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Abstract

Decision making with adaptive utility provides a generalisation to classical Bayesian

decision theory, allowing the creation of a normative theory for decision selection

when preferences are initially uncertain.

The theory of adaptive utility was introduced by Cyert & DeGroot [27], but had

since received little attention or development. In particular, foundational issues

had not been explored and no consideration had been given to the generalisation of

traditional utility concepts such as value of information or risk aversion. This thesis

addresses such issues.

An in-depth review of the decision theory literature is given, detailing differences in

assumptions between various proposed normative theories and their possible gener-

alisations. Motivation is provided for generalising expected utility theory to permit

uncertain preferences, and it is argued that in such a situation, under the acceptance

of traditional utility axioms, the decision maker should seek to select decisions so as

to maximise expected adaptive utility. The possible applications of the theory for

sequential decision making are illustrated by some small-scale examples, including

examples of relevance within reliability theory.
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Chapter 1

Introduction

This chapter offers explanation of the type of decision theory this thesis is concerned

with, and introduces the fundamental concepts of probability and utility that are

used to measure beliefs and preferences, respectively. Finally, we discuss the nota-

tional conventions that are to be employed throughout, and provide an outline to

the focus of subsequent chapters.

1.1 Problem Description

This thesis is concerned with normative decision theory. Normative here is used

to denote theories that describe the action a decision maker (DM) should take if

she agrees with a small number of axioms of preference. That is to say, agreement

with such axioms leads to a direct logical argument for detailing a set of possible

decisions for selection. Such axioms are created through philosophical consideration

and are assumed to be in agreement with the fundamental beliefs of a rational and

coherent DM.

In contrast to normative decision theories, descriptive decision theories seek to ex-

plain real-world selection of decisions. Descriptive decision theories employ psycho-

logical analysis in an attempt to explain or predict the actual actions of real-world

DMs. Such theories are not the focus of this research, but in Subsection 2.2.2 we

mention some alterations that have been made to normative theories in order to

1



1.1. Problem Description 2

increase their descriptive ability.

We consider a DM facing either a solitary decision, or a sequence of decisions. In the

latter case, the DM observes results of previous choices before selection of the next,

and throughout the thesis we permit uncertainty over the result of decision selection.

The main focus will be to develop a theory that also permits initial uncertainty over

preferences, but where a DM may learn about these through trial.

We begin by introducing the concepts of (subjective) probability and utility that

are relevant when considering decision selection. Only a short summary is provided,

and the interested reader is referred to more detailed accounts available in decision

theory text books such as Clemen [24], French & Rios Insua [46] or Lindley [71]. The

section concludes by formally introducing the decision problem under consideration.

1.1.1 Probability & Utility

Uncertainty over events will be modelled through the DM’s degree of belief, i.e.,

assuming the DM is acting in a rational manner (later discussed in Section 2.1)

we work with the interpretation of probability as the DM’s subjective belief given

her personal background knowledge and experience (though we will not formally

include this in notation). Objective probabilities still arise in discussion, but we

assume that if events of interest refer to outcomes of fair chance mechanisms, e.g., a

roulette, then the DM’s subjective probability will agree with that dictated by the

classical theory of probability, as first developed following correspondence between

Pascal and Fermat in the seventeenth century (see, e.g., Hacking [52]).

The arguments of authors such as de Finetti [31] and Savage [89] state that the

subjective probability of an event h occurring can be elicited as follows. The sub-

jective probability of event h, denoted P (h), is the fair price, as viewed by the DM,

for entering the bet paying one unit if h occurs, and nothing otherwise. Assuming

that the DM is acting rationally, it can be shown that such a definition agrees with

the DM’s beliefs, e.g., the DM should specify a greater price if and only if she has
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a greater belief in the occurrence of h. It can also be shown that this definition

satisfies all of Kolmogorov’s [66] axioms of probability for the case of a finite set of

possible events (again assuming the prerequisite of a rational DM).

In contrast to probabilities measuring degree of belief, a utility function measures the

DM’s subjective preferences over decisions and outcomes. The use of a non-linear

function for determining the worth of a reward was first suggested by Bernoulli [18],

and an axiomatization for the existence of such a function was later developed by

von Neumann & Morgenstern [101]. A utility function u is formally defined as a

function with domain the set of randomized decisions D and co-domain the set of

reals R, with the property that it is in agreement with the DM’s preferences, i.e., if

the DM strictly prefers decision d1 to decision d2, then u(d1)>u(d2). The utility of a

specific reward or decision outcome is then determined by considering the utility of

the degenerate decision that leads to that specific reward or outcome with certainty.

In practice, however, utility functions are considered as having domain the set of

all possible randomized rewards R, and the utility of a decision is then determined

by considering the expected utility that it will entail, i.e., the utility of the decision

d leading to reward r with probability P (r|d) is determined by the expectation∑
r∈R u(r)P (r|d) (the sum being replaced by an integral if beliefs are represented

by a probability density function). In this thesis we will at times consider both the

possibilities of R or D for the domain of a utility function, using the relationship

u(d) =
∑

r∈R u(r)P (r|d) to interchange from one to the other.

In parts of the Economics literature, utility is seen as an ordinal concept (see Ab-

dellaoui et al. [1]), hence to prevent any potential misunderstanding we will make

the following distinction between a utility function and a value function. A util-

ity function u, often referred to as a cardinal utility function, provides the ‘moral’

worth of an outcome. A value function v, often referred to as an ordinal utility

function, is a more primitive concept that simply ranks outcomes in a manner con-

sistent with preferences. In particular, value functions do not take into account

relative strength of preference, and these will not be considered further (see Keeney
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& Raiffa [64, Ch.3] for more information on value functions).

Fundamentally, subjective probabilities and utilities can be viewed as twin concepts

(see, e.g., the discussion in French [45]). Indeed, through the betting price interpre-

tation of subjective probability it is difficult to formally define one without making

explicit reference to the other, and this is also the case in elicitation. For exam-

ple, when above we discussed the interpretation of subjective probability as a fair

betting price, the return of the bet should actually have been expressed in utility

units. Similarly, when eliciting utility values the knowledge of subjective probabil-

ities is also required. Assuming that a most preferred reward r∗ has a utility value

of 1 and a least preferred reward r∗ has a utility value of 0, the utility value of any

other reward r is equal to the subjective probability p such that the DM is indif-

ferent between obtaining r for certain, or risking the gamble that results in r∗ with

probability p and r∗ otherwise. Furthermore, the work of Anscombe & Aumann [5]

(discussed in Section 2.2) provides a method of defining subjective probability and

utility simultaneously from a single preference relation. In this setting duality exists

in so far that both subjective probabilities and utilities are measured by comparing

preferences over gambles whose outcomes are determined by objective probabilities.

1.1.2 Decision Selection

Given her relevant utility and probability specifications, the problem of the DM is to

select a decision d out of a set of possibilities D. The problem of the decision analyst

is to determine a logical system for explaining how and why a specific choice should

be made. There are many different types of decision problem, but throughout this

thesis we concern ourselves with the case of a single DM who is motivated to select

the decision that is best for her (utility returns only accrue to the DM), and where

the outcome of a decision is selected by an unconcerned Nature. This is in contrast

to game theory where the DM faces an intelligent and motivated opponent (see, e.g.,

Luce & Raiffa [72]).

We concern ourselves with two situations. The first is selection of a solitary decision,
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where the DM has stated belief and preference specifications before selection, and

where the problem is completed as soon as the selection is made and return obtained.

The second, more interesting, problem is when a sequence of decisions must be made.

In this case, due to the extra information that may become available, or the relevant

insights that may be made between one decision choice and the next, the DM can

learn about likely decision outcome as she proceeds through the decision sequence.

1.2 Outline of Thesis

In comparison to alternative mathematical disciplines, the study of decision theory

usually only requires a relatively low level of mathematical expertise. An undergrad-

uate course in Probability and Bayesian Statistics should be sufficient to understand

the majority of this thesis, and hence we assume that the reader has such knowledge.

However, though of a relatively simple nature, it will become apparent that neces-

sary calculations can be tedious and time consuming. When presented, the reader

should be aware that numerical results were determined through use of the software

package Maple 10. Nevertheless, although the technical level of the mathematics is

low, the complexity of arguments and level of understanding necessary to produce

solutions is high. In reading this thesis a general understanding of decision theory is

useful, but not essential, and we will seek to explain the necessary decision theoretic

terms that have been included. When it is deemed inappropriate to include full

replication of standard results, the reader will be directed to relevant sources.

To ease explanation of the theory a number of examples will be provided. Whenever

possible, the re-examination of previous examples will be employed when highlight-

ing new aspects of the theory, and it is hoped that this will enable familiarity with

these problems. However, in special situations, new and different examples will be

considered when it is believed that these will either highlight the issues in the theory

more clearly, or if the new example is deemed of interest itself. We will mark the end

of an example, and the return to general discussion, through the use of a � symbol.
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We have sought to use standard decision theory notation as much as possible within

this thesis, however, unless mentioned otherwise, we employ a notational convention

such that, in general, right-hand subscripts denote different values for a decision

or reward etc., or when placed beside an operator, denote the state variable that

operator is connected with. In a sequential problem, right-hand superscripts will be

used to denote the epoch a reward or decision is being considered in. For example,

r2
3 is a particular reward value to be received in the second period, whilst EX [Y ] is

the expected value of Y with respect to beliefs over X.

When required, we will also highlight that we are considering functions or operators

within an adaptive utility setting by placing an a in the left-hand subscript position.

For example, we differentiate a classical utility function from an adaptive utility

function, a concept to be formally defined in Chapter 3, by denoting the latter as

au (a glossary of the main mathematical notation employed is available at the end

of this thesis in Appendix A). Furthermore, in keeping with the tradition of the

decision theory literature, DMs will be referred to as being female, whilst experts

or analysts will be referred to as being male.

The format for the remainder of this thesis is as follows. Chapter 2 offers a review

of known decision theories for the situation of a single DM. Chapter 3 introduces

the adaptive utility concept and offers motivation for its use, a literature review of

adaptive utility and similar theories is also provided. The contribution of this thesis

to the study of decision theory commences in Chapter 4, where the foundational

implications of permitting uncertain utility are considered and it is shown that a

traditional system of axioms of preference is sufficient to entail the use of maximising

expected adaptive utility as the logical decision selection rule.

The focus of the thesis changes in Chapter 5, where extra results are examined un-

der the assumption of optimal decision selection through maximisation of expected

adaptive utility. In particular, Chapter 5 considers solutions to sequential problems

and illustrates possible applications of the theory for reliability decision problems
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through a couple of small hypothetical examples. Chapter 6 focuses on two char-

acteristics of an adaptive utility function that have in the past been overlooked in

the literature, considering implications for risk aversion and value of sample infor-

mation. Finally, Chapter 7 provides concluding comments and potential directions

for further research.

Three appendices are given at the end of the thesis. Appendix A provides a glossary

of mathematical notation employed, Appendix B provides further discussion to Ex-

ample 5.3.1, and Appendix C introduces a conjugate class of utility functions that

is relevant for the discussion in Section 5.1.



Chapter 2

Review of Decision Theory

This chapter offers a brief review of the literature on decision making under uncer-

tainty. Section 2.1 considers the meaning of rational probability specification and

decision selection, and also interpretations for conditional beliefs. Section 2.2 briefly

examines some of the theories that have been suggested for solving solitary decision

problems, and the chapter concludes with a discussion of issues concerning utility

forms for sequential problems in Section 2.3.

2.1 Rational and Coherent Decision Selection

We begin this chapter by briefly reviewing the meaning of rational decision selection,

essential in explaining why a specific decision should be selected. We also consider

methods of specifying beliefs, and the interpretations that can be given to conditional

probabilities.

We make the following distinction between decisions that are admissible, and those

that are merely feasible. A feasible decision is any that the DM can identify as

a possible course of action. As a subset of these feasible decisions, we follow the

suggestion of Levi [68] for stating the definition of an admissible decision. Given

some criteria of rationality, a decision will be said to be admissible if and only if its

selection does not contradict these criteria.

8
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Hence, admissibility is a concept that depends on the specific criteria under con-

sideration, and in this chapter we will discuss various possibilities that have been

suggested.

We consider a DM to be acting in a rational manner if she is acting in agreement

with an accepted system of axioms of preference. The particular system of axioms

considered will hence provide the meaning of rationality. Although many differing

axiomatic systems entail the same decision selection procedure (e.g., the systems of

Anscombe & Aumann [5] and Savage [89]), there are nevertheless varying suggestions

that entail different decision selection procedures. A few of these will be reviewed

in Section 2.2.

2.1.1 Coherence

Another concept of rationality arises when we consider the DM’s belief specification,

and following arguments by Ramsey [86, Ch.7] and de Finetti [31], we assume a DM

is specifying rational beliefs if they are coherent. By coherent we mean that the

DM’s subjective probabilities are specified in such a way that it is not possible for

her to wish to enter into a bet, or a system of bets, such that regardless of which

event takes place, the DM will lose (i.e., a Dutch Book can not be made against

her). Although in this thesis we will take it as granted that the DM is specifying

coherent beliefs, this can follow automatically from acceptance of a collection of

axioms regarding the set of bets a DM would accept (see, for example, Walley’s

axioms of desirability that are used to imply coherence [104]).

It can be shown (e.g., Kaplan [61, p.155]) that coherence implies that the DM’s belief

specification, assuming it is a precise specification over a finite event space, satisfies

the Kolmogorov [66] axioms of probability. Nevertheless, we should be aware that

the argument for coherence implying agreement with the Kolmogorov axioms does

require that the DM cares to win bets, regardless of the amount at stake, and that

she has an indifference to gambling. This will not be true for most real-world DM’s,

and is a difference between normative and descriptive theories. For the purpose of
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this thesis, we will imagine the DM is specifying coherent subjective probabilities.

2.1.2 Imprecision

Frequently, decision theories make an a priori assumption that the DM is able to

fully express her beliefs and preferences through precise probability and utility state-

ments. However, this can sometimes be an ambitious and unreasonable assumption.

Whilst the focus of research in this thesis is based on the assumption of precise belief

specifications, it will nevertheless be beneficial to review the meaning of imprecise

probabilities and utilities in order to comment on some of the decision theories that

have been designed to incorporate them.

Theories that imprecisely quantify uncertainty, sometimes referred to as non-additive

or generalised theories, generalise classical results by permitting the DM to remain

vague or even ignorant about actual probabilities or utilities. Though consideration

of such a problem appears as early as the work of Boole [20], recent works such

as Augustin [7] and Walley [104] (in the case of imprecise probabilities), and Far-

row & Goldstein [40] and Moskowitz et al. [80] (in the case of imprecise utilities)

demonstrate that this is still an area of interesting and active research.

Taking the subjective definition for the probability of an event h, P (h), as being the

fair price for entry into the bet paying one unit if h occurs and nothing otherwise, an

often used method of permitting imprecision is to accept that this fair price may be

difficult to identify. Instead a DM may only be willing to fix a maximum price P (h)

for which she is happy to buy into the bet, and a higher value P (h) representing

the minimum price she would be happy to sell the bet for. For prices between P (h)

and P (h) the DM may not wish to commit to any fixed strategy.

The quantities P (h) and P (h) are, respectively, interpreted as the lower and upper

subjective probabilities for the occurrence of event h. Provided P (h) 6= P (h), there

will be a whole class P of distributions which satisfy the constraints set out by the

DM’s betting behaviour, and only in the case that P (h) = P (h) for all events h will
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P reduce to containing a single distribution. In the more general case a DM must

consider how best to select a decision when she only has the information concerning

the set of possible distributions P and nothing more.

Imprecise utilities may also originate in a similar way, where only known bounds

are stated for the utility value of a relevant reward. Alternatively, and as mentioned

in Subsection 1.1.1, we can note that fundamentally utilities and probabilities may

be seen as twin concepts that are both derived from a stated preference ordering.

Yet if only a partial ordering of preferences is used, only imprecise probabilities and

utilities will be available (see, e.g., Seidenfeld et al. [93]). That is not to say that

the use of imprecise probabilities necessitates the requirement for imprecise utilities

and, for example, the works of Boole [20], Walley [104], and Williams [107] all deal

with imprecise probability and precise utility simultaneously.

Whilst from a decision analysis context it is ideal to have known and precise prob-

ability and utility specifications, there are several arguments as to why this is not

always the case, and Walley [104, Ch.1] provides a good overview in the case of

probabilities. Levi [69] claims that a bounded rationality prevents DMs from fully

comprehending all that is necessary for precision, and often required calculations

are beyond computational abilities. Indeed, if a prior analysis identifies a unique

decision that is optimal under all possible distributions that satisfy the constraints

of imprecision, then the extra effort required in identifying a precise specification is

just not needed.

2.1.3 Conditional Probabilities

Before discussing solutions to the general decision problem under consideration, we

should first review the possible interpretations of conditional probability. That is to

say, what is the interpretation of the conditional probability of event h2 being true

given that event h1 is true, to be denoted by P (h2|h1).

Providing P (h1) > 0, we formally define P (h2|h1) to be the numerical quantity
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P (h2 ∩ h1)/P (h1), with P (h2 ∩ h1) being the probability of the compound event

h2∩h1 that is true if and only if both events h2 and h1 are true. However, there are

various suggestions for its meaning (see, e.g., the discussion in Kadane et al. [59]).

The ‘called-off gamble’ interpretation arises from extending the subjective theories

that view probability as a fair betting price, and is present in works such as de

Finetti [31] and Savage [89]. Here one views P (h2|h1) as the fair price for the bet

paying one unit if h2 is true and nothing otherwise, but where the bet is cancelled

if h1 is not found to be true.

As Kadane et al. [59] note, an alternative ‘temporal updating’ view is a common

Bayesian interpretation for when dealing with sequential problems. It assumes that

either P (h2|h1) is the probability the DM expects to assign to h2 in the case she

learns h1 is true and nothing else, or that it is the probability the DM will assign

to h2 in the case she learns h1 and nothing more. In this thesis we seek to develop

a strategy for sequential decision making from the view of a DM who is about to

select her first decision and will view P (h2|h1) as meaning the former of these.

Finally, ‘hypothetical reasoning’ is the view taken by Kadane et al. [59], and con-

siders P (h2|h1) to be the DM’s current hypothetical belief in h2 if she were to place

herself in the imagined world in which h1 is true. This differs from the ‘called-off

gamble’ interpretation by requiring the DM to hypothesise h1 as certain. It differs

from ‘temporal updating’ because the DM is not seeking to predict how she will

update her beliefs at some future time.

Though we follow a ‘temporal updating’ view of conditional probability, there are

arguments claiming it is equivalent to the ‘called-off gamble’ interpretation. Gold-

stein agrees with the ‘called-off gamble’ interpretation, and discusses a notion of

‘temporal coherence’ in [49,50]. In [49], Goldstein claims that, if a DM wishes to act

coherently and avoid a ‘temporal’ sure loss, then it is irrational for her to propose

that she now believes h has probability P (h), but that at a well-defined future time

t, her beliefs will change to P t(h) with E[P t(h)] 6= P (h).
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This argument can then be extended to conditional proabilities. If a DM considers

that an unobserved event h1 is relevant for establishing beliefs over event h2, and as

such, states conditional probability P (h2|h1), then Goldstein [50] argues that, at a

future well-defined time t, the DM may revise beliefs to P t(h2|h1), but that current

beliefs should be such that P (h2|h1) = E[P t(h2|h1)|h1]. The connection with the

‘temporal updating’ view arises when time t is considered to be the point when the

DM will know whether h1 is true or false.

2.2 Solitary Decision Problem

Having briefly outlined the meaning of rationality as acting in accordance with an

agreed system of axioms of preference together with specification of coherent beliefs,

we now focus attention on suggestions that have been given for solving the solitary

decision problem.

2.2.1 Subjective Expected Utility Theory

The most popular and famous solution to the decision problem under considera-

tion is that provided by Subjective Expected Utility (SEU) theory. This solution

dictates that, given a set of feasible decisions D and a utility function u that is in

agreement with the DM’s preferences over D, the DM should select that decision

d′ = arg maxd∈D u(d). However, and as discussed in Subsection 1.1.1, it is usual to

consider a utility function u as representing preferences over a reward space R. In

this case, and given a probability distribution P (r|d) capturing the DM’s beliefs over

the relevant outcome for each feasible decision d, the admissible decisions are those

that maximise expected utility. In the case of a finite reward space the admissible

decisions are thus those that maximise
∑

r∈R u(r)P (r|d).

