observations close to the target point more heavily

and assigns a weight of 0 to far away observations [39]. According to Härdle et al. [39],

for all the other kernel methods, the bandwidth h determines the degree of smoothness

of the regression function estimation m̂(·) by controlling the weights of the observation

points used in the local neighbourhood. The larger the local neighbourhood, then the

smoother the estimated regression function is. The bandwidth h can be chosen to be

constant or to depend on the location [21]. The choice of the bandwidth h is more

crucial than the kernel function, because it determines the complexity of a model. For

example, when a bandwidth h = 0, this results in interpolating the data, which leads

to the most complex model. On the other hand, when h tends to ∞, the data is fitted
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globally, which is the simplest model. As a result, a bandwidth governs the complexity

of the model [21]. The choice of kernel function does not mainly affect the perfor-

mance of the resulting estimation in non-parametric regression, both theoretically and

empirically [21]. Wand and Jones [85] discuss the effect of the kernel function on non-

parametric smoothing estimation based on asymptotic mean integrated squared error

(AMISE) criterion. The result suggests that most unimodel kernel functions perform

about the same as each other, see for more detail [59].

Local fitting is indeed a particularly useful technique to use in non-parametric estima-

tion [79]. This local modelling approach aims to relax the global linearity assumption

through the local linear model, which results in a new objective function called the

local maximum likelihood function [23]. In order to fit the regression function m(x)

in the model (1.2.2) at a particular point of x0 locally, there are many ways, that can

be used to evaluate the estimator of m(x), where the data set can fit the smoother

ŷ = m̂(x).

1.2.1 Nadaraya-Watson estimator

Nadaraya [64] and Watson [88] proposed a kernel regression estimator, usually referred

to as the Nadaraya-Watson estimator, or local constant regression estimator. It belongs

to a class of kernel regression estimators, that correspond to a local constant least

squares fit. The Nadaraya-Watson estimator weighs the local average of the response

variables yi. In the Nadaraya-Watson estimator, when h → 0, then m̂(xi) converges

to yi at an observation xi. As discussed in Section 1.2, the behaviour is different

for h → ∞, where an infinitely large h makes all weights equal, and local modelling

becomes global modelling [39]. The main difference between parametric and non-

parametric modelling is that for the former the bandwidth h is always infinite, but

different parametric families of models are used. In non-parametric modelling, as in

local modelling, several different bandwidths used need to be considered, so that the

resulting curve articulates a given data set [23].

In definition, W is the real-value kernel function for assigning weights, and h is the

bandwidth, a non-negative number, that controls the size of the local neighbourhood.
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The Nadaraya-Watson kernel regression estimator can be represented as:

m̂(x) =
∑n
i=1 Wh(xi − x)yi∑n
i=1 Wh(xi − x)

where Wh(·) = W (·/h)/h [23]. The function W is usually taken to be a symmetric

probability density, because it yields smaller mean integrated squared error (MISE).

The MISE can be presented as follows [73]

MISE(x) =
∫

MSE(u)W (u)du

where W (·) is a weight function where W (·) ≥ 0 and MSE(·) is a mean squared error

which is defined as follows

MSE(x) = E
[
{m̂(x)−m(x)}2

]
See for a detailed discussion of symmetric kernel function [14]. For example, the Gaus-

sian kernel is widely used for non-parametric smoothing. It is defined by the Gaussian

probability density function as follows:

W (x) = 1√
2π

exp
(
−x2/2

)
(1.2.3)

The kernel function based on a Gaussian probability density function, as defined in

Equation (1.2.3) will be used later in Chapter 4.

1.2.2 Local polynomial estimator

In local polynomial regression, we first apply a Taylor expansion to m(x) in a neigh-

bourhood of x0 as follows:

m(x) ≈ m(0)(x0)/0! +m(1)(x0)/1!(x− x0) + . . .+m(p)(x0)/p!(x− x0)p = xTβ (1.2.4)

where x = {1, x− x0, . . . , (x− x0)p}T , β = (β0, . . . , βp)T such that βj = m(j)(x0)/j!, j =

0, . . . , p and p is the degree of the polynomial. The points close to x0 will have more

influence on the estimate of m(x0), while the points furthest from x0 will have the least

influence [23]. A kernel function Wh puts more weight on the points near x0, and less

weight on the points furthest from x0. To estimate the mean function m(x), a weighted
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Method Bias Variance

Nadaraya-Watson
(

d2
dx2m(x) +

2 d
dx
m(x) d

dx
f(x)

f(x)

)
bn Vn

Local linear d2
dx2m(x)bn Vn

bn = 1
2h

2 ∫∞
−∞ u

2W (u)du, Vn = σ2(x)
f(x)nh

∫∞
−∞W

2(u)du

Table 1.1: Asymptotic biases and variances

polynomial regression can be minimised with respect to β0, β1 . . . , and βp as follows:
n∑
i=1
{yi − β0 − β1(xi − x0) . . .− βp(xi − x0)p}2 Wh(xi − x0) (1.2.5)

The kernel function Wh controls the weights of the points at different locations. The

resulting estimator is called the local polynomial regression estimator. For convenience,

this can be denoted as follows:

W = diag {Wh(x1 − x0), . . . ,Wh(xn − x0)} ,

X =


xT1
...

xTn

 =


1, x1 − x0 . . . , (x1 − x0)p
... ... . . . ,

...

1, xn − x0 . . . , (xn − x0)p


Then, the solution to the locally weighted least squares problem as presented in Equa-

tion (1.2.5) as follows:

β̂ = (XTWX)−1XTWy

m̂(x0) = eT1 × β̂

where y = (y1, . . . , yn)T , and e1 = (1, 0, . . . , 0)T is a 1 × (p + 1) vector with the first

entry being 1 and the others 0. Furthermore, we can obtain an estimate of the q-th

(q < p) derivative of m(x) is as follows:

m̂(q)(x0) = q!eTq+1β̂

where eq+1 is a 1× (p+ 1) vector with (q + 1)-th entry one and others 0 [23].

The Nadaraya-Watson estimator or local constant estimator is a special case of poly-

nomial regression estimator when p = 0. When p = 1, the local polynomial regression

estimator is known as a local linear estimator [23]. The asymptotic bias and variance
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properties for a random design of the two estimators are summarised in Table 1.1 [23].

If we look at Table 1.1, we can see that a local linear estimator produces a more con-

cise form of asymptotic bias than the Nadaraya-Watson estimator, but the asymptotic

variances are the same. In addition, the local linear estimator offers several useful prop-

erties, such as automatic correction of boundary effects [13, 22, 59], design adaptivity,

and best asymptotic efficiency using the minimax criteria [20]. Fan and Gijbels [23]

offer a comprehensive account of local polynomial regression. In general, asymptotic

and boundary bias correction advantages correspond to the local linear p = 1 and the

local cubic p = 3 estimators are obtained. In addition, higher values of the degree of

polynomial estimators, such as p, for example 2 or 3, enjoy the advantage of producing

a greater smoothness of m(·). For example, higher values of the degree of polynomial

estimators, such as p can yield a faster convergence rate to 0 of the mean squared error

(MSE) [48]. The Nadaraya-Watson estimator and the local linear estimator will be

used later in Chapters 3 and 4.

Model selection criteria can still be used to select variables for the local model. This

determines whether an estimate m̂(x) is satisfactory, or whether alternative local re-

gression estimates, for example, with different bandwidths, can produce better results.

A good bandwidth plays an important role in local modelling. The most popular

methods of selecting bandwidth typically minimise the mean squared error of the fit,

or employ a formula, that approximates MSE [26]. For example, an optimal band-

width can be obtained by minimising MISE, or an asymptotic leading term of MISE.

In practice, data driven methods can be used for bandwidth selection, including the

cross-validation (CV) criterion [77], for example. The CV criterion is computationally

intensive method of bandwidth selection using the data. It has useful feature allowed

by the generality of its definition, and it can be applied in a wide variety of settings.

The CV can be defined as:

CV(h) =
n∑
i=1
{yi − m̂i(xi)}2

where m̂i(xi) is the estimate of the smooth curve at xi, and is constructed from the

reminder of the data, excluding xi. A more developed version of the CV is a generalized
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cross-validation (GCV), which has an efficient computational form as follows:

GCV(h) = nRSS
tr{I − S}2

where RSS=∑n
i=1 {yi − m̂(xi)}2 is the residual sum of squares, while S is a smoothing

matrix, which can be considered as the analogue to the hat matrix, that is m̂ = Sy.

The value of h, which minimises the formulas of MSE, MISE , CV or GCV, should

provide a suitable level of smoothing. There are many methods that can be used for

bandwidth selection, and these are described in more detail for example in [23,84].

1.3 Local likelihood estimation

Local likelihood estimation is a useful technique, that avoids parametric form assump-

tion for the unknown target function based on the idea of local fitting [79]. It has

been discussed by various researchers across different domains of application. For

example, local likelihood techniques have been developed for generalized linear mod-

els [25], hazard regression models [24] and estimating equations [10]. It was Tibshirani

and Hastie [79] who first extended the idea of non-parametric regression to likelihood

based regression models, for more details, see Fan et al. [24], whose research examines

developments in this area. It is important to make the right choice about the size of

the neighbourhood in local likelihood estimation. When each window contains 100% of

the data with equal weight, the local likelihood procedure exactly resembles the global

likelihood method, for more details, see Tibshirani [79]. Indeed, Fan et al. [21] show

the connection between local polynomial regression and local likelihood estimation.

To illustrate the local likelihood concept, the model (1.2.2) with a normal and indepen-

dently distributed error εi ∼ N(0, σ2) is considered. It is assumed, that the observed

data {(xi, yi), i = 1, . . . , n} comprised independent random samples from a population

(X, Y ), and therefore, (xi, yi) follows a normal regression model. Conditioning on

X = x, the density function of Y can be written as follows

φ(y|m(x), σ2) = 1√
2πσ2

exp
[
− 1

2σ2 {y −m(x)}2
]

Suppose we are interested in estimating m(x) at x0, which has a (p+ 1)-th continuous
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derivative at the point x0 as follows:

m(xi) ≈ m(x0) +m′(x0)(xi − x0) + . . .+ m(p)(x0)
p! (xi − x0)p

= xTi β
0 (1.3.1)

where xi = {1, xi − x0, . . . , (xi − x0)p}T , β0 = (β0
0 , . . . , β

0
p)T with β0

ν = m(ν)(x0)
ν! , ν =

0, . . . , p. If a data points xi in a neighbourhood around x0, m(xi) is approximated using

the Taylor expansion, then a kernel-weighted log-likelihood is considered, which puts

more weight on the points in the neighbourhood of x0 and less weight on the points

furthest from x0. This kernel-weighted log-likelihood is known as a log local likelihood.

Therefore, the log local likelihood function for a Gaussian regression model is written

as follows:

`(β) = − log(
√

2πσ2)
n∑
i=1

Wh(xi − x0)−
1

2σ2

n∑
i=1

yi −
p∑
j=0

β0
j (xi − x0)j


2

Wh(xi − x0)

Maximising the above local likelihood function is equivalent to minimising the follow-

ing, which yields the local polynomial regression estimator:

n∑
i=1

yi −
p∑
j=0

β0
j (xi − x0)j


2

Wh(xi − x0)

In general, local likelihood estimation can be defined as follows: suppose we have

independent observed data {(x1, y1), . . . , (xn, yn)} from population (X, Y ), and (xi, yi)

has a log-likelihood ` {m(xi), yi}, whereas m(x) is an unknown mean function. If we

approximate m(xi) in a neighbourhood of x0 using the Taylor expansion as in the

Equation (1.3.1). Then, a log local likelihood function is as follows:

`(β) =
n∑
i=1

`
{
xTi β, yi

}
Wh(xi − x0) (1.3.2)

By maximising the Equation (1.3.2) in regards to β, the estimator of the m(x) at point

x0 is m̂(x0) = β̂0 where β̂ is the solution.

Fan et al. [21] detail the applications of using the local likelihood method in non-

parametric logistic regression. Furthermore, the asymptotic normality of local likeli-

hood estimates has been studied in other research, that explores different models, for

example: the generalized linear model [25], the hazard model setting [24], and for local
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estimating equations [10]. Tibshirani and Hastie [79] also show that using the local

likelihood procedures for local linear regression estimation produces favourable advan-

tages. For example, a local linear estimator works well to reduce bias at the end-points

in comparison to a local constant estimator in non-parametric regression. The local

likelihood technique will be used later in Chapters 3 and 4.

1.4 Mixture models

A mixture model is a mixture of density functions, which has the density form as

follows:

f(x | Φ) =
K∑
k=1

πkfk(x | βk) (1.4.1)

where πk ≥ 0 with ∑K
k=1 πk = 1 is the mixing proportion of the k-th component,

fk(x | βk) is the k-th component density function, Φ = {π1, . . . , πK−1,β1, . . . ,βK}

is a vector containing all the parameters in the mixture model, and βk is a vector

containing all the unknown parameters for the k-th component [62].

Mixture models play an important role in the statistical analysis of data due to their

flexibility for modelling a wide variety of random phenomena. In addition, using mix-

ture models could be viewed as taking a model-based clustering approach towards

data obtained from several homogeneous sub-groups with missing grouping identi-

ties [27, 62, 72]. As a result, mixture models are being increasingly studied in the

literature across different fields and applications. Lindsay studies the theory and ap-

plications of mixture models in detail [57].

One mixture model, that is particularly useful, is a mixture of regression models.

Goldfeld and Quandt [35] introduced a mixture of regression model, that is especially

known as a switching regression model in the field of econometrics. Mixtures of regres-

sion models are appropriate to use when observations come from several sub-groups

with missing grouping identities, and when in each sub-group, the response has a linear

relationship with one or more other recorded variables. Another useful mixture model

is the finite mixture of linear regression model, which has received increasing attention

in research recently [35]: it has applications in econometrics and marketing [30,70,89],

in epidemiology [37], and in biology [86]. The model setting can be stated as shown
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below. Let K be a latent class variable with P (K = k) = πk for k = 1, 2, . . . , K, and

supposing that given K = k, the response y depends on x in a linear way where x is a

p-dimensional vector:

y = xTβk + εk = β0k + β1kx+ εk, εk ∼ N(0, σ2
k)

The conditional distribution of Y given x can be written as follows:

Y |x ∼
K∑
k=1

πkN(xTβk, σ2
k) (1.4.2)

where {(βk, σ2
k), k = 1, . . . , K} are the parameters of each component density, and

{πk, k = 1, . . . , K} are the mixing proportions for each component. The conditional

likelihood function of a mixture of regression model can be written as follows:

f(y|x) =
K∑
k=1

πkφ(y|xTβk, σ2
k)

McLachlan and Peel [62] have studied and summarised model (1.4.2), while the Bayesian

approaches used in model (1.4.2) and the selection of the number of components K

have been studied by Frühwirth-Schnatter [31] and Hurn, Justel, and Robert [47]. Jor-

dan and Jacobs [53] note that the proportions depend on the covariates present in a

hierarchical mixtures of experts model in machine learning. Mixture models continue

to be subject to intense research activity, with special issues being tackled in close suc-

cession [8,42]. A large proportion of articles about special issues discuss the variants of

mixture regression models, such as Poisson regression, spline regression, or regression

under censoring.

Recently, mixtures of non-parametric regression models, which relax the linearity as-

sumption on the regression functions, have received particular attention. For example,

Young and Hunter [91] use kernel regression to model covariate-dependent proportions

for mixture of linear regression models. This idea is further developed by Huang and

Yao [45] to develop a semi-parametric approach . Furthermore, Huang et al. [44] have

proposed a non-parametric finite regression mixture model, where the mixing propor-

tions, the mean functions, and the variance functions are all non-parametric, and this

model has been applied to U.S. house price index (HPI) data. This model will be

discussed in more detail in Chapter 3.
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1.4.1 Mixture models estimation

There has been much discussion and debate regarding methods of estimation for mix-

ture distributions. Over the years, a variety of approaches have been used to estimate

mixture distributions. These approaches include graphical methods, method of mo-

ments, minimum-distance methods, maximum likelihood, and Bayesian approaches.

The main reason for the huge literature on estimation methodology for mixtures is

the fact that explicit formulas for parameter estimates are typically not available. For

example, the maximum likelihood estimates (MLE) for the mixing proportions and the

component means, variances and covariances are not available in closed form for nor-

mal mixtures [62]. Markov chain Monte Carlo (MCMC) sampling within a Bayesian

framework can be used to estimate the parameters of finite mixture models [17].

There are two major classes of estimation methods for mixture models, and these

are the EM–algorithm and the Bayesian methods, especially Markov Chain Monte

Carlo estimation [62]. In addition, other methods have been developed based on the

EM–algorithm and the Bayesian methods, in order to fit mixture models. For exam-

ple, Stephens [76] presented the birth-and-death algorithm to be used as an estimation

method for a mixture model. Smith and Roberts [74] proposed a Gibbs sampling proce-

dure for mixture models and Frühwirth-Schnatter [31] gave a comprehensive summary

of the Bayesian analysis for mixture models and Markov switching models. Although,

using Bayesian methods provides more information about unknown parameters, they

are very expensive in terms of computational cost.

The EM–algorithm was proposed in Dempster et al. [16], and systematically studied

by McLachlan and Krishnan [61]. It is a technique that provides iterative steps to

maximise the likelihood function, when some of the data is missing, in order to estimate

the parameters of interest. Dempster et al. [16] called this method the EM–algorithm,

where E stands for “expectation”and M stands for “maximisation”. McLachlan and Peel

[62] provide a comprehensive review of the formulation of the mixture problem in the

EM framework as an incomplete data problem, which is summarised as follows: suppose

that the complete data is {(xi, Gi), i = 1, . . . , n}, the data comprising independent

samples from population (X,G), where {xi, i = 1, . . . , n} is the observed data, and

{Gi, i = 1, . . . , n} is a K–dimensional vector with Gik = (Gi)k = 0 or 1, k = 1, . . . , K,
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according to whether xi does or does not arise from the k-th component of the mixture.

Let L(Φ) be the complete likelihood function if the missing data G is given, and then,

the complete log likelihood from Equation (1.4.1), is given by the following:

`(Φ) =
n∑
i=1

K∑
k=1

Gik{log πk + log fk(x|βk)}

The EM–algorithm consists of two steps: the E–step and the M–step. In the E–step, we

compute the expectation of the complete log-likelihood function `(Φ) over the missing

data conditioned on the observed data with the given parameters. For the E–step of

the l-th iteration, we compute as follow:

Q(Φ|Φ(l)) = E(`(Φ)|Φ(l), x)

Let Φ(0) be the value specified initially for Φ. Then, in the first iteration of the EM–

algorithm, the E–step requires the computation of the conditional expectation of `(Φ)

given x, using Φ(0) for Φ, which can be written as

Q(Φ|Φ(0)) = E(`(Φ)|Φ(0), x)

This expectation operator is effected by using Φ(0) for Φ. It follows that on the (l+1)-

th iteration, the E–step requires the calculation of Q(Φ|Φ(l)), where Φ(l) is the value

of Φ after the l-th EM iteration. Therefore, we get the following

Q(Φ|Φ(l)) =
K∑
k=1

n∑
i=1

rk(xi; Φ(l)){log πk + log fk(xi|βk)} (1.4.3)

where we can see the following:

rk(xi; Φ(l)) = π
(l)
k fk(xi|βk)/

K∑
g=1

π(l)
g fg(xi|βg)

The quantity rk(xi; Φ(l)) is the posterior probability, that the i-th member of the sample

with an observed value xi belongs to the k-th component of the mixture. The M–step

on the (l+ 1)-th iteration requires the global maximisation of Q(Φ|Φ(l)), with respect

to Φ over the parameter space, to give an updated estimate Φ(l+1). For the finite

mixture model, the updated estimates π(l+1)
k of the mixing proportions πk are calculated

independently of the updated estimate β(l+1)
k of the parameter vector βk containing

the unknown parameters in the component densities. The updated estimate of πk is
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given as follows:

π
(l+1)
k = 1

n

n∑
i=1

rk(xi; Φ(l)), k = 1, . . . , K

Concerning the updating of βk in the M–step of the (l+ 1)-th iteration, it can be seen

in the Equation (1.4.3) that β(l+1)
k is obtained as an appropriate root of the following:

K∑
k=1

n∑
i=1

rk(xi; Φ(l)) ∂

∂βk
log fk(xi|βk) = 0 (1.4.4)

The EM–algorithm gives the solution of Equation (1.4.4) in a closed form [62]. In

general, the EM–algorithm leads to closed form for the estimators of parameters, which

give an advantage in programming.

The EM–algorithm is one of the most used algorithms in statistics [16]. It is applied for

missing data structures, which makes the maximum likelihood inference based on such

data possible. In addition, mixture models are certainly a favourite domain for the ap-

plication of the EM–algorithm [62]. McLachlan and Krishnan [61] study the advantages

and disadvantages of the EM–algorithm. For example, the likelihood function L(Φ) is

increasing at each EM iteration, that is L(Φ(l+1)) ≥ L(Φ(l)) for l = 0, 1, . . . [16]. Hence,

a convergence must be obtained with a sequence of likelihood values, that are shown

above. In practice, the E and M–steps are alternated repeatedly until the difference

`(Φ(l+1))− `(Φ(l)) is sufficiently small in the case of convergence of the sequence of log

likelihood values
{
`(Φ(l))

}
[62]. Mclachlan and Peel [62] discuss the stopping criterion

of the EM–algorithm which adopted in term of either the size of the relative change in

the parameter estimates or the log likelihood `(·).

Wu [52] and Mclachlan and Krishnan [61] note that the convergence behaviours of the

EM–algorithm, and state that the EM–algorithm can provide global maximum likeli-

hood estimators under fairly general conditions [16, 61]. However, the convergence of

the EM–algorithm is relatively slow, and its solutions may be highly dependent on its

initial position Φ(0). Baudry and Celeux [5] studied how EM–algorithm initialisation

affects the estimation and the selection of a mixture model, especially in Gaussian

mixture models. They presented strategies for choosing the initial values Φ(0) for the

EM–algorithm. In conclusion, Baudry and Celeux state that no method can effectively

be used to address the dependence of the EM–algorithm on its initial position in all sit-

uations. However, others have suggested solutions, in order to overcome this drawback
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by using the penalized log-likelihood of Gaussian mixture models in a Bayesian regu-

larization perspective and then choosing the best among several relevant initialisation

strategies [5]. The EM–algorithm will be used in Chapter 2, and developed versions of

the EM–algorithm will be used in Chapters 3 and 4.

1.4.2 Choosing the number of components

Choosing the number of components is a crucial issue in mixture modelling. In genetic

analysis and other applications, a question arises as to whether observed data are a

sample from a single population or whether the data have come from several separate

populations. In the literature, two major approaches have been examined, in order to

select the number of components K for a mixture model for unknown distributional

shapes of data, and these are the classic and the Bayesian approaches. One approach for

testing the number of components is to boot-strap a likelihood ratio test. The bootstrap

test procedure was proposed by Hope [43], an illustration of its use in mixture models

was given in Aitkin et al. [2]. It is a re-sampling approach used to assess the p-value

of the likelihood ratio test statistic (LRTS) [62]. This is

H0 : K = K0 versus H1 : K = K1

with K1 = K0 + 1 in practice [62]. To illustrate this method, we suppose that Φ̂K is

the estimate of ΦK when K mixture components are used. Then, the likelihood ratio

test can be defined as follows:

D = −2 log L(Φ̂K0)
L(Φ̂K1)

(1.4.5)

To test the hypothesis above, the value D is computed from Equation (1.4.5), which is

denoted as D0. Then, N bootstrap samples of size n are generated from the mixture

model fitted under the null hypothesis of the K0 components. For each of N data

sets, the process is repeated by recalculating Φ̂K0 and Φ̂K1 and by computing the

corresponding value of D. Next, the position d of D0 within all other values of D is

determined. Finally, the test rejects the null hypothesis H0 if D0 is greater than the

statistics χ2
α where α = 1−d

N+1 .

