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Abstract

We present a concise overview of imprecise reliability, particularly focussing on

reliability theory with uncertainty quantified via lower and upper probabilities.

We discuss the main approaches and opportunities of the theory, we include

references to guide further study, and we briefly discuss some research challenges.
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1 Introduction

Most methods in reliability and quantitative risk assessment assume that uncertainty is

quantified via precise probabilities, all perfectly known or determinable. For example,

for system reliability complete probabilistic information about the system structure is

usually assumed, including dependence of components and subsystems. Such detailed

information is often not available, due to limited time or money for analyses or limited

knowledge about a system. In recent decades, several alternative methods for uncer-

tainty quantification have been proposed, some also for reliability. For example, fuzzy
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reliability theory [1] and possibility theory [2] provided solutions to problems that could

not be solved satisfactorily with precise probabilities. We do not discuss such meth-

ods, but restrict attention to generalized uncertainty quantification via upper and lower

probabilities, also known as ‘imprecise probability’ [3] or ‘interval probability’ [4, 5].

During the last decade, upper and lower probability theory has received increasing at-

tention, and interesting applications have been reported. See [6] for a detailed overview

of imprecise reliability and many references. It is widely accepted that, by generaliz-

ing precise probability theory in a mathematically sound manner, with clear axioms

and interpretations, this theory provides a better approach to generalized uncertainty

quantification then its current alternatives.

In classical theory, a single probability P (A) ∈ [0, 1] is used to quantify uncer-

tainty about event A. For statistics, probability requires an interpretation, the most

common ones are in terms of ‘relative frequencies’ or ‘subjective fair prices for bets’.

Theory of lower and upper probabilities [3, 4, 5] generalizes probability by using with

lower probability P (A) and upper probability P (A) such that 0 ≤ P (A) ≤ P (A) ≤ 1.

The classical situation, so-called ‘precise probability’, occurs if P (A) = P (A), whereas

P (A) = 0 and P (A) = 1 represents complete lack of knowledge about A. This gener-

alization allows indeterminacy about A to be taken into account, and lower and upper

probabilities can also be interpreted in several ways. One can consider them as bounds

for a precise probability, related to relative frequency of the event A, reflecting the lim-

ited information one has about A. Alternatively, from subjective perspective the lower

(upper) probability can be interpreted as the maximum (minimum) price for which

one would actually wish to buy (sell) the bet which pays 1 if A occurs and 0 if not.

Generally, P (A) reflects the information and beliefs in favour of event A, while P (A)

reflects such information and beliefs against A. Walley [3], from the subjective point

of view, uses coherence arguments to develop theory for lower and upper probabilities

and related statistical methods. His theory generalizes the Bayesian statistical theory

for precise probabilities in a manner similar to ‘robust Bayesian methods’ [7], where

sets of prior distributions are used and data is taken into account via a generalized

version of Bayes’ theorem. Important properties are that lower (upper) probability is

superadditive (subadditive), i.e. P (A∪B) ≥ P (A)+P (B) (P (A∪B) ≤ P (A)+P (B))

for disjoint A and B, and P (A) = 1 − P (Ā), with Ā the complementary event to A

[3, 4, 5]. An advantage of lower and upper probability is that one only requires limited

input with regard to the uncertainties about the events of interest, and one can (in

principle) always derive corresponding lower and upper probabilities for all events, via
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‘natural extension’ [3], if the inputs are not contradictory. This is attractive as one

normally can only meaningfully assess a limited number of characteristics of random

quantities. Computation of the lower and upper probabilities according to the natural

extension might be complicated, as constrained optimisation problems must be solved.

We discuss this topic in Section 2.

Walley [3] discussed many reasons why precise probability is too restrictive for

practical uncertainty quantification. In reliability, the most important ones include

limited knowledge and information about random quantities of interest, and possibly

information from several sources which might appear to be conflicting if restricted to

precise probabilities. Common aspects such as grouped data and censoring can be

dealt with naturally via imprecision, and imprecise reliability offers attractive methods

for inference in case data contain zero failures.

In recent years, there has been increasing research into statistical methods using

lower and upper probabilities. Following Walley [3], the majority of this work has been

on robust-Bayes-like inferences, where sets of prior distributions are used for a paramet-

ric model. In particular Walley’s Imprecise Dirichlet Model (IDM) [8], for multinomial

inferences, is proving popular, though it is not undisputed (see the discussion to [8]).