The maximisation of SEU was first proposed as a selection technique by Bernoulli

in 1738 [18], however, not until 1947 was an axiomatic formulation created by von

Neumann & Morgenstern [101], who provided such an axiomatization for when deci-
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sions are equivalent to lotteries with objective probabilities, each with finite support

(i.e., the set of possible rewards R is finite).

In what follows we employ a notational convention in which ‘�’, ’�’ and ’∼’ are

binary relations used to represent the DM’s preferences between two decisions or re-

wards. In particular, d1 � d2 represents the situation in which the DM’s preferences

are such that decision d1 is deemed at least as preferable as decision d2. Similarly,

d1 � d2 represents the situation in which the DM strictly prefers decision d1 to deci-

sion d2, and d1 ∼ d2 represents the situation in which the DM is indifferent between

d1 and d2. The notation αd1 + (1 − α)d2, with α ∈ [0, 1], will be used to represent

that decision which pays reward r ∈ R with probability αP (r|d1) + (1− α)P (r|d2).

With this notation in mind a list of axioms concerning the DM’s preference relations

that is similar to von Neumann & Morgenstern’s, but which is in fact that given by

Jensen [57], is as follows:

• A1 Completeness: � is a complete semi-ordering and the set of feasible deci-

sions D is a closed convex set of lotteries.

• A2 Transitivity: � is a transitive relation.

• A3 Archimedian: If d1, d2, d3 ∈ D are such that d1 � d2 � d3, then there is an

α, β ∈ (0, 1) such that αd1 + (1− α)d3 � d2 � βd1 + (1− β)d3.

• A4 Independence: For all d1, d2, d3 ∈ D and any α ∈ (0, 1],

d1 � d2 ⇔ αd1 + (1− α)d3 � αd2 + (1− α)d3.

This axiomatization leads to the same utility representation theorem over the closed

convex set of feasible decisions D that was first derived by von Neumann & Mor-

genstern (though von Neumann & Morgenstern’s result also holds for all possible

finite-support lotteries over the reward set R), and indeed there are additional al-

ternative axiomatizations that also perform the same task (see Fishburn [42] for a

more general review).
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The Completeness axiom simply states that a comparison using the preference re-

lation � can be made between any two decisions in the set D, i.e., for any two

decisions d′, d′′ ∈ D, at least one of d′ � d′′ or d′′ � d′ is true, whilst the Transitivity

axiom states that if d1 � d2 and d2 � d3, then d1 � d3 for all d1, d2, d3 ∈ D. The

Archimedian axiom works as a continuity axiom for preferences, and as with the

Completeness and Transitivity axioms, draws little objection.

The Independence axiom, however, draws criticism in certain circles. It effectively

claims that preferences between two decisions are unaffected if they are both com-

bined in the same way with a third decision. Nevertheless, one should remember

that von Neumann & Morgenstern’s axiomatization is developed only for decisions

that are equivalent to objective lotteries, and in this setting, Independence is simply

claiming that preference relations between two decisions should remain constant if

there is a chance that neither decision (lottery) will be played, but rather that some

other lottery will be played instead. Even so, it is still the axiom that is altered

most frequently when non-SEU theories are suggested.

If a DM agrees to a similar system of axioms as that given above, then von Neumann

& Morgenstern proved that there exists a unique (up to a positive linear transfor-

mation) utility function u, with domain the convex set D+ of finite support lotteries

over R and co-domain R, satisfying the following two properties:

1. For all d1, d2∈D+, u(d1) ≥ u(d2)⇔ d1 � d2.

2. For all d1, d2∈D+ and any α∈(0, 1), u(αd1+(1−α)d2) = αu(d1)+(1−α)u(d2).

The first of these properties states that the utility function is in agreement with the

DM’s preferences and, in particular, a lottery will have the largest utility value if and

only if the DM ranks it as her preferred choice. The second property explains why

utilities have a cardinal meaning, and do not simply rank lotteries, hence differing

them from value functions. It also explains how utilities for non-degenerate lotteries
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can be formed from utilities for degenerate lotteries, and hence gives rise to the

expected utility representation when one considers a utility function as a function

that takes its domain to be the set R of possible rewards. Of course the above

properties also hold true for the closed convex subset of feasible decisions (lotteries)

D.

Unfortunately, von Neumann & Morgenstern’s theory is unable to deal with situa-

tions where the outcomes of decisions are not determined by objective probabilities,

e.g., horse races. This situation was later resolved by Savage [89], whose list of seven

postulates (axioms) of rational choice permitted subjectivity in beliefs. Savage con-

sidered a different setup where, given a set of possible states of nature (possible

event outcomes) S and a set of consequences (rewards) F , decisions were seen to be

arbitrary functions from S to F .

Axiomatizations that permitted subjective beliefs, but were instead based on devel-

oping the objective theory of von Neumann & Morgenstern, were also later devel-

oped. Hence, rather than reviewing the relatively complicated theory of Savage, we

will instead briefly review the somewhat simpler theory of Anscombe & Aumann [5].

Anscombe & Aumann extended the von Neumann & Morgenstern axioms, and thus

also required the presence of lotteries with objective probabilities. For this reason

Anscombe & Aumann’s theory should be seen as an intermediate theory between

the fully objective setting of von Neumann & Morgenstern and the fully subjective

setting of Savage. Anscombe & Aumann achieved the introduction of subjective

beliefs by viewing decisions as functions that mapped event outcomes to the simple

lotteries considered by von Neumann & Morgenstern. The DM could then have

subjective beliefs over what would be the actual event outcome (e.g., the horse that

wins the horse race).

Anscombe & Aumann use the representation of von Neumann & Morgenstern in

two ways, matching up the two systems of preferences. The first way is to consider
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a utility function over roulette (objective) lotteries that pay rewards in the form of

horse (subjective) lotteries which then pay out another roulette lottery. The second

way is to consider standard von Neumann & Morgenstern roulette lotteries. Using

the notation whereby [R(1), . . . , R(n)] represents the horse lottery paying roulette

R(i) if event i is true, and where (p1O1, . . . , pmOm) represents the roulette lottery

paying the solitary outcome Oi with probability pi, Anscombe & Aumann use the

following two additional axioms to generate their required utility representation:

• A5 Monotonicity: If R1(i) � R2(i), then

[R(1), . . . , R1(i), . . . , R(n)] � [R(1), . . . , R2(i), . . . , R(n)].

• A6 Reversal: (p1[R1(1), . . . , R1(n)], . . . , pm[Rm(1), . . . , Rm(n)]) ∼

[(p1R1(1), . . . , pmRm(1)), . . . , (p1R1(n), . . . , pmRm(n))].

Monotonicity simply states that if two horse lotteries are identical except for the

returns associated with one outcome, then preferences between these horse lotteries

are dependent on preferences between the returns associated with that outcome.

Reversal is an axiom stating that, if the return to be received depends on the outcome

of both a horse lottery and a roulette lottery, then it makes no difference in which

order these two types of lottery are played.

Anscombe & Aumann demonstrated that the logical implication of agreeing to all

six Axioms A1-A6 is that, not only do subjective probabilities actually exist (though

previous authors dating back to the work of Ramsey [86] have provided alternative

arguments for this), but also there exists a unique (up to a positive linear transfor-

mation) utility function agreeing with the DM’s preferences for the situation where

probabilities of outcomes are subjective. Thus no longer does one require the as-

sumption that probabilities are objective and imposed externally.

2.2.2 Alternatives to SEU

The use of maximising SEU as the normative theory in decision selection is not

without criticism, as various authors criticise one or more of the axioms it is based
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upon. The first, and possibly most famous criticism, is that given by Allais [3].

Allais claims that perfectly rational people do make decision selections that are

not in keeping with those dictated by the maximisation of SEU. Further studies

by authors such as Kahneman & Tversky [60], Ellsberg [38] and Fellner [41] also

expand upon Allais’ objection.

An illustration of Allais’ criticism, often referred to as the Allais paradox, can be

given by considering the following pair of choices:

Choice 1: l1 pays £4000 with probability 0.8, £0 otherwise.

l2 pays £3000 for certain.

Choice 2: l3 pays £4000 with probability 0.2, £0 otherwise.

l4 pays £3000 with probability 0.25, £0 otherwise.

An investigation by Kahneman & Tversky [60] shows that DMs commonly hold a

preference for l2 over l1, whilst simultaneously preferring l3 over l4. However, there

is no possible utility function that can accommodate this.

Such a combination of preferences violates the Independence axiom of expected

utility theory. Indeed, in this example the only difference between lotteries l1 and

l3, or between l2 and l4, is a common increased chance of receiving £0. This is a

descriptive shortcoming of what is deemed a normative theory. Nevertheless, Allais

argues that the Independence axiom should not be seen as a normative axiom of

rational choice. He claims it is not enough to consider the expected utility return

of a decision, but that higher moments taking into account variation or dispersion

should also be considered.

Allais claims that the utility of a lottery should be some functional of the probability

density, and that the DM should have a preference for security in the neighbourhood

of certainty. He proposed a system which concentrates on the dispersion of rewards

around their mean, replacing the Independence axiom with Iso-Variation, an axiom
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that requires the DM to select decisions not only on the basis of maximising ex-

pected value, but also taking into account second and higher order moments of the

distribution of possible rewards.

An alternative theory, also motivated by real-world observations and by similar

contradictions to SEU as demonstrated by the Allais paradox, is that of Kahneman

& Tversky’s Prospect Theory [60]. Prospect Theory, like the theory of von Neumann

& Morgenstern, is concerned with the selection of objective lotteries, but rather than

using such objective probabilities to weight the utility of rewards, it uses some non-

linear function of them.

Kahneman & Tversky argue that instead of maximising SEU, DMs are subject to

a Certainty effect (where DMs overweight outcomes that are highly probable and

underweight outcomes that are very unlikely) and an Isolation effect (were DMs

ignore common elements of decisions), both of which are incompatible with the

Independence axiom. Further developments can be found in Tversky & Kahneman

[99] and Wakker & Tversky [102].

In its original form, Prospect Theory made a distinction between two phases of a

DM’s choice process. First a DM performs a preliminary analysis of the offered

choices with the aim of yielding a simpler representation of the problem, a so-called

‘editing phase’. Later the DM evaluates the edited choices and the one with the

maximum valuation is selected. The editing phase will code (turn outcomes into

gains or losses, rather than final states of wealth), cancel (ignore components shared

in choices), simplify (values are rounded up or down), and finally remove dominated

alternatives (even if they were not dominated before simplification).

Once the editing phase is complete, Prospect Theory evaluates a score for each

decision that is determined through a weighted average of the utility of possible

outcomes. However, instead of weighting by the probability of those outcomes,

Prospect Theory uses a non-linear scale that reflects the psychological impact of
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the probability which, for example, will overweight high probabilities and under-

weight low ones (see Kilka & Webber [65] for an elicitation suggestion). As is to be

expected, Prospect Theory’s departures from SEU can lead to some objectionable

consequences, and as Kahneman & Tversky [60] note, intransitivities and violations

of dominance mean it should primarily be seen as a descriptive theory.

Prospect Theory is known as a rank-dependent model of choice under uncertainty.

The defining property of such a model is that cumulative probabilities are trans-

formed by a non-linear weight function in order to account for real-world inconsis-

tencies to SEU theory. Further extensions for when decisions are not lotteries with

specified objective probabilities are suggested by Schmeidler [92] (Choquet SEU

Theory) and Wakker & Tversky [102] (Cumulative Prospect Theory).

Proponents of SEU theory, however, offer their own arguments as to why non-SEU

theories should not be seen as normative, and how SEU can accommodate so-called

paradoxes of the theory. De Finetti [32] and Amihud [4] argue against the claim that

the dispersion of utility values should be considered, with de Finetti stating that

utilities themselves were introduced to accommodate riskiness in extreme values.

Luce & von Winterfeldt [73] argue that DMs may be attempting to behave in ac-

cordance with SEU theory, even if they are likely to fail in more complex situations.

Allais’ objection is that SEU theory does not correspond to observed results, yet

this may be due to a bounded rationality, as suggested by Levi [69].

Amihud [4] also notes that the Allais Paradox can be resolved by use of utility func-

tions that are contingent upon the decision making history of the DM. Such history

dependent utilities exempt the DM from consistency of preferences between peri-

ods, instead only requiring consistency within each period itself. Further solutions

in agreement with SEU theory are provided by Morrison [79] and Markowitz [74,

pp.220-223]. Indeed, Luce & von Winterfeldt [73] show that if the participants of

Kahneman & Tversky’s survey did not treat both choices simultaneously and in-
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dependently, but instead conditioned utilities on the first choice before making the

second, than a utility function agreeing with observed results can be found.

A final alternative theory that we will mention as an alternative to SEU is the Info-

Gap theory of Ben-Haim [14]. Info-Gap decision theory is a non-probabilistic theory

that suggests the DM seek to be robust against failure. Unlike SEU, it permits the

DM to tackle decision problems without requiring a full probabilistic description

of events. Instead a best estimate is provided and uncertainty is incorporated by

accepting this best estimate could be incorrect by various degrees. A minimum

required reward level is specified, and the decision is selected that maximises the

chance of achieving this level, i.e., the most robust decision is suggested.

2.2.3 Generalisations of SEU

The use of the maximisation of SEU as a decision selection technique requires that

the DM can specify precise and correct beliefs and preferences. However, as men-

tioned in Subsection 2.1.2, this can be quite a difficult task. For this reason recent

research has been focused on finding decision theories that remain in the spirit of

maximising SEU, but which also permit the DM to be vague in elicitation.

Kadane et al. [58] provide an overview of how differing axiomatic formulations man-

age to cater for the situation in which only imprecise probability specifications are

provided. Generally, such axiomatizations arise through weakening the Complete-

ness axiom of von Neumann & Morgenstern. This axiom is sometimes deemed to

be too restrictive and enforces the DM to state and commit to preference rankings

between any two decisions, not permitting indecision or non-comparability between

options. Instead, when wishing to deal with imprecise probabilities, the Complete-

ness axiom is often weakened by replacing it with one that only calls for a strict

partial ordering. Yet, if one makes such a replacement to the Completeness axiom,

then no longer is it required that the DM rank all decisions, and so no longer is she

necessarily able to determine which decision should be selected. There are, how-

ever, several suggested rules for selecting decisions when a complete ranking is not
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provided, and we now briefly review these.

The Γ-Maximin choice rule permits imprecise probabilities and its motivation for

selection is similar in manner to the Maximin choice rule that was pioneered by

Wald [103]. Under this rule, given a convex set P of probability distributions that

satisfy the constraints of the DM’s imprecise probability specifications, each feasible

decision is ranked by considering the smallest SEU value that is possible when we

are free to choose any element of P . The decision that has the largest minimum

value is then selected, and in the case of ties, rankings are considered by repeating

the process, but where for each decision the ‘worst’ distribution is eliminated from

P before again finding the smallest possible SEU, etc.

Obviously in the case of P containing just a single distribution, the Γ-Maximin choice

rule returns to classical maximisation of SEU. However, when P contains more than

one distribution, Γ-Maximin seeks to protect against worst possible outcomes, and

as such, is considered a robust method of decision selection (similar to the Info-Gap

theory discussed in Subsection 2.2.2).

An axiomatization of the Γ-Maximin choice rule is provided by Gilboa & Schmei-

dler [47]. Gilboa & Schmeidler use Axioms A1-A3, A5, and A6, however, the In-

dependence axiom is kept only for decisions with certain consequences, and when

decisions have uncertain outcomes, it is replaced by an axiom of Uncertainty Aver-

sion:

• Uncertainty Aversion: For all d1, d2 ∈ D and α ∈ (0, 1),

d1 ∼ d2 ⇒ αd1 + (1− α)d2 � d1.

Gilboa & Schmeidler claim that an intuitive objection to the Independence axiom

is that it ignores the phenomenon of hedging (a preference for spreading bets), and

Uncertainty Aversion specifically states that hedging is never less preferred to not

hedging.
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An alternative choice rule for when probabilities are imprecise is Maximality, which

dates back to at least the work of Condorcet [30], and which has been further

discussed, for example, in the works of Sen [94] and Walley [104]. Under this choice

rule a decision is admissible if and only if there exists no other feasible decision that

has a higher SEU value for every possible distribution in the set P . Hence, unlike

Γ-Maximin, Maximality does not guarantee a complete ranking of decisions, and

often a DM will find that the set of admissible decisions is not much reduced from

the set of feasible decisions, especially if beliefs are quite imprecise and vague.

Again Maximality will reduce to the classical maximisation of SEU if there is only

one distribution in the set P . When P contains more than one distribution, however,

Maximality only seeks to reduce the set of feasible decisions to a set of admissible

ones by removing those decisions where it is known that, regardless of which dis-

tribution in P is considered, there exists a decision that will always have greater

SEU. An axiomatization of Maximality is offered by Seidenfeld et al. [93] who, un-

like in the axiomatization of Γ-Maximin, retain the Independence axiom. Instead a

slight alteration is made to the Archimedian axiom and the Completeness axiom is

changed to a strict partial ordering axiom. Another, earlier, axiomatization is also

provided by Walley [104].

The last choice rule we review for when probabilities are imprecise is Expectation

Admissibility, or E-Admissibility. This rule was suggested by Levi [68] and, like

Maximality, does not seek to provide an ordered ranking of the feasible decisions.

Levi’s suggestion is that only those decisions that maximise SEU for some distri-

bution in P should be considered admissible, and nothing else can be stated to

distinguish between admissible decisions. Again E-Admissibility reduces the set of

feasible decisions to a set of admissible decisions, yet under E-Admissibility, the set

of admissible decisions is a subset of the admissible decisions under the Maximality

choice rule.
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Like both the Γ-Maximin and Maximality choice rules, E-Admissibility reduces to

the maximisation of SEU when there is only one distribution in P . Its axiomatization

again transforms the Completeness axiom to one of a strict partial ordering, and

although it satisfies the property that if two decisions are both inadmissible then so is

any convex combination of them, it does not fully satisfy the classical Independence

axiom.

A final comment on the choice rules mentioned for imprecise probabilities is that,

for all three of Γ-Maximin, Maximality, and E-Admissibility, Schervish et al. [91]

show that, if a ‘favourable’ decision is defined as one that is uniquely admissible

when considered in a pairwise comparison against the option of making no decision

selection, then no finite combination of favourable decisions can result in a sure loss.

Further to the above generalisations which seek to incorporate imprecise probabil-

ities in the choice rule of maximising SEU, there are also generalisations seeking

to incorporate imprecise utilities, and on a foundational level this setting is consid-

ered by Seidenefeld et al. [93], who extract imprecise probability and utility state-

ments from preference relations that only satisfy the properties of a partial order.

Moskowitz et al. [80] also permit both imprecise probabilities and utilities, allow-

ing imprecision over the certainty equivalence for a simple lottery (the sure amount

which the DM holds in equal preference to the uncertain lottery) in order to intro-

duce imprecise utility information. Imprecise probabilities are included as bounds

over the probability that an event is indeed true.

Moskowitz et al. assume a parametric exponential form for the utility function,

with information about probabilities of events and preferences between lotteries

being used to create both a set of possible distributions, and a set of possible utility

functions. Progressive questioning over relationships between probabilities and strict

preferences between rewards is then used to reduce the number of possibilities for

a precise distribution and a specific utility function. This questioning continues

until, regardless of the possibilities that remain, there is a unique decision that will
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maximise SEU.

In their multi-attribute utility setting (where attribute values of rewards are com-

bined to form an overall utility value for the outcome), Farrow & Goldstein [40]

also permit imprecise preferences, and this is achieved by permitting imprecision in

the trade-off values between attributes. A trade-off value is used to describe how

a relative increase in one attribute in the reward is used to lead to an increase or

decrease in the overall utility of the reward.

Taking a specific attribute, the DM is permitted to offer a strict, a weak, or an

indifference preference relation over various possible rewards. Each such preference

places constraints on the allowable choices for the trade-off value for that attribute,

and a collection of possible trade-off values consistent with stated preferences may

be considered. Hence, Farrow & Goldstein’s use of imprecise trade-off parameters

greatly eases what would be a very complicated problem of eliciting multi-attribute

utilities.

2.3 Sequential Decision Solution

Having briefly examined a few of the theories seeking to provide rational methods for

solving a solitary decision problem, we now consider some of the theories developed

for sequential problems. In particular, we examine the various considerations for

the form of the utility function in these theories.