Polymenis and Titterington [66] have proposed modified version of Windham and Cut-
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ler’s method for determining the number of components in a mixture and compared

the modified method with the bootstrap likelihood ratio method. The result of com-

parison is, that the bootstrap likelihood ratio method has some obvious advantages

over the modified method, that it takes into account the single component densities

and it performs better for small sample size. However, the modified method performs

as well as the bootstrap likelihood ratio when the sample size is not small and the

‘true’ mixture, which the data come from is known [66].

There are also two popular model selection criteria, that can be used for choosing the

number of components. The first one is the Akaike information criterion (AIC) [3],

which is given by

AIC = −2`(Φ̂) + 2d

where d is the number of parameters in a K component mixture model. The second

one is the Bayesian information criterion (BIC) [71], which is defined as

BIC = −2`(Φ̂) + d log n

Leroux [56] established, under mild conditions, that certain penalized loglikelihood cri-

teria, including AIC and BIC, do not underestimate the true number of components,

asymptotically. Other satisfactory conclusions for the use of AIC or BIC in this situ-

ation are discussed by Biernacki, Celeux, and Govaert [62], Cwik and Koronacki [15],

and Solka et al. [75]. Other nonparametric methods that have been used for this prob-

lem include the work of Henna [40] and a number of graphical displays, for example the

normal scores plot [11, 38]. Previously, Lindsay and Roeder [58] had proposed the use

of residual diagnostic for determining the number of components. Miloslavsky and van

der Laan [63] have investigated minimisation of the distances between the fitted mix-

ture model and the true density as a method for estimating the number of components

using cross validation. They present simulation studies to compare the cross validated

distance method with AIC, BIC, Minimum description length principle (MDL) and

Information Complexity (ICOMP) on univariate normal mixtures [63]. For further in-

formation, see Chen and Kalbeisch [12], Lindsay [57], and McLachlan and Peel [62].

Bayesian methods provide estimates of K as well as their posterior distributions by

assuming some prior distributions. There are many Bayesian methods that can be
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used. For example, the reversible jump Metropolis-Hasting algorithm [36], and the

birth-death processes [76].

1.5 Prediction

There have been significant discussion and debate in many fields of applied sciences and

in the statistical literature about prediction of future values from time series. Statisti-

cal literature about prediction is abundant [4]. There are two major approaches taken

when dealing with prediction: parametric and non-parametric. The most popular ap-

proaches used for prediction are the ARIMA model, which corresponds to a parametric

approach, and the exponential smoothing, which is a non-parametric approach. These

two methods are considered as automatic forecasting algorithms, which determine an

appropriate time series model, estimate the parameters, and compute the forecasts [49].

In addition, there are robust versions of the ARIMA, exponential, and Holt-Winters

smoothing method, which are suitable for forecasting univariate time series in presence

of outliers, see for example [33,83].

Although, the ARIMA and exponential smoothing models are different methodologies,

and are correspond to different classes, they overlap [49]. For example, Hyndman et

al. [50] claim that linear exponential smoothing models are all special cases of ARIMA

models. However, the non-linear exponential smoothing models differ from ARIMA

models. On the other hand, there are many ARIMA models that have no equivalent

exponential smoothing models. As a result, there is overlap between these classes and

they compliment each other. In addition, each class has its advantages and drawbacks

[49]. For example, the exponential smoothing models can be used for modelling non-

linear time series data. In addition, for seasonal data, the exponential smoothing

models perform better than the ARIMA models for the seasonal M3-competition data,

which are available in R packageMcomp. Although there are more the ARIMAmodels

than the exponential smoothing models for seasonal data, the smaller exponential

smoothing class can capture the dynamics of almost all real business and economic

time series, see Hyndman and Khandakar [49] for more detail about the features of the

ARIMA and the exponential smoothing models.



1.5. Prediction 19

Exponential smoothing is an elementary non-parametric method of forecasting a future

realisation from a time series. It is an algorithm for producing point forecasts only.

Gardner [32] reviews earlier papers about the context of exponential smoothing since

the 1950s. All exponential smoothing methods have been shown to produce optimal

forecasts from innovation state space models (see for example, [51]). Taylor [78] extends

the discussion about the exponential smoothing models by listing a total of fifteen

methods. These models are summarised by Hyndman [49]. Some of these models are

popularly approaches in forecasting, for example, the simple exponential smoothing

(SES) method and Holt’s linear method, respectively. In addition, the additive Holt-

Winters’ method and the multiplicative Holt-Winters’ method are also more commonly

used methods. To explain how to calculate the point forecast using such methods, we

suppose that the observed time series is given by y1, y2, . . . , yn and a forecast of m step

ahead yT+m based on all of the data up to time T , is denoted by ŷT+m|T . The point

forecasts and updating equations for the Holt-Winters’ additive method are as follows

Level : `T = α(yT − sT−c) + (1− α)(`T−1 + bT−1)

Growth : bT = β∗(`T − `T−1) + (1− β∗)bT−1

Seasonal : sT = γ(yT − `T−1 − bT−1) + (1− γ)sT−c

Forecast : ŷT+m|T = `T + bTm+ sT−c+m+
c

(1.5.1)

where c is the length of seasonality, for example, the number of months or quarters in

a year, `T is the level of the series, bT is the growth, sT is the seasonal component, β∗

and γ are the smoothing parameters. For Holt-Winters’ additive method, the values

for the initial states `0, b0, s1−c, . . . , s0, α, β∗ and γ should be set. All of these initial

values will be estimated from the observed data. The formula of sT in Holt-Winters

in Equation (1.5.1) is not unique. It has been modified in some literature to make

it simpler. Hyndman [49] gives more details about the different forms of sT , which

can be found in previous literature. In addition, Hyndman [49] summarises formulae

for computing point forecasts m periods ahead for all of the exponential smoothing

methods.

The most basic exponential smoother is the exponentially weighted moving average

(EWMA). The EWMA is a technique used to estimate the underlying trend in a
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scatterplot without the use of restrictive models, and it is similar in concept to the

non-parametric regression technique. In fact, the EWMA is virtually identical to the

Nadayara-Watson kernel estimator with a half kernel function, that gives 0 in its pos-

itive arguments [34]. The EWMA can be defined as follows: Let y1, . . . , yT be a time

series observed at equally spaced time points t1, . . . , tT . The EWMA forecasts yT+1 by

using a weighted average of past observations with geometrically declining weights is

given by [23]

ŷT+1 =
∑T
i=1 exp

(
ti−tT+1

h

)
yi∑T

i=1 exp
(
ti−tT+1

h

)
The ARIMA and Holt models are used and compared with models proposed for pre-

diction in Chapters 3 and 4.

1.6 Outline of thesis

The rest of this thesis is organized as follows: Chapter 2 introduces a new graphical

tool designed to summarise data, which possesses a mixture structure. This includes

computational elements of the plot, real data examples and a simulation study. A

paper presenting the results of Chapter 2 has already been published in Statistical

Papers [67]. This chapter has also been presented at several conferences, including:

the Northern Postgraduate Mini-Conference in Statistics in Durham (June 2015), and

the Saudi Student Conference in Birmingham (February 2016).

Chapter 3 presents localised mixture models, that can be used for prediction. In this

context, the estimation procedure and the identifiability of these models are also ex-

plained. A new methodology of bandwidth selection for prediction is also proposed.

In addition, several approaches used for prediction based on bandwidth selection using

these models are suggested. Furthermore, a simulation study is conducted, in order to

assess the performance of these models in terms of prediction, and to compare them

with other common time series models. At the end of this chapter, real data examples

are given. A paper presenting some parts of Chapter 3 has already been published in

the Archives of Data Science Series A [68]. Chapters 2 and 3 have also been jointly

presented at several seminars and conferences, including: the 37th Annual Research

Students’ Conference in Probability and Statistics in Nottingham (April 2014), the
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Northern Postgraduate Mini-Conference in Statistics in Newcastle (June 2014), the

Durham Risk Day in Durham (November 2014), the Saudi Student Conference in Lon-

don (January 2015), the European Conference on Data Analysis (ECDA) in Essex

(September 2015), the 22nd International Conference on Computational Statistics in

Oviedo (Spain) (August 2016), at a research seminar at the Department of Mathemat-

ical Sciences at Durham University (March 2017), and at the 40th Annual Research

Students’ Conference in Probability and Statistics in Durham (April 2017).

In Chapter 4, double-localized mixture models are presented, and in the context, the

chapter discusses the estimation procedure. Several approaches for prediction based on

bandwidth selection using these models are suggested. At the end of this chapter, real

data examples are given, that assess the performance of these models for prediction

use.

Chapter 5 summarises the key results of this thesis and discusses ideas for future

research. There are many interesting opportunities to develop and extend the research

presented in this thesis. Some of these are mentioned in the final sections of Chapters

2 to 4 and in Chapter 5.

At the end of this thesis, three appendices are provided. Appendix A illustrates the

key notations used in this thesis. In Appendix B, auxiliary results are presented related

to Chapter 3. Finally, Appendix C shows auxiliary results related to Chapter 4.



Chapter 2

Visualisation of mixture data

This chapter introduces a new graphical tool, that can be used to visualise data, which

possesses a mixture structure. Computation of the required summary statistics makes

use of posterior probabilities of class membership, which can be obtained from a fitted

mixture model. Real and simulated data are used to highlight the usefulness of this

tool for the visualisation of mixture data, in comparison to using a traditional boxplot.

2.1 Introduction

Visualisation tools play an essential role in analysing, investigating, understanding,

and communicating various forms of data, and the development of novel graphical tools

continues to be a topic of interest in the statistics literature. For example, Wang and

Bellhouse [87] recently introduced a new graphical tool, known as the shift function

plot, in order to evaluate the goodness-of-fit of a parametric regression model. A

boxplot is one of the most popular graphical techniques used in statistics. It was first

proposed for use as a unimodal data display by Tukey [82], who referred to it as a

“schematic plot” or a “box-and-whisker plot” , but it is now commonly known as the

boxplot. A boxplot, in its simplest form, aims at summarising a univariate data set by

displaying five main statistical features as follows: the median, the first quartile, the

third quartile, the minimum value and the maximum value.

The boxplot has become one of the most frequently used graphical tools for analysing

data, because it provides information about the location, spread, skewness, and long-

22
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tailedness of a data set at a quick glance. The median in a boxplot serves as a measure

of location. The dispersion of a data set can be assessed by observing the length of a

box or by examining the distance between the ends of the whiskers. The skewness can

be observed by looking at the deviation of the median line from the center of the box,

or by examining the length of the upper whisker as relative to the length of the lower

one. In addition, the distance between the ends of the whiskers in comparison to the

length of the box displays longtailedness [6]. Alternative specifications for the ends of

the whiskers can be used with a particular view for outlier detection. Specifically, the

boundaries Q1 − 1.5IQR to Q3 + 1.5IQR can be computed where Q1, Q3 and IQR

represent the first quartile, third quartile and interquartile range, respectively. Then,

any observations smaller than Q1− 1.5IQR, or greater than Q3 + 1.5IQR are labelled

as “outliers”, for more details, see for example [29]. Finally, whiskers are drawn from

the box to the furthest non-outlying observations. Additionally, notches can be added,

which approximate a 95% confidence interval for the median [55].

Further variants of the boxplot have been developed, in oreder to analyse special kinds

of data. For example, Abuzaid et al. [1] proposed a boxplot for circular data. Ad-

ditionally, Hubert and Vandervieren [46] presented an adjustment of the boxplot to

tackle outliers present in skewed data by modifying the whiskers. Recently, Bruffaerts

et al. [9] have developed a generalized boxplot, that is more appropriate for skewed

distributions and distributions with heavy tails.

As observed by McGill et al. [60], the traditional boxplot is not able to adequately

display data, which is divided into certain groups or classes. Therefore, they developed

a version of the boxplot for grouped data, which sets the widths of each group-wise

boxplot as proportional to the square root of the group sizes. However, this technique

requires the groups to be defined a priori, and for the group membership of each ob-

servation to be known. In practice, it is common to deal with data sampled from

heterogeneous sub-populations, for which the group membership is a latent variable.

To our knowledge, there is no appropriate plot that can represent such mixture data

properly. Consequently, this research introduces a new plot tailored to mixture data

to which we refer as a K–boxplot, where K is the number of mixture components.

Compared to a boxplot, the K–boxplot is able to display important additional infor-
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mation regarding the structure of the data set. Both K–boxplots and boxplots have a

similar constructions: they contain boxes and they display extreme values. However,

the K–boxplot visualises the K components of mixture models by using K different

boxes. This can be compared to a boxplot, which uses only one box. A boxplot is a

special case of a K–boxplot with K = 1.

Figure 2.1 provides a schematic display of, what we will refer to as a ‘full’, using a

K–boxplot in the special case of K = 3, which describes the main features of K–

boxplots in general. The K–boxplot displays K rectangles oriented with the axes of

a co-ordinate system, in which one of the axes has the scale of a data set. The key

features that appear in aK–boxplot are the weighted median (M(w)), the first weighted

quartile (Q1(w)) and the third weighted quartile (Q3(w)) in each box, where w is a

set of corresponding non–negative weights. These are displayed as respective weighted

quantiles using the posterior probabilities of group membership as weights, as will be

explained in more detail later. The bottom and top of the boxes show the weighted

first and third quartiles of the data in each group, respectively. Weighted medians are

displayed as horizontal lines and drawn inside the boxes. Additional information is

provided along the widths of the boxes, and these depend on the mixing proportions

of the mixture.

Just as for usual boxplots, any data points outside the boxes can be displayed in several

ways. Here, any points that appear fully outside of the boxes are displayed individually

using horizontal lines, and can therefore, be used to identify outliers. The lengths of

these lines correspond to the posterior probabilities of group membership, which will be

explained in more detail using real data examples later. Furthermore, variants of the

K–boxplot that display points outside the boxes in different ways will be introduced

in Section 2.3.1.

K–boxplots can be used to show a mixture data, the location, spread and skewness

for each component in a mixture, and this information is displayed transparently to

viewers. Each of the component-wise boxplots can be interpreted in the same way as

traditional boxplots with respect to these measures, allowing for a detailed appraisal

of the data. The required information needed in order to draw a K–boxplot can be

estimated using different methods, for example using the EM–algorithm. However, it
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3−Boxplots

Q1(w)

M(w)

Q3(w)

minimum value

maximum value

π1

π2

π3

posterior probability

first component

second component

third component

Figure 2.1: Summary of information provided by a 3–boxplot in its ‘full’ form. Here
M(w) denotes the weighted median, and Qj(w) the j-th weighted quartile, using the
notation formally introduced in Section 2.2.2

should be noted that K–boxplots are not an inferential tool, and the K–boxplots will

not make any automated decision about the choice of the mixture distributions, or the

number of components, but they visualise the result of such inferential decisions made

by the data analyst. Since the data analyst will be able to identify the impact of their

model choices at a glance, K–boxplots will support them in making such choices in an

informed manner.

The structure of the remainder of this chapter can be outlined as follows: Section 2.2

describes the computational elements of a K–boxplot, including the posterior probabil-

ities derived from mixture models, as well as weighted quartiles. Section 2.3 discusses

two real data examples, and Section 2.4 offers conclusions. Code used to execute K–

boxplots is provided in the statistical programming language R [69] in the form of

function kboxplot using the package UEM [18].
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2.2 Computational elements of K–boxplots

2.2.1 Posterior probabilities

If we assume a random variable Y with density f(y), which is a finite mixture of K

probability density functions fk(y), k = 1, . . . , K, then it can be seen that

f(y) =
K∑
k=1

πkfk(y) (2.2.1)

with the masses, or mixing proportions, π1, . . . , πK with 0 ≤ πk ≤ 1 and ∑K
k=1 πk = 1.

We can refer to fk(·), which depend on the parameter vector θj, as the j-th component

of the mixture of probability density functions. Just to clarify the terms, when speaking

of ‘mixture data’ we mean data yi, i = 1, . . . , n, and it is plausible to assume that the

data has been independently generated from, or at least can be represented by, a model

of the type shown in Equation (2.2.1).

Now, let G be the random vector, which draws a class k ∈ {1, . . . , K}, where the

following applies:

Gik =


1, if observation i belongs to component k

0, otherwise
(2.2.2)

We assume that for an observation yi, the value G is known. This means that we

know to which of the K components the i-th observation belongs. If we interpret

the πk as ‘prior’ probability of class membership, then posterior probabilities of class

membership can be produced using Bayes’ theorem, that is, for the i-th observation

yi, i = 1, . . . , n can be represented as follows:

rik = P (Gik = 1|yi) = πkfk(yi)∑K
`=1 π`f`(yi)

(2.2.3)

These posterior probabilities are combined into a weight matrix R = (rik)1≤i≤n,1≤k≤K

form, which is the key ingredient of a K–boxplot. They will be used to compute

the component-wise medians and quartiles, and, furthermore, it enables an immediate

computation of the estimate as follows:

π̂k = 1
n

n∑
i=1

rik (2.2.4)
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This will be used to determine the width of the k-th K–boxplot. It should also be

noted that assigning each data point yi to the component k, which maximises rik for

the fixed i, and posterior probabilities can be used as a classification tool. This is

known as the maximum a posteriori (MAP) rule [62].

The estimates of θk are not needed for the construction of the K–boxplot itself. How-

ever, the computation of (2.2.3) involves the densities fk and hence θk. Therefore, the

θk need to be computed along the way as well. Most commonly, mixture models can

be estimated using the EM–algorithm. In this case, the values θk are updated in the

M–step, and the Equation (2.2.3) corresponds exactly to the E–step as discussed in

Section 1.4.1 in Chapter 1, using the current estimates of πk and θk. In practice, the

rik can be conveniently extracted from the output of the final EM iteration.

The application of K–boxplots is not restricted to a certain choice of component densi-

ties. In principle, K–boxplots can be used to visualise the results of fitting a mixture of

any combination of densities fk, provided, that one is able to compute the parameters

θk in the M–step. The choice of fk is taken to the data analyst. In the absence of

any strong motives to use a different distribution, a normal distribution will often be

a convenient choice for the component densities. In this case, this is demonstrated as

follows:

fk(y) = 1√
2πσ2

k

exp
(
−(y − µk)2

2σ2
k

)

where µk represent the component means and σk represent the component standard

deviations. Maximising the complete log likelihood in the M–step gives the estimates

as follows:
µ̂k =

∑n
i=1 rikyi∑n
i=1 rik

σ̂2
k =

∑n
i=1 rik(yi − µk)2∑n

i=1 rik

(2.2.5)

The EM–algorithm consists of iterating the Equations (2.2.3) and (2.2.5) until conver-

gence occurs [16]. The initial values θ(0)
k , π

(0)
k , k = 1, . . . , K, are required for the first

E–step. It is well known that different starting points can lead to different solutions,

that correspond to the different local maxima of the log-likelihood, see [62] for a detailed

discussion of this problem. Possible strategies for choosing the starting points include

using: random initialisation, quantile-based initialisation, scaled Gaussian quadrature
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points, or short EM runs [7]. These strategies continue to be under discussion and are

the subject of research. A recent contribution on the topic is provided by Baudry and

Celeux [5].

2.2.2 Weighted quartiles

If we suppose that y1 ≤ . . . ≤ yn indicate the ordered observations and w = {w1, . . . , wn}

are a set of corresponding non-negative weights. Then, the equation below

m(w) = max{` :
∑n
i=`wi∑n
i=1 wi

≥ 1
2}

provides a maximal index `, so that the total weight of observations larger, or equal

than y` is at least 50%. Hence, the weighted median of y1, . . . , yn is defined by Fried

et al. [28]:

M(w) = ym(w)

There is no unique definition for quartiles, but in analogy to the above, one can define

the first weighted quartile of y1, . . . , yn as Q1(w) = yq1(w), where the following applies:

q1(w) = max{` :
∑n
i=`wi∑n
i=1 wi

≥ 3
4}

And the third weighted quartile of y1, . . . , yn as Q3(w) = yq3(w) can be represented as

follows:

q3(w) = max{` :
∑n
i=`wi∑n
i=1 wi

≥ 1
4}

In general, the weighted quartile of y1, . . . , yn as Qi(w) = yqi(w), i = 1, 2, 3 can be

defined as follows:

qi(w) = max{` :
∑n
i=`wi∑n
i=1 wi

≥ α}

where α = 1
2 ,

3
4 and 1

4 for i = 2, 1 and 3 respectively.

For example, the weighted median of 1, 3, 4, 7 and 9 with weights 0.2, 0.25, 0.3, 0.05,

and 0.2 is y3 = 4, because 0.2+0.05+0.3 ≥ 0.5. In addition, the first and third weighted

quartile of the data are y2 = 3 and y4 = 7 respectively because 0.2+0.05+0.3+0.25 ≥

0.75 and 0.2+0.05=0.25. An illustration of this process is provided in Table 2.1.

In the case of a K–boxplot, the box corresponding to the k-th component is fully
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` 1 2 3 4 5
y` 1 3 4 7 9
w` 0.2 0.25 0.3 0.05 0.2∑n
i=`wi 1 0.80 0.55 0.25 0.2

Table 2.1: Illustration of computation of weighted quantiles

determined by the observations yi and the weights wi = rik, i = 1, . . . , n which are the

posterior probabilities of class membership. It should be noted, that these weights,

for a fixed k, generally do not sum to 1. In addition, the weights wi, i = 1, . . . , n can

be determined basically using different methods rather than the E-step of the EM–

algorithm in a Bayesian framework. For example, the Gibbs sampler could be used

as a method to find the posterior probabilities. However, the EM–algorithm has good

features to produce the posterior probabilities in comparison to the Gibbs sampler. For

example, it gives a form of the posterior distribution at a lower cost than the Gibbs

sampler, see McLachlan and Peel [62] for more details about the difference between the

EM–algorithm and the Gibbs sampler.

2.3 Examples

In this section, two examples are presented to illustrate the usefulness of the K–boxplots

for mixture data, in comparison to traditional boxplots. Moreover, an additional ex-

ample is provided by Qarmalah et al. [67].

2.3.1 Example 1: energy use data

The data discussed in this example is taken from the International Energy Agency

(IEA)1. The data used gives the annual energy use (in kg oil equivalent per capita) for

134 countries around the world between 1971 and 2011. The nature of the data, which

is restricted to the positive range, and it features several countries with extremely large

energy use. Therefore, a log-transformation will be applied in all further analyses. This

example will consider only the year 2011 initially, for which Figure 2.2 presents four

1International Energy Agency, available at: http://www.iea.org/
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Figure 2.2: Four variants of 2–Boxplots of a log of energy use data in 2011.

different types of 2–boxplots for the log of energy use, the bimodal character of the

country-wise log of energy data has already been reported in [19]. Figure 2.3 presents a

histogram of log of energy use data in 2011 which visualises the distribution of mixture

of two components. In fact, the likelihood ratio test in Section 1.4.2 of Chapter 1

was used to test the null hypothesis H0 : K = 1 versus H1 : K = 2. As a result,

The p-value is 0.03 which suggests that the number of components K would be chosen

to be equal to 2 at the 5% level of significance. In Figure 2.2, the 2–boxplots are

labelled in the title area by the corresponding option, which needs to be specified as

type argument in R function kboxplot. All four versions carry the main feature of a

2–boxplot, for example, the two boxes, which indicate the location, spread and size of
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Figure 2.3: Histogram of a log of energy use data in 2011.

the two components. We can see that the blue box represents a group of low energy use

countries and the red box visualises high energy use countries. One can observe from

these figures, that the number of high energy use countries is higher than the number

of low energy use countries, according to the widths of the boxes as determined by

the fitted mixing proportions πk, we can use the convention that the πk correspond

exactly to the half-width. Further, it is possible to obtain information on the spread

and location of groups by observing the bottom, top and cut lines of the boxes, which

represent the weighted first and third quartiles and the weighted medians, respectively.