Some results on the application of the IDM to reliability problems are discussed in

Section 3. An alternative statistical approach has been developed by Coolen, together

with several co-authors [9, 10, 11]. It is called ‘Nonparametric Predictive Inference’

(NPI), and is explicitly aimed at only making limited modelling assumptions in addi-

tion to available data. Some NPI results in reliability are also discussed in Section 3.

In Section 4 we discuss some research challenges for imprecise reliability.

2 Imprecise reliability via natural extension

Most of traditional reliability theory concerns analysis of systems, with probability

distributions assumed to be known precisely. An attractive generalization provided by

imprecise reliability theory enables such analyses under partial knowledge of probability

distributions. In this approach, only some characteristics of probability distributions

are assessed, or possibly even only bounds for such characteristics, and bounds are

calculated for the inference of interest, which are the sharpest bounds consistent with

the information provided. This process is called ‘natural extension’ [3], and involves

constrained optimisation problems, where the inference of interest is the function to

be maximised and minimised, to provide upper and lower bounds for the inference,
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respectively, and where all information available is formulated via constraints on the

set of possible probability distributions. From this perspective, many basic problems in

reliability have already been studied, a detailed recent overview with many references

is given in [6]. Utkin [12, 13] considered system reliability, and provided algorithms

for the optimisation problems. Example 1 [6] is a simple example of the possibilities

of imprecise reliability in this context.

Example 1. [6]

Consider a series system consisting of two components, where only the following in-

formation about the reliability of the components is available. The probability of the

first component to fail before 10 hours is 0.01. The mean-time-to-failure of the second

component is between 50 and 60 hours. We want to draw inferences on the probability

of system failure after 100 hours. The information provided does not suffice to deduce

unique precise probability distributions on the times to failure of the components, so

standard reliability methods which use precise probabilities would require additional

assumptions. However, this information does restrict the possible probability distribu-

tions for these components’ times to failure, and imprecise reliability now enables the

inference in terms of the sharpest bounds for the probability of system failure after

100 hours, given that the probability distributions of the components’ times to failure

satisfy the constraints following from the information available. The information pro-

vided is extremely limited, and the corresponding bounds on the inferences are that the

system will experience its failure only after at least 100 hours with lower probability

0 and upper probability 0.99. Suppose now, however, that we add one more piece of

information, namely that the failure times of the two components are statistically inde-

pendent. The upper probability of system failure after at least 100 hours now becomes

0.59. The corresponding lower probability remains 0, which agrees with intuition, as

the information on both components does not exclude that either one of them might

fail before 100 hours with probability one.

Although very basic, such an approach is of great value. It can give answers to many

questions of interest, on the basis of whatever information is available. If the answer is

considered to be too imprecise, then additional assumptions or information are needed.

It then provides insight on the effect of the extra information on the upper and lower

bounds of the inference. This approach also indicates if information or assumptions

are conflicting, as no probability distributions would exist that satisfy all constraints.
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In such cases, one has to reconsider the available information and assumptions. Utkin,

partly in collaboration with several co-authors, has presented theory and methodology

for many such imprecise reliability inferences for systems, including topics on monotone

systems, multi-state and continuum-state systems, repairable systems, and reliability

growth for software systems [6]. Further topics in imprecise reliability where natural

extension provides exciting opportunities for inference under limited information in-

clude the use of expert judgements, and a variety of topics in risk analysis and decision

support [6]. There are still many research topics that need to be addressed before a

major impact on large-scale applications is possible.