Usually, sequential decision problems with a finite planning horizon are also solved

through maximisation of SEU, with dynamic programming used to determine the

optimal decision sequence (see, for example, DeGroot [34] or Berger [15]). This tech-

nique considers all the possible situations that the DM could find herself in by the

time she selects her final decision, constructing a decision strategy for each possible

situation. With knowledge of what the DM will do in the final period, next an opti-

mal policy is determined for decision selection at the penultimate choice, considering
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again all the possible situations the DM could be in at that time. This procedure

is continued backwards through decision choices until eventually an optimal first

decision is determined. Again, if the DM is able to learn about probabilities for

events of interest, then conditional updating is performed similar to that outlined

in Subsection 2.1.3. Nevertheless, there are alternatives for applying this procedure,

usually due to the form of utility function considered. We briefly review a few of

these.

2.3.1 Discounting

Discounting the utility of rewards that are to be received in the future is often

applied to model preference for early receivership. The utility a DM gains from

knowledge that a reward will be received at some future time need not be the same

as the utility for receiving it now, if for no other reason than that the DM will have

access to the reward for a greater duration. However, relative to determining the

utility for receiving a reward immediately, it is often difficult to elicit the current

utility a DM attributes to knowledge that the same reward will be received in the

future. However, if agreed with, discounting functions can provide a link between

utility values for receiving the reward at various future times.

The discount model essentially multiplies the utility value for receiving a reward

now by a function of the duration of time before it is to be received. The most

common such discounting function is the Exponential Discounting Function (EDF),

which as a function of time elapse t, is of the form λt, with λ ∈ [0, 1] a parameter

of the model (see, for example, Ahlbrecht & Weber [2]). A common alternative to

the EDF is the Hyperbolic Discounting Function (HDF) of the form 1/(1+ t)γ, with

γ > 0 a parameter (see, for example, Harvey [53]). However, whilst the EDF is

often used in normative models for discounting the utility of rewards to be received

in the future, models that employ the HDF are primarily to be seen as descriptive.

In particular, and as will be discussed below, the HDF does not satisfy the property

of dynamic consistency.
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The advantage of this approach is that, to find the desired solution to a decision

problem in which rewards are felt at future time points, the DM simply has to

discount each utility value by the appropriate amount and apply the result in a

standard decision problem. When a stream of rewards is to be received, the dis-

counting model discounts the utility of each reward and aggregates to form a single

meaningful number. This is known as the Net Present Value, with the interpreta-

tion being that the DM is indifferent to receiving that amount of utility now and

receiving the stream of future utility values (see Meyer [76, p.479]).

Arguments for discounting utilities of future rewards appear to have been first pre-

sented by von Böhm-Bawerk [100] and Fisher [44], both of whom use economic and

psychological motivation. It is certainly mathematically convenient, and for when

an infinite planning horizon is considered, offers a method for comparing reward

streams. Nevertheless, there is little normative reason for discounting or agreement

of an objective discount rate, though there do exist arguments detailing why certain

discounting functions have more appealing properties than others.

Strotz [98] argues that only the EDF is a justifiable discounting function (see also

Weller [105]). He claims that any such function should not change the utility of

immediate rewards, that it be non-negative and decreasing in time delay, and that

it be dynamically consistent. Dynamic consistency requires that preferences between

future rewards should not be changed if receivership is to be hastened or delayed,

i.e., if one reward is deemed more desirable than another if they are to be received

at time t1, then the preference relation should remain unchanged if both rewards

are to be received at time t2 6= t1. Only the EDF satisfies all of these properties.

There are indeed axiomatizations for the use of maximising NPV and discounting

through the EDF, and Meyer [76], Koopmans [67] and Fishburn & Rubinstein [43]

have all offered similar suggestions. The most controversial axiom in Meyer’s ax-

iomatization is that of Successive Pairwise Preferential Independence (SPPI):
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• SPPI: Trade-offs between utility (consumption) amounts in periods i and i+1

are not dependent on utility (consumption) amounts in alternative periods.

Treating a reward stream as a single multi-attributed reward implies that the DM’s

utility function could, in theory, be any arbitrary function of the entire collection

of trade-off parameters and multi-period utilities. However, certain independence

assumptions, if true, can reduce the complexity of this function to varying degrees of

simplicity. SPPI is such an assumption that keeps the overall utility form tractable.

SPPI is similar to the Stationarity axiom of Koopmans [67], which claims that if

two streams have identical first period reward, then preferences over the modified

streams that are obtained by deleting the first period and advancing the timing

of all subsequent rewards by one period, must be ordered in the same manner as

the original unmodified streams were. Using this axiom, Koopmans establishes the

existence of an additive utility function for determining the worth of reward streams.

Many philosophers, however, believe discounting to be irrational. Both Rawls [87]

and Ramsey [85] criticise the action, with Ramsey claiming time discounting to be

“a practice which is ethically indefensible and arises merely from the weakness of the

imagination”. Rawls [87, p.293] states that “the avoidance of pure time preference

is a feature of being rational ... the mere difference of location in time ... is not in

itself a rational ground for having more or less regard for it”.

2.3.2 History Dependent Utility

One of the complaints of axioms like SPPI or Stationarity is that they do not allow

previous reward realisation to affect preferences over future rewards. History depen-

dent utilities instead explicitly permit this, though at the cost of a more complicated

utility function and the requirement to elicit more trade-off parameters. Discounting

is then only included to incorporate effects such as inflation or mortality rates (see

Yaari [109]) and is no longer expected to agree to the principles of the EDF, e.g.,

discount rates are no longer expected to be constant.
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A simple extension suggested by Meyer [77] is to state that future preferences are

independent of past rewards, but that ordering of future rewards is relevant. This

assumption does not generally imply the existence of unconditional single period

utilities (as SPPI or Stationarity allows), but is the most general assumption per-

mitting a solution through dynamic programming. However, the most general situa-

tion is contained within the work of Bell [11], who permits all forms of dependencies

and independencies in preferences (though at a cost of requiring a great amount of

trade-off parameters, whose interpretations are difficult to understand).

One alternative to reduce complexity is to introduce state descriptors that record

past reward realisations (Meyer [76, 77]). Preferences over future rewards are then

conditioned upon these descriptors, permitting future preferences to depend on the

decision history. To keep computation tractable, and for ease of elicitation, it may be

that only influential summary statistics of the past, rather than a complete record,

are used to condition future utilities on.

An axiomatization for the use of state descriptors was provided by Bodily & White

[19], who considered an economic sequential decision problem. Bodily & White’s

DM must at each period i, for i = 0, 1, . . . , n− 1, select a consumption level ri such

that, if wi is the level of the DM’s wealth at time i, ri ≤ wi. The DM’s problem is

then to decide upon investment and consumption levels to optimise the consumption

stream r0, r1, . . . , rn, wn+1, with wn+1 being terminal wealth.

As decisions are made, the DM’s decisions will be contingent on the outcomes of

previous choices. The DM is assumed to base consumption and investment decisions

on beliefs concerning future returns on investment and preferences for alternative

consumption streams. Bodily & White permit attitudes towards future consump-

tion to depend upon current wealth and past consumption, and hence a summary

descriptor is included for this purpose.
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2.3.3 Evolving Utility

That utilities may evolve is an additional consideration that is not only used to

permit a change in preferences as a result of consumption level experienced (such

as history dependent utilities), but also to allow preferences to change following

nothing but a passage of time and a change in tastes.

Witsenhausen [108] suggests a theory of Assumed Permanence in which it is accepted

that future preferences may not be the same as those currently held. The DM still

makes current decision selection under the assumption that future preferences will

remain constant to what they currently are, but when coming to a future decision

she may re-evaluate preferences and seek to select decisions that maximise utility

return with respect to previous choices, and where again it is assumed that future

preferences will remain the same as the now re-evaluated levels. Witsenhausen’s

theory has the great practical advantage of not requiring a model of how preferences

will evolve. Its obvious disadvantage, however, is that early commitments may be

made which are costly to reverse if preferences are found to have changed.

White [106] also considers a sequential decision problem in which the DM’s future

preferences are uncertain, but as opposed to the Assumed Permanence of Witsen-

hausen, attempts to model how preferences may change. White achieves this by

assuming that the DM’s preferences are modelled by a vector of trade-off weights

which may change as the DM progresses through decision selection.

White considers a finite stage decision problem where preferences may change from

stage to stage. Uncertainty over the result of decision selection is not considered,

and hence the DM is assumed to know the result of any choice she makes. Thus

her problem is, given knowledge of how preferences may evolve, which decision

sequence should be selected. Three evolution mechanisms are considered, consisting

of an optimistic scheme where preferences evolve in order to maximise utility, a

pessimistic scheme where preferences evolve to minimise utility, and a scheme where

preferences evolve randomly.
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The final decision theory we mention that is based on evolving utilities is that

discussed by Meyer [76]. Meyer extends his work with history dependent utilities

by permitting preferences to be influenced by a time stream of extraneous events

that are characterised by a sequence of parameter values. It is assumed that such

a parameter will influence the DM’s utility function and that it is independent of

previous rewards realised (the history dependence already allows for this) with the

parameter value evolving randomly according to some specified probability function.



Chapter 3

Adaptive Utility

This chapter provides motivation for the use of adaptive utility theory. A review of

works that have either developed or made use of adaptive utilities is also included.

3.1 Motivation

The expected utility theory that was discussed in Chapter 2 proves that, provided

the DM agrees to a certain collection of axioms, there will be a unique (up to a

positive linear transformation) utility function that is in agreement with the DM’s

preferences. However, although we now know that this is the case, there is still

the problem of determining what this function actually is. To determine the utility

value of a particular reward, one can use the system of comparing the gamble which

pays that particular reward with certainty, to a gamble which either pays the best

reward or the worst reward. In practice though, it is common to simply assume that

a utility function has a general form with particular properties, e.g., the logarithmic

function that was suggested by Bernoulli [18] for monetary rewards.

Nevertheless, this practice still assumes that a correct utility function representing

the DM’s true preferences for all possible outcomes can be identified. Furthermore,

implicit within this is the assumption that the DM actually knows her true prefer-

ences. Yet in the real world this is not always the case, and it is perfectly natural

for a DM to be unsure of her preferences.

32
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A DM could, for example, be considering a reward that would not be received

until some future time point, and then they need to consider how their preferences

may have changed by that time point due to them being older and possibly also

in a different situation. Another common example occurs when a DM is asked to

consider rewards that are vague or unfamiliar to her. As Simon [97] states, “the

consequences that the organism experiences may change the pay-off function ... it

does not know how well it likes cheese until it has eaten cheese”.

It is traditionally assumed, however, that the DM’s utility function is fully known,

and that it is even possible to make hypothetical choices. After a decision is made

it is assumed that the utility realised is the same as was indicated by the utility

function, and that there can be no surprises. Hence classical theory cannot account

for uncertain preferences, with preferences over sure things being fixed. Nevertheless,

in the real world a DM may learn about her likes and dislikes of new and novel

rewards, a situation that classical theory cannot account for as it has no element of

utility learning following new information.

There are plenty of examples in the real-world demonstrating that a DM will not

always be sure about her preferences, but rather that she may be uncertain of these

and that she is able to learn about them. A DM seeking to purchase a new car

and who test drives a possible choice is one such situation, for if the DM knew her

preference for the car, as would be assumed in classical utility theory, what would

be the reason for test driving it?

Another example is that often companies offer a trial introductory price on a new

product, or they may even offer free samples, but what would be the motivation for

this if all potential customers knew precisely how much they liked or disliked the

new product? Indeed, how many individuals have ever been disappointed with a

result that was expected, or pleasantly surprised, for example, by how nice a new

recipe is?
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In order to illustrate this point, and in order to introduce a basic example that will

be returned to throughout this thesis when demonstrating new aspects of adaptive

utility theory, consider the following problem, which will be referred to as the Apple

or Banana example.

Example 3.1.1

A DM faces the problem of deciding upon which fruit to purchase at lunch. The

shop has on offer two choices, either an apple or a banana. The DM is experienced

with eating apples, having done so many times before, but she has never previously

consummed a banana, and as such, is unsure which fruit she would prefer. Nev-

ertheless, she is able to look at the banana, to smell the banana, and to even ask

the suggestion of friends. What she is not able to do, however, is taste the banana

herself before making the decision to purchase it. How then should such a DM make

her choice? �

3.2 Adaptive Utility

Instead of assuming that the DM’s actual preferences and corresponding utility

function is precisely known, the theory of adaptive utility allows the DM to be

uncertain over her true preferences and permits her to learn about them. In this

sense the theory of adaptive utility is a normative theory for rational decision making

when one accepts that there is uncertainty over the DM’s true utility function. It is

assumed that the DM is able to envision possible preferences and to form expected

preferences from these prior beliefs. Such expected preferences can then later change

as a result of the DM’s experiences, with some comparison being made between what

she a priori expected and what she actually realised. In this manner the DM will

be able to learn about her true utility function, update her beliefs, and adapt her

decision making accordingly.
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However, for a single decision this strategy is no different to classical theory, as deci-

sion selection would be the same as if it were assumed actual preferences equal prior

expected preferences. Only in a sequential problem can a difference be observed,

where the DM may learn about preferences and expected preferences may change.

Indeed, a DM may make a different choice when faced with an identical but repeated

problem, an act which is in contradiction to classical theory, but which is common

in the real-world. Furthermore, in a sequential setting the optimal initial decision

need not be that which appears to give greatest utility under current beliefs. This

is because information gained following selection of the first decision may depend

on that decision, and so it may be optimal to select one which is more informative

of true preferences, enabling the DM to learn and select better decisions in the fu-

ture. This first decision may then be different to what would be selected in a one-off

problem, even if outcomes of decisions are known.

Uncertainty in the utility function is incorporated by conditioning the utility on a

parameter θ, which we will refer to as the DM’s state of mind. A particular state of

mind represents a particular preference ranking and is included within notation in

a similar way as conditioning is in probability, i.e., the utility from a reward r when

θ is the true state of mind will be represented as u(r|θ).

Definition 3.2.1

Given a set of possible classical utility functions u(·|θ1), . . . , u(·|θn) that have been

suitable scaled to ensure they are commensurable, and given a probability distribu-

tion Pθ representing the DM’s beliefs over the correct value for the state of mind θ,

an adaptive utility function au(·) is defined1 to have domain the the convex set D

of decisions and co-domain the set of real numbers R and is such that it equals the

expectation of u(·|θ) with respect to beliefs over θ, i.e., au(·) = Eθ[u(·|θ)]. �

1This definition of an adaptive utility function is slightly different to that given by Cyert &

DeGroot [27–29]. As will be mentioned in the following section, Cyert & DeGroot introduce the

term adaptive utility, but consider it as a function of both r and θ. However, for the purpose of

this thesis, we find it beneficial to use the slightly different definition of au(·) = Eθ[u(·|θ)].
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Definition 3.2.2

Possible classical utility functions u(·|θ1), . . . , u(·|θn) are said to be commensurable

if they have been scaled in such a way that it is meaningful to compare the utility

values of different rewards when conditioned under differing possibilities for θ. That

is to say, they are considered commensurable if given any three reward and state of

mind pairs (r1, θ1), (r2, θ2), and (r3, θ3), with the property such that u(r1|θ1) 6= 0 and

u(r1|θ1) ≥ u(r2|θ2) ≥ u(r3|θ3), then the DM would be indifferent between receiving

r2 when θ = θ2 and playing the hypothetical gamble where r1 is paid and θ = θ1

with probability u(r2|θ2)/u(r1|θ1), and where otherwise r3 is paid and θ = θ3. �

Notice that, although it has not been explicitly included in the notation, an adap-

tive utility function au(·) is not only a function of the reward or decision under

consideration, but also of the DM’s beliefs, Pθ, over the state of mind θ. Further-

more, changes in these beliefs over θ cause the adaptive utility function to change,

or rather, the adaptive utility function adapts to incorporate changes in beliefs.

Such changes in beliefs over θ may occur in many ways, e.g., information from

associates, advertising, or even actual reward realisation. It depends on the problem

under consideration, but once a source of information and a likelihood function are

identified, Bayesian updating will lead to posterior beliefs over preferences. We will

return to the possibility of learning of θ in Chapter 5.

3.3 Review of Adaptive Utility

Adaptive utility was introduced by Cyert & DeGroot [27–29], who argued that

paradoxes such as Allais’ could be constructed because classical theory does not

incorporate learning of preferences. Cyert & DeGroot also claimed that adaptive

utility is consistent with casual empiricism, as fads in style and products can be

observed. Their argument is that new products do not always have a genuine ad-

vantage over past options, but products may no longer be purchased as consumers
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change beliefs over preferences. Hence, although not directly seen as a descriptive

theory, Cyert & DeGroot claim that adaptive utility is a concept that better models

actual behaviour.

Although we agree with the normative concept of adaptive utility, we do not agree

with these additional motivations. The Allais paradox is more connected with DMs

not understanding the implications of their decisions on the axioms of rational choice,

and adaptive utility can only offer a possible explanation if the DM can learn of her

preferences by simply being offered a choice between two potential lotteries (and

learning nothing else). This is similar to another example by Cyert & DeGroot

in [27]. In this example a DM is in the process of selling a house and it is argued

that it is enough for the DM to be offered her requested price for her to change her

preference for selling at that price. Also, although we agree that trial of various

products can lead to a change in preferences over those products, it is more likely

that fads and fashions arise due to a change in actual utilities, not a change in beliefs

over them, and as such, a theory of evolving utility would be more suitable.

Cyert & DeGroot primarily considered examples of the use of adaptive utility in

implications for economic problems such as consumer demand and income alloca-

tion. They suggested several settings for uncertainty over a DM’s utility form, e.g.,

uncertainty over particular weights in the utility function when rewards are multi-

attributed, with beliefs over correct values possibly changing as a result of directly

experiencing particular rewards.

Erdem & Keane [39] considered uncertain preferences in an analysis of data2 on

the sale of liquid detergents in the US over a 3 year period. In their study it was

assumed that consumers were uncertain about particular brand attributes (especially

for new brands), and a product with uncertain brand attributes was further assumed

to have uncertain utility value at the time of purchase. However, it is assumed that

2Daily panel data of laundry detergent purchases for 3,000 households from two test markets.
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DMs can learn about the utility of products through usage and through external

advertisements. As many purchases may be required for certain attributes to become

apparent (e.g., how effectively does the detergent prevent colour fading), or because

certain attributes may only become known on specific occasions (e.g., how effectively

does the detergent clean a particular stain), a learning model is incorporated where

noise corrupted observations of the true utility are observed.

Erdem & Keane suggest that, rather than being myopic and selecting detergents that

appear optimal under current utility beliefs, consumers may recognise that current

choices affect their information set, providing them with incentive to try new and

unfamiliar brands. This model of decision making, where consumers consider the

impact of their choice upon the expected present value of utility over the entire

planning horizon (the same suggestion as Cyert & DeGroot), is compared to the

myopic model of maximising immediate utility return. Thus Erdem & Keane seek

to examine the descriptive validity for this decision selection technique, finding it to

be slightly superior than the model which seeks immediate utility maximization.

Chajewska et al. [22] consider a sequential decision problem which they refer to

as adaptive utility elicitation, the focus of which is solution to the problem an

analyst faces when seeking to elicit a DM’s utility function. As the authors note,

the complexity of utility elicitation means that a decision must often be made when

only partial utility information is available. Chajewska et al. consider utility as

a random variable drawn from a specific prior distribution, and determine optimal

strategies for sequentially asking the DM questions about her preferences. This

process is continued until a unique optimal decision is identified.

Finally, Boutilier [21] considers foundational issues of adaptive utility, which he

refers to as expected expected utility. As Boutilier notes, the decision that max-

imises adaptive utility is sensitive to the scaling of the possible utility functions,

which are only unique up to a positive linear transformation. The term commensu-

rable is used to represent those possible utility functions with which it is meaningful
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to make comparisons. Boutilier shows that under an assumption of extremum equiv-

alence (where under each possible utility function there exists the same best and

worst reward), utility functions can be scaled in a specific manner to make them

commensurable. Further discussion on foundations of adaptive utility is included in

Chapter 4, and in Section 4.3 we will return to discussing commensurable utilities,

demonstrating that possible utility functions can be scaled to ensure commensura-

bility without Boutilier’s strong assumption of extremum equivalence.