The four types of K–boxplots differ in how individual observations are presented.

The ‘plain’ version of the 2–boxplot shown in Figure 2.2 (a), most closely resembles a

traditional boxplot in its simplest form: there are two boxes that represent the mixture

components, with whiskers drawn-up to the overall maximum and minimum values.

For K–boxplots, it is not considered a sensible option to draw-up the whiskers to a

certain multiple of the interquartile range. The reason for this is, that this range would

have to be calculated with respect to the corresponding top or bottom box, which would

be little informative results, especially if the range of this box is small.

The ‘default’ option, see Figure 2.2 (b), provides slightly more information, that data

points falling outside the boxes are plotted explicitly. Hence, making this representation
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is particularly suitable to identify outlying cases. Furthermore, the points are coloured

using the MAP classification rule. For example, for country i, it is necessary to identify

the component k for, which the posterior probability rik is maximal, and then the

colours of the points are the same colour as the box for that component. The ‘full’

version as shown in Figure 2.2 (c) provides another layer of detail, by giving explicitly

the posterior probabilities of belonging to their component, to which they were assigned

according to the MAP rule. The lines have a maximum length of 1, in which case a

country is classified as having 100% posterior probability to one of the two groups.

Finally, in Figure 2.2 (d), another variant is offered, which gives a full picture of all

posterior probabilities, represented by lines of the length 1, which, are split-coloured

around the ordinate axis, according to the values of rik, k = 1, 2. This variant is only

supported for K = 2 as this produces presentational difficulties otherwise. Figure 2.4

[top] presents the boxplots of the log of energy use data of the countries in selected

years between 1971 to 2011. The five main features of the boxplot are obvious for each

year. The median of log of energy use data increased to the early 1990’s. However,

it should be noted that until 1989 only data for 112 countries were available, and

that the sharp increase in 1991, and the subsequent decrease, can be explained by the

inclusion of many new countries from 1991 onwards, after the fall of the iron curtain,

and the subsequent political and economical developments of those countries previously

belonging to the Soviet Union.

Overall, if we put the 1990 effect to one side, the boxplots show, that there has been

a relatively steady increase of energy use throughout all countries over time. However,

the sequence of the 2–boxplots of log of energy use data as shown in Figure 2.4 [bottom]

reveals, that this interpretation would not be accurate. It can be seen that the data

forms two groups, where one group corresponds to high energy use (supposedly so-

called ‘developed’) countries, and one group corresponds to low energy use countries.

The median as a measure of location almost changes slightly in either of the two groups,

and this result appears to conflict with the information transmitted by the boxplots.

However, what did change over time was that the low-energy-use group got much

smaller, and the high-energy-use group became larger, this is represented by the boxes

getting slimmer and wider, respectively. This can be interpreted as that, over the years,

more and more countries have managed to make the transition from being a low to a
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Figure 2.4: Boxplots [top] and 2–boxplots [bottom] of a log of energy use data between
1971 to 2011
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high energy use country. This example demonstrates how misinterpretations based on

the results of traditional boxplots can be avoided if the new graphical representation

tool is used. This is because the tool takes in the account the mixture character of the

data. However for completeness, it should be noted that, due to the non-linearity of the

logarithm, the preceding analysis is not equivalent to fitting a mixture of log-normal

distributions to the original data.

2.3.2 Example 2: internet users data

This example considers a data set of size n = 100, which was originally given in the

form of a time series of the numbers of users who are connected to the internet through

a server every minute. The data are available in the R package datasets under the

name of WWWusage and visualised using a boxplot and a histogram, as shown in Figure

2.5. The histogram suggests, that distributions where either K = 3 or K = 4 may

be adequate. If we first consider K = 3, it can be seen, that the 3–boxplots of the

log(WWWusage) data uses a mixture of three normal distributions, where two different

cases have been considered. In the first case, we allowed the components of the normal

mixture to have unequal variances σ2
k. In the second case, we assumed equal variances

σ2
k = σ2,∀k, k = 1, 2, 3, in which case the second of the estimators as shown in (2.2.5)

was to be adapted to become the following:

σ̂2 = 1
n

n∑
i=1

K∑
k=1

rik(yi − µk)2

In Figure 2.6(a), the 3–boxplot of log(WWWusage) for the unequal variance case is pre-

sented. There are three boxes that represent three categories of the number of the

internet users during different periods. It can be observed that the majority of the

data falls into the central box, which represents the large majority of time points for

which a medium number of internet users was observed. Additionally, two smaller

clusters are observed that correspond to low and high internet usage, respectively. The

3–boxplots in the equal variance case is shown as in Figure 2.6(b). It can be seen that

there is not much difference between the plots in this instance, though, expectedly, the

spread of the smaller boxes for the equal variance case is slightly larger than for the
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unequal variance case. All this information about the size and structure of clusters

cannot be observed using a traditional boxplot. If we now proceed to the case K = 4,

as shown in Figures 2.7 (a) and (b), it can be seen that 4–boxplots of log(WWWusage)

is shown in the unequal and equal variance case, respectively. In comparison to the

3–boxplots, the boxes have been split differently as follows: in the unequal variance

case (a), the low-usage box has been split, while in the equal variance case (b) the

medium-usage box has been split. Furthermore, these 4–boxplots in their ‘full’ form,

which allow insights into the MAP classification of data points to clusters, as well as

the posterior probability of belonging to that cluster, as symbolized by the length of

the horizontal line drawn to the right. As appreciable number of observations has been

allocated to each cluster. If classification is the main purpose of the study, then this

graphical information may be very useful.

In summary, the most suitable working assumption, in terms of the choice of K and

the choice of equal or unequal component variances, will depend on the particular

application. The point being made here is, that the impact of this choice on the fitted

model may be quite large, and that the K–boxplots allow the data analyst to visualise

the consequence of their choice at a glance, which will be helpful to support their

decision process, on which model to choose. Therefore, a K–boxplot is a tool that can

be used to visualise the different clusters in mixture data, however it is not an inference
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Figure 2.5: Boxplot and histogram of a log of the numbers of internet users
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Figure 2.6: 3–Boxplots of a log of the numbers of internet users; (a) with unequal
variances, (b) with equal variances
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Figure 2.7: 4–Boxplots of a log of the numbers of internet users; (a) with unequal
variances, (b) with equal variances

method in itself. Consequently, as for any other graphical tool, the data analyst should

not solely rely on a K–boxplot to determine the distribution of data.

2.3.3 Simulation

In order to obtain insight into the behaviour of the K–boxplots under the use of

component distributions other than Gaussian, and, in particular, under component
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Figure 2.8: 3–Boxplots simulated from scenarios (a), (b), (c) [from left to right]
and fitted using Gaussian, log-normal, and Gamma component densities [from top to
bottom]



2.4. Conclusions 38

misspecification, we have carried out a small-scale simulation whereby data sets were

simulated in three scenarios. Under all three simulated scenarios, we used K = 3,

π1 = 0.3, π2 = 0.4 and π3 = 0.3, but the component densities differed as follows:

(a) a mixture of three Gaussian component densities with µk = k, σ1 = σ3 = 0.2 and

σ2 = 0.5;

(b) a mixture of three log-normal densities with µk = k/2, and σk, k = 1, 2, 3 as in (a);

(c) a mixture of three Gamma densities with shape parameters 2,7.5,9 and scale pa-

rameters 2,1,0.5, respectively.

The true underlying densities can be seen in the top row of Figure 2.8 along with

histograms of the simulated data sets. The panels below the top row show 3–boxplots

fitted to the simulated data using a mixture of three Gaussian distributions, log-normal

distributions and Gamma distributions, respectively. That is, the component distribu-

tions are correctly specified along the diagonal of the 3×3 panel of the 3–boxplots, but

they are mis-specified off the diagonal.

The main conclusions drawn from Figure 2.8 are, that: (i) the mixture proportions

were in the most cases approximately correctly captured; (ii) if the data is simulated

from Gaussian components, shown in the first column, then the 3–boxplots are quite

robust to component misspecification; (iii) in the bottom right 2×2 panel, we see

that the skewness of the original distribution was correctly represented by the fitted

distribution; (iv) if a Gaussian mixture is fitted to the ‘true’ log–normal or Gamma

components, then the tail component tends to carry too much weight.

2.4 Conclusions

This chapter has presented a new powerful graphical tool, that can be used to visualise

and analyse data stemming from a mixture of K distributions, and this has been

called the K–boxplot. This plot can be used to visualise the different K groups of a

mixture data, that a boxplot is not able to do. This tool is a useful extension of the

traditional boxplot, and can especially be used to find out additional information about

the location and spread of individual groups in mixture data, that is not visualised

when using a traditional boxplot. However, in a similar way to a traditional boxplot,
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a K–boxplot can visualise outliers in the data. It must be noted that the K–boxplot

cannot be classed as an inference method, that can make automated decisions about

the distribution or the number of components in mixture data. However, it is a useful

tool to support the data analyst in this respect. For instance, overlapping or very

small boxes may be a sign, that the number of components should be reduced, or long

one-sided tails seen outside the boxes may be a sign, that the Gaussian component

densities are not adequate.

K–boxplots can be implemented using the function kboxplot, that is available as part

of the R package UEM [18]. The implemented R subroutine provides several graphical

options for the data analyst, including a black and white option. There are two ways,

in which this function can be used. The first option is to apply kboxplot directly

onto the data itself, in which case the model will be fitted implicitly. The alternative

option, which is the recommended option as it gives better control over the process, is

to apply kboxplot onto a previously fitted model, for which the subroutines provided

within the R package UEM could be used. However, also functions from alternative

R packages, or even alternative software, may be considered for this purpose, as long

as they provide access to the weight matrix R.

Taking into account the matrix R, the computational complexity of producing a K–

boxplot is of the order O(nK) as compared to O(n) for a traditional boxplot. For

all data sets, choices of K, and graphical variants considered in this chapter, the

computational time to produce a K–boxplot, taking R into account, was less than 0.02

seconds on an Intel R© Core(TM) i7–4790 CPU @ 3.60GHz machine. The computations

required for the underlying inferential mechanism will usually contribute to a larger

computational burden. For example, for Example 2, which has been computed using

the EM routines built into R package UEM, this computation required 0.11 seconds

for the (unequal variance) 3–component model (28 EM iterations), and 0.26 seconds

for the 4–component model (52 EM iterations), using Gaussian quadrature points as

starting points in each case. It should be noted that the R code used to reproduce the

examples presented in this thesis is shown in the R Documentation files of R package

UEM.

Finally, one issue that was given only marginal attention was the selection of the
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number of components, K. This problem was inherent to the mixture fitting technique,

and while there does exist a rich literature on suggested methods how to select this

number K, this question is eventually still down to the subjective judgement by the

data analyst, see Section 1.4.2 of Chapter 1 for more detail. In order to arrive at this

judgement, the data analyst will undoubtedly benefit from using the simple graphical

tool, as the proposed one, which can visualise the structure of the mixture model,

obtained under the hypothesised number K at a glance.



Chapter 3

Localised mixture models for

prediction

3.1 Introduction

This chapter explores how localised mixture of regression models can be used to pro-

duce predictions from time series data. For this purpose, estimation for these models

is achieved using a kernel-weighted version of the EM–algorithm, using exponential

kernels with different bandwidths as weight functions. Nadaraya-Watson and local lin-

ear estimators are used to carry out the localised estimation step, see Section 1.2 of

Chapter 1 for more details about these estimators.

Using the first proposed model, forecasts can be calculated directly using historical

data comprising the locally average of observed past values: the size of the local neigh-

bourhood and the specific weights of the values are defined by an exponential kernel.

Using the second model, forecasts are based on using a fitted intercept and slope for the

local neighbourhood preceding the forecast point. These two models will be referred

to as a mixture model using local constant estimators (MLC) and as a mixture model

using local linear estimators (MLL), respectively. By modelling MLC and MLL at a

target time point tT , but with different bandwidths hk, k = 1, . . . , K, where K is the

number of components in a mixture, it is possible to estimate a mixture of probabili-

ties, that are informative using the amount of information available in the data set at

41
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the scale of resolution corresponding to each bandwidth. For prediction at the time

point tT+m where m is the number of forward lag, adequate approaches are provided

for each local method, and then compared to competing forecasting routines. Some of

these approaches are discussed and applied using real data in [68].

Further consideration is given to optimal bandwidth choices used for forecasting. A

new approach for bandwidth selection for forecasting is proposed in Section 3.7. This

approach was applied using real and simulated data, in order to produce accurate

predictions in Sections 3.8 and 3.9. At the end of this chapter, a simulation study is

presented, that assesses the accuracy of the forecasting using MLC and MLL models.

In addition, a comparison is presented between the new methods based on using MLC

and MLL for prediction and traditional methods, that employ the ARIMA and Holt

models, which are popular approaches used for time series forecasting.

This chapter is organised as follows: firstly, it presents the MLC model, and estimation

relating to this model can be found in Section 3.2. Section 3.3, presents the MLL model

and a guide about how to estimate the parameters for this model is included in the

description. Sections 3.4 and 3.5 discuss identifiability property and model selection

strategies for the MLC and MLL models. In addition, Section 3.6 will outline how these

models can be used for predictions under consideration of bandwidth selection. Section

3.7 outlines the methodology used for a simulation study, while Section 3.8 presents

the simulation study used to assess the performance of the MLC and MLL models for

prediction in comparison to other traditional models, such as the ARIMA and Holt

models. Section 3.9, uses data for energy use for Bolivia, Lebanon and Greece from

1971 to 2011, and compares results to point forecasts obtained using the ARIMA and

Holt exponential smoothing models. Finally, conclusions are presented in Section 3.10.

3.2 Mixture models using local constant kernel es-

timators (MLC)

For a time series of the form {(ti, yi) : i = 1, . . . , T}, a localised mixture of K non-

parametric regressions mk(ti), k = 1, . . . , K was considered. At a time point tT , it is

possible to define a locally constant model mk(ti) ≈ mk(tT ) in a neighbourhood of tT
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by using Taylor’s expansion as discussed in Section 1.2 of Chapter 1, where the mk(tT )

play the role of parameters and are denoted as βk(tT ). Effectively, the mk(tT ) were

estimated using component-wise Nadaraya-Watson estimators. Then, the model can

be locally defined:

yi =



β1(tT ) + εi1, with probability π1(tT )
...

βK(tT ) + εiK , with probability πK(tT )

(3.2.1)

where β1(tT ), . . . , βK(tT ) are unknown constants, πk(tT ) is the proportion of the k-th

component, such that 0 ≤ πk ≤ 1 and ∑K
k=1 πk = 1, and the errors εik ∼ N(0, σ2)

are independently distributed. Note that both βk(tT ) and πk(tT ), k = 1, . . . , K are

functions of the time point tT . When K = 1, then model (3.2.1) is a simple non-

parametric regression model, that can be defined as Equation (1.2.2) as outlined in

Chapter 1. In this case, the model is non-parametric local constant regression model

and is denoted as NLC. For ease of notation, we will often suppress dependence of the

parameters on tT .

For the component k, it is necessary to obtain estimators of πk, βk and σ at time tT .

In the estimation step, the EM–algorithm was used, see Section 1.4.1 of Chapter 1.

Therefore, let G be a random vector, which is defined as in Equation (2.2.2) of Chapter

2. Then, we have P (G = k) = πk and we denote

fik = P (yi|G = k) = 1√
2πσ2

exp
(
−(yi − βk)2

2σ2

)

then

P (yi, G = k) = P (yi|G = k)P (G = k)

= πkfik

One-sided component-wise weight functions Wk are anchored at tT and can be intro-

duced as follows:

Wk(ti, tT ) =


exp
(
ti−tT
hk

)
hk

ti − tT ≤ 0

0, otherwise
(3.2.2)

The exponential kernel Wk is a popular kernel for prediction in local regression models



3.2. Mixture models using local constant kernel estimators (MLC) 44

[34]. For example, it is used in the EWMA forecasts, see Section 1.5 of Chapter 1.

Therefore, we assume now that, for an observation yi, the value of G is known. For

example, we know to which of the K components the i-th observation belongs. This

gives the “complete” data (yi, Gi1, . . . , GiK), i = 1, . . . , n, with local probability as

follows:

P (yi, Gi1, . . . , GiK) =
K∏
k=1

(fikπk)GikWk(ti,tT )

Then, the corresponding local likelihood function L∗, which is called complete local

likelihood [62], is as follows:

L∗(Φc|y1, . . . , yT , Gi1, . . . , GiK) =
T∏
i=1

K∏
k=1

(fikπk)GikWk(ti,tT )

where Φc = (π1, . . . , πK−1, β1, . . . , βK , σ) is a vector containing all the parameters in

the mixture model MLC. Therefore, the log local likelihood function `∗ is as follows:

`∗(Φc|y1, . . . , yT , Gi1, . . . , GiK) = logL∗(Φc|y1, . . . , yT , Gi1, . . . , GiK)

=
T∑
i=1

K∑
k=1

GikWk(ti, tT ) log πk +GikWk(ti, tT ) log fik

If we interpret the πk as a ‘prior’ probability of class membership, then the posterior

probabilities of class membership can be produced using Bayes’ theorem. Because the

Gik are, in fact unknown, we can replace them by their conditional expectations, as

follows:

rik = E(Gik|yi) = P (Gik = 1|yi) = P (G = k|yi)

If we use Bayes’ theorem, we can see the following:

rik = P (G = k|yi) = P (G = k)P (yi|G = k)∑
` P (G = `)P (yi|G = `) = πkfik∑

` π`fi`

This equates as follows:

rik = P (Gik = 1|yi) = πkfk(yi)∑K
`=1 π`f`(yi)

(3.2.3)

Equation (3.2.3) is identical to the E–step of the EM–algorithm. In the l-th cycle of

the EM–algorithm iteration, we have the estimates π(l)
k , β(l)

k and σ(l). Then, in the

(l + 1)-th cycle, using the estimates π(l)
k , β(l)

k and σ(l), the posterior probabilities r(l+1)
ik
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can then be given as follows:

r
(l+1)
ik =

π
(l)
k exp

(
−1

2(yi−β
(l)
k

σ(l) )2
)

∑K
`=1 π

(l)
` exp

(
−1

2(yi−β
(l)
`

σ(l) )2
)

In the M–step, for the π(l+1)
k , one needs to apply a Lagrange multiplier, since∑K

k=1 π
(l+1)
k =

1 by setting

∂

(
Q(Φc|Φ(l)

c )− λ(
K∑
k=1

π
(l+1)
k − 1)

)
/∂π

(l+1)
k = 0, k = 1, . . . , K

Thus it is possible to obtain the following:

π
(l+1)
k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )∑T

i=1
∑K
k=1 r

(l+1)
ik Wk(ti, tT )

(3.2.4)

In addition, by setting ∂`∗/∂β(l+1)
k = 0 and ∂`∗/∂σ(l+1) = 0, as the estimates, we can

see the following:

β
(l+1)
k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi∑T

i=1 r
(l+1)
ik Wk(ti, tT )

(3.2.5)

and

σ2(l+1) =
∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

k )2∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )

(3.2.6)

For more details about the calculations of Equations (3.2.5) and (3.2.6), see Appendix

C.

This iteratively updates the E–step and M–step using different initial values at each

grid point locally, until the algorithm converges. In this study, the stopping criterion of

the EM–algorithm depends on the size of the relative change in the parameter estimates

which is approximately 0. In other wards, the iteratively updates the E–step and M–

step locally until Φ̂
(l)
c ≈ Φ̂

(l+i)
c , i = 1, 2, . . .. According to this stopping criterion, the

EM–algorithm stopped at l = 200 in this study. As a result, the kernel-weighted

version of the EM–algorithm estimates πk, βk and σ for each component k and for

given time point tT . Once the estimates of πk, βk and σ are obtained using Equations

(3.2.4)–(3.2.6), then different approaches for forecasting were considered to find the

m-step-ahead forecasts at the given time point tT in this chapter. The size of the local

neighbourhood plays a role in both prediction and estimation. The optimal bandwidth
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for prediction will be discussed in more detail later in Section 3.7 of this chapter.

3.3 Mixture models using local linear kernel esti-

mators (MLL)

In this section, the model MLC was generalised using local linear kernel estimators

rather than local constant estimators, in order to carry out the localised estimation

step, this model named MLL. The motivation for using local linear estimators was to

improve prediction from a time series points that have a linear trend. Local linear

estimators possess favourable asymptotic bias properties and a high ability to control

boundary effects in comparison to local constant estimators [23]. This feature of local

linear estimator is important, in order to obtain accurate predictions, since the model

MLL is, by definition, applied at a boundary target time point tT . For more details

about the properties of local linear estimators, see Section 1.2.2 in Chapter 1. The k-th

non-parametric regression function around the time point tT can be approximated as

mk(ti) ≈ mk(tT ) +m
(1)
k (tT )(ti − tT ). This motivates the localised model as follows:

yi =



β01(tT ) + β11(tT )(ti − tT ) + εi1, with probability π1(tT )
...

β0K(tT ) + β1K(tT )(ti − tT ) + εiK , with probability πK(tT )

(3.3.1)

where the intercepts β0k and the slopes β1k are fixed unknown coefficients, which depend

implicitly on a fixed time tT . The errors εik ∼ N(0, σ2) are independently distributed.

When K = 1, the model (3.3.1) is a non-parametric linear regression model, and this

is explained in more detail in Section 1.2.2 of Chapter 1. In this case, we can refer to

this model as non-parametric local linear regression model (NLL).

For the given tT , the data is weighted by exponential kernels Wk for each component,

which is defined as in Equation (3.2.2). In the estimation step, the EM–algorithm is

used to estimate Φl = (π1, . . . , πK−1, β01, . . . , β0K , β11, . . . , β1K , σ), which is a vector

containing all the parameters in the mixture model MLL. Let G be a random vector,

which is defined as in Equation (2.2.2) of Chapter 2. Then, we have P (G = k) = πk
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and we denote

fik ≡ P (yi|G = k) = 1√
2πσ2

exp
(
−(yi − β0k − β1k(ti − tT ))2

2σ2

)

Then

P (yi, G = k) = P (yi|G = k)P (G = k)

= πkfik

Therefore, we assume now that, for an observation yi, the value of G is known. This

gives the “complete” data (yi, Gi1, . . . , GiK), i = 1, . . . , n, with local probability as

follows:

P (yi, Gi1, . . . , GiK) =
K∏
k=1

(fikπk)GikWk(ti,tT )

Then, the corresponding local likelihood function L∗, which is called complete local

likelihood [62], is as follows:

L∗(Φl|y1, . . . , yT , Gi1, . . . , GiK) =
T∏
i=1

K∏
k=1

(fikπk)GikWk(ti,tT )

Therefore, the log local likelihood function `∗ is as follows:

`∗(Φl|y1, . . . , yT , Gi1, . . . , GiK) = logL∗(Φl|y1, . . . , yT , Gi1, . . . , GiK)

=
T∑
i=1

K∑
k=1

GikWk(ti, tT ) log πk +GikWk(ti, tT ) log fik

As the Gik are in fact unknown, we replace them by their conditional expectations as

follows

rik ≡ E(Gik|yi) = P (Gik = 1|yi) = P (G = k|yi)

Using Bayes’ theorem, one has

rik = P (G = k|yi) = P (G = k)P (yi|G = k)∑
` P (G = `)P (yi|G = `) = πkfi∑

` π`fi`

which is equivalent to the posterior probabilities in the E–step. Then, in the (l+ 1)-th

cycle of the EM–algorithm, using the estimates π(l)
k , β(l)

0k , β
(l)
1k and σ(l), the posterior
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probabilities r(l+1)
ik can then be given by undertaking the following:

r
(l+1)
ik =

π
(l)
k exp

(
−1

2(yi−β
(l)
0k−β

(l)
1k (ti−tT )

σ(l) )2
)

∑K
`=1 π

(l)
` exp

(
−1

2(yi−β
(l)
0` −β

(l)
1` (ti−tT )

σ(l) )2
) (3.3.2)

For the M–step, the estimates of π(l+1)
k , β(l+1)

0k , β(l+1)
1k and σ(l+1) are found as follows:

One needs to apply a Lagrange multiplier for π(l+1)
k since ∑K

k=1 π
(l+1)
k = 1. Setting

∂

(
Q(Φl|Φ(l)

l )− λ(
K∑
k=1

π
(l+1)
k − 1)

)
/∂πk = 0, k = 1, . . . , K

One obtains

π
(l+1)
k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )∑T

i=1
∑K
k=1 r

(l+1)
ik Wk(ti, tT )

(3.3.3)

In addition, the estimates of β(l+1)
0k , β(l+1)

1k and σ(l+1) are as follows:

β
(l+1)
0k =

Sk,T,2S
∗
k,T,0 − Sk,T,1S∗k,T,1

Sk,T,2Sk,T,0 − S2
k,T,1

, β
(l+1)
1k =

Sk,T,0S
∗
k,T,1 − Sk,T,1S∗k,T,0

Sk,T,2Sk,T,0 − S2
k,T,1

, (3.3.4)

where Sk,T,j = ∑T
i=1 r

(l+1)
ik Wk(ti, tT )(ti − tT )j and S∗k,T,j = ∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti −

tT )jyi, and

σ2(l+1) =
∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

0k − β(l+1)
1k (ti − tT ))2∑T

i=1
∑K
k=1 r

(l+1)
ik Wk(ti, tT )

(3.3.5)

For more details about the calculations of Equations (3.3.4) and (3.3.5), see Appendix

C.