3 Statistical inference in imprecise reliability

Walley [3] developed statistical theory based on lower and upper probabilities, where

mostly the models suggested are closely related to Bayesian statistical methods with

sets of prior distributions instead of single priors. An increasingly popular exam-

ple is Walley’s Imprecise Dirichlet Model (IDM) [8] for multinomial observations. The

multinomial distribution provides a standard model for statistical inference if a random

quantity can belong to any one of k ≥ 2 different categories. In the Bayesian statistical

framework [26], Dirichlet distributions are natural conjugate priors for the multino-

mial model, so corresponding posteriors are also Dirichlet distributions. A convenient

notation is as follows. Let exchangeable random quantities Xi have a multinomial dis-

tribution with k ≥ 2 categories C1, . . . , Ck and parameter θ = (θ1, . . . , θk), with θj ≥ 0

and
∑

j θj = 1, then P (X ∈ Cj|θ) = θj. A Dirichlet distribution with parameters s > 0

and t = (t1, . . . , tk), where 0 < tj < 1 and
∑

j tj = 1, for the k-dimensional param-

eter θ, has probability density function (pdf) p(θ) ∝
∏k

j=1 θ
stj−1
j . Suppose that data

are available, consisting of the categories to which the random quantities X1, . . . , Xn

belong, and that nj of these belong to category Cj, with nj ≥ 0 and
∑

j nj = n. The

likelihood function corresponding to these data is L(θ|n1, . . . , nk) ∝
∏k

j=1 θ
nj

j . Bayesian

updating leads to the posterior pdf

p(θ|n1, . . . , nk) ∝
k∏

j=1

θ
nj+stj−1
j (1)

This is again a Dirichlet distribution, with compared to the prior, s replaced by n + s

and tj replaced by
nj+stj

n+s
.

Walley [8] introduced the Imprecise Dirichlet Model (IDM) as follows. For fixed
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s > 0, define D(s) as the set of all Dirichlet(s, t) distributions, so the k-vector t

varies over all values with tj > 0 and
∑

j tj = 1. The set of posterior distributions

corresponding to D(s), in case of data (n1, . . . , nk) with
∑

j nj = n, is the set of all

Dirichlet distributions with pdf (1), with tj > 0 and
∑

j tj = 1. For any event of

interest, the lower and upper probabilities according to the IDM are derived as the

infimum and supremum, respectively, of the probabilities for this event corresponding

to Dirichlet distributions in this set of posteriors. For example, if one is interested

in the event that the next observation, Xn+1, belongs to Cj, then the IDM gives

lower probability P (Xn+1 ∈ Cj|n1, . . . , nk) =
nj

n+s
and upper probability P (Xn+1 ∈

Cj|n1, . . . , nk) =
nj+s

n+s
. The parameter s must be chosen independently of the data,

Walley [8] advocates the use of s = 1 or s = 2, based on agreement of inferences with

frequentist statistical methods.

The most obvious relevance of the IDM for reliability is with k = 2, when it reduces

to the Binomial distribution with a set of Beta priors [3]. Binomial data often occur

in reliability when success-failure data are recorded, for example when the number of

faulty units over a given period of time is of interest. In case of system reliability, one

often records data at all relevant levels (components, sub-systems, system) in terms of

success or failure to perform their task. Hamada, et al. [14], showed how, in a stan-

dard Bayesian approach with precise probabilities, Binomial distributions with Beta

priors at component level can be used, for a given system structure (e.g. expressed

via a fault tree), together with failure data gathered at different levels. For example,

some observations would just be ‘system failure’, without detailed knowledge of which

component(s) caused the failure. Such multi-level data incur dependencies between

the parameters of the components’ failure distributions. Hamada, et al. [14], showed

how modern computational methods (MCMC) can be used for such inferences. Re-

searchers have recently attempted to combine this approach with the IDM. Wilson, et

al. [15], applied the IDM to the same setting with multi-level failure data, although

they expanded the binary approach from [14] to data with three categories (‘failure’,

‘degraded’, ‘no failure’). They solve the computational problem, which is far more

complex under imprecision then when precise probabilities are used, by brute force,

as they perform multiple MCMCs, by first creating a fine grid over the space of prior

distributions in the IDM, then running MCMC for each to derive the corresponding

posterior probabilities, and finally computing the bounds over these. This only derives

an upper (lower) bound for the lower (upper) probability, but if the MCMCs have

been run long enough to ensure good convergence, and very many have been run, one
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is confident that such a brute method provides good approximations to the lower and

upper probabilities. This indicates a major research challenge for imprecise proba-

bilistic statistical inference, namely fast algorithms for computation. It is likely that

optimisation methods can be combined with simulation-based methods like MCMC in

a way that requires less computational effort than the method presented in [15].