As Cyert & DeGroot [28] note, “we have begun to investigate the concept in one

area of economics, and we are aware that much remains to be done”. The work of

Cyert & DeGroot does not discuss foundational implications for uncertain utilities,

nor what it might mean to compare different possible utility functions that are only

unique up to a positive linear transformation. As such, the contribution of this

thesis towards the subject of adaptive utility commences in the next chapter where

we consider the precise interpretation of the utility parameter θ and consider how,

through repeated use of the classical axioms of rational choice, we can accommodate

the maximisation of adaptive utility as a decision selection technique. Furthermore,

in Chapter 5 we also consider how to determine optimal decision strategies for a

problem consisting of n sequential decisions (Cyert & DeGroot only provided a so-

lution for up to 2 decisions), discuss utility forms that can simplify the computation

of solution algorithms, and present possible applications for reliability problems.

Finally, in Chapter 6 we consider implications for the meaning of risk aversion and

of value of information. These are two diagnostics of the decision problem that have

been ignored in previous literature on adaptive utility related works.



Chapter 4

Foundations

In this chapter we offer discussion on the interpretation of a state of mind. We also

propose a method of employing the classical system of expected utility axioms to

provide an argument for using the maximisation of adaptive utility as the logical

decision selection rule. We conclude the chapter by discussing a method for creating

commensurable utility functions that does not require Boutilier’s [21] assumption of

extremum equivalence (see Section 3.3).

4.1 State of Mind

As mentioned in Section 3.3, Cyert & DeGroot [27] introduce uncertainty in a DM’s

utility function by parameterising it with an unknown variable θ. However, their

focus is primarily on introducing the uncertain utility concept and in discussing

implications for economics. As such they do not address foundational issues, and

examination of the precise ontological nature of θ is avoided. For this reason we

now offer our own interpretation of this utility parameter which we have named the

DM’s state of mind.

The true value of the state of mind θ will be used to represent the DM’s true

preferences. Classical theory, under the Completeness Axiom A1, states that there

is a true preference ranking over the convex set D of decisions, the state of mind is

simply used to characterise this. This is in contrast to ω, the state of nature, which

40
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determines the actual reward that any given decision will lead to (e.g., the horse

that wins the race, when the decision is which horse to back).

In discussing the interpretation of a state of mind we return to the setting of

Anscombe & Aumann [5] as described in Subsection 2.2.1. In this setting deci-

sions can either be objective (roulette) lotteries or subjective (horse) lotteries, with

possible rewards included in some finite set R. A utility function is then a func-

tion, unique up to a positive linear transformation, that is in agreement with the

DM’s preference ranking � over the closed convex set of decisions D. Hence, pro-

vided that changing θ in the parameterised utility function u(d|θ) does not entail a

positive linear transformation, each value of θ will represent a different preference

ranking �θ. That is to say, a state of mind fundamentally represents a possible

preference ranking over the set of decisions. Note also that, at the risk of entering

a rather abstract philosophical debate, we assume that the DM is not free to affect

the correct value of θ, i.e., she can not select her true preferences. For example, we

would say that the DM can not choose which of apples or bananas she truly prefers

(or whether they are equally preferable). Instead we claim that the correct value

of θ is pre-determined independently of the views or wishes of the DM (hence the

reference to an hypothetical gamble in Definition 3.2.2).

Our assumption then is that uncertainty in the utility function is represented by

uncertainty over an unknown parameter θ representing certain characteristics of the

DM’s preferences. The DM is assumed to hold prior beliefs about θ and these are

used to create expected preferences. Once the DM receives information concerning

θ she can update beliefs through Bayes’ Theorem (simultaneously updating beliefs

over preferences). True preferences are not assumed to change (unlike the evolving

utility theories of Subsection 2.3.3), only the DM’s beliefs over what these actual

true preferences are can alter, and this is done through a change in beliefs over θ.

As discussed in Section 3.1, a DM may not necessarily know her true preferences and

so may be uncertain of θ. By using de Finetti’s classification of the term [31, p.11],
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θ is a well-defined random quantity1, and as such, a probability distribution Pθ may

be specified. Furthermore, as preferences are inherently subjective, it seems natural

to assume that Pθ is also subjective. In essence then, the use of adaptive utility is

analogous to the use of a hierarchical prior in Bayesian analysis (see Berger [15]). A

utility, when scaled to fall in the interval [0, 1], corresponds to a probability value,

with the utility of any reward r being that probability p which makes the DM

indifferent between playing the gamble paying reward r for sure, and playing the

gamble that pays best reward r∗ with probability p and worst reward r∗ otherwise.

The use of an adaptive utility function simply states that this utility (probability)

value p is uncertain, and that instead of assuming a specific value the DM may assign

a probability distribution over it, which is analogous to the use of hierarchical priors.

Beliefs over θ can depend on beliefs over the state of nature ω (Cyert & DeGroot [27]

also suggest this), but unlike ω, the actual value of θ will not affect the reward

to be realised once a decision has been selected, i.e., θ will not affect the actual

physical outcome of the decision (although if probabilistic dependence exists between

θ and ω, then it will also exist between θ and the reward r that will be realised

following selection of any decision d). In order to demonstrate the role of the state

of mind θ in the DM’s decision problem, Figures 4.1 and 4.2 show influence diagrams

for the classical situation and the adaptive utility situation, respectively (see, e.g.,

Shachter [95] and the references therein for more details on influence diagrams). Note

that in Figure 4.2 we have explicitly permitted the case of probabilistic dependence

between θ and ω. Independence between θ and ω could be represented by deleting

the arrow connecting these two nodes.

1This random quantity may be observable (learning apples are preferred to bananas by eating

one of each) or unobservable (only a noisy observation may be available) and depends on the

scenario under consideration. We consider how one may learn about θ in Chapter 5.
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Figure 4.1: Influence diagram for certain utility problem.

Figure 4.2: Influence diagram for adaptive utility problem.

As a further demonstration of the role of the state of mind in connection to the

other decision components within an adaptive utility problem, we can consider the

following two examples of situations in which it may be reasonable to assume prob-

abilistic dependence between θ and ω. It should be noticed, however, that these

examples are not intended to represent interesting adaptive utility problems (which,

and as will be discussed in Chapter 5, are necessarily of a sequential nature), but

that rather they simply aid in the explanation of our intended role for a state of

mind.

For a first example of possible probabilistic dependence between θ and ω, we can

consider the following situation. A DM must decide which of two cake shops she

will visit. She can only visit one of them and must purchase the cake that is on offer

in that shop. The first shop only sells chocolate cakes, whilst the second switches
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between selling carrot cakes and sponge cakes. In this situation we let θ represent

the DM’s true preference relation over lotteries paying one of these cake types as

the return, whilst ω is used to represent the type of cake on sale in the second shop.

If the DM believed that the second shop decided each day what type of cake to

sell through some random chance mechanism, then there would be probabilistic

independence between θ and ω, with the DM’s beliefs over θ not influencing her

beliefs over what type of cake is on offer. However, the DM might believe that the

owner of the second shop is quite good at determining the type of cake his customers

on that day are likely to prefer, and selects which cake to sell accordingly. In this

case the DM might believe that there exists probabilistic dependence between θ and

ω, with the DM believing that if she is more likely to truly prefer carrot to sponge

cakes, then the shop owner is more likely to have this type of cake on offer. Notice,

however, that once a decision has been made, the true value of θ has no causal

influence on the actual reward that is realised.

Another example of possible probabilistic dependence between θ and ω arises when

we consider the following situation of a DM who is visiting a kiosk. On each day

the kiosk sells only ice-cream or only hot dogs, with the item on sale, represented

by the state of nature ω, being decided by the kiosk manager at the beginning of

the day according to what he thinks will be the weather on that day. The DM’s

preferences between ice-cream and hot dogs, as characterised by state of mind θ, is

also assumed to depend on the weather. In this situation beliefs over ω and θ are

conditionally independent given knowledge of the weather, so the DM’s beliefs over

ω and θ would only be independent if she knew what the weather on that day would

be like.

The adaptive utility concept is closely related to the concept of state-dependent

utility2. A state dependent utility will alter the DM’s preferences depending on the

2For further information on state dependent utilities see the discussions and references included

in Drèze & Rustichini [37], Karni [62], or Schervish et al. [90], etc.
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state of nature or situation that she finds herself in. For example, a state dependent

utility would be appropriate if a return of £100 for a correct backing of Red Rum

was preferred to the same win for a correct backing of Desert Orchid (for the DM

may just like Red Rum more than Desert Orchid).

The assumption of state dependency is usually removed in classical utility theory (or

at least the descriptions of the problem is altered to incorporate the state of nature

as an additional attribute of the return from decision selection), and is explicitly

removed in the theory of Anscombe & Aumann [5] who derive only state independent

utilities (this is attributed to the Monotonicity Axiom A5, which is more commonly

reworded as a state independence axiom, see, e.g., Nau [81]). State dependency,

however, is similar to the adaptive utility concept where the DM’s preferences may

change depending on the true state of mind θ. Indeed, in a one-off decision problem

an adaptive utility could be considered a special type of state-dependent utility, as

even though the true value of θ does not affect the physical reward following decision

selection, it does affect the utility value for that reward.

Although the DM is not free to choose her state of mind, she is permitted to choose

to act in a way that is inconsistent with her beliefs over it. However, under the

requirement that the DM maximises expected adaptive utility, such an action is

irrational. To see this assume that the joint distribution Pω,θ represents true beliefs

over the correct states of nature and mind, and let P ′ω,θ be any other distribution. Let

d1 and d2 denote those decisions deemed optimal under Pω,θ and P ′ω,θ respectively.

Then, under Pω,θ, either d1 ∼ d2, in which case the DM achieves the same adaptive

utility level by reporting either Pω,θ or P ′ω,θ, or d1 � d2, in which case the DM will

be acting irrationally by reporting false distribution P ′ω,θ and selecting decision d2.

4.2 Axioms of Adaptive Utility

The system of classical axioms of rational choice leads to the maximisation of ex-

pected adaptive utility as the logical decision selection technique. To achieve this
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result in the case of independence between the state of mind and state of nature we

use repeated application of the theory of Anscombe & Aumann, which states that,

assuming the DM agrees to the relevant axioms outlined in Subsection 2.2.1, there

exists a unique utility function (up to a positive linear transformation) that is in

agreement with the DM’s preferences, regardless of whether decisions are seen as

horse lotteries or as roulette lotteries. Furthermore, the utility of a non-degenerate

decision is equal to the probability weighted average of the utilities of the individual

possible rewards. Formally, we wish to prove the following result:

Theorem 4.2.1

Acceptance of axioms A1-A6 of Subsection 2.2.1 implies that, for a given distribution

Pθ, an adaptive utility function au(·) exists and is the unique function (up to a

positive linear transformation) that satisfies the following two properties:

1. For all d1, d2∈D, d1 � d2 ⇔ au(d1) ≥ au(d2).

2. For all d1, d2∈D and p∈(0, 1), au(pd1 + (1−p)d2) = pau(d1) + (1−p)au(d2)�.

Theorem 4.2.1 is of course a generalisation of the traditional von Neumann & Mor-

genstern expected utility result that was discussed in Subsection 2.2.1, returning

to that case when Pθ is a degenerate distribution. In effect this means that the

adaptive utility function is the DM’s actual utility function for this setting. That is

not to say the adaptive utility function represents the true underlying preferences

of the DM, and only when Pθ is degenerate will this be the case. Rather, the adap-

tive utility function is representing the DM’s preferences over decisions when it is

accepted that true preferences are uncertain and when such uncertainty is modelled

by distribution Pθ.

The proof of existence of the function is straight forward, using both the fact that

possible classical utility functions u(·|θ1), . . . , u(·|θn) exist and that the adaptive util-

ity function is defined in Definition 3.2.1 for a given distribution Pθ. Also, that the

function satisfies property 2 arises as a direct consequence of the analogous prop-
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erty of classical utilities and because expectation is a linear operator. Hence, what

remains to be shown to prove Theorem 4.2.1 is that the adaptive utility function is

the unique function for this setting that satisfies property 1.

In order to proceed we consider a decision outcome set aR that consists of all possi-

ble classical utility values for all possible decisions. This means that, in addition to

a decision being associated with a distribution over R, it will also now be associated

with a distribution over aR. Additional use of Anscombe & Aumann’s result (see

Section 2.2) then means that there exists a unique (up to a positive linear trans-

formation) utility function u∗ : aR → R representing preferences over elements of

aR. Such a utility function, presuming the set of possible classical utility functions

have been scaled to ensure they are commensurable, can simply return the original

value that was the element of aR. Property 2 of a classical utility function can then

be used to extend the preference relation to cover the entire set of decisions that

are equivalent to distributions over aR. However, this is exactly what an adaptive

utility function does in taking the expectation of possible utility values, and so as

the utility function u∗ is unique, it must then be the adaptive utility function.

All that remains is to question whether or not considering the outcome of a decision

as a utility value, and as such an element of aR, affects the rationality of any of

Axioms A1-A6. This is a question the DM must consider herself. However, under

the assumption that such utility values are scaled to ensure commensurability, and

that it is reasonable to consider preferences over hypothetical gambles that can never

actually be played (the DM is not permitted to affect the true value of θ), it would

appear that there is no additional reason for not accepting them. The only possible

query would be whether or not preferences over utility values depend on the state

of mind that occurred. However, this is not the case as once it is assumed that it is

meaningful to compare various classical utility values, decisions are being viewed as

lotteries over numerical values, with preference always being in agreement with the

size of the particular value considered.
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4.3 Constructing Commensurable Utilities

In the previous section we argued that, under the assumption that Axioms A1-A6

are true, the optimal decision for selection is that which maximises the expectation

(with respect to beliefs over preferences) of the various possible utility functions.

However, as we mentioned in Section 3.3, Boutilier [21] demonstrates that such a

decision rule is not invariant to the linear scaling of the possible utility functions.

Furthermore, in defining an adaptive utility and in the arguments of Section 4.2, we

had to assume that the various classical utilities had been suitably scaled to ensure

commensurability. Thus there exists a problem in determining the appropriate scal-

ing of each function to ensure commensurability, i.e., to ensure that different utility

values from differing utility functions can be meaningfully compared.

To illustrate this problem consider two possible utility functions u(di|θ1) = 2i and

u(di|θ2) = I{i=1} for i ∈ {1, 2} (here I{i=1} is used to represent the indicator function

that returns value 1 if i = 1 and value 0 otherwise). Assume that prior beliefs

are such that P (θ = θ1) = P (θ = θ2) = 0.5, so the adaptive utility maximiser

should select decision d2. However, the function ũ(di|θ2) = 3I{i=1} is a positive

linear transformation of u(di|θ2) = I{i=1}, and thus represents exactly the same

preferences under θ2. Yet when ũ(·|θ2) is used, the adaptive utility maximiser should

select decision d1. The issue then is, knowing that both u(·|θ2) and ũ(·|θ2) (and also

the infinite number of alternative positive linear transformations of u(·|θ2)) represent

exactly the same preference ordering over the set of decisions, which is appropriate

for performing our adaptive utility calculations? Clearly we have to be careful as

each of u(·|θ2) and ũ(·|θ2) leads to the selection of a different decision.

Boutilier [21] resolved this problem by making an assumption of extremum equiv-

alence. This assumption requires that, under each possible utility function, there

exists the same most favourable reward r∗ and the same least favourable reward r∗.

Furthermore, it is also required that each possible utility function is normalised so

as to give the same utility value for r∗ and the same utility value for r∗.
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When extremum equivalence does hold Boutilier shows that, by viewing the decision

problem as the selection of a compound gamble in which the first stage is a gamble

over the utility function and the second a standard gamble over rewards (similar

to our repeated application of Anscombe & Aumann’s theory in Section 4.2), there

exists a method for scaling classical utilities so that commensurability is possible.

This assumption of extremum equivalence, however, is unreasonable for many deci-

sion problems. For example, we may wish for a particular state of mind to represent

a preference reversal. This could indeed be the case in Example 3.1.1, where one

state of mind may represent a preference for apples, whilst an alternative leads to

a preference for bananas. Furthermore, even in situations where it is reasonable

to assume that there exists a reward that is certainly considered best and another

that is certainly considered worst, we may wish for the strength of preference, with

respect to at least one more option, to vary.

As was discussed in the previous section, an adaptive utility function is an actual

utility function, ranking decisions by their expected utilities (under the assumption

of commensurability) with respect to beliefs over the correct preference ranking as

determined by the state of mind θ. For this reason we can construct an adaptive

utility function in the same way as classical utilities are traditionally constructed.

To do this, first assume that (r∗, θ∗) is the best reward and state of mind pair (i.e.,

receiving reward r∗ if θ∗ were true would be at least as preferable to receiving any

other reward under any other state of mind), and that (r∗, θ∗) is the worst reward

and state of mind pair (i.e., receiving reward r∗ if θ∗ were true is at least as less bad

as receiving any other reward under any other state of mind). Under this assumption

the adaptive utility value of any other reward and state of mind pair (r, θ) is the

number p ∈ [0, 1] such that the DM is indifferent between receiving r under state

of mind θ for certain, or playing the gamble paying r∗ under state of mind θ∗ with

probability p and r∗ under state of mind θ∗ otherwise.

Before continuing it is important to note that this construction method, and the
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method suggested by Boutilier, requires the DM to consider preferences over reward

and state of mind pairs. Indeed, in doing this we are now viewing the state of

mind as an attribute of decision outcome, rather than as simply a part of the state

space. This task is far from trivial, requiring the DM to make hypothetical choices

that can not be played in reality (the DM is not permitted to choose the true value

of θ). Although introducing a state of mind makes the task of utility elicitation

harder, the assumption that hypothetical choices can be made is also included in

the Completeness Axiom A1 of classical utility theory (see Section 2.2). Neverthe-

less, in an adaptive utility setting the DM must agree to comparability between all

distributions over possible reward and state of mind combinations.

The requirement to consider distributions over reward and state of mind pairs is

more than what is required when utility is not uncertain, and we note that the

implication of repeated use of Axiom A1 in the construction of an adaptive utility

function requires not only that there is a system of classical orderings (one for each

value of θ), but that these be grouped and combined together when decisions are

considered under differing values of θ. The alternative is not to use Axiom A1,

leading to interval utility theories as discussed in Chapter 2 (the cost being that the

DM may be presented with a situation without a full preference ordering over the

set of decisions).

It is assumed that in applications of adaptive utility theory, a DM will select various

possible classical utility forms through relevant properties that the state of mind

utility parameter will introduce into the problem. Formally, however, a DM should

be aware of the influence this parameter has on reported preferences, and perhaps

this task may be made easier by providing a description of what the state of mind

actually represents.

For example, in our apple and banana example we could say that one state of mind

represents the situation where “bananas are just as nice as my favourite food”,

whilst another could represent the situation where “bananas are as bad as my least
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favourite food”.

For more interesting problems, in particular with many or even an infinite3 amount

of possible values for θ, this task becomes increasingly difficult or even impossible.

In this case it would appear that there is no other possibility than to return to

selecting possible classical utility functions because of appropriate properties they

have.

The construction method that assigns adaptive utility values by considering prefer-

ences over lotteries that have as their return a reward and state of mind pair, bounds

all adaptive utility values to the interval [0, 1]. However, a suitable transformation

can lead to the function being restricted to any finite interval [a, b] (as an adaptive

utility function, just like a classical utility function, is unique up to a positive lin-

ear transformation). Yet, if the DM really were to use this construction method,

then a major motivation for the use of adaptive utilities is lost, i.e., preferences

over rewards are again assumed to be known outright (even worse there is a greater

number of rewards to consider due to the additional attribute of the state of mind).

Instead, we demonstrate below that in applications where the DM is able to state

her collection of possible classical utility functions, and providing these are scaled

so as to be commensurable, she is be able to create her adaptive utility function

directly from them.

To achieve commensurability of classical utility functions u(r|θ1), u(r|θ2), . . ., u(r|θn)

we constrain them all to fall within the interval [0, 1] and normalise the adaptive

utility function to cover this interval by specifying u(r∗|θ∗) = 1 and u(r∗|θ∗) = 0

(here we implicitly reject the trivial situation where all reward and state of mind

pairs are viewed as equally preferable). Note that in determining r∗ and r∗ it is

sufficient to check only those results that maximise or minimise some classical utility

3A derivation of adaptive utility theory for continuous beliefs over θ has been avoided in this

work, but to enable (in Chapter 6) examination of the effects adaptive utility has on utility diag-

nostics etc., we assume that there is no difficulty in allowing continuous distributions over θ.
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function. We then scale each classical utility function u(r|θk) as follows:

With the notation (p1a1, . . . , pnan) representing the lottery paying ai with probabil-

ity pi, and (rk, θk) representing receiving rk when θk is the true state of mind:

• If u(r|θk) is such that u(r1|θk) = u(r2|θk) for all r1, r2 ∈ R, then we set

u(r|θk) = p with p ∈ [0, 1] such that
(
1(r, θk)

)
∼
(
p(r∗, θ∗), (1− p)(r∗, θ∗)

)
.