The kernel-weighted version of the EM–algorithm uses the iteration of Equations

(3.3.2)–(3.3.5) until convergence occurs. In addition, the stopping criterion of the

EM–algorithm used is the same as the stopping criterion used for the MLC model in

Section 3.2. Once the bandwidths hk are set, and the estimates in Equations (3.3.3)–

(3.3.5) are found, the localised model for prediction can be used to predict a future

observation. This approach will be presented later in Section 3.6 of this chapter.

3.4 Identifiability

Identifiability is an important issue when considering mixture models. This prop-

erty of mixture models must be investigated before exploring the specific problems
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relating to estimation, testing of hypotheses, classification of random variables, and

so forth. The concept of identifiability for different classes of finite mixture mod-

els is discussed by Titterington and others [80]. In addition, the identifiability of

finite mixtures of regression models is studied by Hennig [41] and by Frühwirth-

Schnatter [31]. The identifiability for mixture models is defined as follows: if we

suppose that f(y | Φ) = ∑K
k=1 πkfk(y | βk) and f(y | Φ∗) = ∑K∗

k=1 π
∗
kfk(y | β∗k) are any

two members of parametric family of mixture densities. This class of finite mixtures is

identifiable for Φ ∈ Ω where Ω is the specified parameter space if

f(y | Φ) ≡ f(y | Φ∗)

if and only if K = K∗ and we can permute the component labels. Then πk = π∗k and

fk(y | βk) = fk(y | β∗k), k = 1, . . . , K [62].

More recently, Huang et al. [44] proposed a class of non-parametric mixture of regression

models, where the mixing proportions πk(t), and the mean functions mk(t), and the

variance functions σ2
k(t) are all non-parametric, as defined by:

Y |T = t ∼
K∑
k=1

πk(t)N{mk(t), σ2
k(t)} (3.4.1)

Huang et al. [44] show the identifiability of the model (3.4.1) under certain conditions.

One of these conditions is transversality of any two smooth curves a(t) = (mi(t), σ2
i (t))

and b(t) = (mj(t), σ2
j (t)), i 6= j. The transversality of any two smooth curves implies,

that if a(t) = b(t) then a′(t) 6= b′(t). Then, the mean and variance functions of any

two components cannot be tangent to each other. Huang et al. [44] present a theorem

as follows:

Theorem [44]

If it is supposed that:

(i) πk(t) > 0 are continuous functions, and mk(t) and σ2
k(t) are differentiable

functions, k = 1, . . . , K;

(ii) any two curves (mi(t), σ2
i (t)) and (mj(t), σ2

j (t)), i 6= j, are transversal;
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(iii) the range T of t is an interval in R.

then model (3.4.1) is identifiable [44].

It is possible to argue that the MLL model is identifiable. The different bandwidths

used automatically imply different degrees of smoothness and different slopes. In other

words, if a(t) = (m1(t), σ2(t)) and b(t) = (m2(t), σ2(t)), are two solutions at a time

point t, such that a(t) = b(t), this means m1(t) = m2(t). However, since h1 6= h2, this

implies m′1(t) 6= m′2(t). Hence, we have established the transversality, and assuming

with the above concerns, that the above theorem holds in our context. It is possible

to conclude that the MLC model is identifiable based on the theorem because it is a

version of model (3.4.1), and when using different bandwidths for each component it is

possible to make the local components of these models recognisable at each data point

tT . However, for the MLC model, further research should be considered in relation to

the identifiability for more complex structures as in model (3.4.1).

Huang et al. [44] noted that for more complex structures of the model (3.4.1), the

identifiability problem needs further consideration. For example, if we suppose that

the mean functions m1(t) and m2(t) of a two-components structure are crossed at a

point t. If the variance functions of the two components are the same, then there are two

solutions of mean functions, such that m1(t) and m2(t) are tangent to each other. Now,

if we assume that m1(t) is a monotone decreasing mean and the m2(t) is a monotone

increasing mean. Then, the problem in this case is, that it is not clear, which paths

the mean functions will follow without knowing the second derivatives of the mean

functions at the "cross". Then, condition (ii) of the theorem does not hold in this

case. As a result, the investigation of condition (ii) of the theorem should be subject to

further research in this case, especially for the MLC and model (3.4.1), which are based

on using local constant kernels. From the above discussion and previous theorem, we

conclude the following:

Corollary

The MLC and MLL models are identifiable unless the bandwidths hi, i = 1, . . . , K, are

identical.
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It can be seen that MLC and MLL models are closely related to model (3.4.1) except,

for the conditions on some parameters and the estimation method. Huang et al. [44]

assumed that the parameters mk(t), πk(t) and σ2
k(t) in the model (3.4.1) are smooth

functions. While this is a reasonable assumption in the MLC and MLL models too,

it cannot be strictly guaranteed, since the allocations to components, using rik, can

change abruptly and can produce discontinuities. The variances in models (3.2.1) and

(3.3.1) can be classed as equal, namely σ2
k = σ2,∀ k = 1, . . . , K, which contributes

to reducing the complexity of statistical analysis of the MLC and MLL models. The

standard deviation is a noise term, which reflects the variability in the data unexplained

by the mixture.

Moreover, a difference between the MLC and MLL models and model (3.4.1) is the

equality of the bandwidths hk in the model (3.4.1), but this is not the case in models

(3.2.1) and (3.3.1). The use of different bandwidths for the MLC and MLL models

plays an important role in localised estimation, by weighting the data inside different

local neighbourhoods around a target point tT . This technique allows us to control the

amount of information used from past observations, in order to fit short and long-term

linear trends of data. In addition, the use of different bandwidths is useful to avoid the

label switching problem, which is crucial problem in mixture models.

The second main difference between the MLC and MLL models and model (3.4.1) is an

estimation method used. The initial values used for the EM–algorthim are produced

globally in model (3.4.1). For initialisation, Huang et al. [44] conducted a mixture of

polynomial regressions with the constant proportions of πk and variances of σ2
k. Then,

the estimates of the mean functions mk(t), and parameters πk(t) and σ2
k are obtained

globally. These estimates are classed as initial values for the first iteration of the EM–

algorithm. However, in the MLC and MLL models, we set different initial values locally

at each grid points. In addition, Huang et al. [44] used local constant estimators in

kernel regression to estimate the parameters.

Moreover, in model (3.4.1), the posterior probabilities in the E–step are calculated

globally by estimating component’s label curves for each of the observations. This

means that the E–step does not depend on the location of observations. After that,

for the M–step, the estimators are calculated locally at each grid points for the same
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probabilistic label obtained in the E–step. Then, the estimators at each grid points

are used to find the global estimators using linear interpolation. However, in the MLC

and MLL models, the E–step and M–step for the EM–algorithm are conducted locally

at each grid point without doing any further linear interpolation. As a result, the

EM–algorithm method for the MLC and MLL models depends on the location of a

time point tT .

3.5 Model selection

Model selection for the MLC and MLL models includes the selection of the number

of components K and the bandwidths hk. Choosing the number of components is a

very important issue when using mixture models. In the literature, many approaches

have been suggested for choosing an adequate number of components, see Section

1.4.2 of Chapter 1. However, the selection of the number of components K remains

a controversial issue and is becoming increasingly difficult when using complicated

mixture models [44]. In this chapter, the number of components was generally fixed

at 2. In addition, one of the components was a fixed bandwidth, h1 = 1, and the

second bandwidth h2 of the second component was optimised in some cases and fixed

in others. The reasons for these restrictions on the number of components and on the

bandwidth selection are to reduce the expense of computational cost. For example,

the computational time to predict a future observation in simulation, taking these

restrictions into account, was 48 hours for MLC model on an Intel R© Core(TM) i7–

4790 CPU @ 3.60GHz machine. In addition, for the MLL model which has more

parameters than the MLC model, the computational time was approximately a week.

See Section 3.8 for more detail.

Bandwidth selection has been considered in the literature as shown in Section 1.2.2

Chapter 1. However, to the best of our knowledge, there is no statistical method for

finding the best bandwidth for forecasting using localised mixture models, even for

K = 1. As a result, in this chapter, a new methodology is proposed to select the

optimal bandwidth for prediction. More details about this new criterion of bandwidth

selection will be explained later in Section 3.7.
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3.6 Forecasting

Once the bandwidths (h1, h2) are determined, different approaches for prediction based

on the selected bandwidths can be suggested for localised mixture regression models

MLC and MLL. These approaches produce m-step-ahead forecasts for a target time

point tT as follows:

Once the MLC model is fitted, two approaches can be proposed to forecast future

observations of a time series at a time point tT for a given bandwidth h = (h1, h2).

In the first approach, the m-step-ahead forecast equation is obtained by solving the

minimisation problem as follows:

ŷMLC(1)

T+m = min
a

T∑
i=1

K∑
k=1

rikWk(ti, tT+m)(yi − a)2

Then, we apply the following m-step-ahead forecast equation

ŷMLC(1)

T+m =
∑T
i=1

∑K
k=1 rikWk(ti, tT+m)yi∑T

i=1
∑K
k=1 rikWk(ti, tT+m)

(3.6.1)

In the second approach, the fitted MLC is used for prediction, which gives the following

forecast equation:

ŷMLC(2)

T+m =
K∑
k=1

π̂k(tT )β̂k(tT ) (3.6.2)

where π̂k and β̂k are the fitted parameters of MLC.

Moreover, a new approach is presented for prediction based on fitted MLL. The m-

step-ahead forecast equation can be articulated as follows:

ŷMLL
T+m =

K∑
k=1

π̂k
[
β̂0k(tT ) + β̂1k(tT )(tT+m − tT )

]
(3.6.3)

where π̂k, β̂0k and β̂0k are the fitted parameters at a time point tT . If we examine

Equation (3.6.1), it can be seen that the first approach used for forecasting for the

MLC model does not depend on the fitted parameters π̂k and β̂k and σ̂. However, the

approach used in Equations (3.6.2) and (3.6.3) for MLC and MLL models, respectively

are mainly based on the fitted parameters. As a result, we can consider the forecast ap-

proach as shown in Equation (3.6.3) to be a developed version of the forecast approach

used in Equation (3.6.2). The performance of prediction for the MLC and MLL models

are compared using Equations (3.6.2) and (3.6.3) in a simulation study. For the first
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approach used for forecast in MLC model is compared with the second approach used

in Equation (3.6.2) in the simulation study using fixed bandwidths. The methodology

of the simulation will be discussed in the following section of this chapter.

3.7 Simulation methodology

A simulation study was conducted to assess the performance of the MLC and MLL

models for forecasting based on a new methodology of bandwidth selection. In this

study, the MLC and MLL models were compared to the ARIMA and Holt models,

which are the most popular approaches used for prediction, see Section 1.5 of Chap-

ter 1. In the reminder of this chapter, a collection of notations is used for ease of

explanation. Specifically, MLC(i)(h), i = 1, 2 (MLL(h)) refers to as forecasting based

on a vector bandwidth h = (h1, h2), where i = 1 and i = 2 indicate the forecasting

approaches used for MLC model in Equations (3.6.1) and (3.6.2), respectively. In ad-

dition, NLC(i)(h), i = 1, 2 (NLL(h)) denotes forecasting based on a bandwidth h for

MLC and MLL models for one component, respectively. The simulation was executed

according to the following steps, where the second and third steps are not applied for

the ARIMA and Holt models:

1. 1000 data sets with size 100 for each data set were generated from a given model.

2. A new approach towards bandwidth selection for prediction was applied to find

the optimal bandwidth h for MLC(i)(h), i = 1, 2 and MLL(h) models. The opti-

mal bandwidth ĥ was obtained by solving the minimisation problem as follows:

ĥ = argmin
h

∑b
i=a (ŷi(h)− yi)2∑b

i=a y
2
i

(3.7.1)

where ŷi is the forecast based on Equations (3.6.1)–(3.6.3), and a is the 76-th

time point, and b is the 96-th time point in this analysis. Hence, we obtained

21 forecasts for each given data set and forward lag. To solve the optimisation

problem as found in Equation (3.7.1), the Broyden-Fletcher-Goldfarb-Shanno

algorithm (BFGS) is used. This is a popular numerical optimisation method

used for solving unconstrained non-linear optimisation problems [54].
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3. Once the problem of Equation (3.7.1) was solved for each data set in Step 1, the

median of the findings was calculated and considered as an optimal bandwidth

for all data sets. Since the optimal bandwidths had a right-skewed distribution

in most cases in the study, using the median was favourable for obtaining an

accurate insight into the optimal bandwidth for all data sets, see Figures 3.1 and

3.2.
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Figure 3.1: Summary of results provided by boxplots of optimal bandwidths of the
NLC(2), MLC(2), NLL, MLL for data from model 3.8.1

4. Once the optimal bandwidth of MLC(2)(h), MLL(h), NLC(2)(h), and NLL(h) was

found from a = 76 to b = 96, the m-step-ahead forecasts from c = 77 to d = 97

were found based on the optimal bandwidth in Step 3 because we assumed that

the observations from c = 77 to d = 97 are unknown. The sum of the square

relative error (SSRE) of forecasts is considered as an accuracy criterion for m-

step-ahead forecasting for all considered models, which is denoted as SSRE(m).

It can be defined as follows:

SSRE(m) =
∑d
T=c (ŷT+m − yT+m)2∑d

T=c y
2
T+m

(3.7.2)

where c is the 77-th time point and d is the 97-th time point.
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Figure 3.2: Summary of results provided by boxplots of optimal bandwidths of the
NLC(2), MLC(2), NLL, MLL for data from model 3.8.2

In Step 2, the optimal bandwidth ĥ2 for MLC(2)(h) and MLL(h) is expected to be larger

than 1, especially for the MLL, in order to capture the long-term trends of the past data.

In addition, for the simulation study, the median of the 1000 optimal bandwidths was

used for all data sets used for prediction rather than the different optimal bandwidths

for each data set. In practice, it was found that there is no difference between using

the median of all optimised bandwidths, and using different optimal bandwidths for

each data set. As a result, this gives an advantage for the median to be an optimal

bandwidth for all data sets under study.

In the simulation study, two cases were considered: simulation using optimised band-

widths and fixed non-optimised bandwidths. In the first case, MLC(2)(h) was con-

sidered only because the methodology used in this approach of forecasting does not

include the bandwidth h in itself from Equation (3.6.2). In addition, it is noted that the

forecast using Equation (3.6.1) depends on h itself, then optimisation over this band-

width will give the MLC(1)(h) an advantage over the other techniques. As a result,

the optimisation problem for bandwidth selection using Equation (3.6.1), this would

be rather misleading in comparison to using the MLL approach, where the bandwidth

only plays a role for the estimation but not in prediction. Therefore, the behaviour
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of the MLC(1)(h) was considered in a separate experiment, else we aimed to compare

between the performance of prediction between MLC(1)(h) and MLC(2)(h) using the

same different choices of bandwidths, see Case study 2 of Section 3.8. In addition, we

investigated the performance of NLC(1)(h) and NLC(2)(h) and compared this with the

MLC(1)(h) and MLC(2)(h).

3.8 Simulation study

In this section, two examples are presented to investigate the performance of MLC(i)(h),

i = 1, 2, MLL(h) models and their special cases for prediction based on bandwidth se-

lection by simulation using different models. The bandwidth of one of the components

was fixed to 1 namely h1 = 1, because it is the smallest obvious bandwidth needed

to capture the short-term trend of the past data. However, the second bandwidth h2

was classed as unknown unless noted differently. In addition, the number of compo-

nents of MLC(i), i = 1, 2 and MLL models was fixed at 2. These restrictions on the

number of components and the bandwidth selection are considered in order to reduce

the complexity of the models and the expense of computational cost as mentioned in

Section 3.5. For NLC(i)(h), i = 1, 2 and NLL(h), the bandwidth h was mainly classed

as unknown. However, it was fixed in some simulation scenarios, which will be dis-

cussed later in the examples given in this chapter. For each example, two cases were

discussed according to their bandwidth selection scenarios. In the first case, the simu-

lation results are shown based on optimised bandwidths h2 for MLC(2) and MLL, and

the optimised bandwidth h for NLC(2) and NLL. In the second case, the simulation

results for prediction are based on the fixed non-optimised bandwidth (h1, h2) for the

MLC(i), i = 1, 2 and NLC(i), i = 1, 2.

3.8.1 Example 1

In the first example, the data was generated using the following model:

yt = 0.1+0.1t+sin(2π t

12)+0.2 sin(2π 2t
12)+0.1 sin(2π 4t

12)+0.1 cos(2π 4t
12)+et (3.8.1)

the errors et ∼ N(0, 0.52) are independently distributed. This model has seasonal
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Figure 3.3: Time series of a data set from model (3.8.1).

harmonic components and contains an underlying linear trend. The data originating

from model (3.8.1) has a strong variability and linear trend as shown in Figure 3.3.

The performance of MLC(i), i = 1, 2 and MLL for prediction this data is investigated

and compared with other common time series models, such as the SARIMA, ARIMA

and Holt models. The SARIMA denotes seasonal autoregressive integrated moving

average, which is a class of seasonal ARIMA model.

Case study 1: prediction based on optimised bandwidths

In this section, the performance of MLC(2), MLL, NLC(2), NLL, SARIMA, ARIMA

and Holt models are discussed in relation to the simulation study. By applying steps

1, 2 and 3 of the simulation in section 3.7, ĥ2 = 2 and ĥ2 = 20.93 produced optimal

bandwidths of MLC(2) and MLL, respectively. In addition, ĥ = 1.90 and ĥ = 37.50

produced optimal bandwidths for NLC(2) and NLL, respectively. Figure 3.1 shows

boxplots of the optimal bandwidths for MLC(2) (top left), the MLL (bottom left),

the NLC(2) (top right), and the NLL (bottom right). It is clear that the optimal

bandwidths produced skewed distributions, which suggests that the median can be

used as a favourable statistic to present the optimal bandwidths for all data sets in

models MLC(2), MLL, NLC(2), and NLL.

Figure 3.41 shows boxplots of log(SSRE) ofm-step-ahead forecasts based on the optimal

1A log-transformation is applied on SSRE for clear presentation and ease of data analysis.
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Figure 3.4: Summary of results provided by boxplots of log(SSRE) of the m-step-
ahead forecasts, m = 1, 2, 3, of data from model (3.8.1) for NLC(2), MLC(2), NLL,
MLL, SARIMA, ARIMA and Holt models.

bandwidths for the models under the study and log(SSRE) of m-step-ahead forecasts

for traditional models, corresponding to the SARIMA, ARIMA and Holt models. From

Figure 3.4 (left), we can see that MLL has performed well and has produced smaller

errors for one forward lag than all other models except the SARIMA model. This is

due to its ability to model the long-term linear trend. In fact, the SARIMA model is

superior to the other models for prediction because the order of seasonality, which is

12, is given in the simulation and considered in the SARIMA model only. With the

exception of the SARIMA results, the NLL is better than all other models for m = 2

and 3 from Figure 3.4 (right and bottom). In addition, the performance of MLC(2) is
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Figure 3.5: Summary of results provided by boxplots of the fitted probabilities of the
second components of data from model (3.8.1) for MLC(2) (left) and MLL (right)

better than NLC(2) for all forward lags and becomes competitive with the ARIMA and

Holt models only.

Further information is provided in Figure 3.5, which visualises the fitted π̂2 of the

second components, which are defined in Equations (3.2.4) and (3.3.3) for MLC(2)

(left) and MLL (right), respectively. Figure 3.5 shows the importance of the second

components of MLC(2) and MLL for prediction. One can observe from Figure 3.5 (left)

that the long-term component seems to become close to about 40% at the 83-th, 84-

th, 95-th and 96-th grid points for MLC(2). In addition, the smallest percentage of

the long-term components is 1% at the 90-th grid point. In fact, the medians of the

proportions of the long-term components in the boxplots seem to produce a harmonic

pattern through all grid points, which means that the MLC(2) technique has the ability

to follow and pick the pattern of a given data set. As a result, the importance of

the second component for MLC(2) is limited and restricted on certain grid points in

comparison to MLL, as shown in Figure 3.5 (right). The medians of the proportions of

the long-term components of MLL fluctuate between 30% and 40%, which make these

components useful for prediction compared to the MLC(2) model. As a result, recent

information corresponding to the short-term component is considered more relevant

for MLC(2). However, the importance of the long-term component for prediction for

the MLL is more than that for MLC(2) thanks to its ability to fit a long-term linear
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Figure 3.6: Summary of results provided by boxplots of log(SSRE) of m-step-ahead
forecasts, m = 1, 2, 3, of data from model (3.8.1) for the NLC(2), MLC(2), NLL, MLL,
SARIMA, ARIMA and Holt models.

trends in comparison with MLC(i), i = 1, 2 models.

Figures 3.6 and 3.7 show the different simulation results when using different optimised

bandwidths for each individual data set. It is clear that the results are similar to the

results shown in Figures 3.4 and 3.5. As a result, Figures 3.6 and 3.7 support the

concept of using the median of all optimal bandwidths in the study, which led to

Figures 3.4 and 3.5. This provides clear an indication that there was no need to use

different optimal bandwidths for each data set in the simulation study.
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Figure 3.7: Summary of results provided by boxplots of the fitted of probabilities of the
second components of data from model (3.8.1) for the MLC(2) (left) and MLL (right)

Case study 2: prediction based on fixed non-optimised bandwidths

In this section, performance of predictions for selected bandwidths (h1, h2), in relation

to MLC(1) and MLC(2) is investigated and compared with those produced using the

SARIMA, ARIMA and Holt models. Figure 3.8 shows boxplots of log(SSRE) of the

m-step-ahead forecasts for NLC(i), i = 1, 2(1), MLC(i), i = 1, 2(1,4), SARIMA, ARIMA

and Holt models. It is clear that NLC(1)(1) has the best performance in prediction,

with a minimum median for all forward lags of m. The MLC(2)(1,4) produced a larger

margin error than NLC(2)(1) , but only form = 1 as shown in Figure 3.8 (left) according

to the log(SSRE). However, the MLC(1)(1,4) model produces the worst performance

for prediction in comparison to the NLC(1)(1) for all forward lags. Figure 3.9 shows

that MLC(1)(0.5,1) is better than NLC(1)(1) for prediction according to log(SSRE). In

addition, for the MLC(2)(0.5,1), the performance of prediction is slightly improved in

comparison with that of NLC(2)(1) for all forward lags of m. This result is plausible

because the bandwidth h2 = 4 is far from the real optimal bandwidth h2 for MLC(2)

in this example.