Troffaes and Coolen [16] generalized the approach from [14] differently. First, re-

stricting to k = 2, they analytically derive the IDM-based upper and lower probabilities

for system and component failure for a very small system (two components) and multi-

level failure data. Then, they delete the usual assumption of independence of the two

components, and show how the IDM can be used for inference without any assump-

tion on such independence, and also if there may be unknown bias in data collecting

and reporting. These are situations which cannot be solved with precise probabil-

ities without additional assumptions. Other reliability methods and applications of

IDM include inference for survival data including right-censored observations [17] and

reliability analysis of multi-state and continuum-state systems [18].

Imprecise probability enables inferential methods based on few mathematical as-

sumptions if data are available. Coolen, with a number of co-authors, has developed

Nonparametric Predictive Inference (NPI), where inferences are directly on future ob-

servable random quantities, e.g. the random time to failure of the next component to

be used in a system. In this approach, imprecision depends in an intuitively logical

way on the available data, as it decreases if information is added, yet aspects as cen-

soring or grouping of data result in an increase of imprecision. Foundations of NPI,

including proofs of its consistency in theory of interval probability, are presented in

[9], an overview with detailed comparison to so-called ‘objective Bayesian methods’ is

given in [10]. A first introductory overview of NPI in reliability is presented in [11], and

theory for dealing with right-censored observations in NPI in [19, 20]. This framework

is also suitable for guidance on high reliability demonstration, considering how many

failure-free observations are required in order to accept a system in a critical operation

[21]. The fact that, in such situations, imprecise reliability theory allows decisions to

be based on the more pessimistic one of the lower and upper probabilities, e.g. lower

probability of failure-free operation, is an intuitively attractive manner for dealing with

indeterminacy. Recently, Coolen also considered probabilistic safety assessment from

similar perspective [22]. NPI can also be used to support replacement decisions for

technical equipment [23], giving decision support methods which are fully adaptive

to failure data, and with imprecision reflected in bounds of cost functions. NPI can
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provide clear insights into the influence of a variety of assumptions which are often

used for more established methods, and which may frequently be rather unrealistic if

considered in detail. The fact that NPI can do without most of such assumptions and

still be useful under reasonable data requirement is interesting.

Recent developments of NPI in reliability include the use of a new method for

multinomial data for inferences on the possible occurrence of new failure modes [24] (see

Example 3), and comparison of groups of success-failure data with specific attention

to groups with zero failures [25]. To illustrate the use of NPI in reliability, we include

two examples with references for further details.

Example 2. [11]

Studying 400 pumps in eight pressurized water reactors in commercial operation in

the United States in 1972, 6 pumps failed to run normally for that whole year [26].

If we assume that all pumps are replaced preventively after one year, for example to

avoid failure due to wear-out, and that the pumps and relevant process factors remain

similar, then it may be relevant to consider NPI for the number of failing pumps out

of 400 during the following year, giving the lower and upper probabilities presented in

Table 1 (upper probabilities for not-reported r-values are less than 0.01).

r P (r) P (r) r P (r) P (r)

0 0.0076 0.0153 9 0.0308 0.1533

1 0.0230 0.0541 10 0.0230 0.1222

2 0.0406 0.1088 11 0.0167 0.0939

3 0.0545 0.1641 12 0.0118 0.0700

4 0.0616 0.2059 13 0.0081 0.0508

5 0.0618 0.2270 14 0.0054 0.0359

6 0.0568 0.2273 15 0.0036 0.0249

7 0.0488 0.2111 16 0.0023 0.0169

8 0.0396 0.1844 17 0.0015 0.0113

Table 1: Lower and upper probabilities for r out of 400 pumps failing.

Such lower and upper probabilities provide insight into the evidence in favour and

against these particular events. Lower and upper probabilities for a subset of possible

values cannot be derived by adding the corresponding values in Table 1, due to the

superadditivity (sub-) of lower (upper) probabilities, see [27] for more general results.

This approach has the advantage over Bayesian methods [26] that no prior distributions
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are required, and their properties are such that they combine attractive features from

both Bayesian and frequentist statistics [10].