• Otherwise there exists rθk , rθk ∈ R such that, for any other r ∈ R, we have

u(rθk |θk) ≥ u(r|θk) ≥ u(rθk |θk) and strict relation u(rθk |θk) > u(rθk |θk). We

scale such a utility function by using the two constraints u(rθk |θk) = qθk and

u(rθk |θk) = q
θk

, where qθk , qθk
∈ [0, 1] are respectively determined by con-

sidering the lottery making
(
1(rθk , θk)

)
∼
(
qθk(r

∗, θ∗), (1 − qθk)(r∗, θ∗)
)

and(
1(rθk , θk)

)
∼
(
q
θk

(r∗, θ∗), (1− q
θk

)(r∗, θ∗)
)

true.

Under this scaling of classical utilities, commensurability is ensured without the

assumption that extremum equivalence holds. The following example illustrates how

knowledge of the form of each of a collection of classical utility functions simplifies

formulation of the adaptive utility function.

Example 4.3.1

A DM has been given a diagnosis for which there are several incompatible treat-

ments. The result r in this scenario is a two dimensional vector (s, t), with s mea-

suring severity of the side-effect and t measuring the relative time until complete

recovery. Both s and t run between 0 and 1, with a higher score representing a better

situation. The DM has no experience of requiring such medical treatment and is

thus uncertain over her preferences for different possible values of multi-attributed

r. Hence we assume that her two possible states of mind are:

• θ1: It is most important the DM recovers as quickly as possible.

• θ2: The DM views recovery time as only being fairly important.
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We assume that these possibilities are represented by a positive linear transformation

of the classical utility functions u(r|θ1) = t and u(r|θ2) = 0.5t + 0.5s, respectively,

and will seek to scale these functions in order to ensure they are commensurable.

Rather than trying to construct an adaptive utility function based on comparing all

combinations of possible results r and possible states of mind θ, we aim to find a

suitable scaling of the above classical functions so that au(r) = Eθ[u(r|θ)]. First the

DM must provide the best and worst combination of r and θ. Suppose that these

are (r∗, θ∗) =
(
(1, 1), θ1

)
and (r∗, θ∗) =

(
(0, 0), θ1

)
, respectively. As both of these

relate to the case where θ = θ1, we scale the function u(r|θ1) to cover the interval

[0, 1] which, as it currently does so, requires no alteration.

Next the DM considers the best and worst results under θ2. These are again the

pairs (1, 1) and (0, 0) respectively. We now determine probability values qθ2 and

q
θ2

such that both the relations
(
1
(
(1, 1), θ2

))
∼
(
qθ2
(
(1, 1), θ1

)
, (1− qθ2)

(
(0, 0), θ1

))
and

(
1
(
(0, 0), θ2

))
∼
(
q
θ2

(
(1, 1), θ1

)
, (1− q

θ2
)
(
(0, 0), θ1

))
hold. Assuming that, upon

consideration, the DM assigns qθ2 = 0.7 and q
θ2

= 0.2, we are able to determine the

values of constants a and b in the generic form for a utility function representing

the same preferences as u(r|θ2), i.e., u(r|θ2) = a(0.5s+ 0.5t) + b.

The scaling is then fixed by finding constants a and b which simultaneously solve

the equations a
(
0.5(1) + 0.5(1)

)
+ b = 0.7 and a

(
0.5(0) + 0.5(0)

)
+ b = 0.2. This

leads to b = 0.3 and a = 0.4, and provides us with our scaling for u(r|θ2), i.e.,

u(r|θ2) = 0.4(0.5s+ 0.5t) +0.3. To determine au(r) only the DM’s subjective beliefs

P (θ = θ1) = 1− P (θ = θ2) are now required. �

Example 4.3.2 below also illustrates this system for construction of an adaptive

utility function, and is specifically concerned with uncertainty over the diagnostic

of risk aversion (a concept later discussed in Chapter 6).
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Example 4.3.2

We assume that R = [0, 100], θ ∈ {10, 20, 30}, and that classical utilities are such

that u(r|θ) = aθ log(r + θ) + bθ with aθ > 0 (here θ influences local risk aversion

and aθ and bθ set the scale). To place these utility functions on a suitable scale to

be used in constructing the adaptive utility function, we make the assumption that,

under any value of θ, u(100, θ) = 1 and u(0, θ) = 0 (this is extremum equivalence).

This provides 6 independent linear equations with 6 unknowns:

a10 log(110) + b10 = 1, a10 log(10) + b10 = 0

a20 log(120) + b20 = 1, a20 log(20) + b20 = 0

a30 log(130) + b30 = 1, a30 log(30) + b30 = 0

This results in (where numeric answers are given to 2 decimal places):

a10 =
1

log(110)− log(10)
= 0.96, b10 = − log(10)

log(110)− log(10)
= −0.96

a20 =
1

log(120)− log(20)
= 1.29, b20 = − log(20)

log(120)− log(20)
= −1.67

a30 =
1

log(130)− log(30)
= 1.57, b30 = − log(30)

log(130)− log(30)
= −2.32

Appropriately substituting these into the functions u(r|θ) results in ensuring com-

mensurability.



Chapter 5

Applications

This chapter focuses on the use of the adaptive utility concept in sequential decision

making. We consider implications for decision selection strategies and possibilities

for the DM to learn about her utilities as she progresses through her decision se-

quence. The chapter concludes with discussion and examples of the use of adaptive

utility in the specific area of reliability theory.

5.1 Sequential Decision Problems

In a one-off solitary decision problem, the use of adaptive utility and the permit-

tance of uncertainty over preferences does not lead to any difference in selection

strategy from that arising from the assumption that the DM’s true utility func-

tion equals the expectation of possible utility functions. Adaptive utility is thus

a generalisation of classical expected utility theory that is of little benefit in this

setting. Nevertheless, there are many situations in life where a DM is required to

make a sequence of decisions, and where the outcome and selection of previous de-

cisions may well be relevant for changing beliefs and options for future decisions.

In such situations connections over the whole sequence of choices are relevant when

determining an optimal decision selection strategy. The solution to such sequential

decision problems is often the focus of Bayesian statistical decision theory (see, for

example, [15,34,46]).

55
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The type of problem under consideration in this chapter can be described in the

following way. We assume that the DM has to make a sequence of n decisions

d1, d2, . . . , dn, and that following the selection of each decision di the DM receives

a return ri. Furthermore, when considering the selection of decision di, the DM is

aware of past decisions d1, d2, . . . , di−1 she had previously selected and the returns

r1, r2, . . . , ri−1 they respectively led to. The DM’s objective is to maximise the

utility of the entire sequence of decisions given by a function u(d1, d2, . . . , dn). An

influence diagram of a two stage problem is given in Figure 5.1 below, with the arc

connecting node r1 to r2 representing the setting that beliefs over outcome r2 of

decision d2 can depend on the outcome r1 that was observed following selection of

decision d1. Also note that, in order to keep the diagram reasonably simple, Figure

5.1 now omits the state of nature ω; however, in a full graphical representation ω

would be included as an additional node with arcs entering both r1 and r2.

Figure 5.1: Influence diagram for classic 2-period sequential problem.

Interesting problems in this area arise when there is initial uncertainty over what

the actual outcome of any decision selection will be, but where observations of past

outcomes are relevant in determining likely outcomes of future decisions. For this

reason it can often be beneficial, in a decision sequence of suitable length, to initially

select decisions in which there is large uncertainty as to the likely outcome. The

reason for this is that the observation of the initial return provides information that
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can be used in future decision selection.

If a decision which has large prior uncertainty over its outcome is selected and is

noted to lead to a beneficial outcome, then it would appear that the selection of that

decision will lead to a beneficial outcome in general, and so it should be selected

again. However, if the outcome of such a decision was seen to be bad, then the DM

can learn about this and avoid that decision in the future, hence only suffering the

bad outcome once.

Determining an optimal selection strategy for a finite length decision sequence is a

dynamic programming problem, and is solved through the use of backward induction

and Bellman’s Equation [12, 13]. This solution requires the DM to consider all

possible histories she may have observed by the time she comes to selecting the

n-th decision. She then determines what would be the optimal decision dn for

each possible decision history, and this will form her decision strategy for that time

point. Formally, given a decision history Hn that details all her past decisions

d1, . . . , dn−1 and the rewards r1, . . . , rn−1 that they respectively led to, the DM

determines a function πn which takes as its argument Hn and returns a feasible

entry from Dn(Hn), the set of decisions available at the n-th selection point given

history Hn.

Following dynamic programming, with knowledge of πn the DM seeks to determine

πn−1, a function that takes history Hn−1 as its argument and returns an element

of Dn−1(Hn−1). This is done by considering the DM’s beliefs about the outcome of

various decisions in Dn−1(Hn−1) and the likelihood of moving to any of the histories

in Hn (and what that entails for the decision dn that will be selected according

to optimal strategy πn). Continuing in this manner of considering current beliefs

and noting future optimal strategies permits the DM to keep determining optimal

strategies for earlier decisions until eventually she has found π1.

Formally, with U i = u(d1, . . . , di, πi+1(H i+1), . . . , πn(Hn)) and Un = u(d1, . . . , dn),
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the DM should select decision strategy πi, for i = 1, . . . , n − 1, in the following

manner:

πi(H i) = arg max
di∈Di(Hi)

EHi+1|Hi,di [· · ·EHn|Hn−1,πn−1(Hn−1)[U
i]] (5.1)

The DM should select πn such that:

πn(Hn) = arg max
dn∈Dn(Hn)

Un (5.2)

Equation (5.1) contains a nested sequence of expectations, each of which requires

the DM to consider a distribution of the form PHj |Hj−1,πj−1(Hj−1). This conditioning

argument implies that given Hj−1 and πj−1(Hj−1), only the reward rj−1 following

decision πj−1(Hj−1) remains uncertain. Also note that both Equations (5.1) and

(5.2) use the more formal version of utility as a function with argument the decision

that was selected. As mentioned in Subsection 1.1.1, however, one usually considers

a utility function as a function with the return from the selected decision as its

argument, and in Equation (5.2) it is the history Hn that is used to determine

updated beliefs for the return rn following decision selection dn.

In an adaptive utility setting, we no longer assume that the DM’s true preferences are

known, but rather that her actual utility function u(d1, . . . , dn) for decision stream

d1, . . . , dn is uncertain, with such uncertainty being represented by uncertainty over

the state of mind θ. In such a situation, Chapter 4 demonstrated that the DM

should make decision selection by seeking to maximise their adaptive utility function

au(d1, . . . , dn) = Eθ[u(d1, . . . , dn|θ)].

However, if the DM is not able to learn about θ as she is moving through her

decision sequence, then once again we return to the classical situation, with the

only difference that Eθ[u(d1, . . . , dn|θ)] replaces u(d1, . . . , dn) in Equations (5.1) and
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(5.2). For this reason we will assume in this chapter that the DM is able to learn

about θ as she progresses through her decision sequence. Section 5.2 will look into

the specific details of how this could be the case.

Assuming the DM is able to learn about θ as she moves through her decision se-

quence, by the time she considers decision dj, prior distribution Pθ will no longer be

relevant in representing beliefs over her state of mind. Instead posterior distribution

Pθ|Gj should be used, with Gj the additional information about θ received by the

time dj is to be selected. This is different to the classical theory, as now the func-

tion that the DM is seeking to maximise, au(d1, . . . , dn), will no longer be assumed

constant over the duration of the decision sequence, hence providing motivation for

referring to this utility function as an adaptive utility function. Nevertheless, for-

mally we should state that an adaptive utility function also uses the DM’s beliefs

about state of mind θ as an additional argument, in which case (viewing an adaptive

utility as a function of both decision selection and beliefs over θ) the function to be

maximised does not change. However, as opposed to decisions, the DM is not free

to select her beliefs over θ and as such we have chosen to drop its inclusion as a

formal argument of the function.

In order to learn about θ we assume the DM observes utility information zi following

selection of decision di, and an influence diagram representing this situation for a 2-

period sequential decision problem is given in Figure 5.2. Note that, as with Figure

5.1, a full representation should include a node for ω with arcs entering both r1 and

r2, but this has again been removed in order to simplify the diagram. Also note that

Figure 5.2 represents a situation in which the information learnt about the DM’s

utility function, as represented by the z1 node, does not depend on the reward r1

obtained following selection of decision d1. However, if the utility information did

depend on the actual reward obtained, as may be appropriate in some situations,

then an additional arc would be required going from node r1 to node z1.



5.1. Sequential Decision Problems 60

Figure 5.2: Influence diagram for an adaptive utility 2-period sequential problem.

The utility information zi can be anything that the DM deems relevant for learning

about her true preferences as characterised by her state of mind θ. Depending on

the particulars of the problem zi may or may not depend on the reward ri obtained

following the selection of decision di, but as will be discussed below, interesting

adaptive utility problems only arise if zi does in some way depend on the actual

selection of decision di. Section 5.2 will further mention how such utility informa-

tion may arise and will also discuss how the learning of utility takes place in some

literature examples that consider a similar setting.

As discussed above, Figure 5.2 explicitly includes an arc from d1 to z1, meaning that

the information received about utility parameter θ will depend on the decision d1

that is chosen. However, in [29, pp.133-135] Cyert & DeGroot make the following

statement (where they use notation such that θ is the uncertain utility parameter

and δi is the i-th period decision):

“Indeed, even in a two-period problem in which ... the information

obtained about θ in the first period does not depend on which decision δ1

is chosen or which consequence r1 occurs, the decision maker must take

possible changes in utility into account when choosing δ1 ... The impor-
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tant feature of this result from our present point of view is that when

the decision maker chooses δ1
1, he or she must consider the full range of

possible new expected utility functions ... that might be obtained from

the observation ... It should be noted that both δ1 and δ2 will be differ-

ent from the decisions that would be optimal in traditional theory ... It

should be emphasised, moreover, that even though the decision maker

has no control over the information about θ that will be generated in the

first period, the optimal δ1 in our approach will also be different from

the one in traditional theory.”

We believe Cyert & DeGroot are mistaken in this statement. We interpret it as

indicating that a different d1 could be selected if utility information were expected

after its selection, even if such information is independent of d1. However, this would

be similar to suggesting that prior beliefs over what will be the DM’s posterior

distribution over a parameter of interest, following observation of relevant data, can

be different to the current prior distribution over that parameter.

In situations where the selection of d1 has no influence on the observation z1 that is

informative about θ, the DM should select the same decision that they would have

selected if it were assumed that no information about the state of mind would be

made available. Only if the DM is able to influence z1 by selection of d1 would there

be an additional value to selecting a particular d1 due to the information gained

over θ. This would appear the more interesting case due to its difference to classical

theory, and hence the inclusion of the arc between d1 and z1 in Figure 5.2.

If utility information is independent of decision selection, the sequential adaptive

utility setting is similar to the Assumed Permanence approach of Witsenhausen

[108] that was discussed in Subsection 2.3.3. In that theory it was accepted that

1In the original text this term is given as θ1, yet we believe this to be a typing error. Also,

omissions in the quotation, represented by ellipses, refer to material irrelevant to this discussion.
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future preferences may not be the same as current preferences, but that decisions

should be made under the assumption that they will be the same. Once further

information is known, new preferences are identified and new decisions are made

under the assumption that such preferences will again remain constant, and this

form of decision making continues indefinitely.

In the adaptive utility setting we do not require true preferences to change, instead

it is only assumed that they are uncertain. Yet, when utility information is inde-

pendent of decision selection, decisions should be made under the assumption that

true preferences are equal to current expectations, even though it is accepted that

in the future there may be reason for the DM to change her beliefs over her true

preferences. When such information is gained, expectations of true preferences may

change and future decisions will again be selected under the assumption that true

preferences are equal to the new expectations, and so on. This idea of equating

expected future preferences with current expected preferences, but permitting the

possibility that in the future the DM’s expectations may be found to be incorrect,

is analogous to Goldstein’s Temporal Coherence concept for comparing current and

future beliefs (see, e.g., [50]).

In [29], Cyert & DeGroot restrict attention to offering a solution to the two-period

sequential decision problem for uncertain utility. However, following a similar ar-

gument as outlined above for the classical sequential problem, we can provide the

solution to a generic n-period problem. In this case, assuming independence between

the state of nature and the state of mind, we use aH
j to represent the relevant deci-

sion making history prior to selection of decision dj, i.e., aH
j lists the past decision

sequence d1, . . . , dj−1, the outcomes r1, . . . , rj−1, and utility information z1, . . . , zj−1

that these respectively led to. Furthermore, under the notational convention that

aU
i = au(d1, . . . , di, πi+1(aH

i+1), . . . , πn(aH
n)) and aU

n = au(d1, . . . , dn) (where the

expectation over θ in the adaptive utility is performed with beliefs conditioned on

history aH
i), the DM should select decision strategy πi, for i = 1, . . . , n− 1, in the

following manner:
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πi(aH
i) = arg max

di∈Di(aHi)
E
aHi+1|aHi,di [· · ·EaHn|aHn−1,πn−1(aHn−1)[aU

i]] (5.3)

The DM should select πn by:

πn(aH
n) = arg max

dn∈Dn(aHn)
aU

n (5.4)

Note that Equation (5.3) contains a nested sequence of expectations, each of which

requires the DM to consider a distribution of the form P
aHj |aHj−1,πj−1(aHj−1). This

conditioning argument implies that given aH
j−1 and πj−1(aH

j−1), only the reward

rj−1 and utility information zj−1 following decision πj−1(aH
j−1) remain uncertain.

Also note that in both Equations (5.3) and (5.4) we have again used the more formal

version of an adaptive utility function as a function that has as its argument the

decision that was selected. Again, however, it is presumed that it would be easier

for elicitation purposes to consider the adaptive utility function as a function with

argument the return from the selected decision, with aH
n used to determine updated

beliefs for the return rn in Equation 5.4.

Equation (5.3) details how the DM should select decisions given the history she

has so far observed. The DM starts by considering Equation (5.4) and determines

the final decision she would make for each conceivable history aH
n that could have

been observed by that time. Once the DM has determined decision strategy πn, she

considers how she would make decision dn−1. Now Equation (5.3) is used and the DM

determines the optimal decision dn−1 for all possible histories aH
n−1 that she would

have observed by that time. This is done by considering updated beliefs over the

likely reward outcome for each decision, but also now by considering updated beliefs

over θ. Determining the probability of moving to any history aH
n for each decision

dn−1, the DM seeks to pick decisions to maximise expected adaptive utility. This

process continues backward through decisions until an optimal first period decision

is found. The important difference in the adaptive utility setting is that, provided

decision selection influences the utility information that is to be received, the DM
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can find decisions which, whilst under current beliefs over preferences would appear

to be sub-optimal, are in fact optimal due to the greater source of information over

preferences they are likely to reveal. That is to say, adaptive utility allows the DM

to be ‘forward looking’ in both learning of decision outcomes and of preferences. We

illustrate this using the Apple or Banana example (see Example 3.1.1).

Example 5.1.1

The DM is seeking to determine whether to select an apple or banana, but is un-

certain of her preference relation between the two. We assume in an n-period

problem that Di = {dA, dB}, with di = dA representing selection of an apple in

period i, and dB the selection of a banana. The DM’s adaptive utility function

is au(d1, . . . , dn) = Eθ[
∑n

i=1 I{di=dA} + θ
∑n

i=1 I{di=dB}] = Eθ[k + (n − k)θ], with k

the number of times di = dA (note that this function does not distinguish between

ordering in the decision sequence, only the number of times decisions are selected).

Here θ represents the additional increase in utility from selecting di = dB, and we

assume commensurable utility (see Section 4.3) such that θ ∈ {θ0 = 0, θ1 = 2}.

We assume that selection of the banana informs the DM of her preferences (i.e.,

she becomes certain of the correct value for θ), and that never selecting the banana

means that she never observes any additional information. In this case utility infor-

mation zi will correspond to the value of θ if the decision is made to select a banana,

whilst if an apple is selected no utility information is available. Also assume prior

beliefs P (θ = θ0) = p. In this situation we can consider, for a given length n of the

problem, a value for p such that the DM will make initial decision selection d1 = dB.