It is worth mentioning that using MLC and MLL methodologies for prediction can pick

the right optimal bandwidths, which means that the bandwidth selection is implicit to

these approaches. For example, in Figures 3.10 and 3.11, each grid point presents 1000
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Figure 3.8: Summary of results provided by boxplots of log(SSRE) of the m-step-
ahead forecasts, m = 1, 2, 3, of data from model (3.8.1) for NLC(i), MLC(i), SARIMA,
ARIMA and Holt models when h = (1, 4), i = 1, 2.

results for each boxplot of the fitted proportions π̂i, i = 1, 2 and 3 of MLC(2)(1, 2, 5)

and MLL(1, 20.93, 50), which are defined in Equations (3.2.4) and (3.3.3) respectively.

Figure 3.10 shows the fitted proportions π̂1, π̂2, π̂3 from the 76-th to the 96-th grid

points when using the model MLC(2)(1, 2, 5) to fit the data sets in Example 1. In this

case, the optimal bandwidth h2 = 2 of MLC(2) in this example is included to investigate

whether the MLC methodology for prediction can select the right bandwidth. It can

be observed, that the bandwidth h3 = 5 has the lowest proportions π̂3, and in general

compared to the proportions π̂1’s and π̂2’s of the other components. This means that

the third component, that is related to the selected bandwidth h3 = 5, is less important
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Figure 3.9: Summary of results provided by boxplots of log(SSRE) of the m-step-ahead
forecasts, m = 1, 2, 3, of data from model (3.8.1) for the NLC(i), MLC(i), SARIMA,
ARIMA and Holt models when h = (0.5, 1), i = 1, 2.

than the other components. As a result, the MLC methodology overwhelmingly selects

the most important components that correspond to bandwidths, which have previously

been shown to produce good forecasts. Moreover, this result supports the results of

Case study 1, which gives our new methodology of bandwidth selection an advantage.

In Figure 3.11, the optimal bandwidth obtained for the second component of the MLL

model h2 = 20.93 is used in the second component of the MLL(1, 20.93, 50) model

to fit the data sets shown in Example 1. It seems that the first components for each

grid point with the bandwidth h1 = 1, have the highest proportions. In addition, the
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Figure 3.10: Summary of results provided by boxplots of the fitted probabilities π̂1, π̂2
and π̂3 of data from model (3.8.1) for MLC(i)(1,2,5), i = 1, 2, where a = π̂1, b = π̂2, and
c = π̂3. The horizontal axis denotes the grid points (from 77 to 97) and the vertical
axis gives the proportions.
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Figure 3.11: Summary of results provided by boxplots of the fitted probabilities π̂1,
π̂2 and π̂3 of data from model (3.8.1) for MLL(1,20.93,50), where a = π̂1, b = π̂2, and
c = π̂3. The horizontal axis denotes the grid points (from 77 to 97) and the vertical
axis gives the proportions.

medians of the fitted proportions for the second components are larger than those of the

third components. In this case, the MLL model shows the ability to capture the same

bandwidths as those obtained in Case study 1 of the simulation. Figure 3.11 supports

these results in Figure 3.5. For the MLL model, the fitted proportions π̂2 of the second
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components with a bandwidth h2 = 20.93 for each grid point in Figure 3.5 (right)

are larger than the fitted proportions π̂2, which are found and presented in Figure

3.11. These differences between MLL(1, 20.93) and MLL(1, 20.93, 50) relating to the

fitted proportions π̂2 is reasonable due to the increase in the number of components in

MLL(1, 20.93, 50), which contributes to reducing the proportions for the components

with the bandwidth h2 = 20.93. This suggests that the MLL methodology in this

example does not need more than two components. As a result, Figures 3.5 and 3.11

provide an indication that K = 2 is adequate to fit the short and long-term trend in

this example.

3.8.2 Example 2

In this example, the data was generated from a model, which has no trends. This

model can be defined as follows:

yt = sin(2π t

12) + 0.2 sin(2π 2t
12) + 0.1 sin(2π 4t

12) + 0.1 cos(2π 4t
12) + et (3.8.2)

The errors are assumed firstly as zt ∼ N(0, 0.52), t = 1, . . . , 100 and then the considered

errors are et = 0.7et−1 + zt, e1 = z1, t = 2, . . . , 100. This model includes seasonal

harmonic components without linear trend. Figure 3.12 shows a data set from model

3.8.2 which is very variable time series. The main difference between the model shown

here and the model used in the first example is, that the errors are strongly correlated,
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Figure 3.12: Time series of a data set from model (3.8.2).
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Figure 3.13: Summary of results provided by boxplots of log(SSRE) of m-step-ahead
forecasts, m = 1, 2, 3, of data from model 3.8.2 for the NLC(2), MLC(2), NLL, MLL,
SARIMA, ARIMA and Holt models

and the data from the former one do not have linear trend. As a result, there is a

strong suggestion that the MLC(2) will perform well for prediction compared to the

MLL. From Step 3 of the simulation set up in Section 3.7, ĥ2 = 2.15 and ĥ2 = 10.11

are the optimal bandwidths used for MLC(2) and MLL, respectively. For NLC(2) and

NLL, the optimal bandwidths used are ĥ = 0.80 and ĥ = 2.50, respectively.

Case study 1: prediction based on optimised bandwidths

Figure 3.13 shows boxplots of log(SSRE) of the m-step-ahead forecasts for the MLC(2),

MLL, NLC(2), NLL, SARIMA, ARIMA and Holt models. It is obvious as shown

in Figure 3.13 (left), that the MLL model is competitive with the MLC(2) and Holt
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Figure 3.14: Summary of results provided by boxplots of the fitted probabilities of the
second components for the MLC(2) (left) and the MLL (right)
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Figure 3.15: Summary of results provided by boxplots of the fitted probabilities of the
second components of data from model (3.8.2) for the MLC(2) (left) and MLL (right)

models, and performs better than the NLL model for m = 1 only. In addition, there is

no difference in performance for prediction between the SARIMA and ARIMA models,

and they perform better than other models for all forward lags. In addition, the MLC(2)

model performs better than the NLC(2) and Holt models for m = 2 and 3, as shown

in Figure 3.13 (right and bottom). Figure 3.14 (left) shows that the proportions of the

long-term components are around 0.22% for almost all grid points. This gives positive

evidence regarding the ability of the MLC model to fit short-term trend components,

rather than long-term trend components, especially for non-linear data. However, we

can see from Figure 3.14 (right), that on all grid points, the proportions of the long-term
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Figure 3.16: Summary of results provided by boxplots of log(SSRE) of m-step-ahead
forecasts, m = 1, 2, 3 of data from model 3.8.2 for the NLC(2), MLC(2), NLL, MLL,
SARIMA, ARIMA and Holt models

components settle at about 35% for the MLL model. This result is sensible, since the

data has no trends, which makes these components in the mixture less important than

the short-term components. Figures 3.15 and 3.16 as shown present the simulation

results when using different optimised bandwidths for each data set shown in this

example. As in Example 1, it is clear that the results are similar to the results shown

in Figures 3.13 and 3.14.

Case study 2: prediction based on fixed non-optimised bandwidths

Figure 3.17 presents boxplots of log(SSRE) for NLC(i)(1), MLC(i)(1, 4), SARIMA,

ARIMA and Holt models, for i = 1, 2. It is clear that NLC(1)(1) model is the best
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Figure 3.17: Summary of results provided by boxplots of log(SSRE) of m step-ahead
forecasts,m = 1, 2, 3, of data from model 3.8.2 for the NLC(1), MLC(1), NLC(2), MLC(2),
SARIMA, ARIMA and Holt when h = (1, 4)

model for prediction based on the log(SSRE) for all forward lags of m. In addition, the

MLC(1)(1,4) model performs well for all forward lags compared with all other models,

except the NLC(1)(1) model. For m = 1, it can be seen in Figure 3.17 (left), that

MLC(2)(1,4) is competitive with the NLC(2)(1) and with the Holt model. However, for

m = 2 and m = 3, MLC(2)(1,4) shows better performance for prediction compared

to the NLC(2)(1) and the Holt models. In addition, it becomes competitive with the

SARIMA and ARIMA models. From examining Figure 3.17, it can be seen that when

the bandwidth h2 for MLC(1) is larger (less) than the bandwidth h for NLC(1), and so

performance of MLC(1) for prediction decreases (increases).

Figure 3.18 shows the boxplots of log(SSRE) for NLC(i)(1), MLC(i)(0.5,1), SARIMA,
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Figure 3.18: Summary of results provided by boxplots of log(SSRE) of m step-ahead
forecasts,m = 1, 2, 3, of data from model 3.8.2 for the NLC(1), MLC(1), NLC(2), MLC(2),
SARIMA, ARIMA and Holt when h = (1, 0.5)

ARIMA and Holt models, for i = 1, 2. It is clear that the MLC(1)(0.5,1) is the

best performing prediction model in comparison with the other models. However,

MLC(2)(0.5,1) shows marginal better performance for prediction compared with the

NLC(2)(1) for m = 1 as shown in Figure 3.18 (left).

In conclusion, from the above simulation study, we can see that the MLC(i), i = 1, 2

and MLL models reveal powerful methodologies, that could contribute to improving

predictions based on bandwidth selection, if we compare them to traditional models,

such as the ARIMA and Holt models. The MLL methodology was superior to other

models for variable and linear trend data and for small forward lags, as shown in

Example 1. The MLC(2) model performs well for prediction for short-term trends and
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for large forward lags as shown in Example 2. The MLC(1) model in both Examples 1

and 2 shows better results for prediction compared to the MLC(2), ARIMA and Holt

models. Moreover, the MLC(i), i = 1, 2 models are superior to the NLC(i), i = 1, 2 for

very small bandwidths of the second components, that is h2 < 1.

3.9 Applications

In this section, real data examples are presented, in order to investigate the performance

of the MLC(i), i = 1, 2 and MLL models for forecasting compared to the ARIMA and

Holt models. The data under study is the same data as discussed in Section 2.3 of

Chapter 2, that is the annual energy use data. While the full data set contains more

than 130 countries, we choose three countries with different patterns for purposes of

this presentation.

Figure 3.19 displays the time series of log of energy use of Bolivia, Lebanon and Greece.

It can be seen that the time series for Bolivia (left) shows two main features, which are

shared by the large majority of countries in this data base: it shows an overall increasing

linear trend, but considerable variability. The other two time series illustrate extreme

cases where one of the features is more pronounced: in the case of Lebanon (see in the

middle) it shows very strong variability, and in the case of Greece (right) it shows a

very consistent linear trend with little variability.

The log of energy use data of these countries is fitted at the target points tT =
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Figure 3.19: Time series of energy use data for Bolivia, Lebanon and Greece (from left
to right). The horizontal axis denotes the calendar year (from 1971 to 2011), and the
vertical axis gives the annual energy use (natural log of kg oil equivalent per capita).
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Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1, h2) = (1, 5)

MLC(1) 0.09 0.08 0.09 0.09 7.11 7.34 7.78 7.87
MLC(2) 0.23 0.41 0.67 0.99 12.63 17.77 22.97 26.91
MLL 0.12 0.24 0.48 0.87 8.64 11.56 18.38 25.49

(h1, h2) = (1, 20)
MLC(1) 0.15 0.17 0.20 0.22 10.07 10.97 12.19 13.13
MLC(2) 0.29 0.47 0.77 1.11 14.13 19.09 24.43 28.24
MLL 0.14 0.31 0.59 1.06 9.50 14.84 21.04 27.09
Holt 0.14 0.44 0.90 1.50 8.85 17.60 26.33 34.20
ARIMA 0.13 0.37 0.67 0.97 8.74 14.62 21.38 25.86

Table 3.1: The SSRE and SARE of forecasting for Bolivia from 1991 to 2008 using
fixed bandwidths.

1990, . . . , 2007, in order to obtain the m-step-ahead forecasts (m = 1, . . . , 4) for each

time point tT for different models. Hence, we have 18 forecasts for each model and for-

ward lags. For the MLC and MLL models, K = 2 components are used to fit the data.

To assess the performance of the forecasts using these models, we will consider the

SSRE of forecasts and the sum of absolute relative error (SARE) of the m-step-ahead

forecasts, which is denoted as SARE(m) and can be defined as follows:

SARE(m) =
∑d
T=c |ŷT+m − yT+m|∑d

T=c |yT+m|
(3.9.1)

where c is the first time point and d is the last time point, which for our analysis takes

the values c = 1990 and d = 2007, respectively.

The new approach of bandwidth selection is applied for the energy use by the selected

countries using the Equation (3.7.1) where a = 1989 and b = 2006 for this analysis.

Tables 3.3, 3.6 and 3.9 summarise the results2 of the m-step-ahead forecasts based

on the optimised bandwidths according to the SSRE of the 1-step-ahead forecasts

criteria for MLL and NLL models relating to the energy use of Bolivia, Lebanon and

Greece, respectively. For MLC(1) and NLC(1) models, the optimal bandwidths were

very small and convergent to 0. Consequently, three different settings of bandwidths,

(h1, h2) = (0.5, 1), (h1, h2) = (1, 5) and (h1, h2) = (1, 20), are considered randomly, in

order to capture different sizes in term of trends, short, medium and long-term trend,

prevailing in these data sets, as shown in Tables 3.1, 3.4 and 3.7. Table 3.2, 3.5 and 3.8

show the results of the SSRE and SARE of the m-step-ahead forecasts for the MLC(i)

and NLC(i), i = 1, 2.

2All values of SSRE and SARE in tables are multiplied by 1000.
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Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
h = 1

NLC(1) 0.02 0.02 0.03 0.03 3.96 4.04 4.48 4.65
h = (0.5, 1)

MLC(1) 0.007 0.006 0.007 0.005 2.06 1.85 1.98 1.75
h = 1

NLC(2) 0.17 0 .36 0.65 0.99 10.76 16.43 22.13 27.86
h = (0.5, 1)

MLC(2) 0.14 0.34 0.62 0.95 9.94 15.87 21.71 27.33

Table 3.2: The SSRE and SARE of forecasting for Bolivia from 1991 to 2008 using
fixed bandwidths.

From Table 3.1, we see that the MLC(1) model performs well for all forward lags, and

produces smaller errors than all other methods, except in the case when h = (1, 20)

and m = 1. In this case, the MLL model shows slightly better performance than

the MLC(1) model, due to its ability to model the long-term linear trend. This result

is equivalent to the result provided by Table 3.3, which suggests that h = (1, 5.2) is

the optimal bandwidth for prediction for the MLL model. This finding supports the

conclusion in Section 3.8, that the MLL model can pick a good bandwidth in itself. In

addition, the optimal bandwidth of NLL model is h = 0.9 with SSRE= 0.13×10−3 as

shown from Table 3.3. It is clear that the MLL model is superior to the NLL model

for all forward lags for prediction. In this example, the MLC(2) and NLC(2) models

do not predominantly depend on the bandwidth selection. It is found that a range of

bandwidths, have approximately the same SSRE. As a result, the new methodology of

bandwidth selection is just applied on the MLL and NLL models as it is shown in Table

3.3. As shown in Table 3.1, the MLL model performs better than the MLC(2) model

for all forward lags, and for small and large-term trends components. It is clear that

the ARIMA and Holt models become competitive with the MLC(1) and MLL models

for short forward lags and large-term trend components as shown in Table 3.1. The

MLC(2) model produces a larger margin of errors than the MLC(1) model, which makes

the MLC(1) model a more favourable model to use for prediction in this example. It

can be seen in Table 3.2, that the MLC(1) model performs better than all models and

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4)
h = 0.90

NLL 0.13 0.39 0.77 1.34
(h1, h2) = (1, 5.2)

MLL 0.12 0.24 0.48 0.86

Table 3.3: The SSRE of forecasting for Bolivia from 1991 to 2008 using optimised
bandwidths.
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Figure 3.20: Data for Bolivia showing the parameters β̂k(tT ) fitted using MLC(1) and
resulting forecasts at ŷMLC(1)

T+1 (left); and fitted parameters π̂k(tT ) (right).

for all forward lags.

Further insight is provided in Figure 3.20, which shows the time series for Bolivia,

as well as the fitted parameters and predictions (top and bottom left), and the fitted

mixture probabilities (top and bottom right) for tT , T = 1990, . . . , 2007 for the one-

step ahead forecasts from the MLC(1) model. One can observe that the long-term

components seem to become close to irrelevant for the MLC(1) model from around

tT = 2002 onwards, but this effect is not observed for the MLL model, see Figure 3.21

(right). In most cases, the proportion of the short-term components settle at about

80%, which is plausible since the most recent information is considered more relevant.
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Figure 3.21: Data for Bolivia showing the parameters β̂0k(tT ) fitted using MLL and
resulting forecasts at ŷMLL

T+1 (left); and fitted parameters π̂k(tT ) (right).

The additional information provided by the long-term component in the MLL model

is useful for short-term predictions, but this advantage vanishes for m > 1 due to the

increased variance.

For the Lebanon data, the errors shown in Table 3.4 are overall of a larger magnitude

than those for Bolivia, due to the larger variability of the data itself, but otherwise

the picture obtained previously is confirmed: using the MLC(1) model leads generally

to favourable results, with the MLL model becoming superior only for m = 1 and

a large long-term bandwidth. Both the ARIMA and Holt models can compete with

the MLC(1) model only for m = 1 and h = (1, 20). Table 3.6 presents the optimal
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Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1, h2) = (1, 5)

MLC(1) 0.16 0.18 0.18 0.17 10.95 11.51 11.48 10.75
MLC(2) 0.45 0.83 1.14 1.32 18.46 23.75 28.04 30.19
MLL 0.24 0.70 1.21 1.67 11.70 19.02 27.07 31.55

(h1, h2) = (1, 20)
MLC(1) 0.30 0.32 0.35 0.35 15.95 16.62 17.13 16.83
MLC(2) 0.54 0.93 1.26 1.47 21.33 26.71 31.24 33.38
MLL 0.24 0.60 1.05 1.40 12.24 17.76 24.38 29.05
Holt 0.34 0.69 0.95 1.07 15.26 21.25 26.88 28.19
ARIMA 0.31 0.71 1.05 1.26 14.05 20.94 26.92 27.66

Table 3.4: The SSRE and SARE of forecasting for Lebanon from 1991 to 2008 using
fixed bandwidths.

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
h = 1

NLC(1) 0.04 0.05 0.05 0.04 5.50 5.74 5.74 5.15
h = (0.5, 1)

MLC(1) 0.02 0.02 0.02 0.02 3.17 3.17 3.39 3.14
h = 1

NLC(2) 0.33 0.68 0.99 1.18 14.95 21.06 26.28 27.28
h = (0.5, 1)

MLC(2) 0.31 0.65 0.98 1.17 14.06 20.42 26.13 26.87

Table 3.5: The SSRE and SARE of forecasting for Lebanon from 1991 to 2008 using
fixed bandwidths.

bandwidths for prediction using the NLL and MLL models, which are h = 1.05 and

h = (1, 5.89), respectively and it shows the corresponding SSRE for m-step ahead

forecasting. It seems that the MLL model is better than the NLL model with an error

SSRE=0.23×10−3. In respect of the MLC(2) and NLC(2) models, the new methodology

used for bandwidth selection has not been applied for the same reason as stated in the

Bolivia data study case.

For the data for Greece, the situation is different, due to the specific nature of this time

series, which shows an increase that is close to the linear. Here the ability to model a

local linear trend plays a strong role in enhancing prediction, and due to the stability

of this trend, this continues to hold for the forecast lags m > 1. However, it became

clear that the MLC(2) model provided poor performance in comparison with the other

models, especially for the long-term trend component. The optimal bandwidths of the

NLL and MLL models were h = 1.4 and h = (1, 4.2), respectively, as shown in Table

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4)
h = 1.05

NLL 0.38 0.95 1.69 2.31
(h1, h2) = (1, 5.89)

MLL 0.23 0.64 1.12 1.52

Table 3.6: The SSRE of forecasting for Lebanon from 1991 to 2008 using optimised
bandwidths.
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Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
(h1, h2) = (1, 5)

MLC(1) 0.03 0.02 0.02 0.02 5.11 4.43 3.92 3.64
MLC(2) 0.07 0.10 0.15 0.22 7.68 9.71 11.62 13.85
MLL 0.01 0.03 0.07 0.14 2.71 3.53 5.68 8.32

(h1, h2) = (1, 20)
MLC(1) 0.12 0.11 0.11 0.10 10.71 10.42 9.98 9.67
MLC(2) 0.17 0.23 0.29 0.36 12.80 14.36 16.08 17.67
MLL 0.02 0.04 0.10 0.20 2.82 4.13 6.29 9.04
Holt 0.02 0.04 0.09 0.17 3.14 4.44 7.11 10.20
ARIMA 0.02 0.05 0.12 0.22 3.27 5.42 8.20 11.28

Table 3.7: The SSRE and SARE of forecasting for Greece from 1991 to 2008 using
fixed bandwidths.

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4) SARE(1) SARE(2) SARE(3) SARE(4)
h = 1

NLC(1) 0.003 0.003 0.004 0.004 1.43 1.51 1.65 1.77
h = (0.5, 1)

MLC(1) 0.004 0.004 0.009 0.009 0.55 0.55 0.63 0.70
h = 1

NLC(2) 0.02 0.05 0.09 0.14 3.91 5.77 8.06 10.70
h = (0.5, 1)

MLC(2) 0.02 0.04 0.08 0.13 3.33 5.16 7.43 10.42

Table 3.8: The SSRE and SARE of forecasting for Greece from 1991 to 2008 using
fixed bandwidths.

3.9, and are used to find m-step-ahead forecasts. From the data shown in Table 3.9,

it is clear that the MLL model is better than the NLL model according to SSRE for

m-step-ahead forecasts. Moreover, this result is supported by Table 3.7, which means

that the MLL model has the ability to capture the optimal bandwidth from selected

bandwidth. The optimal bandwidths for both the MLC(2) and NLC(2) models tend

to be 0. In order to investigate the performance of prediction for different settings of

bandwidths, the bandwidths were fixed as in Tables 3.7 and 3.8. Table 3.8 shows that

the MLC(1) model produces a smaller error margin than the MLC(2) model, according

the SSRE and SARE criteria.

In summary, the examples provide evidence for the superiority of the NLC(1) and

MLC(1) methods, especially for greater forward lags and smaller bandwidths. Remark-

ably, the performance of the MLC(1) method almost does not depend on the forward

lags. Here an apparent ‘weakness’ of the MLC(1) method, namely the non-adaptability

Model SSRE(1) SSRE(2) SSRE(3) SSRE(4)
h = 1.4

NLL 0.02 0.04 0.10 0.17
(h1, h2) = (1, 4.2)

MLL 0.01 0.03 0.07 0.13

Table 3.9: The SSRE of forecasting for Greece from 1991 to 2008 using optimised
bandwidths.
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to linear trends, seems to turn into an advantage, as the technique does not ‘learn’

the direction of these local trends, and so avoids overshooting once the data take a

turn. For the MLC(i), i = 1, 2, methods in general, the bandwidth choice of h2 = 0.5

produces better results than h2 = 5 and h2 = 20, see Tables 3.2, 3.5 and 3.8. For the

MLL model, this interpretation is less clear-cut, but it is right to say that the results,

using the MLL model with h2 = 20, were generally comparable to those obtained using

the ARIMA and Holt models. It appears that the MLL method can only be recom-

mended when m = 1 and h2, is large, and here it is better than the MLC(2) model,

because of its ability to fit the linear trend well. The MLC(2) model performed badly

for prediction when compared to the other models.