Example 3. [24]

Suppose that a database contains detailed information on failures experienced during

warranty periods of a particular product. Currently 200 failures have been recorded,

with 5 different failure modes specified. The producer is interested in the event that

the next failure of such a product during its warranty period is caused by another

failure mode than these 5 already recorded. Let us first assume that there is no clear

assumption or knowledge about the number of possible failure modes. Suppose that

interest is in the event that the next reported failure is caused by any as yet unseen

failure mode, then the NPI upper probability for this event is equal to 5/200 [24]. If,

however, the producer has actually specified two further possible failure modes, which

have not yet been recorded so far, and interest is in the event that the next failure

mode will be one of these two, then the NPI method gives upper probability 2/200.

This holds for any pair of such possible new failure modes that one wishes to specify,

without restrictions on their number: this is possible due to the subadditivity of upper

probability, which is an advantage over the use of precise probabilities. The NPI lower

probabilities for both these events are 0, reflecting no strong evidence in the data that

new failure modes can actually occur.

Now suppose that these 200 failures were instead caused by 25 different failure

modes. Then the upper probability for the next failure mode to be any as yet unseen

failure mode changes to 25/200, but the upper probability for it to be either of any

two described new failure modes remains 2/200. It is in line with intuition that the

changed data affect this first upper probability, as the fact that more failure modes

have been recorded suggests that there may be more failure modes. For the second

event considered, the reasoning is somewhat different, as effectively interest is in two

specific, as yet unseen, failure modes, and there is no actual difference in the data

available that is naturally suggesting that either of these two failure modes has become

more likely. If the producer has specific knowledge on the number of possible failure

modes, that can also affect these upper probabilities [24].
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4 Challenges for research and application

Imprecise probabilistic methods in reliability and risk assessment have clear practical

advantages over more established and more restricted theory with precise probabilities.

By not requiring or assuming perfect information, imprecise reliability acknowledges

the limits on available knowledge and on time for assessment of uncertainties, and

reduces the need for additional assumptions required for precise models, the effects

of which are often hidden. Due to the possible interpretations of lower and upper

probabilities, they are often convenient for practical risk assessment, as they reflect

both ‘pessimistic’ and ‘optimistic’ inference. It is often clear on which of these to base

decisions, for example one would focus on the upper probability of an accident to occur.

Imprecise reliability is still at an early stage of development [6, 30], as are general

theory and applications of lower and upper probabilities. There are many research

challenges, ranging from foundational aspects to development of implementation tools.

Methods that use natural extension have been presented in general terms, with no

specific restrictions to scale of problems that can be solved. However, upscaling from

‘text-book style’ examples to larger scale problems provides many challenges, not only

for computational methods but also for effective elicitation of expert judgement. Com-

bination of information from different sources must also be considered within the im-

precise reliability framework. At the foundational level, further study of the relation

between imprecision and (amount of) information is required. For example, the use

of robust-Bayes type models in imprecise reliability seems logical, and was strongly

advocated by Walley [3] from seemingly natural axioms of coherence. However, those

axioms enable comparison of gambles over different moments in time, based on differ-

ent information, and the consequential theory is similar in nature to precise Bayesian

theory, implying that posterior (lower and upper) probabilities are equal to prior con-

ditional (lower and upper) probabilities. It is not clear that this provides a universally

acceptable framework for learning, with imprecision related to information available.

An early approach that took a different view on this issue was presented in [28] within

the context of reliability. There, the set of distributions used is reduced when more

information becomes available, via an additional parameter which links imprecision to

information. Further research on this topic could provide new insights and methods

for inference.

There is huge scope for new models and methods in imprecise reliability, and fur-

ther development of some methods is required. For example, Utkin and Gurov [29]
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presented attractive classes of lifetime distributions, with H(r, s), for 0 ≤ r ≤ s, the

class of all lifetime distributions with cumulative hazard function Λ(t) such that Λ(t)/tr

increases and Λ(t)/ts decreases in t. For example, H(1,∞) are all distributions with

increasing hazard rates. Some results for related inference have been presented [29],

but interesting research problems are still open, including how to fit such classes to

available data. For most methods imprecision quickly becomes very large once the size

of the problem increases, if only limited information is available. A possible solution is

development of classes of distributions which are restricted with regard to properties

such as smoothness or tail behaviour. The IDM and NPI have shown promising oppor-

tunities for applications in reliability, but statistical theory must be developed further

to enhance applicability, for example on the use of covariates and generalization to

multivariate data.
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