Certainly this will always be the case if p ≤ 0.5, as this represents a situation where

prior beliefs are such that the DM expects that she will enjoy the banana more than

the apple. However, even when p > 0.5, meaning the DM expects that she will not

prefer the banana over the apple, there exists a smallest value nB such that, for all

n ≥ nB, the DM will find that it is still optimal to select the banana in the first

period.
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We only consider possible decision sequences in which, if decision dB is ever chosen,

then it must be chosen in the first period. We will demonstrate the irrationality of

selecting d1 = dA and then, for some i > 1, selecting di = dB when we discuss value

of information in Chapter 6 (see Example 6.1.3). Hence, selecting d1 = dA means

that di = dA for all i = 1, . . . , n and so, for an n-period problem, the adaptive utility

return will be au(d1 = dA, . . . , d
n = dA) = n.

However, if d1 = B, then with prior probability p the DM discovers that her true

preferences are for apples (the case that z1 = 0), otherwise she discovers that her

true preferences are for bananas (the case that z1 = 2). In the former case the DM

will select di = dA for all i > 1, and in the latter the DM will select di = dB for all

i > 1. This results in an expected adaptive utility value of au(d1 = dB, d
2, . . . , dn) =

p(n− 1) + 2(1− p)n. Hence, for n ≥ 2 the DM should select d1 = dB when p is such

that p < n
n+1

. Clearly n
n+1

is a monotonically increasing function of n with limit

equal to 1 and hence, provided the DM accepts the possibility that bananas could

be preferred to apples (p 6= 1), there will be some smallest value nB = p
1−p for the

length of the decision sequence from which on it would be optimal to select d1 = dB.

�

The use of backward induction for solving dynamic programming problems suffers

from the so-called ‘curse of dimensionality’ (see Bellman [13, p.XII]), the effect of

which means that a small increase in the number of variables in the sequential prob-

lem leads to a drastic increase in the number of calculations required for its solution.

It is computationally very expensive to solve dynamic optimisation problems in this

manner when the dimensions of state variables are large. This is the case for classical

problems, where the DM has to calculate a nested sequence of expectations before

finding the optimal decision strategy. In the case of generalised distributions (where

a mixture of probability densities and discrete probabilities are used to represent

beliefs) it may be that, given the current state in the solution of integrals, this is

an impossible task and a solution must instead be approximated. The additional
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requirement in adaptive utility of considering a possibly multi-dimensional state of

mind enlarges the dimension of the problem’s variables, thus exasperating the sit-

uation. Hence in using adaptive utilities the DM should be aware that the benefit

of permitting uncertain preferences comes with an increased cost in computational

complexity.

The computational complexity of solving an adaptive utility problem is currently the

greatest hindrance in its use for solving real-world problems. Nevertheless, it may

well be possible to identify forms of utility functions that are not only reasonable

for modelling possible preferences, but which also greatly reduce the computational

requirements of solution algorithms. Just as the theory of conjugate probability

distributions simplifies computation of posterior distributions by simply keeping

track of a few summary statistics (see, e.g., Raiffa & Schlaifer [84]), it may be

possible to identify forms of utility functions that allow a DM to quickly determine

the value of a nested sequence of expectations. A similar problem was considered by

Lindley [70], who sought to find a conjugate family of utility functions that would

be suitably ‘matched’ to distributions of the exponential family, and which would at

the same time also be suitable for modelling realistic preferences. Unfortunately, the

ideas which Lindley employs for easily determining the expected utility of a solitary

decision do not appear to generalise readily to the sequential case, and there appears

to have been no further development in the literature for identification of a conjugate

utility family for this situation.

To demonstrate what might be possible, consider the polynomial utility function

that takes the following form:

u(r1, . . . , rn|θ) =

m0∑
k0=0

m1∑
k1=0

· · ·
mn∑
kn=0

ak0,k1,...,kn(r1)k1 · · · (rn)knθk0 (5.5)

This function appears as a polynomial in all the arguments of r1, . . . , rn, and θ.

However, as demonstrated in Appendix C, it has the property that, when beliefs take
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the form of a series of Normal distributions and updating occurs through Normal-

Normal conjugacy, it allows a closed and tractable solution for when we sequentially

take expectations with respect to beliefs over all the variables r1, . . . , rn, and θ.

Although this class of utility functions is not suitable for modelling all realistic

preference relations, there are situations where it would be reasonable. For example,

the utility function u(r1, . . . , rn|θ) =
∑n

i=1 θ
iri is included as a special case and is

suitable for representing the situation where the DM is uncertain of the appropriate

discounting rate θ to be used within the Exponential Discounting Model of sequential

decision making (see Subsection 2.3.1). Another possibility would be if n = 2 and

u(r1, r2|θ) = θu1(r1) + (1 − θ)u2(r2), with ui a known polynomial function of ri.

Here θ may represent an unknown trade-off weight. Unfortunately, however, the

extension to n ≥ 3 is not contained within the polynomial class discussed above,

but may be included if we allow θ to be multi-dimensional and consider polynomials

of its components. In such a case it may well be suitable to use a multi-variate

Normal distribution with the hope that this still allows a similar result to that

discussed in Appendix C.

A further extension for a multi-attribute utility function that does not make such

strong independence assumptions between preferences over return levels in differing

periods is that of the multiplicative utility function:

u(r1, . . . , rn|θ) =
[
Πn
i=1[θ∗θiui(r

i) + 1]− 1
]
/θ∗ (5.6)

Here the parameters θ = (θ1, . . . , θn) (with θi ∈ (0, 1)) and θ∗ >−1 represent non-

zero scaling constants (see, e.g., Keeney [63]). Again, provided ui is a polynomial

function of ri and that only two components of θ are uncertain, this function is a

member of the polynomial class discussed above. If more than two of the θi are

uncertain, then again there may be a possibility of using a multi-variate Normal

distribution for θ.
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Despite those situations mentioned above, there are many preference relations that

can not be represented by a polynomial utility function, e.g., exponential or log-

arithmic utilities, the latter of which is a common assumption for the form of a

DM’s preferences over monetary returns (see Bernoulli [18]). Nevertheless, we can

approximate such functions through Taylor Polynomials, which have been previ-

ously considered for approximating utility functions by Diamond & Gelles [36] and

Hlawitschka [55].

For an infinitely differentiable function f of a single variable x, the Taylor Series is

defined on an open interval around a as T (x) =
∑∞

n=0
dnf(x)
dxn
|x=a(x − a)n/n!. The

function f can then be approximated to a specified degree of accuracy by taking

a partial sum of this series, and each such partial sum will be of the form of a

polynomial in x. This result can also be generalised for approximating multi-variate

functions, hence allowing a greater class of utility functions to be approximated by

the polynomial class discussed above.

5.2 Utility Information

In the previous section it was argued that, when using adaptive utility, interesting

problems are of a sequential nature, and are such that the DM is able to influence

the information she receives about her state of mind θ through appropriate decision

selection. We now discuss a few forms that such information may take.

In the Apple or Banana problem, last encountered in Example 5.1.1, it was assumed

that θ was fully revealed once the DM made the selection of a banana. Such a

situation may well model a sequential decision problem in which there are one or

more reward types that have never been experienced by the DM, and in this set-

ting the selection of decisions leading to such novel rewards provides the DM with

valuable information about her preferences. Indeed, in this case, and depending on

the duration of the sequential problem, it will be of benefit for the DM to begin her
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decision sequence by selecting decisions that are likely to lead to such novel rewards

so as she may learn of her preferences for them. Only once all reward types have

been experienced should the DM begin to select decisions that have known higher

utility.

It may be, however, that there is residual error and only a noisy observation of the

true utility value is possible. For example, this could be the case if θ represented

the true utility value of a perfectly ripe banana, and the DM is unsure if she had

consumed an under-ripe or over-ripe banana. In this case the state of the banana

being either under-ripe, over-ripe, or perfect could be represented by an unobserv-

able state of nature, and a likelihood function then identified for determining the

probability that the observation zi equaled the true value of θ. If information about

θ is indeed based upon such noisy observations, then the DM will never be certain of

her true preferences. Moreover, the usefulness of such information (as measured by

its value, a concept to be introduced in Chapter 6) will be less than for observations

which inform the DM of the true value of θ, thus the duration of the sequential

problem may have to be increased to warrant initial selection of a decision that has

uncertain utility.

In [29], Cyert & DeGroot suggest that a DM may be able to determine whether the

actual utility value was above or below that which had been previously expected,

and that this is then a source of information relevant in updating beliefs over state

of mind θ. If true preferences are additive, u(d1, . . . , dn) =
∑n

i=1 ũ(di), with ũ

considered a one-period utility function that the DM is uncertain of. In this case

the suggestion of Cyert & DeGroot can be incorporated through categorical data

zi, arising following selection of di, such that zi = 0 if aũ(di) < ũ(di) and zi = 1

if aũ(di) ≥ ũ(di). The true value of ũ(di) does not need to be known, indeed, that

case was discussed above where the DM observed true utility value by appropriate

decision selection. Instead, all that is required is to know whether or not aũ(di)

was greater or less than ũ(di), or in other words, whether the adaptive utility was

based on beliefs that turned out to be optimistic or pessimistic (this form of utility
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information will be employed in Example 5.3.2).

We refer to the case zi = 1 as a negative surprise, for it represents a situation

where the DM anticipated to achieve a greater utility amount than was actually

experienced. Similarly, the case zi = 0 will be referred to as positive surprise, for

the DM anticipated a lower utility level than that which was actually noticed.

There are many ways in which information about utility can be gained following

decision selection. It will of course depend on the particular problem under con-

sideration, and examples from the literature on problems similar to the adaptive

utility setting developed here are given below. However, once a form of information

has been identified (and we appreciate that this can be a difficult task), a likelihood

function can be devised detailing the probabilistic connections between di, zi, ri,

ω and θ. Bayesian updating can then be performed following the observation of zi

from selection of di and outcome ri, and relevant posterior probabilities concerning

θ determined in the usual way (see Section 5.1).

Crawford & Shum [26] and Erdem & Keane [39] consider sequential decision prob-

lems where attribute values of possible returns can be uncertain. In the case of [26]

the decision is which anti-ulcer drug prescription should be given, and the attributes

of the rewards are the curative effects and the symptomatic effects of the drug cho-

sen. In this case learning occurs through direct prescription experiences, leading to

noisy signals of true values.

The work of Erdem & Keane was discussed in Section 3.3 and uses known data

to model the decision making strategy of US customers. The decision relates to

selection of a liquid detergent brand, and there is uncertainty over various attributes

of those brands. In addition to direct experience of using a specific brand, learning

also occurs through external advertisements the DM had been subjected to. Both

these sources of information are assumed to provide noisy signals of correct values,

and Erdem & Keane derive a functional form for a Bayesian learning framework.
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A note should be made here that both [26] and [39] claim that utility is uncertain only

because of uncertainty in some specific attribute levels. Indeed, [39, p.4] contains

the quote “the utility to be derived from a product is not known with certainty at

the instance of purchase due to consumer uncertainty about brand attributes”. This

is different to the type of uncertainty in utility being discussed in this thesis, where

even if attributes of rewards are known, we permit the DM to remain uncertain of

her preferences.

Finally, and as described in Section 3.3, Chajewska et al. [22] also consider a similar

problem to the adaptive utility setting discussed here. However, whilst we consider

the situation of a DM being uncertain of her own preferences, Chajewska et al.

consider the problem an analyst faces when seeking to determine the utility function

of a medical patient. The patient is considering some form of prenatal test for

diagnosing the presence of a chromosomal abnormality, and her utility function

is assumed to have a multi-attribute argument, with attributes consisting of fetus

status, possibility for loss of fetus, knowledge of fetus status, and possibility for

future successful pregnancy.

The analyst faces a sequential decision problem in which decisions relate to questions

the analyst can put forward for determining the patient’s preferences. Such questions

are of the form of whether the patient would agree or disagree to taking part in some

specified standard gamble (Section 1.1.1 discusses how utility values can be elicited

in this manner), and a prior distribution about the patient’s utility function is

formed from information held about a population of similar patients. The feedback

from such questions places constraints on the patient’s true utility function and

provides information regarding its form. The analyst decides which question to ask

by seeking to maximise expected value of information (see Section 6.1) from the

feedback, continuing in this process until no question would provide expected value

above some specified threshold.
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5.3 Adaptive Utility in Reliability Problems

The possible use of adaptive utility for decision making within the area of reliability

theory was illustrated by Houlding & Coolen [56], and the material within this

section draws heavily upon that work. The use of Bayesian statistical decision theory

for solving system reliability problems has been applied, for example, in [23,75,78],

and further references are available therein. However, to permit uncertainty over

preferences through the use of an adaptive utility function is a novel approach which

prevents unnecessary restriction to an assumed measure of preference.

Classical utility theory assumes known preferences over all possible outcomes. How-

ever, when considering vague or novel outcomes this is often an unreasonable as-

sumption. In reliability theory, the cost of system failure, especially for a newly

designed system, is a possible outcome that a DM may wish to avoid specifying

a fixed constant for. For this reason we concentrate in this section on two exam-

ples in reliability theory where adaptive utility could be considered to be of use.

As mentioned in Section 5.1, the solution algorithm for sequential adaptive utility

problems is intractable, currently making the theory’s use in interesting problems

extremely computationally expensive. Hence we restrict attention to considering

problems consisting of sequences of 3 decisions, with this duration being selected

as it allows demonstration of the differences between classical and adaptive utility

sequential decision making, but also only requires relatively easy computations.

Example 5.3.1 considers a system which has known failure modes, but where sys-

tem failure leads to unknown damage for the manufacturer, e.g., loss of customers,

decrease in reputation, or financial cost for warranty etc. It is assumed that the

manufacturer (DM) has opportunity to fix these failure modes for a known financial

cost, and the decision must then be made whether or not to do so. The decision

problem is thus to determine the optimal strategy of correcting system failures when

damage through non-action is uncertain and with optimality defined by maximis-

ing expected adaptive utility. In this case the adaptive utility setting permits the

DM to be initially uncertain of the trade-off between the loss in reputation and/or
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customers following system failure and the financial cost of fixing failure modes,

with opportunity to learn about this trade-off parameter following trial runs or pilot

schemes.

Example 5.3.1

Consider a newly designed system that has associated with it two known failure

modes, types A and B, which occur independently of each other. First let the time

between decision epochs be split into three periods of equal duration (e.g., three

days or three weeks). Assume that in any given period there is the possibility that

one failure of type A and one failure of type B can occur. Hence, it is assumed

that at most two failures can occur in each period (i.e., at most one for each type of

failure) and the number of failures per type within a decision epoch will be modelled

through a Binomial distribution.

The true state of nature is ω = (ωA, ωB) ∈ Ω = [0, 1] × [0, 1], with ωA and ωB

representing the unknown probabilities of a failure of type A or B, respectively, in

any given period. Prior beliefs are elicited and are such that ωA, ωB ∈ {0.005, 0.1}

with P (ωA = 0.005) = 0.7 and P (ωB = 0.005) = 0.2.

Failure of the system incurs a cost or damage. However, the DM is assumed to

be uncertain over how she will feel about the effects of such a cost, and she does

not currently know whether it will be viewed as Severe (S) or Mild (M). In both

cases the actual cost for a given failure type is known and fixed, it is only the DM’s

perceived attitude towards this cost that is uncertain. For example, each failure of

the system may lead to the loss of a certain number of customers, or may lead to a

certain financial penalty, but the effects that these situations will have are unknown.

Failures of type A or B are both modelled by an independent Bernoulli distribution.

The DM’s state of mind will be denoted as θ = (θA, θB) ∈ Θ = [0, 1] × [0, 1], with

θA and θB respectively representing the true, but unknown, trade-off parameter
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concerning damage from system failure of type A or B and the known financial cost

of permanently fixing them. Prior beliefs over θ stipulate that θA, θB ∈ {0.3, 0.7},

with distributions specified by P (θA = 0.7) = 0.8 and P (θB = 0.7) = 0.3.

The first decision occurs immediately and subsequent decisions occur after three

periods each. At each decision epoch the DM can permanently fix one failure mode

(assuming they have not already done so), and hence, depending on the decision

history, the set of all available decisions in period i is given by Di ⊆ {dA, dB, dN}.

Here decisions dA and dB represent the permanent fix of failure modes A or B

respectively, whilst decision dN represents the null decision in which no permanent

fix is undertaken. The set of feasible decision sequences consists of those decision

streams d1, d2, d3 from the set D1 × D2 × D3 where decisions dA and dB appear at

most once (we assume the DM is not permitted to fix a failure type that has already

been permanently fixed).

We do not seek to claim the form that a DM in this situation should take for her

utility function, but to illustrate the theory, and for the purpose of this example, we

will assume that the DM’s utility, once categorised by θ, is the following function of

feasible decision stream d1, d2, d3 and beliefs over state of nature ω:

u(d1, d2, d3|θ) = Eω
[
− 1000(θAωA

3∏
i=1

[1− I{di=dA}] + θBωB

3∏
i=1

[1− I{di=dB}])

−20(gA + gB)
]

(5.7)

Here the terms gA and gB are used to represent:

gA =

 0 d1, d2, d3 6= dA

i if dA selected at epoch i
, gB =

 0 d1, d2, d3 6= dB

i if dB selected at epoch i

(5.8)

This utility function reflects a situation in which the DM prefers low failure rates
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and low probability of any failures being kind S. Also note that observed failures

over the 3 epochs do not lead to any direct loss of utility.

Such a situation could arise when conducting laboratory tests before market launch,

where failures in testing are assumed to be negligible, but where failures following

launch lead to loss (either financial or otherwise) for the company. The utility func-

tion also penalizes the DM for making decisions to fix failures late in the decision

stream. However, by later periods it is expected that more information over uncer-

tain parameters will be available for the DM and so she will be better placed to make

decisions that reflect her true preferences. The state of mind θ = (θA, θB) plays the

role of either increasing or decreasing the importance of probability of system failure

in contrast to the known cost of permanently fixing such failures. The values of con-

stants involved make this problem non-trivial, i.e., it is not immediately apparent

that a specific strategy dominates another. Indeed, once the first decision has been

chosen, all feasible decision streams are optimal for some collection of observations.

Information received between epochs consists of the number of failures that occurred

over the three periods in that epoch, whether they were of type A or B, and also

whether these failures were perceived to be of kind S or M . Such information is

clearly relevant for updating beliefs over ω and θ, and the information received in

epoch i will be represented by zi = {ziAS, ziAM , ziBS, ziBM}. Here zijk represents the

number of failures observed in epoch i that were induced by failure type j and were

perceived to be of severity level k.

This problem can be solved by the adaptive utility algorithm given in Section 5.1,

and the relevant results are summarised below. Table 5.1 allows the DM to de-

termine the optimal final epoch decision strategy π3 given the relevant history up

to that point. Unfortunately some of the expressions are too long to include and

are instead briefly discussed in Appendix B. In Table 5.1, expected adaptive utility

equations are represented by E’s, and these are functions of the observations z1

and z2. L’s represent lists of observed histories. Table 5.2 gives the optimal second



5.3. Adaptive Utility in Reliability Problems 76

Ordered Decision History d3 Expected Utility Max

dA, dB dN -60 Always

dA, dN dB -80 Otherwise

dA, dN dN E1 If history in L1

dB, dA dN -60 Always

dB, dN dA -80 Otherwise

dB, dN dN E2 If history in L2

dN , dA dB -100 Otherwise

dN , dA dN E3 If history in L3

dN , dB dA -100 Otherwise

dN , dB dN E4 If history in L4

dN , dN dA E5 If history in L5

dN , dN dB E6 If history in L6

dN , dN dN E7 If history in L7

Table 5.1: Summary of π3 for Example 5.3.1.

epoch strategy π2 given knowledge of decision strategy π3, and Table 5.3 gives the

optimal initial decision given knowledge of future strategies π2 and π3.