It can be seen from Tables 3.3, 3.6 and 3.9, the MLL model had smaller error margin

than the NLL model, and it performed well in prediction for all forward lags, which

suggests that mixture models cam improve prediction compared with standard local

linear model and traditional models such as the ARIMA and Holt models. In addition,

the MLC(i), i = 1, 2, models show favourable performance for prediction compared to

the NLC(i), i = 1, 2, models for small bandwidths h2 = 0.5, and this can be seen in

Tables 3.2, 3.5 and 3.8.

3.10 Conclusions

In conclusion, this chapter has presented a novel approach to forecasting based on

localised mixtures of non-parametric regressions. Non-parametric regression allows a

forecast to be calculated directly using historical data, as a local average of observed

past values. In the first model, named the MLC model, local constant estimators were

used to carry out the localised estimation step. In the second model, referred to as the

MLL model, the MLC model was generalized using local linear estimators.

Estimation for these models was achieved using a kernel-weighted version of the EM-

algorithm, and using exponential kernels with different bandwidths as weight functions.

In addition, these localised mixture models show favourable property relating to iden-

tifiability, but this needs further consideration in some cases. In order to forecast,

several approaches for prediction at the time tT+m, these models were investigated as
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shown above using a simulation study. The simulation was conducted on two different

examples of data, in order to investigate in which cases the MLL and MLC models

showed good performance for prediction in comparison with traditional models, such

as the ARIMA and Holt models. In the first example, the data included seasonal and

linear trends with uncorrelated errors. However, in the second example, the linear

trend was eliminated and the errors were correlated.

A new approach for bandwidth selection for prediction was presented in this chapter.

In each example given, two simulation scenarios were considered depending on the

type of bandwidth selection. In the first case, the optimal bandwidth was optimised

for prediction however in the second case, two settings of bandwidths were considered:

h = (0.5, 1) and h = (1, 4). The results suggest that the MLL model can only improve

predictions from time series data, as compared with the ARIMA and Holt models, that

use long-term components and short forward lags, as in Example 1 in the simulation

study and in the real data applications. However, further forecasting methods should

be investigated to enhance and explore this comparison. In addition, the MLC(1) model

shows good performance in prediction for short-term components and non-linear trend

data as seen in Example 2 of the simulation and in the real data applications.

Although the simulation study was restricted the choice of one of the bandwidths to be

1, which means that one of the bandwidths was not optimised, the results show com-

petitive and challenging arguments in favour of using the MLC(2) and MLL models in

comparison to using other models used for prediction. This suggests that further study

on the performance of MLC(2) and MLL models for prediction when all bandwidths are

optimized should be undertaken. In addition, it was found that the new methodology

for bandwidth selection in real data applications was more useful for MLL and NLL

models than for MLC and NLC models. As a result, it is strongly recommended that

this methodology of bandwidth selection should be used in the MLL and NLL models.

In addition, there is strong evidence as presented above, that the MLC(2) and MLL

models can select the good bandwidth which means that bandwidth selection is rec-

ommended to these approaches for prediction. This feature gives additional advantage

to the MLC(2) and MLL models for use in prediction.



Chapter 4

Double-localised mixture models

for prediction

4.1 Introduction

In this chapter, a developed model based on localised mixture regression models is

presented, in order to improve the prediction from time series using information from

other time series. The data under study is the same data as discussed in Section

2.3.1 of Chapter 2, that is the annual energy use data. Before 1995, there was no

information available about energy consumption for some countries. As a result, the

study in this chapter is restricted to the period between 1995 and 2011. This is to

avoid issues relating to the missing data in our statistical analysis, which needs further

consideration in future. In Figure 4.1, we have extended the analysis for the data sets,

that is limited in Section 2.3.1 of Chapter 2 by selected years. It is clear that there are

two clusters of data, that appear over time, as shown in Section 2.3.1 in Chapter 2. If

we apply the bootstrap likelihood ratio test, see Section 1.4.2 of Chapter 1 for more

detail, a mixture of two Gaussian distributions fit the data sets over time. The two

components are visualised simultaneously over time by a sequence of 2–boxplots of log

of energy use data as shown in Figure 4.1. As in Section 2.3.1 in Chapter 2, one group

corresponds to high energy use countries, and one group corresponds to low energy use

countries. In addition, the median changes slightly in either of the two groups, except

in 2009, which appears to considerable decrease in both groups. The low-energy-use

81
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Figure 4.1: 2–Boxplots of log energy use data between 1995 to 2011

group and the high-energy-use group are of equivalent sizes up until 2007, when the

high-energy-use group grows larger, and this is represented by the boxes getting wider.

This trend can be interpreted as, in recent years, more countries have become developed

and so energy consumption has increased.

Mixture of local regression models in a similar way to Chapter 3 are stated firstly.

The models are the MLC(i), i = 1, 2 and MLL models, but with equal bandwidths

for all components. These models are used to fit the data of all countries at a given

time point tT , in order to forecast energy use data for a given time series. In this

case, the MLC(i), i = 1, 2 and the MLL models are closely related to model (3.4.1)

by Huang et al. [44]. For these models, we can interpolate the estimates of the fitted

energy use data to find the estimate of energy use data between any two years as in

model (3.4.1). Figure 4.2 shows a sequence of β’s fitted using Equation (3.2.5) of the

MLC(i), i = 1, 2 models (left) and a sequence of β0’s fitted from Equation (3.3.4) of the

MLL model (right) as outlined in Chapter 3 with 2–boxplots over time. We can class

this methodology as a regression technique to fit a multi-valued non-parametric local

regression. It is clear from Figure 4.2, that the MLC(i), i = 1, 2 and MLL models show

favourable features that can separate the data into two groups. The weighted medians

of a mixture in each year is approximating to the fitted β of the MLC(i), i = 1, 2 models

as shown in Figure 4.2 (left), and the fitted β0 of the MLL model as shown in Figure

4.2 (right).
Suppose for a certain country at a given time point tT , we would like to forecast the
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Figure 4.2: Data from all countries, 2–boxblots with parameters β̂k(tT ) fitted using
MLC(1) (left) and with parameters β̂0k(tT ) fitted using MLL(1) (right) simultaneously
over time.

energy use of this country based on the MLC(i), i = 1, 2 and MLL models, and using

the information from other countries. The obvious technique for prediction in this case

would be to use the respective posterior probabilities rijk, i = 1, . . . , T, j = 1, . . . , J, k =

1, . . . , K, of the country of interest and the fitted parameters at the time point tT
to find the m-step-ahead forecasts yTj+m locally, where K is the number of mixture

components and J is the number of time series. The technique for prediction relies

on the historical information from all countries. So far, the effect of countries, which

have similar data pattern to the target country, on the target country is not considered

in prediction. This effect could play a role in providing additional information, which

could contribute in improving the prediction for the target country.

4.1.1 Motivation

The motivation in this chapter was to improving the prediction for a very noisy time

series using information from anther time series at a certain time point tT and using

past observations. In other words, for a given country, the aim was to use information

from all countries, especially countries, that show similar energy use patterns over time,

but without placing any consideration on the geographical aspects of these countries.

For this purpose two bandwidths were used: the horizontal hk and the vertical vk



4.1. Introduction 84

ti

y
i

 
 

 
 

 
 

 
 

t1 t2              tT          

 

 

 

 

 

 

 

 

 

 

time series

target data

vsmall

vlarge

hsmall

hlarge

Figure 4.3: J Series of the time series, j-th time series, vertical kernels using small
and large bandwidths vsmall and vlarge, and horizontal kernels using small and large
bandwidths hsmall and hlarge

bandwidths for each component k. The horizontal bandwidths hk control the amount

of historical information gained from past data in a local neighbourhood. The vertical

bandwidths determine how many countries should be taken into account in order to

improve the prediction for the given country. Figure 4.3 illustrates the idea of using

horizontal and vertical kernels for each component. The blue and green curves repre-

sent vertical kernels with small and large vertical bandwidths, respectively. However,

the brown and red curves indicate horizontal kernels with small and large horizontal

bandwidths, respectively. In addition, the purple time series is the time series of the

country of interest, and the gold time series is time series for all other countries. As

shown in Figure 4.3, in order to investigate, for example, the influence of political

events on the energy consumption of a target country under consideration of the other

countries, it is convenient to use a short-term trend bandwidth (hsmall) and a large-term

bandwidth vlarge. However, if the aim is to investigate the trends of the target country,

via other countries, which over a certain time span develop better economic policies

and so forth, then using a long-term trend bandwidth hlarge and a short-term band-

width vsmall appears adequate, that affects similar countries to the target country in

data pattern. In this context, we will also see that the K–boxplot is a useful graphical
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tool that can be used to visualise the similarity of countries in the data pattern [67].

This chapter aims to show how to use the localised mixture models, as presented in

Chapter 3 in order to improve predictions for very variable time series using additional

information provided by other time series. For this purpose, two models are proposed

that can improve the prediction of a target time series using anther time series at a

given time point tT . The MLC and MLL models were developed using the additional

bandwidths vk, k = 1, . . . , K, which determine the size of the local neighbourhoods

around a given observation point yij for the target time series, and at a given time

point tT . These two developed models will be referred to as: a mixture model using

local constant estimators and vertical kernels (MLCV) and a mixture model using local

linear estimators and vertical kernels (MLLV).

Estimation for these models was achieved using a double-kernel-weighted version of the

EM–algorithm, and using exponential kernels with different bandwidths hk and normal

kernels with different bandwidths vk around a target observation yTj and at a given

time point tT . Nadaraya-Watson and local linear estimators were used to carry out the

localised estimation step.

For prediction at time point tT+m, adequate approaches were provided for each local

method, and were compared to competing forecasting routines. By modelling MLCV

and MLLV models with the bandwidths hk and vk, we can obtain an estimated mixture

probabilities, that are informative for the amount of information available in the data

sets, at the scale of resolution corresponding to each bandwidth.

At the end of this chapter, three examples will be presented to assess the accuracy

of the forecasting undertaken using the MLCV and MLLV models. In addition, a

comparison will be presented between the double-localised mixture models used for

prediction and more traditional ones, such as the ARIMA and Holt models, which are

popular used approaches for time series forecasting. It is worth to mention that there

are no comparative methods to double-localised mixture models for prediction in the

literature.

The rest of chapter is organised as follows: An overview of the MLCV model and

estimation for this model can be seen in Section 4.2. Section 4.3 presents the MLLV

model and how to estimate the parameters of this model. Section 4.4 discusses model
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selection for the MLCV and MLLV models. Forecast approaches are proposed and dis-

cussed for models under study in Section 4.5. Section 4.6 presents real data examples,

giving energy use for the Ivory Coast, Albania and Lithuania from 1995 to 2011. The

results are compared to point forecasts obtained using the ARIMA and Holt exponen-

tial smoothing models. Finally, Section 4.7 presents the conclusions of this chapter of

the thesis.

4.2 Mixture models using local constant kernel es-

timators and vertical kernels (MLCV)

If we assume J series of time series in the form {(ti, yij) : i = 1, . . . , T, j = 1, . . . , J},

where J is the number of time series, it is possible to consider a double-localised mixture

of K non-parametric regressions mk(ti), k = 1, . . . , K, where K is a fixed number of

components, such that K < J and mk(ti) is a non-parametric regression function at

the k-th component. At the time point tT and for the j-th time series, it is possible

to define a locally constant model mk(ti) ≈ mk(tT ) in a neighbourhood of tT by using

Taylor’s expansion, which can be denoted as βkj(tT ). Thus, the model can be written

as follows

yij =



β1j(tT ) + εij1, with proportion π1j(tT )
...

βKj(tT ) + εijK , with proportion πKj(tT )

(4.2.1)

where β1j(tT ), . . . , βKj(tT ) are unknown fixed parameters, that depend on the target

point tT , πkj(tT ) is the proportion of the k-th component, such that 0 ≤ πkj ≤ 1 and∑K
k=1 πkj = 1, and the errors εijk ∼ N(0, σ2

j ) are independently distributed. For ease

of notation, the dependence of the parameters on tT was regularly suppressed.

For the given component k, the aim was to obtain estimators of πkj, βkj and σj at a time

point tT and for the j-th time series using past historical information and information

provided from other time series. In the estimation step, the EM–algorithm was used

to carry out the localised estimation.

Therefore, it is proposed that Gj is the random vector, which indicates a class k ∈
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1, . . . , K, where the following applies:

Gijk =


1, if observation i of j-th time series belongs to component k

0, otherwise
(4.2.2)

and P (Gj = k) = πkj. Denote the following:

fijk = P (yij|Gj = k) = 1√
2πσ2

j

exp
(
−(yij − βkj)2

2σ2
j

)

Then the following applies:

P (yij, Gj = k) = P (yij|Gj = k)P (Gj = k) = πkjfijk

The one-sided component-wise weight functions Wk and Vk were anchored at tT and

were used, where Wk was the exponential kernel defined in Equation (3.2.2) as shown

in Chapter 3 and Vk is a Gaussian kernel, that can be introduced as follows:

Vk(yil, yij) = 1
vk
√

2π
exp

[
−1

2

(
yil − yij
vk

)2
]

(4.2.3)

where i = 1, . . . , T , j ∈ {1, . . . , J}, l = 1, . . . , J and vk is a vertical bandwidth for

component k.

The bandwidth hk for the weight kernel Wk is denoted horizontal bandwidth, because

it controls the size of the local neighbourhood horizontally, and this provides model

information from the data about trends. However, the bandwidth vk was called verti-

cal, because it controls the symmetric local neighbourhood around a target point yTj
vertically, in order to provide information about similar time series in the data pattern.

The larger the local neighbourhood size, then the more information that is provided

from other time series to a target time point, and this contributes to improving the

prediction of certain time series. The weight function, which is used to control the

weights of the observation points yij, as used in the local neighbourhood plays a role

in prediction for a given time series. It gives more weights to observations close to a

given point yTj from a target time series. Therefore, we can assume that for the obser-

vation yij, the value of Gj is known, and this gives us the “complete ”data (yij, Gij1,
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. . . , GijK), with the local probability, as follows:

P (yij, Gij1, . . . , GijK) =
K∏
k=1

(fijkπkj)GijkWk(ti,tT )Vk(yil,yij)

The corresponding local likelihood function L∗, called complete local likelihood, can

be denoted as follows:

L∗(Φc|y1j, . . . , yTj, Gij1, . . . , GijK) =
T∏
i=1

J∏
l=1

K∏
k=1

(fijkπkj)GijkWk(ti,tT )Vk(yl,yij)

where Φc = (π1j, . . . , π(K−1)j, β1j, . . . , βKj, σj) is a vector containing all the parameters

in the mixture model MLCV. Then, the local log-likelihood function `∗ can be denoted

as follows:

`∗(Φc|y1j, . . . , yTj, Gij1, . . . , GijK) = logL∗(Φc|y1j, . . . , yTj, Gij1, . . . , GijK)

=
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij) log πkj

+ GijkWk(ti, tT )Vk(yil, yij) log fijk

If we interpret the πkj as ‘prior’ probability of class membership, then the posterior

probabilities of class membership can be produced using Bayes’ theorem. As the Gijk

are in fact unknown, they can be replaced with conditional expectations as follows:

rijk = E(Gijk|yij) = P (Gijk = 1|yij) = P (Gj = k|yij)

Using Bayes’ theorem, the following can be applied:

rijk = P (Gj = k|yij) = P (Gj = k)P (yij|Gj = k)∑
` P (Gj = `)P (yij|Gj = `) = πkjfijk∑

` π`jfij`

In the v-th cycle of the EM–algorithm iteration, we have the estimates π(v)
kj , β

(v)
kj and

σ
(v)
j . Then, in the (v+ 1)-th cycle, using the estimates π(v)

kj , β
(v)
kj and σ(v)

j , the posterior

probabilities r(v+1)
ijk are equivalent to the following:

r
(v+1)
ijk = P (Gijk = 1|yij) =

π
(v)
kj exp

(
−1

2(yij−β
(v)
kj

σ
(v)
j

)2
)

∑K
`=1 π

(v)
`j exp

(
−1

2(yij−β
(v)
`j

σ
(v)
j

)2

) (4.2.4)

Equation (4.2.4) is identical to the E–step of the EM–algorithm. In the M–step, for
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the π(v+1)
kj , a Lagrange multiplier is applied by setting the following:

∂

(
Q(Φc|Φ(v)

c )− λ(
K∑
k=1

π
(v+1)
kj − 1)

)
/∂π

(v+1)
kj = 0, k = 1, . . . , K

since ∑K
k=1 π

(v+1)
kj = 1, the following can be obtained:

π
(v+1)
kj =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)∑T

i=1
∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

(4.2.5)

By setting ∂`∗/∂β(v+1)
kj = 0 and ∂`∗/∂σ(v+1)

j = 0, it is possible to obtain estimates as

follows:

β
(v+1)
kj =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

(4.2.6)

σ2
j

(v+1) =
∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

kj )2∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

(4.2.7)

For more details about the calculations of Equations (4.2.6) and (4.2.7), see Appendix

D.

It is necessary to iteratively update the E–step and M–step using different initial values

at each grid point locally until the algorithm converges. The iteratively updates the

E–step and M–step locally until Φ̂
(v)
c ≈ Φ̂

(v+i)
c , i = 1, 2, . . .. According to this stopping

criterion, the EM–algorithm stopped at v = 200 in this study. As a result, the double-

kernel-weighted version of the EM–algorithm is considered locally, in order to estimate

πkj, βkj and σj for each component k and for the j-th time series at a given time

point tT . Once the estimates of πkj, βkj and σj in Equations 4.2.5–4.2.7 are obtained,

different approaches of forecasting can be proposed to find the m-step-ahead forecasts

for the j-th time series and at a given time point tT . These approaches will be presented

later in Section 4.5.2 of this chapter.

4.3 Mixture models using local linear kernel esti-

mators and vertical kernels (MLLV)

In this section, the model MLCV was generalized using local linear estimators rather

than local constant estimators to carry out the localised estimation step, and as such,
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is named the MLLV model. The motivation behind using local linear estimators was

to improve prediction from time series data, which has a linear trend, as discussed

previously in Chapter 3. For a given time series yij and at a time point tT , the k-th non-

parametric regression function was approximated asmk(ti) ≈ mk(tT )+m(1)
k (tT )(ti−tT ),

and this motivated the localised model as follows

yij(ti) =



β01j(tT ) + β11j(tT )(ti − tT ) + εij1, with proportion π1j(tT )
...

β0Kj(tT ) + β1Kj(tT )(ti − tT ) + εijK , with proportion πKj(tT )

(4.3.1)

where the intercepts β0kj and the slopes β1kj are fixed unknown coefficients, that de-

pend implicitly on a fixed time point tT , whereas πkj(tT ) is the proportion of the k-th

component, such that 0 ≤ πkj ≤ 1 for k = 1, . . . , K and ∑K
k=1 πkj = 1, K is the number

of components, such that K < J and the errors εijk ∼ N(0, σ2
j ) are independently

distributed.

For the j-th time series and at a time point tT , data is weighted by exponential

and normal kernels for each component, which are defined as in Equations (3.2.2)

and (4.2.3). In the estimation step, the EM–algorithm was used to estimate Φl =

(π1j, . . . , π(K−1)j, β01j, . . . , β0Kj, β11j, . . . , β1Kj, σj), which is a vector containing all the

parameters in the mixture model MLLV. Let Gj be a random vector, which is defined

as in Equation (4.2.2). Then, we have P (Gj = k) = πkj and we denote

fik ≡ P (yi|Gj = k) = 1√
2πσ2

j

exp
(
−(yij − β0k − β1k(ti − tT ))2

2σ2
j

)

Then the following applies:

P (yij, Gj = k) = P (yij|Gj = k)P (Gj = k) = πkjfijk

Therefore, we assume now that, for an observation yij of the j-th time series, the

value of Gj is known. This gives the “complete” data (yij, Gij1, . . . , GijK), with local

probability as follows:

P (yij, Gij1, . . . , GijK) =
K∏
k=1

(fijkπk)GijkWk(ti,tT )Vk(yil,yij)

Then, the corresponding local likelihood function L∗, which is called complete local
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likelihood [62], is as follows:

L∗(Φl|y1j, . . . , yTj, Gij1, . . . , GijK) =
T∏
i=1

J∏
l=1

K∏
k=1

(fijkπk)GijkWk(ti,tT )Vk(yl,yij)

Therefore, the log local likelihood function `∗ is as follows:

`∗(Φl|y1j, . . . , yTj, Gij1, . . . , GijK) = logL∗(Φl|y1j, . . . , yTj, Gij1, . . . , GijK)

=
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij) log πk

+ GijkWk(ti, tT )Vk(yil, yij) log fijk (4.3.2)

As the Gijk are in fact unknown, we replace them by their conditional expectations as

follows

rijk ≡ E(Gijk|yij) = P (Gijk = 1|yij) = P (Gj = k|yij)

Using Bayes’ theorem, one has

rijk = P (Gj = k|yij) = P (Gj = k)P (yij|Gj = k)∑
` P (Gj = `)P (yij|Gj = `) = πkfijk∑

` π`fij`

Then, in the (v + 1)-th cycle of the EM–algorithm, using the estimates π(v)
kj , β

(v)
0kj, β

(v)
1kj

and σ(v)
j , the posterior probabilities r(v+1)

ijk can then be given as follows

r
(v+1)
ijk =

π
(v)
kj exp

(
−1

2(yij−β
(v)
0kj−β

(v)
1kj(ti−tT )

σj(v) )2
)

∑K
`=1 π

(v)
`j exp

(
−1

2(yij−β
(v)
0`j−β

(v)
1`j(ti−tT )

σ
(v)
j

)2

) (4.3.3)

For the M–step, the estimates of π(v+1)
kj , β(v+1)

0kj ,β(v+1)
1kj and σ(v+1)

j are found as follows:

One needs to apply a Lagrange multiplier for π(v+1)
kj since ∑K

k=1 π
(v+1)
kj = 1. Setting

∂

(
Q(Φl|Φ(v)

l )− λ(
K∑
k=1

π
(v+1)
k − 1)

)
/∂π

(v+1)
k = 0, k = 1, . . . , K

One obtains

π
(v+1)
kj =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)∑T

i=1
∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

(4.3.4)

In addition, the estimators of β(v+1)
0k ,β(v+1)

1k and σ(v+1)
j are as follows:

β
(v+1)
0kj =

Sk,T,j,2S
∗
k,T,j,0 − Sk,T,j,1S∗k,T,j,1

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1

(4.3.5)
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β
(v+1)
1kj =

Sk,T,j,0S
∗
k,T,j,1 − Sk,T,j,1S∗k,T,j,0

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1

(4.3.6)

where

Sk,T,j,s =
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT+m)Vk(yil, yij)(ti − tT )s

and

S∗k,T,j,s =
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT+m)Vk(yil, yij)(ti − tT )syij

σ2
j

(v+1) =
∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT+m)Vk(yil, yij)(yij − β(v+1)

0kj − β(v+1)
1kj (ti − tT ))2∑T

i=1
∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT+m)Vk(yil, yij)

(4.3.7)

For more details about the calculations of Equations (4.3.5)- (4.3.7), see Appendix D.

The double-kernel-weighted version of the EM–algorithm applies iteration Equations

(4.3.4)–(4.3.7) until convergence occurs. In addition, the stopping criterion of the EM–

algorithm used is the same as the stopping criterion used for the MLCV model in

Section 4.2.Once the bandwidths hk and vk for each component k are set, and the

estimates from Equations (4.3.3)–(4.3.7) are found, then an approach for prediction is

used to predict a future observation. This approach will be shown in Section 4.5.2 of

this chapter later.

4.4 Model selection

Model selection for the MLCV and MLLV models includes the selection of the number

of components K and the bandwidths hk and vk. Choosing the number of compo-

nents is a very important issue when using mixture models. In the applications of this

chapter, the number of components was fixed at 2, especially for the real data appli-

cations. However, further research should be considered in relation to the selection of

the number of components for double-localised mixture models.

There is no doubt that the selection of the pairs of bandwidths, the horizontal and

vertical bandwidths (hk, vk), for each component k for MLCV and MLLV models play

a central role in making the model efficient for prediction. The better the bandwidths

used, then the more accurate predictions will be. In this research, different choices

of fixed horizontal and vertical bandwidths were used on real data. However, a com-
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prehensive simulation study for prediction using MLCV and MLLV models based on

optimal pairs of bandwidths has been put to once side for future study. The selection of

K and the bandwidths hk and vk might affect each other, and so this property should

be taken into account in a simulation study.

4.5 Forecasting

In this section, different approaches of prediction based on models in Sections 4.1, 4.2,

and 4.3 are presented for a given time series and at a time point tT . Once the band-

widths (h1, h2) and (v1, v2) are determined, different approaches of prediction based on

the selected bandwidths are suggested for the MLC and MLL as in Section 4.1 and

the MLCV and MLLV models. These approaches produce m-step-ahead forecasts as

follows:

4.5.1 Forecasting using localised mixture models for multi-

valued regression data

This section explores the forecast equation for the model, as discussed in Section 4.1

of this chapter. A new approach towards m-step-ahead forecasts for the j-th time

series at a time point tT using historical information from multiple time series at tT is

proposed. Once the MLC and MLL are fitted locally at a target point tT , posterior

probabilities taken from the E–step of the EM–algorithm can be derived for the j-th

time series at a time point tT , which can be denoted rTjk, k = 1, . . . , K. In addition,

the fitted estimates of Φc = (π1, . . . , πK−1, β1, . . . , βK , σj) for the MLC model and

Φl = (π1, . . . , πK−1, β01, . . . , β0K , β11, . . . , β1K , σj) for the MLL model are obtained.

Then, we obtain the following m-step-ahead forecast equation using the MLC model

for the j-th time series at tT as follows:

ŷMLC
(T+m)j =

K∑
k=1

rTjkβ̂k (4.5.1)
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In addition, once the MLL model is fitted for the j-th time series at tT , the m-step-

ahead forecasts equation is as follows:

ŷMLL
(T+m)j =

K∑
k=1

rTjk
(
β̂0k + β̂1k(tT+m − tT )

)
(4.5.2)

4.5.2 Forecasting using double localised mixture models

In this section, different approaches towards prediction based on pairs of bandwidths

are suggested for the double-localised mixture models MLCV and MLLV. This is done

in order to predict at a given time point tT and for the j-th time series using other

time series.

In the MLCV model, the forecast was calculated directly from historical data as a

local average of observed past values, with the sizes of the local neighbourhoods and

the specific weights of the values defined by exponential and Gaussian kernels. Two

approaches can be proposed to forecast future observations of the j-th time series at

a time point tT+m using the MLCV method. In the first approach, the m-step-ahead

forecast equation is obtained by solving the minimisation problem outlined as follows:

ŷMLCV(1)

(T+m)j = min
a

T∑
i=1

K∑
k=1

J∑
`=1

rijkWk(ti, tT+m)Vk(yil, yij)(yij − a)2

From this we get, the following m-step-ahead forecast equation:

ŷMLCV(1)

(T+m)j =
∑T
i=1

∑J
l=1

∑K
k=1 rijkWk(ti, tT+m)Vk(yil, yij)yij∑T

i=1
∑J
l=1

∑K
k=1 rijkWk(ti, tT+m)Vk(yil, yij)

(4.5.3)

In the second approach, the fitted MLCV was used for prediction, and this gave the

following forecast equation

ŷMLCV(2)

(T+m)j =
K∑
k=1

π̂kjβ̂kj (4.5.4)

where π̂kj and β̂kj are the fitted parameters of MLCV.

For the MLLV model, a new approach was presented for prediction based on the fitted

MLLV model. The m-step-ahead forecast equation was applied as follows:

ŷMLLV
(T+m)j =

K∑
k=1

π̂kj
[
β̂0kj + β̂1kj(tT+m − tT )

]
(4.5.5)
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where π̂kj, β̂0kj and β̂0kj are the fitted parameters at a time point tT and for the j-th

time series. For the rest of this chapter, notations are used for ease of explanation.

For example, MLCV(i)(h, v), i = 1, 2 (MLLV(h, v)) refers to forecasting based on the

horizontal and vertical vectors h = (h1, . . . , hK), v = (v1, . . . , vK), where i = 1 and

i = 2 indicate forecast approaches for the MLCV, which are presented by Equations

(4.5.3) and (4.5.4), respectively.

4.6 Applications

In this section, real data examples are presented to show the performance of the

MLCV(i), i = 1, 2 and MLLV models for forecasting, compared with other time series

models, such as the ARIMA and Holt models. In addition, a comparison is undertaken

between the MLCV(i), i = 1, 2 (the MLLV model) models and the MLC (the MLL)

model in section 4.1. The data used in these examples is the same as the real data

used in Section 2.3.1 of Chapter 2, which represents the annual energy use of 134 coun-

tries between 1995 and 2011. We choose three countries with representative patterns

for this presentation as follows: Figure 4.4 displays the time series of log of energy use

for the Ivory Coast, Albania and Lithuania. It can be seen from Figure 4.4 (left) that

the time series for the Ivory Coast has two features: it shows an overall increasing lin-

ear trend, but there is still considerable variability, especially between 2002 and 2004.

In this period, there is a sensible sharp increase in energy use consumption. The time

series for Albania has a quite consistent linear trend with little variability, see Figure

4.4 (middle). However, in the case of Lithuania, we have a volatile time series without

any linear trend, as shown in Figure 4.4 (right). Further insight is provided by Figure

4.5, which shows a sequence of 2–boxplots of log of energy use data with a time series

for each country from 1995 to 2011. We can see from Figures 4.5 (left and right), that

it is clear, that the Ivory Coast and Albania belong to the low energy use group of

countries. However, Lithuania appears as a developed country with a high energy use

consumption, as shown in Figure 4.5 (bottom).

The log of energy use data for these countries is fitted at the target points of tT =

2000, . . . , 2008, in order to obtain the m-step-ahead forecasts (m = 1, . . . , 3) for each
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Figure 4.4: Time series of log of energy use data for the Ivory Coast, Albania and
Lithuania (from left to right). The horizontal axis denotes the calendar year (from
1995 to 2011), and the vertical axis gives the annual energy use (natural log of kg oil
equivalent per capita).

time point tT using the different models. Hence, 9 forecasts were obtained for each

model and a forward lag.

For the MLCV and MLLV models, K = 2 components were used to fit the data. To

assess the performance of the forecasts using these models, the SSRE and SARE were

considered for them-step-ahead forecasts as defined in Equations (3.7.2) and (3.9.1), as

shown in Chapter 3. In our analysis, a and b in Equations (3.7.2) and (3.9.1) take the

values a = 2000 and b = 2008, respectively. Tables 4.1–4.6 summarise the results1 of the

m-step-ahead forecasts based on selected bandwidths, according to the SSRE criterion

for MLCV(i), i = 1, 2 and the MLLV models for energy use in the Ivory Coast, Albania

and Lithuania, respectively. Different settings for horizontal bandwidths (h1, h2) and

vertical bandwidths (v1, v2) are considered, in order to capture different short and

long-term trends, with small and large vertical bandwidths prevailing in these data

sets as shown in Tables 4.1–4.6. In Tables 4.1, 4.3, and 4.5, the same horizontal

bandwidths were used: (h1 = 1, h2 = 3). However, the horizontal bandwidths used

in Tables 4.2, 4.4 and 4.6 are (h1 = 1, h2 = 5). The reason for using the different

second horizontal bandwidths was to investigate the influence of the size of the local

neighbourhood horizontally on the second components in the prediction performance

for the MLCV(i), i = 1, 2 and MLLV models.

For all Tables 4.1–4.6, five different cases of vertical bandwidth selection are shown.

1All values of SSRE snd SARE in tables are multiplied by 1000.
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Figure 4.5: 2–boxplots of log of energy use data between 1995 to 2011, with time series
for the Ivory Coast (left), Albania (right) and Lithuania (bottom)

The first and third rows of these tables show the case where the first component

fits short-term horizontal and vertical bandwidths, and the second component fits

long-term horizontal and vertical bandwidths together. This choice allows the first

component to use more recent information for all countries, with information from

close countries shown in the data patterns for target country. The difference between

the two cases in the first and third rows of these tables is the size of the vertical

bandwidths, which become larger for both vertical bandwidths components in the

second case. In the second and fourth rows of the tables, for the first component, a

short-term trend bandwidth with a large-term vertical bandwidth is used to fit data

affecting all countries. In addition, the MLCV(i), i = 1, 2 and the MLLV models have
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(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 3)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.044 0.042 0.046 0.394 0.588 0.814 0.609 1.131 1.833
(3, 0.3) 0.257 0.254 0.280 0.549 0.776 1.089 0.399 0.589 0.743
(0.5, 1.5) 0.045 0.043 0.047 0.395 0.590 0.816 0.586 1.075 1.665
(1.5, 0.5) 0.143 0.092 0.090 0.455 0.664 0.943 0.427 0.692 0.982
(0.3, 0.3) 0.044 0.042 0.046 0.394 0.589 0.816 0.554 1.013 1.459

Table 4.1: The SSRE of forecasting for the Ivory Coast from 1995 to 2008.

(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 5)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.044 0.042 0.046 0.394 0.588 0.814 0.586 1.080 1.770
(3, 0.3) 0.424 0.431 0.484 0.700 0.943 1.304 0.381 0.533 0.651
(0.5, 1.5) 0.045 0.043 0.047 0.395 0.590 0.816 0.560 1.003 1.579
(1.5, 0.5) 0.103 0.081 0.088 0.462 0.670 0.947 0.451 0.766 1.064
(0.3, 0.3) 0.045 0.041 0.046 0.395 0.589 0.815 0.518 0.918 1.39

Table 4.2: The SSRE of forecasting for the Ivory Coast from 1995 to 2008.

fitted the energy use for all countries to a large amount of historical information about

energy consumption, with information ranging from close countries to a target country,

using a large-term trend bandwidth h1 with small-term bandwidth v1 for the second

component. This component of MLCV(i), i = 1, 2 and MLLV models affects the closest

countries to a target country. The last row in all the tables shows results when using

equal vertical bandwidths for both components. In this case, the effect of short and

large-term trends for similar countries in the data pattern to a target country is shown.

Tables B.1, B.2 and B.3 in Appendix C show the percentages of countries, that influence

the prediction for the target countries, the Ivory Coast, Albania and Lithuania, using

different sizes of vertical local neighbourhoods. For example, it is clear from Table B.1

that v = 0.3 in all countries, that the percentage range is between 16% and 21%. This

includes, which information for 22 to 29 countries around the Ivory Coast. However,

v = 3 takes into account information from 93% to 98% countries, in order to predict

energy use of the Ivory Coast at a given time points ti, i = 2000 to 2008. This means,

that 125 to 132 countries are classed as being the local vertical neighbourhood.

Tables 4.1 and 4.2 show the results of the SSRE for m-step-ahead forecasts for models

MLCV(i), i = 1, 2 and MLLV using energy use data for the Ivory Coast. The errors

in these tables are, overall, of larger magnitude than for Albania and Lithuania, due

to the larger variation in the data for the Ivory Coast. However, it can be seen that
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the MLCV(1) model performed well for all forward lags, and produced a smaller errors

margin than the MLCV(2) and MLLV models. It had the best performance when

v = (v1 = 0.3, v2 = 3) and v = (v1 = 0.3, v2 = 0.3) for both cases h = (h1 = 1, h2 = 3)

and h = (h1 = 1, h2 = 5). This means that the MLCV(1) model tends to choose

the smallest horizontal and vertical bandwidths together, and this picks very recent

information from similar countries to the Ivory Coast in the data pattern.

Further insight is provided in Figure 4.6 which shows the fitted mixture probabilities for

ti, i = 2000, . . . , 2008 for one-step-ahead forecasts for the MLCV(i), i = 1, 2 (left) and

MLLV (right) models. One can observe that in all cases, the proportion of the short-

term horizontal and vertical component settles at 100%. As a result, the choice of the

paired bandwidth (h, v) = (1, 0.3) is strongly recommended for the MLCV(i), i = 1, 2

models. Moreover, the MLLV model shows a slightly better performance than the

MLCV(2) model for (h1 = 1, h2 = 5), (v1 = 3, v2 = 0.3) only. As can be seen from

Figure 4.6 (right), it is clear that the proportion of the long-term trend horizontal

bandwidths and the small-term vertical bandwidths settles at 100%, which is plausible

since the MLLV model has the ability to model long-term linear trends for a data set.

In this case, the MLLV model is beneficial for prediction when using the information

from the last 5 years of a given time point for similar countries to the Ivory Coast in the

data pattern. Table B.1 shows that MLLV used information from 17.58% of countries

on average, which are closest to the Ivory Coast in the data pattern. This supports

the conclusion that the MLLV model can pick long-term linear trend components. As

a result, the choice (h, v) = (5, 0.3) is favourable for the MLLV model in this example.

For the Albania data, the conclusion obtained previously is confirmed, in that the

MLCV(1) model leads generally to favourable results in comparison with the MLCV(2)

and MLLV models. It produced small errors when using (v1 = 0.3, v2 = 3), (v1 =

0.5, v2 = 1.5) and (v1 = 0.3, v2 = 0.3) for both (h1 = 1, h2 = 3) and (h1 = 1, h2 = 5)

as shown in Tables 4.3 and 4.4. In this example, the MLLV((h1 = 1, h2 = 3), (v1 =

3, v2 = 0.3)) model performs worse than the MLCV(2) model for prediction when

SSRE=0.128×10−3, as shown in Table 4.3. This result suggests that the MLLV model

is not useful for prediction when the data has only a small amount of variability.
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Figure 4.6: For data from the Ivory Coast, fitted parameters π̂k(tT ) (left) using MLCV
model and fitted parameters π̂0k(tT ) (right) using MLLV model .

(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 3)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.016 0.015 0.011 0.119 0.195 0.269 0.147 0.177 0.266
(3, 0.3) 0.191 0.168 0.130 0.394 0.570 0.702 0.128 0.220 0.418
(0.5, 1.5) 0.016 0.011 0.016 0.120 0.197 0.272 0.157 0.209 0.321
(1.5, 0.5) 0.052 0.046 0.031 0.197 0.316 0.410 0.142 0.221 0.405
(0.3, 0.3) 0.016 0.015 0.012 0.120 0.197 0.272 0.153 0.208 0.334

Table 4.3: The SSRE of forecasting for Albania from 1995 to 2008.

Looking at the data from Lithuania, it can be seen that it is not suitable for the

MLLV model for prediction due to the nature of the time series, which shows a non-

linear data structure. Here, the ability to model local constant trends with small-

term vertical bandwidths plays a strong role in enhancing prediction. This continues

to hold for forecast using (h, v) = (1, 0.3) for the MLCV(i), i = 1, 2 model and using

(h, v) = (5, 0.3) for the MLLV model as shown in Tables 4.5 and 4.6. It is clear that the

MLLV model produces a poor performance compared to the other models, especially

for a short-term horizontal and vertical components and large-term horizontal and

vertical components.

In summary, the results for Tables 4.1–4.6 provides insight into the choice of paired

bandwidths for double-localised mixture models. From the examples above, it is clear

that the MLCV(i), i = 1, 2 models produce good predictions based on SSRE of m-step-

ahead forecasts for short-term horizontal bandwidths and short-term vertical band-

widths. This results are reasonable since the MLC(i), i = 1, 2 models as discussed in
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(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 5)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.016 0.015 0.011 0.119 0.195 0.269 0.154 0.180 0.268
(3, 0.3) 0.385 0.346 0.292 0.631 0.841 1.003 0.156 0.283 0.500
(0.5, 1.5) 0.016 0.015 0.011 0.119 0.195 0.269 0.155 0.191 0.304
(1.5, 0.5) 0.039 0.034 0.024 0.165 0.262 0.348 0.147 0.214 0.357
(0.3, 0.3) 0.016 0.015 0.011 0.119 0.195 0.269 0.154 0.211 0.330

Table 4.4: The SSRE of forecasting for Albania from 1995 to 2008.

(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 3)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.011 0.021 0.019 0.085 0.253 0.274 0.186 0.771 1.251
(3, 0.3) 0.045 0.074 0.074 0.092 0.185 0.197 0.142 0.429 0.578
(0.5, 1.5) 0.012 0.021 0.018 0.087 0.256 0.277 0.166 0.703 1.133
(1.5, 0.5) 0.017 0.031 0.028 0.088 0.221 0.240 0.153 0.531 0.788
(0.3, 0.3) 0.011 0.021 0.019 0.085 0.253 0.274 0.161 0.663 1.045

Table 4.5: The SSRE of forecasting for Lithuania from 1995 to 2008.

(v1, v2) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3) SSRE(1) SSRE(2) SSRE(3)
(h1, h2) = (1, 5)

MLCV(1) MLCV(2) MLLV
(0.3, 3) 0.011 0.021 0.019 0.085 0.253 0.274 0.180 0.737 1.190
(3, 0.3) 0.064 0.091 0.090 0.103 0.180 0.194 0.141 0.385 0.512
(0.5, 1.5) 0.012 0.021 0.018 0.087 0.256 0.277 0.162 0.675 1.080
(1.5, 0.5) 0.013 0.029 0.020 0.089 0.232 0.258 0.143 0.543 0.837
(0.3, 0.3) 0.011 0.021 0.019 0.085 0.253 0.274 0.154 0.639 1.008

Table 4.6: The SSRE of forecasting for Lithuania from 1995 to 2008.

Chapter 3 are superior for higher lags and smaller historical bandwidths. In all ex-

amples, the MLCV(i)(1, 0.3), i = 1, 2 models are recommended, in order to produce

accurate m-step-ahead forecasts. In addition, small vertical bandwidths provide the

MLCV(i), i = 1, 2 models with a lot of information from related countries to the target

country, that contributes to improving the prediction for the target country. However,

it appears that the MLLV model can only be recommended for large-term horizontal

bandwidths and small-term vertical bandwidths thanks to its ability to fit linear trends

well, and this is supported the results obtained for the MLL model as shown in Chapter

3. From these examples, MLLV(5,0.3) is suggested for prediction for the energy use of

the Ivory Coast and Lithuania, because it is best suited to picking long-term trends for

this data. However, for the Albania data, the MLLV(3,0.3) is adequate, since the na-

ture of data has on a small amount of variability. The above examples show that there

is no need to use more than a pair of bandwidths (h, v), in order to obtain good predic-

tions based on the SSRE of m-step ahead forecasts. However, this does not necessarily

mean that a mixture of double-localised regression over-fits model, because there is a
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Figure 4.7: Data from the Ivory Coast, fitted parameters π̂k(tT ) (left) using MLCV
model and fitted parameters π̂0k(tT ) (right) using MLLV model .

need for more than one component at some single time point. For example, from Figure

4.7 (left), it is clear that the fitted proportions π̂1 and π̂2 for both components at 2004

equal 0.5. When fitting the data for the MLCV((h1 = 1, h2 = 3), (v1 = 1.5, v2 = 0.5))

model two components have the same importance for prediction. In addition, Figure

4.7 (right) shows, that the MLLV((h1 = 1, h2 = 5), (v1 = 1.5, v2 = 0.5)) takes into ac-

count two components with the same fitted proportions π̂1 = π̂2 = 0.5. MLCV((h1 =

1, h2 = 3), (v1 = 1.5, v2 = 0.5)) and MLLV((h1 = 1, h2 = 5), (v1 = 1.5, v2 = 0.5)) pro-

duce a poor performance in predictions based on the SSRE of m-step-ahead forecasts

when using these pairs of bandwidths for all time points from 2000 to 2008, as shown

in Tables 4.1 and 4.2.

Tables 4.7– 4.9 show the results based on the SSRE and SARE for the three countries

under study. In these tables, the results of MLCV(i), i = 1, 2 and MLLV models

are produced from Tables 4.1–4.6 based on the best choices of pairs of bandwidths

(h1, h2) and (v1, v2), which give the smallest SSRE. In addition, from these tables, it

was possible to evaluate the performance of MLCV(i), i = 1, 2, MLLV, MLC and MLL

models, for multiple time series, as discussed in Section 4.1, used in the forecasting

compared to other time series models, such as the ARIMA and Holt models for all

countries under study.

For the Ivory Coast data, we can see that the MLCV(1)(h = 1, v = 0.3) produced
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Model SSRE(1) SSRE(2) SSRE(3) SARE(1) SARE(2) SARE(3)
MLCV(1) 0.044 0.042 0.046 4.957 4.512 5.064
MLCV(2) 0.394 0.588 0.814 14.219 17.658 24.310
MLC 3.196 2.475 1.789 19.580 15.257 11.110
MLLV 0.381 0.533 0.651 14.840 18.798 21.714
MLL 3.469 2.88 2.307 21.256 17.784 14.329
ARIMA 0.546 0.751 0.938 16.884 20.941 24.797
Holt 0.475 0.912 1.338 2.528 3.674 4.967

Table 4.7: The SSRE and SARE of forecasting for the Ivory Coast from 1995 to 2008.

Model SSRE(1) SSRE(2) SSRE(3) SARE(1) SARE(2) SARE(3)
MLCV(1) 0.016 0.015 0.011 2.989 2.741 2.395
MLCV(2) 0.119 0.195 0.269 8.120 10.975 13.214
MLC 0.144 0.203 0.282 0.936 1.328 1.856
MLLV 0.128 0.220 0.418 9.737 13.163 18.824
MLL 0.095 0.119 0.159 0.618 0.778 1.042
ARIMA 0.234 0.381 0.466 11.429 13.270 15.427
Holt 0.202 0.333 0.555 1.817 2.489 3.347

Table 4.8: The SSRE and SARE of forecasting for Albania from 1995 to 2008.

Model SSRE(1) SSRE(2) SSRE(3) SARE(1) SARE(2) SARE(3)
MLCV(1) 0.011 0.021 0.019 3.039 3.774 3.387
MLCV(2) 0.085 0.253 0.274 8.396 13.504 14.564
MLC 0.375 0.517 0.622 2.956 4.066 4.891
MLLV 0.141 0.385 0.512 10.463 16.041 18.402
MLL 0.607 0.767 0.923 4.777 6.040 7.256
ARIMA 0.114 0.190 0.176 8.237 12.006 12.013
Holt 0.184 0.730 1.201 1.274 2.521 3.335

Table 4.9: The SSRE and SARE of forecasting for Lithuania from 1995 to 2008.

generally favourable results, with MLLV(h = 5, v = 0.3) showing itself to be superior

to all models except MLCV(1). In addition, forecasting using MLC and MLL models

produced poor performance in comparison to using other models, as shown in Table

4.7. From Table 4.8, the picture obtained previously was confirmed: the MLCV(1)(h =

1, v = 0.3) model performed well for all forward lags, and produced a smaller error

margin than all the other models. However, MLLV(h = 3, v = 0.3) model showed

better performance than the ARIMA and Holt models only. In addition, using the

MLL model was better than the MLLV model, which means that the vertical kernels,

in this case was not useful. For the data from Lithuania, the situation was similar to

that of the Ivory Coast. However, as seen in Table 4.9, the ARIMA model performed
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better than the MLLV(1)(h = 5, v = 0.3) model.