The conclusion is that the optimal first epoch decision is d1 = dB, and further

decisions should be selected as indicated by Tables 5.1 and 5.2. Decision dB is the

optimal first period decision primarily because, based upon prior beliefs, the DM

perceives she will only solve one system failure type, so it is unlikely that both

decisions dA and dB will be included within the decision stream, yet also her prior

beliefs are such that it would be more beneficial if failure type B were fixed as

EωA [EθA [ωAθA]] < EωB [EθB [ωBθB]]. It is unlikely that decisions dA and dB will both

be selected in the sequence because, before making her first decision, the DM can

determine which collection of observations would lead to her making the choice to

fix both failure types. However, under the prior beliefs specified in this example,

such decision histories have small associated probability of occurring.
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Decision History d2 Max Expected Utility Max

dA dB -60 Otherwise

dA dN E8 If history in L8

dB dA -60 Otherwise

dB dN E9 If history in L9

dN dA E10 If history in L10

dN dB E11 If history in L11

dN dN E12 If history in L12

Table 5.2: Summary of π2 for Example 5.3.1.

d1 Max Expected Utility Max

dA -53.1 (1dp)

dB -39.3 (1dp) Yes

dN -52.6 (1dp)

Table 5.3: Summary of π1 for Example 5.3.1.
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As an example of reading Tables 5.1-5.3, consider the history where no failures are

observed in any period. Because the optimal first decision does not depend on

observed histories, the DM selects d1 = dB, so it is only possible to observe histories

in which a failure of type A can occur. In Table 5.2 we only need to consider rows

with decision dB as the decision history, and we check if the history with no failures

of type A is included in list L9 or not. The list L9 contains just two possibilities, one

where no failure of type A occurs (which has prior probability approximately 0.91)

and one where 3 mild failures occur (which has prior probability approximately

2.7 × 10−5). As the considered history is included in L9, the DM should select

decision dN in the second epoch.

For the final epoch the DM considers rows in Table 5.1 where the ordered history

is dB, dN , and thus the relevant question is whether the observed failures of type

A (between all three decision epochs) falls into the list L2. At this stage there are

100 possible combinations for recorded failures of type A, and 45 of these fall into

list L2. However, only 10 of the possible 100 histories obtain no observed failures

of type A between the first and second decision epochs, with 6 of these falling in

L2. Given that no failures were observed before the second epoch, the updated

prior probability (as viewed at the time of the second epoch) that no failures will

be observed after the second epoch is approximately 0.92. Furthermore, the history

with no failures of type A observed after the first or the second decision epochs does

indeed fall in L2 (see Appendix B). Thus for our considered decision history we find

that the DM should select decision dN again.

Tables 5.1-5.3 are created without knowledge of earlier optimal decisions, and so

include decision histories that become redundant when optimal strategies have been

found. For example, the history in L1 which consists of no failures of type B between

decision epochs is redundant once we know that the DM should select d1 = dB, hence

failures of type B will not occur. If, for whatever reason, the DM did not make the

optimal decision dB in the first period, then knowledge of the optimal decision given
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such an alternative decision history could once again prove to be useful.

An interesting feature of this example is that, in certain situations, the observation

of system failure can lead to an increase in expected adaptive utility (in the classical

situation, such an observation can only lead to a decrease in expected utility due

to an increase in the expected value of ω). This result arises because the utility

function does not include a specific cost for observed failures, but rather only takes

into account their associated probability of occurring and the probability that such

failures are of type S. Although the observation of a system failure will tend to

increase the expected value for either ωA or ωB, if such a failure were of type M ,

then it is likely that it would lead to a decrease of the expected value for one of θA

or θB, and hence also possibly to a decrease of one of the products ωAθA or ωBθB.

An intriguing note to make on this feature is that it can result in situations, such

as the list L9 described above, whereby a failure type is only not rectified provided

the DM observes no failures or observes a certain number of failures of type M

(depending on the number of failures of type S also to be observed). Indeed, the

suggestion is certainly true in this example for all the decision histories considered

at the end of the first decision epoch, i.e., lists L8, L9 and L12. This shows an

interesting form of a monotonic relation that would appear in line with intuition, as

it would appear reasonable to not exert cost to fix system failures if they were seen

not to be a serious impediment upon the usefulness of the system, even if they were

seen to occur frequently. �

Example 5.3.1 sought to illustrate the potential for adaptive utility within reliability

problems. In particular, we envision that it demonstrates potential for decision

problems such as those a company could face when it has opportunity to test run

a new system before commencement of full market launch. It could be that new

software is tested by releasing Beta versions, and that feedback can be gained over

how potential customers felt if an aspect of the software were to fail, i.e., whether the

software were still deemed useful with or without this aspect, and the implication
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this has on determining preferences over reliability and financial cost for fixing the

failure. Another example could be a new machine that is useful to hospitals, with

trial runs made in several hospitals to determine user feedback before launch across

the entire health service. The use of adaptive utility in such settings allows the DM

to remain uncertain and not to commit to a presumed trade-off parameter between

finance and reputation.

Example 5.3.2 below also illustrates the use of adaptive utility within reliability

decision problems, and considers a situation that is motivated by the hypothesis that

individuals may tend to overweight the subjective cost of system failure compared

to that which is the true effect.

Example 5.3.2

A DM has use of a machine that is in working order 100(1−ω)% of the time (we do

not assume deterioration of the machine). The proportion of time that the machine

is in working order thus represents the true state of nature, hence ω ∈ Ω = [0, 1]. At

each decision epoch the DM has the opportunity to permanently replace the possibly

unreliable machine with one that is known to work perfectly (provided she has not

already done so). The cost of making this exchange at decision epoch i = 1, 2, 3

is assumed to be c − i/2, i.e., the cost of the new machine decreases over time.

Depending on the decision history, the decisions available in epoch i are represented

by Di ⊆ {dS, dR, dD}, where dS means stick with the possibly unreliable machine,

dR is to replace it, and dD is a dummy decision used to construct feasible decision

sequences. We thus assume that the set of feasible decision sequences are those in

D1×D2×D3 where the decision dR is included at most once and where decision dD

is selected if and only if dR had been previously selected. The DM’s utility function

for this problem is assumed to be:

u(d1, d2, d3|θ) =

 Eω[−3ωθ] if d1, d2, d3 6= dR

Eω[−c+ i/2− (i− 1)ωθ] if dR selected first in epoch i
(5.9)
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The state of mind θ is interpreted as a parameter that alters how the DM views

specific reliability levels ω. In this case we assume that θ ∈ Θ = [1/2, 2] and that

prior beliefs are represented by the triangular distribution with probability density

function over this range f(θ̃) = 8(2− θ̃)/9, i.e., under prior beliefs the DM assigns

higher probability density to regions that overweight the subjective cost of reliability

level ω than would be the case if true preferences were known to coincide with the

linear rule with θ = 1. This utility function is an additive function where the DM

loses ωθ in each period she uses the older machine. However, if in epoch i the DM

switches to the new machine, she no longer looses any more utility but has to pay

a one-off cost of −c + i/2. If ω = 0 it does not matter what value θ takes and the

DM should never switch (both machines would be just as good as each other).

To prevent the example becoming too complicated, it is assumed that ω is known

and is such that ω = 1/2. We also assume c = 2. Hence the only remaining

uncertainty is with respect to beliefs over the correct state of mind θ. It is assumed

that the DM can learn about this parameter through utility information zi that is

received in epoch i. Noting that, for feasible decision streams, the parameterised

utility function can be decomposed into the equivalent expression
∑3

i=1 ũ(di|θ), with

ũ(di|θ) given below, the DM is able to evaluate an expected value for ũ(di|θ) with

respect to beliefs she holds over θ at the beginning of epoch i:

ũ(di|θ) =


Eω[−ωθ] if di = dS

−c+ i/2 if di = dR

0 if di = dD

(5.10)

To give the form of information zi, it is assumed that, following selection of decision

di, the DM can compare her prior expected value for ũ(di|θ) with the value it was

actually noted to have. However, it is not assumed that the precise difference can

be stated, only that the DM can determine whether or not her expectations were

too pessimistic or too optimistic, and this will form categorical data where zi = 0



5.3. Adaptive Utility in Reliability Problems 82

in the first case and zi = 1 in the latter (Section 5.2 discussed this form of utility

information).

Noting that ũ(di|θ) is known for certain when either of decisions dR or dD are

selected, utility information zi is only informative over θ if decision dS can still be

selected in a future epoch. The probability of observing zi = 0, given θ, in this case

is equal to:

P
(
zi = 0

∣∣∣θ = θ̃, dS

)
= P

(
Eθ[ũ(dS|θ)] < ũ(dS|θ)

∣∣∣θ = θ̃
)

(5.11)

= P
(
Eθ[−(1/2)θ] < −(1/2)θ

∣∣∣θ = θ̃
)

= P
(
θ >

log(Eθ[(1/2)θ])

log(1/2)

∣∣∣θ = θ̃
)

=

 1 if θ̃ > log(Eθ[(1/2)θ])
log(1/2)

0 otherwise

This problem is again solved via the sequential adaptive utility algorithm given in

Section 5.1, and summary results are now discussed. Table 5.4 determines π3 given

the decision history aH
2 by the time of the final decision. Note that the observation

z2 does not have any effect on this decision, because if d1 = dS then z1 provides

enough information about the utility function for the DM to know which decision she

should select, and if d1 = dR then all future decisions must be the dummy decision

dD. For the second epoch, knowing decision strategy π3, optimal strategy π2 can be

found through Table 5.5. Finally, for the first epoch, knowing decision strategies π2

and π3, the optimal first period decision π1 is determined through Table 5.6.

The optimal strategy is thus to stick with the unreliable machine before possibly

replacing it depending on whether expected utility for sticking was found to be too

optimistic or too pessimistic. Note that in the classical situation, where it is assumed

that preferences are characterised by the expectation of θ under prior beliefs, and

where such a preference structure is enforced throughout the problem (i.e., no utility

information is available), the DM would do best to replace the machine immediately.
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This is because under expected prior beliefs Eθ[ũ(dS|θ)] < −0.5. So to never replace,

or to replace at the second or third opportunity, leads to expected utility return less

than −1.5. However, to change immediately leads to utility return of −1.5 exactly.

Thus, due to the extra information that such a decision offers, incorporating the

possibility that the DM’s current expectations over preferences may be wrong leads

to the more conservative decision strategy (in the sense that an irrevocable decision

is not immediately selected) of selecting decision dS in the first epoch. �

Ordered Decision History d3 Max Expected Utility Max

dS, dS dS Eθ|aH2 [u(dS, dS, dS|θ)] If z1 = 0

dS, dS dR Eθ|aH2 [u(dS, dS, dR|θ)] If z1 = 1

dS, dR dD Eθ|aH2 [u(dS, dR, dD|θ)] Yes

dR, dD dD Eθ|aH2 [u(dR, dD, dD|θ)] Yes

Table 5.4: Summary of π3 for Example 5.3.2.

Ordered Decision History d2 Max Expected Utility Max

dS dS E
aH2|aH1 [Eθ|aH1 [u(dS, dS, π

3(aH
2)|θ)]] If z1 = 0

dS dR E
aH2|aH1 [Eθ|aH1 [u(dS, dR, dD|θ)]] If z1 = 1

dR dD E
aH2|aH1 [Eθ|aH1 [u(dR, dD, dD|θ)]] Yes

Table 5.5: Summary of π2 for Example 5.3.2.

d1 Max Expected Utility Max

dS -1.42 Yes

dR -1.5

Table 5.6: Summary of π1 for Example 5.3.2.

The sequential problem discussed in Example 5.3.2 is similar to the maintenance

problems that are discussed by Baker [9]. Risk aversion (a concept to be discussed

in Section 6.2) relates to a DM’s dislike of entering into actuarially fair gambles, i.e.,
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gambles with expected return 0. The greater the level of a DM’s risk aversion, the

greater the amount of utility she would be prepared to forgo in order to avoid entering

such gambles. Baker considers how a general trend of risk aversion in DMs and

organisations can lead to overmaintenance of systems, and considers implications in

principle-agent theory, where the principle relates to an organisation (not wanting

overmaintenance), and where the agent relates to a maintenance engineer (who

overmaintains due to excessive risk aversion). Baker finds that incentives based on

the total cost of maintenance and failures can reduce over maintenance, and that it

may be optimal for management to pay such an incentive.

If the utility function of Example 5.3.2 had been expressed as a function with the

reliability measure ω as argument, then we could represent one-period preferences

through ũ(ω|θ) = −ωθ. In this case θ affects the level of risk aversion, with a larger

value for θ representing a reduced level of risk aversion2. Thus the implication of

using adaptive utility in this setting, is that the DM can now remain uncertain over

whether or not she is undermaintaining or overmaintaining the system (through ei-

ther replacing the unreliable machine too late or too early, respectively). Beliefs over

state of mind θ can in this sense be seen as beliefs over the DM’s risk aversion, and

through the connection identified by Baker, beliefs over supposed overmaintenance.

Additionally, in a general principle-agent theory problem, adaptive utility could be

of use for permitting a situation in which the principle is initially uncertain of the

utility function of the agent and vice versa.

2For this utility function the Arrow-Pratt measure of absolute risk aversion, which is introduced

in Chapter 6, is given by 1−θ
ω .



Chapter 6

Adaptive Utility Diagnostics

This chapter considers the implication of uncertain preferences for two classical

utility diagnostics. First we consider the relationship between value of sample infor-

mation and utility uncertainty. Following this we consider implications of uncertain

preferences upon classical risk aversion, and we introduce the concept of trial aver-

sion.

6.1 Value of Information

The classical concept of value of sample information, that arises as a utility di-

agnostic in the type of decision problem under consideration here, is discussed by

DeGroot [35]. Further discussion can be found in [16,33,84].

Let observable random quantity X represent a currently unknown piece of infor-

mation. In discussing the expected amount of information in X, or the expected

value of X, we are referring to its fair utility value, i.e., the maximum amount of

utility the DM would forgo in order to know X. In a decision problem, the expected

value of X is the expected difference (with respect to beliefs over X) between the

maximum expected utility obtainable through decision selection with knowledge of

X, and the maximum expected utility obtainable without knowledge of X1.

1See [48, p.529] for common alternative meanings not considered here.

85
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The set of possible information statements for X will be denoted by X , and a par-

ticular statement by x. Under this notation, problems of interest in the classical

treatment of value of sample information occur when X can inform the DM about

the likely outcome of an available decision. That is to say, there exists a possi-

ble combination of return r, decision d, and information statement x such that

P (r|d,X = x) 6= P (r|d). The value of such information x is denoted by Iω(x), and

the value of unknown information X is denoted by Iω(X) (the subscript ω is used

to show what the information relates to). Note that as X is a random quantity, so

is Iω(X).

In [35,84], the expected value of information X, EX [Iω(X)], is defined by:

EX [Iω(X)] = EX [max
d∈D
{Eω|X [u(d)]}]−max

d∈D
{Eω[u(d)]} (6.1)

A particular consequence of Definition (6.1) is that EX [Iω(X)] ≥ 0.

Although in some situations a DM may wish not to observe X = x (e.g., discovering

X = x caused other knowledge to be forgotten or had a specific utility attachment

itself due to emotional effects), DeGroot [35] argues that, for standard statistical

decision problems, Iω(x) ≥ 0 for all x ∈ X . As DeGroot notes, once X = x is known,

the use of determining the expected utility of a decision with respect to beliefs over

ω as represented by distribution Pω is only relevant in so far as it permits calculation

of what the DM believed was the optimal decision before knowledge of x. Actual

beliefs are now represented by Pω|x, and all expected utilities of decisions should be

evaluated through use of this distribution. Hence both Raiffa & Schlaifer [84] and

DeGroot [35] define Iω(x) as follows:

Iω(x) = max
d∈D
{Eω|x[u(d)]} − Eω|x[u(d′)], with d′ = arg max

d∈D
{Eω[u(d)]} (6.2)
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This definition implies that Iω(x) ≥ 0 and leads directly to Equation (6.1). However,

to ensure Iω(x) is well-defined, we make the additional condition that d′ is the

decision the DM would have selected before she knew X = x.

As a heuristic justification for this, note that, whilst EX [Iω(X)] is an ex ante statis-

tic, Iω(x) is an ex post diagnostic, the calculation of which requires the DM to have

considered her decision problem without the knowledge that X = x. Thus the DM

should have been able to determine decision d′ she would have selected. It is im-

portant to do this because, if d′ = arg maxd∈D{Eω[u(d)]} is not unique, then whilst

alternatives do not affect expected utility before X = x is known, they can affect

the value of Iω(x) after X = x is known. However, before X = x is known, the only

relevant quantity is EX [Iω(X)], which does not depend on selection of such d′.

Before moving to an adaptive utility setting, we note that EX [Iω(X)] and Iω(x)

were referred to by Raiffa & Schlaifer [84, Ch.4] as the Expected Value of Sam-

ple Information (EVSI) and the Conditional Value of Sample Information (CVSI),

respectively. We also note that EVSI depends only on the following:

• The set of feasible decisions D.

• The utility function u representing preferences.

• The distribution Pω representing prior uncertainty over ω.

• The likelihood function PX|ω that is combined with Pω to produce posterior

Pω|X or predictive PX .

The introduction of uncertain preferences, however, leads to interesting questions

regarding the classical treatment of value of information. Equations (6.1) and (6.2)

must be generalised to deal with adaptive utilities, but also, value of information

concerning ω may be affected by the level of uncertainty the DM has about her

preferences. Furthermore, there is a value for information z relating to the DM’s

true preferences, and this should also be quantifiable.
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To tackle such problems, we first assume that θ and ω are independent, and we begin

with the case of X being only relevant for determining ω. Under these assumptions

we propose that the EVSI and the CVSI are as defined in Equations (6.3) and (6.4),

respectively (the notation Iω is replaced by aIω to highlight that we are considering

value of information when preferences are uncertain):

EX [aIω(X)] = EX [max
d∈D
{Eω|X [au(d)]}]−max

d∈D
{Eω[au(d)]} (6.3)

aIω(x) = max
d∈D
{Eω|x[au(d)]} − Eω|x[au(d′)], with d′ = arg max

d∈D
{Eω[au(d)]} (6.4)

Equations (6.3) and (6.4) are analogous to Equations (6.1) and (6.2), respectively,

the only difference is that u(d) is replaced by the adaptive utility function au(d).

They can be justified in precisely the same manner as Equations (6.1) and (6.2),

and again the EVSI, as given by Equation (6.3), follows from the formula for the

CVSI, as given by Equation (6.4). Equations (6.3) and (6.4) generalise Equations

(6.1) and (6.2), returning to them in the case that preferences are known with

certainty. Furthermore, both aIω(x) and EX [aIω(X)] are non-negative. However,

the important point is that now, in addition to those components listed above, the

EVSI and CVSI, for information relating to ω, also depend on beliefs over state of

mind θ (through the effect this has in determining the adaptive utility function au).

In the adaptive utility setting, the EVSI keeps the property of additivity, whereby

the expected value of receiving two pieces of information X1 and X2 simultaneously

equals the expected value of receiving them one after the other (provided that no

decision was made in the interim). That is to say, the following property is true

(where, when X1 = x1 is known and beliefs have been updated based solely on this,

the expected additional value of X2 is denoted by EX2|x1 [aIω(X2|x1)]):
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EX1,X2 [aIω(X1, X2)] = EX1

[
EX2|X1 [aIω(X2|X1)] + aIω(X1)

]
(6.5)

= EX1,X2 [aIω(X2|X1)] + EX1 [aIω(X1)]

This result is derived in the same way as is done in the classical situation:

EX1,X2 [aIω(X1, X2)] = EX1,X2 [max
d∈D
{Eω|X1,X2 [au(d)]}]−max

d∈D
Eω[au(d)] (6.6)

= EX1,X2 [max
d∈D
{Eω|X1,X2 [au(d)]}]− EX1 [max

d∈D
{Eω|X1 [au(d)]}]

+EX1 [max
d∈D
{Eω|X1 [au(d)]}]−max

d∈D
{Eω[au(d)]}

= EX1

[
EX2|X1 [max

d∈D
{Eω|X1,X2 [au(d)]}]−max

d∈D
{Eω|X1 [au(d)]}

]
+EX1 [aIω(X1)]

= EX1 [EX2|X1 [aIω(X2|X1)]] + EX1 [aIω(X1)]

= EX1,X2 [aIω(X2|X1)] + EX1 [aIω(X1)]

Example 6.1.1 below demonstrates how the EVSI can depend on the DM’s beliefs

over her state of mind θ. In particular, this example leads to the possible suggestion

that a decrease in uncertainty over θ necessarily leads to an increase in EVSI. This

suggestion will be further discussed following the example.