In conclusion, the examples provided in this chapter have given evidence for the supe-

riority of the MLCV(1) model, with a pair of small horizontal and vertical bandwidths,

especially for higher lags. In respect of the MLCV(i), i = 1, 2 method in general, the

pair of bandwidths (h = 1, v = 0.3) produced better results generally based on the

SSRE of the m-step-ahead forecasts. Using the MLLV model with the pair of band-

widths (h = 5, v = 0.3) for variable data, as in the Ivory Coast and Lithuania, were

produced better results for prediction than the MLL, ARIMA and Holt models, except

in the case of Lithuania, where the ARIMA model showed the best performance for

prediction among these models.

It appears that the MLLV method can only be recommended for data of high variability

with linear trends thanks to its ability to fit the linear trend for a long-term horizontal

bandwidth as shown in the MLL method outlined in Chapter 3. The MLCV(2) model

showed worse performance for prediction in comparison with the MLCV(1) and MLLV

models for very strong variability, with overall increasing linear trends only. However,

the MLCV(2) model was superior to the ARIMA and Holt models in performance for

prediction for all three countries.

4.7 Conclusions

In conclusion, this chapter has presented a novel approach towards forecasting based

on double-localised mixtures of non-parametric regressions. In this chapter, non-

parametric regression allows forecasts to be calculated horizontally from historical data,

as a local average of observed past values over time. In addition Gaussian kernels pro-

vide weights to all multiple data sets vertically, at a given time point and around a

given data point from a given time series simultaneously over time. In the first model,

which is named the MLCV model, local constant estimators were used to carry out

the localised estimation step using a pair of bandwidths: both horizontal and vertical

bandwidths were anchored at a given time point and for a target time series. In the sec-

ond model, which is referred to as the MLLV model, the MLCV model was generalized

using local linear estimators.
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Estimation for these models was achieved using a double-kernel-weighted version of the

EM-algorithm, using exponential kernels with different horizontal bandwidths as weight

functions of the historical data and Gaussian kernels, with different bandwidths for the

vertical data at a target time point. In addition, double-localised mixture models could

be considered as a bandwidth selection tool for horizontal and vertical bandwidths. For

selected pairs of bandwidths, the double-localised mixture technique determined the

proportions used for each mixture’s components, as related to a pair bandwidths. The

high proportion of a component informs the high effect of the pair of bandwidths used.

As a result, double-localised mixture model could help the data analyst support the

decision on the selection of the pair of bandwidths. In order to undertake forecasting,

several approaches for prediction at the time tT+m, and for a given data set, using these

models were investigated, as shown above in three representative patterns of data. It is

clear that for the selected pairs of bandwidths, the three examples provide insight into,

which MLCV and MLLV models gave the best performance for prediction, compared

to using traditional models, such as the ARIMA and Holt models. In addition, the

performance of the MLCV and MLLV models for prediction was compared with the

MLC and MLL models for multi-valued regression data.

In the first example, the data showed very strong variability in relation to linear trends.

The data in the second example had little variability, but in the final example, the lin-

ear trend was eliminated, and the variability of data was observed. The results suggest

that only the MLLV model can improve predictions from time series data, in compari-

son to the ARIMA and Holt models, for pairs of long-term horizontal bandwidths and

small-term vertical bandwidth with short forward lag, as in the case of very volatile

time series. In addition, the MLVC(1) model showed good performance for prediction

with a pair of short-term trend horizontal bandwidths and a small-term vertical band-

width. However, further forecasting methods should be investigated to enhance this

comparison.

In the real data applications, there was no need to fit the data using more than one

component, in order to produce good prediction results. In addition, the MLCV(1)

approach for prediction using Equation (4.5.3) provided very good prediction in almost

all cases. This suggests that prediction is a rather simple problem, where the latest
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observations provide the most useful information for forecasting and the use of complex

models, in order to reduce bias or variance will generally struggle to compete with this.

Indeed, double-localised mixture models are very powerful methodologies, but the best

application for double-localised mixture models when K > 1 has perhaps, yet to be

found.

Although, this study was restricted to pairs of bandwidths, that was not optimised, the

results appeared competitive and challenging arguments, and in favour of the MLCV(1)

and MLLVmodels, in comparison to the other models used for prediction. This suggests

that further study is needed on the performance of the MLCV(i), i = 1, 2 and MLLV

models for prediction when all bandwidths are optimised. A measure of degree of

localisation relating to a combination of a pair of bandwidths should be developed. In

addition, it is strongly recommended, that researchers test the number of components

of double-localised regression models. These features could make additional advantage

of the MLLV and MLCV models for prediction.



Chapter 5

Conclusions and future research

5.1 Conclusions

The first contribution of this thesis was a new powerful graphical tool, that can be used

to visualise and analyse data stemming from a mixture of K distributions. This plot

was named the K–boxplot. It is a developed version of the traditional boxplot, and

is used especially for finding additional information regarding the location and spread

of individual groups in mixture data, which are ignored by a traditional boxplot. It

is worth mentioning, that the K–boxplot cannot be used as an inference tool, that

can make automated decisions about the distribution or the number of components in

mixture data. However, it is a helpful and useful tool to support the data analyst in

this respect. K–boxplots are implemented in the function kboxplot, which is made

available as part of the R package UEM. The examples presented in this thesis are

listed in the R Documentation files of the R package UEM. The methodology of the

K–boxplot can be implemented in codes, as part of any statistical software package.

The thesis proceded with the development of prediction techniques from time series

data using a mixture of local regression model, named MLC and MLL models. A novel

approach to forecasting based on localised mixtures of non-parametric regressions is

proposed. A new approach of bandwidth selection for prediction has been developed.

This new methodology contributes towards improving prediction for MLL and NLL

models, especially compared to other models under study. The results suggest that

only the MLL model can improve predictions from linear and variable time series data,

107
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in comparison with the Holt and ARIMA models for long-term component and short

forward lag. In addition, the MLC(2) model showed good performance in the prediction

of short-term components and non-linear data trends. The results provide competitive

and challenging arguments in favour of MLC(2) and MLL models, in comparison to

other models used for prediction, even although one of the bandwidths is not optimised.

Further study on the performance of MLC(2) and MLL models for prediction when all

bandwidths are optimised is recommended. Bandwidth selection is implicit to the MLC

and MLL approaches for prediction. This feature makes additional advantage of the

MLC and MLL methodologies for prediction. Although, the bandwidths of MLC(1)

model was not optimized, the MLC(1) model became superior in comparison with all

other models especially for small value of bandwidths.

This thesis has also presented a novel approach to forecasting based on double-localised

mixtures of non-parametric regressions. It is clear, for selected pairs of bandwidths, the

performance of MLCV and MLLV models for prediction can be compared with MLC

and MLL models used for multiple time series. The MLLV model can only improve

predictions from time series data, in comparison with the ARIMA and Holt models,

for a pair of long-term horizontal bandwidths and small-term vertical bandwidths with

a short forward lag. In addition, the MLVC(1) model showed good performance for

prediction, using a pair of short-term horizontal bandwidth and small-term vertical

bandwidths. In the real data applications, there was no need to fit the data using more

than one component to achieve good predictions. In addition, using the MLCV(1) ap-

proach in combination with Equation (4.5.3) provided very good prediction in almost

all cases. This suggests that prediction is a rather simple problem, where the latest

observations provide the most useful information for forecasting and the use of com-

plex models, in order to reduce bias or variance will generally struggle to compete with

this. It can still be concluded that double-localised mixture models are very power-

ful methodologies, but that the best application to use for double-localised mixture

models when K > 1 has perhaps yet to be found. The results appear competitive

and challenging arguments in favour of MLCV(1) and MLLV models compared to other

models used for prediction, although this study was restricted to examining pairs of

bandwidths, that were not optimised.
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5.2 Future research

In Section 1.4.1 of Chapter 1, different Bayesian approaches for estimation mixture

models are discussed. Hence, it is a good idea to use one of these approaches to

estimate the parameters of localised mixture models in Chapter 3 and double-localised

mixture models in Chapter 4, in order to investigate the effects of this approach on

the performance of prediction. In Section 1.4.2 of Chapter 1, popular methodologies of

testing the number of components for mixture models are viewed, which can be useful,

in further study, to investigate the number of components in the proposed models

for prediction in Chapters 3 and 4. In addition, there is a need to develop a new

methodology, in order to find optimal pairs of bandwidths for the proposed models for

prediction in Chapter 4.

A new approach to estimate the proposed models for prediction in Chapters 3 and 4

with direct consideration of prediction could be taken into account for further research.

The MLC and MLL models in Chapter 3 and the MLCV and MLLV models in Chapter

4 can be developed in future research by providing them with additional information.

For example, the seasonality of data, which make these models adequate for seasonal

time series. In addition, an interesting topic related to the robustness of the proposed

models for prediction in Chapters 3 and 4 can be considered in further research.
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Appendix A

Brief guide to notation

MLC mixture of local constant regression model
MLL mixture of local linear regression model
NLC local constant regression model
NLL local linear regression model
MLCV mixture of local constant regression model with vertical kernels
MLLV mixture of local linear regression model with vertical kernels
ti predictor or regressor variable
yi response variable
K number of components
J number of time series
Wk exponential weight function
Vk normal vertical kernel
hk horizontal bandwidth of component k
vk vertical bandwidth of component k
L(·) likelihood function
`(·) log likelihood function
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v\year 2000 2001 2002 2003 2004 2005 2006 2007 2008
0.3 15.67 16.42 17.16 15.67 19.40 18.66 17.16 17.16 20.90
0.5 26.12 25.37 27.61 23.13 31.34 32.84 27.61 29.10 29.10
1.5 57.46 54.48 56.72 54.48 61.94 61.19 60.45 60.45 62.69
3 94.78 93.29 93.29 92.54 97.01 96.27 96.27 96.27 97.76

Table B.1: The percentage of countries included different local neighbourhood v around
the Ivory Coast at target years from 2000 to 2008.

v\year 2000 2001 2002 2003 2004 2005 2006 2007 2008
0.3 20.90 20.15 20.15 20.15 20.90 20.15 20.15 20.90 20.15
0.5 32.84 32.84 33.58 32.84 34.33 32.90 32.90 32.90 29.85
1.5 68.66 68.66 69.40 69.40 69.40 72.39 71.64 71.64 72.39
3 99.25 99.25 99.25 99.25 99.25 99.25 99.25 98.51 97.76

Table B.2: The percentage of countries included different local neighbourhood v around
Albania at target years from 2000 to 2008.

v\year 2000 2001 2002 2003 2004 2005 2006 2007 2008
0.3 17.16 17.16 17.16 20.15 20.15 16.42 17.16 20.90 18.66
0.5 26.87 28.36 29.10 29.10 30.60 30.60 29.10 32.09 32.09
1.5 80.60 75.37 73.13 74.63 76.12 76.12 77.61 75.37 70.90
3 100 100 100 100 100 100 100 100 99.25

Table B.3: The percentage of countries included different local neighbourhood v around
Lithuania at target years from 2000 to 2008.
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Proof of Equation 3.2.5

Setting ∂`∗/∂β(l+1)
k = 0, one obtains

T∑
i=1

K∑
k=1

GikWk(ti, tT )(yi − β(l+1)
k )

σ2(l) = 0

Setting Gik = r
(l+1)
ik , we have the following

β
(l+1)
k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi∑T

i=1 r
(l+1)
ik Wk(ti, tT )

Proof of Equation 3.2.6

Setting ∂`∗/∂σ(l+1) = 0, one obtains

T∑
i=1

K∑
k=1

GikWk(ti, tT )
[
−σ2(l+1) + (yi − β(l+1)

k )2
]

= 0

Setting Gik = r
(l+1)
ik , we have the following

σ2(l+1) =
∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

k )2∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )

Proof of Equation 3.3.4

Setting ∂`∗/∂β(l+1)
0k = 0 , we obtain

−
T∑
i=1

K∑
k=1

GikWk(ti, tT )(yi − β(l+1)
1k (ti − tT )) +

T∑
i=1

K∑
k=1

GikWk(ti, tT )β(l+1)
0k = 0
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Setting Gik = r
(l+1)
ik

β
(l+1)
0k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

1k (ti − tT ))∑T
i=1 r

(l+1)
ik Wk(ti, tT )

(C.0.1)

Setting ∂`∗/∂β(l+1)
1k = 0 , we obtain

−
T∑
i=1

K∑
k=1

GikWk(ti, tT )(yi − β(l+1)
0k )(ti − tT ) +

T∑
i=1

K∑
k=1

GikWk(ti, tT )(ti − tT )2β
(l+1)
1k = 0

Setting Gik = r
(l+1)
ik

β
(l+1)
1k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

0k )(ti − tT )∑T
i=1 r

(l+1)
ik Wk(ti, tT )(ti − tT )2

(C.0.2)

By solving Equation(C.0.1) and Equation(C.0.2)

β
(l+1)
0k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi∑T

i=1 r
(l+1)
ik Wk(ti, tT )

− β(l+1)
1k

∑T
i=1 r

(l+1)
ik Wk(ti, tT )(ti − tT )∑T
i=1 r

(l+1)
ik Wk(ti, tT )

From Equation(C.0.2)

β
(l+1)
0k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi∑T

i=1 r
(l+1)
ik Wk(ti, tT )

−
∑T
i=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

0k )(ti − tT )∑T
i=1 r

(l+1)
ik Wk(ti, tT )(ti − tT )2∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT ))∑T
i=1 r

(l+1)
ik Wk(ti, tT )


Let

Sk,T,j =
T∑
i=1

r
(l+1)
ik Wk(ti, tT )(ti − tT )j

and

S∗k,T,j =
T∑
i=1

r
(l+1)
ik Wk(ti, tT )(ti − tT )jyi

β
(l+1)
0k =

S∗k,T,0
Sk,T,0

−

S∗k,T,1 − β(l+1)
0k Sk,T,1

Sk,T,2

 Sk,T,1
Sk,T,0

Then

β
(l+1)
0k =

Sk,T,2S
∗
k,T,0 − Sk,T,1S∗k,T,1

Sk,T,2Sk,T,0 − S2
k,T,1

On the other hand,

β
(l+1)
1k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi(ti − tT )∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )2

− β(l+1)
0k

∑T
i=1 r

(l+1)
ik Wk(ti, tT )(ti − tT )∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )2
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From Equation(C.0.1)

β
(l+1)
1k =

∑T
i=1 r

(l+1)
ik Wk(ti, tT )yi(ti − tT )∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )2

−
∑T
i=1 r

(l+1)
ik Wk(ti, tT )(yi − β̂1k(ti − tT ))∑T

i=1 r
(l+1)
ik Wk(ti, tT ) ∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )2



β
(l+1)
1k =

S∗k,T,1
Sk,T,2

−

S∗k,T,0 − β(l+1)
1k Sk,T,1

Sk,T,0

 Sk,T,1
Sk,T,2

Then

β
(l+1)
1k =

Sk,T,0S
∗
k,T,1 − Sk,T,1S∗k,T,0

Sk,T,2Sk,T,0 − S2
k,T,1

In addition, we can estimate β(l+1)
0k and β(l+1)

1k by solving the least square problem

T∑
i=1

[
yi − β(l+1)

0k − β(l+1)
1k (ti − tT )

]2
r

(l+1)
ik Wk(ti, tT )

Let X denote the n × 2 matrix with i-th row (1, ti − tT ) and W denote the n × n

diagonal matrix with i-th diagonal element wi(tT ) = r
(l+1)
ik Wk(ti, tT ), then the local

linear estimator defined by the coefficients β(l+1)
0k and β(l+1)

1k is

β
(l+1)
0k = eT1

[
XTWX

]−1
XTWy

and

β
(l+1)
1k = eT2

[
XTWX

]−1
XTWy

where e1 = (1, 0)T , e2 = (0, 1)T and y = (y1, . . . , yT ).

XTWX =

 ∑T
i=1 r

(l+1)
ik Wk(ti, tT ) ∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT ) ∑T

i=1 r
(l+1)
ik Wk(ti, tT )(ti − tT )2



det(XTWX) =
T∑
i=1

r
(l+1)
ik Wk(ti, tT )

T∑
i=1

r
(l+1)
ik Wk(ti, tT )(ti−tT )2−

[
T∑
i=1

r
(l+1)
ik Wk(ti, tT )(ti − tT )

]2

Then

XTWX =

Sk,T,0 Sk,T,1

Sk,T,1 Sk,T,2


det(XTWX) = Sk,T,0Sk,T,2 − S2

k,T,1
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[
XTWX

]−1
=


Sk,T,2

Sk,T,0Sk,T,2−S2
k,T,1

−Sk,T,1
Sk,T,0Sk,T,2−S2

k,T,1
−Sk,T,1

Sk,T,0Sk,T,2−S2
k,T,1

Sk,T,0
Sk,T,0Sk,T,2−S2

k,T,1



XTWy =

S∗k,T,0
S∗k,T,1


Then

β
(l+1)
0k =

Sk,T,2S
∗
k,T,0 − Sk,T,1S∗k,T,1

Sk,T,2Sk,T,0 − S2
k,T,1

and

β
(l+1)
1k =

Sk,T,0S
∗
k,T,1 − Sk,T,1S∗k,T,0

Sk,T,2Sk,T,0 − S2
k,T,1

Proof of Equation 3.3.5

Setting ∂`∗/∂σ(l+1) = 0, one obtains

T∑
i=1

K∑
k=1

GikWk(ti, tT )
[
σ2(l+1) + (yi − β(l+1)

0k − β(l+1)
1k (ti, tT ))2

]
= 0

Setting Gik = r
(l+1)
ik , we have the following

σ2(l+1) =
∑T
i=1

∑K
k=1 r

(l+1)
ik Wk(ti, tT )(yi − β(l+1)

0k − β(l+1)
1k (ti, tT ))2∑T

i=1
∑K
k=1 r

(l+1)
ik Wk(ti, tT )
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Proof of Equation 4.2.6

Setting ∂`∗/∂β(v+1)
kj = 0, one obtains

T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)
(yij − β(v+1)

kj )
σ2
j

(v) = 0

Setting Gijk = r
(v+1)
ijk , we have the following

β
(v+1)
kj =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

Proof of Equation 4.2.7

Setting ∂`∗/∂σ(v+1)
j = 0, one obtains

T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)
[
−σ2

j
(v+1) + (yij − β(v+1)

kj )2
]

= 0

Setting Gijk = r
(v+1)
ijk , we have the following

σ2
j

(v+1) =
∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

kj )2∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)
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Proof of Equations 4.3.5 and 4.3.6

Setting ∂`∗/∂β(v+1)
0k = 0 one obtains

−
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)(yij − β(v+1)
1k (ti − tT ))

+
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)β(v+1)
0k = 0

Setting Gijk = r
(v+1)
ijk

β
(v+1)
0k =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

1k (ti − tT ))∑T
i=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

(D.0.1)

Setting ∂`∗/∂β(v+1)
1k = 0 , we obtain

−
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)(yij − β(v+1)
0k )(ti − tT )

+
T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)(ti − tT )2β
(v+1)
1k = 0

Setting Gik = r
(v+1)
ijk

β1k =
∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

0k )(ti − tT )∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2

(D.0.2)

By solving Equation(D.0.1) and Equation(D.0.2)

β
(v+1)
0k =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

− β
(v+1)
1k

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

From Equation(D.0.2)

β
(v+1)
0k =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij∑T

i=1
∑J
l=1 r

(v+1)
ijk k(ti, tT )Vk(yil, yij)

−
∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

0k )(ti − tT )∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)


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Let

Sk,T,j,s =
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )s

and

S∗k,T,j,s =
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )syij

β
(v+1)
0k =

S∗k,T,j,0
Sk,T,j,0

−

S∗k,T,j,1 − β(v+1)
0k Sk,T,j,1

Sk,T,j,2

 Sk,T,j,1
Sk,T,j,0

Then

β
(v+1)
0k =

Sk,T,j,2S
∗
k,T,j,0 − Sk,T,j,1S∗k,T,j,1

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1

On the other hand,

β
(v+1)
1k =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2

− β
(v+1)
0k

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2

From Equation(D.0.1)

β
(v+1)
1k =

∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)yij(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2

−
∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

1k (ti − tT )∑T
i=1

∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij) ∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )∑T

i=1
∑J
l=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2



β
(v+1)
1k =

S∗k,T,j,1
Sk,T,j,2

−

S∗k,T,j,0 − β(v+1)
1k Sk,T,j,1

Sk,T,j,0

 Sk,T,j,1
Sk,T,j,2

Then

β
(v+1)
1k =

Sk,T,j,0S
∗
k,T,j,1 − Sk,T,j,1S∗k,T,j,0

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1

In addition, we can estimate β(v+1)
0k and β(v+1)

1k by solving the least square problem

T∑
i=1

J∑
l=1

[
yij − β(v+1)

0k − β(v+1)
1k (ti − tT )

]2
r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

Let X denote the n × 2 matrix with i-th row (1, ti − tT ) and W denote the n × n

diagonal matrix with i-th diagonal element wi(tT ) = r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij), then
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the local linear estimator defined by the coefficients β(v+1)
0k and β(v+1)

1k is

β
(v+1)
0k = eT1

[
XTWX

]−1
XTWy

and

β
(v+1)
1k = eT2

[
XTWX

]−1
XTWy

where e1 = (1, 0)T , e2 = (0, 1)T and y = (y1, . . . , yT ).

XTWX =
[ ∑T

i=1

∑J

l=1
r

(v+1)
ijk

Wk(ti, tT )Vk(yil, yij )
∑T

i=1

∑J

l=1
r

(v+1)
ijk

Wk(ti, tT )Vk(yil, yij )(ti − tT )∑T

i=1

∑J

l=1
r

(v+1)
ijk

Wk(ti, tT )Vk(yil, yij )(ti − tT )
∑T

i=1

∑J

l=1
r

(v+1)
ijk

Wk(ti, tT )Vk(yil, yij )(ti − tT )2

]

det(XTWX) =
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij)

T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )2

−
[
T∑
i=1

J∑
l=1

r
(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(ti − tT )

]2

Then

XTWX =

Sk,T,j,0 Sk,T,j,1

Sk,T,j,1 Sk,T,j,2


det(XTWX) = Sk,T,j,0Sk,T,j,2 − S2

k,T,j,1

[
XTWX

]−1
=


Sk,T,j,2

Sk,T,j,0Sk,T,j,2−S2
k,T,j,1

−Sk,T,j,1
Sk,T,j,0Sk,T,j,2−S2

k,T,j,1
−Sk,T,j,1

Sk,T,j,0Sk,T,j,2−S2
k,T,j,1

Sk,T,j,0
Sk,T,j,0Sk,T,j,2−S2

k,T,j,1



XTWy =

S∗k,T,j,0
S∗k,T,j,1


Then

β
(v+1)
0k =

Sk,T,j,2S
∗
k,T,j,0 − Sk,T,j,1S∗k,T,j,1

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1

and

β
(v+1)
1k =

Sk,T,j,0S
∗
k,T,j,1 − Sk,T,j,1S∗k,T,j,0

Sk,T,j,2Sk,T,j,0 − S2
k,T,j,1
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Proof of Equation 4.3.7

Setting ∂`∗/∂σ(v+1)
j = 0, one obtains

T∑
i=1

J∑
l=1

K∑
k=1

GijkWk(ti, tT )Vk(yil, yij)
[
−σ2

j
(v+1) + (yij − β(v+1)

0kj − β(v+1)
1kj (ti − tT ))2

]
= 0

Setting Gijk = r
(v+1)
ijk , we have the following

σ2
j

(v+1) =
∑T
i=1

∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)(yij − β(v+1)

0kj − β(v+1)
1kj (ti − tT ))2∑T

i=1
∑J
l=1

∑K
k=1 r

(v+1)
ijk Wk(ti, tT )Vk(yil, yij)
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