Example 6.1.1

Consider a one-period problem with D = {dA, dB} and pay off matrix as below:

ω1 ω2

dA r1 r2

dB r2 r1

Prior beliefs are such that P (ω1) = P (ω2) = 0.5, and the DM’s likelihood function is

such that information X will fully inform her of ω, i.e., PX|ω(xj|ωi) = δij for j = 1, 2

(with δij representing the usual Kronecker delta). Thus the predictive distribution

is P (x1) = P (x2) = 0.5.
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Beliefs over preferences are assumed to be such that P (θ1) = p = 1 − P (θ2), with

p ∈ [0, 1]. Commensurable utilities are assumed to be u(r1|θ1) = u(r2|θ2) = 1

and u(r2|θ1) = u(r1|θ2) = 0 (in what follows u(r|θ) and u(d|θ) are interchanged as

discussed in Subsection 1.1.1). In this case the EVSI is maximised when p ∈ {0, 1},

i.e., when the DM knows her preferences with certainty, and is minimised when

p = 0.5, i.e., when the DM believes either state of mind is equally likely. To see this

note that maxd∈D{Eω[au(d)]} = 0.5 regardless of p:

max
d∈D
{Eω[au(d)]} = max

d∈D
{pEω[u(d|θ1)] + (1− p)Eω[u(d|θ2)]} (6.7)

= max{0.5p+ 0.5(1− p), 0.5p+ 0.5(1− p)}

= 0.5

The EVSI is thus maximised when p is such that EX [maxd∈D{Eω|X [au(d)]}] is max-

imal:

EX [max
d∈D
{Eω|X [au(d)]}] = 0.5

[
max
d∈D
{Eω|x1 [au(d)]}+ max

d∈D
{Eω|x2 [au(d)]}

]
(6.8)

= 0.5[max{p, 1− p}+ max{1− p, p}]

= max{p, 1− p}

Hence EX [maxd∈D{Eω|X [au(d)]}] is maximised when p ∈ {0, 1}, and is minimised

when p = 0.5.

Representing θ1 and θ2 via numerical values permits calculation of the variance of

θ, V [θ], as a function of p. If we assume that θ1 = 1 and θ2 = 0, then Figure 6.1

presents a standard plot (left hand side) and a parametric plot (right hand side)

of EX [aIω(X)] and V [θ] over the range p ∈ [0, 1]. Both plots demonstrate that

EX [aIω(X)] decreases as V [θ] increases. �
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Figure 6.1: EVSI and state of mind variance V [θ] in Example 6.1.1 for p ∈ [0, 1]

As mentioned previously, a possible suggestion arising from Example 6.1.1, is that a

decrease in uncertainty over θ necessarily leads to an increase in EVSI for information

relating to the outcome of a decision. The argument could be that, if the DM is

uncertain about what she prefers, then she will not know which type of reward to

aim for in decision selection, and thus information concerning the likely return of

any decision is of little use. Nevertheless, although true in Example 6.1.1, it is not

generally true that EVSI concerning the outcome of a decision can only increase if

uncertainty concerning preferences decreases. This will be demonstrated in Example

6.1.2.

There are several potential methods for measuring uncertainty. In the classical

problem with known utility, Gould [51] considers measuring uncertainty by, for

example, variance, the Shannon measure of entropy [96], and the Rothschild &

Stiglitz measure of spread in distributions with equal mean [88] (under which Y1

is deemed more uncertain than Y2 if Y1 = Y2 + ε, where, conditional upon Y2, ε is

uncorrelated random noise with mean 0 and positive variance). Gould demonstrates

that in the classical situation, with finite Ω, EVSI does not necessarily increase when:
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• The number of elements in Ω having non-zero probability increases.

• Less probability is concentrated on any single element of Ω.

• The variance of ω increases.

• Uncertainty over ω in the Rothschild & Stiglitz sense increases.

Seeking a similar result to that found by Gould, Example 6.1.2 below provides a

counter example to the possible suggestion that, all else constant, a decrease in

uncertainty over state of mind θ necessarily leads to an increase in EVSI.

Example 6.1.2

Consider again the setting of Example 6.1.1, but where commensurable utilities are

now such that u(r1|θ1) = u(r2|θ1) = 1, u(r1|θ2) = 0, and u(r2|θ2) = 2.

In this setting, EX [aIω(X)] monotonically increases as p decreases. To see this, note

that maxd∈D{Eω[au(d)]} is again independent of p:

max
d∈D
{Eω[au(d)]} = max

d∈D
{pEω[u(d|θ1)] + (1− p)Eω[u(d|θ2)]} (6.9)

= max{p+ (1− p), p+ (1− p)}

= 1

Hence p influences EVSI only through the term EX [maxd∈D{Eω|X [au(d)]}:

EX [max
d∈D
{Eω|X [au(d)]}] = 0.5 max

d∈D
{Eω|x1 [au(d)]}+ 0.5 max

d∈D
{Eω|x2 [au(d)]} (6.10)

= 0.5 max{p, p+ 2(1− p)}+ 0.5 max{p+ 2(1− p), p}

= max{p, p+ 2(1− p)}

= 2− p
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Figure 6.2: EVSI and state of mind variance V [θ] in Example 6.1.2 for p ∈ [0, 1]

Assigning θ1 = 1 and θ2 = 0 again allows for the relationship between EVSI and

V [θ] to be plotted, and Figure 6.2 contains a standard plot (left hand side) and a

parametric plot (right hand side) of EX [aIω(X)] and V [θ] for p ∈ [0, 1]. �

Example 6.1.2 thus demonstrates that:

• EVSI does not necessarily decrease as more elements of Θ have non-zero prob-

ability.

• EVSI does not necessarily decrease as greater probability is assigned to any

single element of Θ.

• EVSI is not necessarily minimal when elements of Θ are equally probable.

Example 6.1.2 also demonstrates that EVSI is not necessarily increased when V [θ]

is decreased. Furthermore, this result is invariant to the numerical representation

assigned to θ1 and θ2.
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To see this, note that the numerical assignment only affects V [θ], and not the EVSI.

Assigning the generic representation of θ1 = v1 and θ2 = v2, where v1, v2 ∈ R and

v1 6= v2, the variance of θ is V [θ] = p(1−p)(v1−v2)2. Hence, as a function of p, V [θ]

is maximised when p = 0.5 and monotonically decreases as p moves away from 0.5

towards either 0 or 1. The EVSI, however, is monotonically decreasing in p. Thus,

regardless of the assignment v1 and v2, as p increases from 0.5 towards 1, both EVSI

and V [θ] decrease.

In the classical setting, Gould [51] claims that no simple relation exists between

EVSI and uncertainty over ω. He notes that, with all other factors of the prob-

lem constant, a change in uncertainty affects both the maximum expected utility

considering X, EX [maxd∈D{Eω|X [u(d)]}], and the maximum expected utility not

considering X, maxd∈D{Eω[u(d)]}, the difference of which forms the EVSI, as given

in Equation (6.1). This argument, suitably generalised, also explains why an in-

crease in uncertainty over θ does not necessarily lead to a decrease in EVSI. A

change in beliefs over θ can affect both the value of the maximum expected adap-

tive utility considering X, EX [maxd∈D{Eω|X [au(d)]}], and the maximum expected

adaptive utility not considering X, maxd∈D{Eω[au(d)]}, the difference of which gives

the EVSI for the adaptivity utility case as specified in Equation (6.3).

For an increase in uncertainty over θ to lead to a decrease in EVSI, it must be that

the former is decreased (increased) by more (less) than the latter. In Examples 6.1.1

and 6.1.2, maxd∈D{Eω[au(d)]} did not depend on the value of p. However, whilst

in Example 6.1.1 EX [maxd∈D{Eω|X [au(d)]}] decreased as V [θ] increased, the oppo-

site happened in Example 6.1.2 for p ∈ [0.5, 1]. Essentially, this alternative result

occurred because increasing p away from 0.5 in Example 6.1.2 meant that it was

more likely that both outcomes would be equally desirable. However, the problem

description implies that both outcomes are equally likely under either decision, and

hence increasing p towards 1 leads to a reduction in value for information as the

decision that is actually selected becomes increasingly irrelevant.
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Information X need not only be informative of state of nature ω, and alternatives

include the case that X is only informative of θ, or the case that X is a vec-

tor of independent values (X1, X2), with X1 being informative of ω only and X2

being informative of θ only. In these situations an analogous argument to that

given previously will demonstrate that the EVSI is (where notation is such that

if X is relevant to θ, then it is included as a conditioning argument in the adap-

tive utility function) EX [aIθ] = EX [maxd∈D{Eω[au(d|X)]}] − maxd∈D{Eω[au(d)]},

and EX [aIω,θ(X1, X2)] = EX1,X2 [maxd∈D{Eω|X1 [au(d|X2)]}] − maxd∈D{Eω[au(d)]},

respectively.

As mentioned in Chapter 5, interesting problems for adaptive utility are necessarily

of a sequential nature, hence we now consider an n-period sequential problem under

the assumption that prior beliefs over θ and ω are independent. In this situation we

demonstrate that the value of observed information X, relevant for determining ω,

decreases if it is observed later in the sequence of decisions. Using notation aIω(x; j),

with j denoting the period X = x is to be observed, the CVSI is as indicated below:

aIω(x; j − 1) = max
dj ,...,dn∈D

{Eω|x[au(d′1, . . . , d
′
j−1, dj, . . . , dn)]} (6.11)

−Eω|x[au(d′1, . . . , d
′
n)] (for j ≥ 2)

aIω(x; 0) = max
d1,...,dn∈D

{Eω|x[au(d1, . . . , dn)]} − Eω|x[au(d′1, . . . , d
′
n)]

with d′1. . . . , d
′
n = arg max

d1,...,dn∈D
{Eω[au(d1, . . . , dn)]}

Because increasing j in Equation (6.11) means that the necessary maximisation

must be performed under an extended number of constraints (decisions d1, . . . , dj−1

will have been fixed before X = x is known), we find that aIω(x; j) can only decrease

as j increases.
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This implies that the value of specific information can only diminish if it is observed

later in the decision sequence. Furthermore, because of its connection to the CVSI,

the EVSI for unknown information X can also only decrease if X is to become

known later in the decision sequence. Such a result is indeed in line with intuition,

where we expect information to be of greater use, and hence of larger value, if it is

available for an increased number of decisions.

In the setting of Chapter 5, information was made available via two sources. First,

the DM was able to learn about the true state of nature ω by observing the particular

return ri that decision di led to. Second, the DM was able to learn about her true

state of mind θ by observing utility information zi, also following decision di. By

the time the DM selects decision di, beliefs will thus be represented by distributions

Pω|aHi and Pθ|aHi . In this case the EVSI for X i = (ri, zi) is as given below (where

aU
i = au(d1, . . . , di−1, πi(aH

i), . . . , πn(aH
n)|aH i)):

EXi [aIω,θ(X
i; i|aH i)] = EXiEω,θ|aHi [G]− Eω,θ|aHi [G′] (6.12)

G = E
aHi+1|Xi,πi(aHi),ω,θ · · ·EaHn|πn−1(aHn−1),ω,θ[aU

i]

G′ = G, but with X i omitted and with ri and zi removed from all histories.

Equation (6.12) shows that the EVSI of X i will depend on the decision di that is

chosen in period i. The previous decisions d1, . . . , di−1 will also influence the EVSI.

Example 6.1.3

To demonstrate the use of Equation (6.12), we return to the apple or banana example

that was last discussed in Example 5.1.1. We assume a sequence length of n = 3,

and that prior beliefs are P (θ=1.5)=0.4=1−P (θ=0.5), so E[θ]=0.9. We further

assume that selection of a banana leads to the correct value of θ being observed with

probability 0.7, whilst nothing is learnt if the selection of an apple is made.
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To determine the EVSI for the information concerning θ that is gained if the DM’s

first decision is selection of a banana, we must consider the possible future optimal

decision streams that would arise depending on the actual information received. If

an apple is initially selected no information will be observed, which clearly has value

0. If the banana is selected in the first period, then either utility information zi is

such that z1 = 1.5 or z1 = 0.5, with prior predictive probabilities determined via

P (z1 = y) = P (z1 = y|θ = 1.5)P (θ = 1.5)+P (z1 = y|θ = 0.5)P (θ = 0.5). Hence we

find that P (z1 = 1.5) = 0.46 = 1 − P (z1 = 0.5). The maximum expected adaptive

utility for the three cases of z1 = 1.5, z1 = 0.5, and for not receiving information

z1 (though a banana is still selected), are 3.37, 2.72, and 2.92, respectively. Putting

these values into Equation (6.12) results in an EVSI of 0.1005 (to 4 s.f.). �

A remark about Example 6.1.3 is that the expected adaptive utility for the decision

to choose a banana in the first period is equal to EVSI+E[θ] = 1.0005. Indeed,

when it is meaningful to talk about expected adaptive utility of a single decision

within a sequence of decisions (i.e., when adaptive utility is of an additive form), we

can decompose the ‘full’ expected adaptive utility of any decision into the following

two components:

• The ‘pure’ expected adaptive utility arising from receiving the return itself.

• The expected adaptive utility of the information that is gained regarding true

preferences.

This can be seen via Equation (6.12), where EXi [aIω,θ(X
i; i|aH i)] represents the

expected adaptive utility of the information that is gained regarding true preferences

and likely outcomes of decisions, whilst Eω,θ|aHi [G′] represents the pure expected

adaptive utility arising from just the return itself (and no information is recorded).

The final term in Equation (6.12), EXiEω,θ|aHi [G], represents the full adaptive utility

of selecting a particular decision. Suitable rearrangement then shows:
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EXiEω,θ|aHi [G] = EXi [aIω,θ(X
i; i|aH i)] + Eω,θ|aHi [G′] (6.13)

Also note that the EVSI is a natural method for measuring the usefulness of infor-

mation. If we had assumed in Example 6.1.3 that selecting a banana would certainly

inform the DM of her true state of mind, which is clearly a more useful source of

information, then we would have found that the EVSI was equal to 0.3, a greater

value than the 0.1005 reported above.

We conclude this section by considering and illustrating implications of EVSI for

uncertain preferences in a reliability example. For this reason we return to the

setting of Example 5.3.2.

Example 6.1.4

Example 5.3.2 considered a 3-period sequential decision problem where, at each deci-

sion epoch, the DM had to decide whether she wished to remain with an unreliable

machine (assuming it had not previously been replaced), decision dS, or whether

she wished to change to a new and fully reliable machine, decision dR. A dummy

decision dD was used to create feasible decision streams and was selected if and only

if the DM had previously selected decision dR.

In that example it was assumed that the DM’s true preferences for decision streams

were represented by the additive utility function u(d1, d2, d3|θ) =
∑3

i=1 ũ(di|θ), with:

ũ(di|θ) =


−(1/2)θ if di = dS

i/2− 2 if di = dR

0 if di = dD

(6.14)

Prior beliefs about θ were assumed to be given by probability density function

f(θ̃) = 8(2− θ̃)/9, for θ̃ ∈ [1/2, 2].
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Information zi observed after selection of decision di = dS informed the DM whether,

prior to its selection, her expected adaptive utility for that decision had been too

great, zi = 1 (negative surprise), or too small, zi = 0 (positive surprise). No

information about preferences could be observed if decisions dR or dD were selected.

In this setting it was optimal to select d1 = dS, and then to either continue selecting

di = dS if z1 = 0, or replace in the second period if z1 = 1, leading to maximum

expected adaptive utility of -1.42.

As no information is available to the DM if she selects either of decisions dR or

dD, both of these have an associated EVSI equal to 0. Hence all adaptive utility

for them is associated with the actual reward outcome they lead to. Furthermore,

Equation (6.14) leads to aũ(di = dR) = i/2− 2. However, if the DM selects decision

dS, then not only does she spend a period working with the unreliable machine, but

she also gains information about her preferences, and both of these events have an

associated expected adaptive utility value. In the first period, under prior beliefs,

aũ(d1 = dS) = −0.51, whilst the EVSI for z1 is approximately 0.06 (the maximum

expected adaptive utility without noting z1 is approximately -1.49, whilst this is

approximately -1.23 and -1.61 for z1 = 0 and z1 = 1, respectively). Hence the full

contribution of d1 = dS is the sum of these two values (-0.51 and 0.06) and is thus

approximately -0.45.

By the second period, without taking into account possible knowledge of z1 (we have

incorporated its EVSI into the full expected adaptive utility of decision d1 = dS), the

pure (and also full) expected adaptive utility of decision d2 = dR is equal to -1 (and

because it is known that in period 3 there will be no utility loss, this is equivalent

to -0.5 in each of the next two periods). The decision d2 = dS, not taking into

account z1, again has pure expected adaptive utility value approximately -0.51, but

also has EVSI approximately 0.04 (reduced from the EVSI for d1 = dS because the

observation is being made later in the decision sequence), making its full expected

adaptive utility value approximately -0.47.
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Finally, in period 3, forgetting previous information z1 and z2, the decision dR

has expected adaptive utility value exactly -0.5, whilst alternative dS again has pure

expected adaptive utility value approximately -0.51. Furthermore, as this is the final

decision and there will not be further opportunity to use any utility information,

the decision d3 = dS has associated EVSI equal to 0 and so -0.51 is the full value

for decision d3 = dS.

Due to the additive nature of the utility function in this example, and because

in such a situation it is meaningful to consider the one period utility value of a

decision, we can decompose the maximum expected adaptive utility of -1.42 into the

contributions from the full maximum expected adaptive utilities of the one period

decisions. In this case we find that -1.42 equals the full expected adaptive utilities

of decisions d1 = dS (-0.45), d2 = dS (-0.47), and d3 = dR (-0.5).

Note that this decomposition, whilst allowing the DM to determine maximum ex-

pected adaptive utility, does not inform the DM of the optimal decision selection

strategy, which is instead found through application of Equations (5.3) and (5.4). We

further note that, if z1 had been recorded following selection of decision d1 = dS,

then z2 has EVSI equal to 0. This can be verified either directly from Equation

(6.12), or by noting that according to Table 5.4, the final period decision does not

depend upon the value of z2. �

6.2 Risk and Trial Aversion

The following introductory review on the concept of classical risk aversion is based

upon the theory developed independently by Arrow [6] and Pratt [83]. In classical

utility theory, risk aversion is a diagnostic relating to a DM’s preference for avoiding

actuarially fair gambles. A DM who seeks to partake in such gambles is referred to

as risk seeking, whilst a DM who is indifferent to such gambles is referred to as risk

neutral.
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If the reward set R is sufficiently rich that it can be identified with a finite interval

of R, i.e., R = [a, b] ⊂ R, then for any decision d within the convex set of feasible

decisions, the expected utility of d will equal u(r) for some suitable reward r ∈ R.

Such r is referred to as the certainty equivalence for decision d, and will be denoted

here by cd. Thus the certainty equivalence of a decision is that reward r = cd making

the DM indifferent between receiving cd for sure, or selecting the possibly uncertain

(with respect to its outcome) decision d. Furthermore, we are able to determine

the expected value of the reward arising from any given decision, and this will be

denoted by ed. The risk premium associated with decision d, denoted ρd, is then

defined to be the difference of cd from ed, i.e., ρd = ed − cd.

Over a subset [α, β] ⊂ R, the DM is said to be risk averse if, for any decision d with

all possible returns falling in [α, β], the risk premium ρd ≥ 0. Similarly, the DM

is said to be risk seeking if ρd ≤ 0, and is said to be risk neutral if ρd = 0. Thus

we see that, under such a definition, risk aversion is a concept related to the DM’s

aversion or willingness for selecting a decision that has greater uncertainty over its

likely outcome in comparison to another with equal expected return, but which

has reduced outcome uncertainty. An additional result is that, presuming that the

function u(r) is non-decreasing and twice-differentiable over region [α, β], the DM

is risk averse over region [α, β] if and only if her utility function for rewards in that

region is strictly concave. Similarly, a strictly convex utility function relates to the

DM being risk prone, and a linear utility function corresponds to risk neutrality.

A closely related method of measuring a DM’s level of risk aversion is the Arrow-

Pratt measure of absolute risk aversion, see e.g., Arrow [6] and Pratt [83] (Pratt

refers to this as risk aversion in the small, i.e., over a region [α, β], rather than

global risk aversion). If u(r) is a twice continuously differentiable function with

positive first derivative, then absolute local risk aversion l(r) is given by:
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l(r) = −u
′′(r)

u′(r)
(6.15)

Because u′(r) > 0, the sign of l(r) depends on, and is opposite to, the sign of

u′′(r). This in turn determines whether u(r) is convex or concave. However, the

absolute local risk aversion l(r) also has additional useful features. For example,

for two utility functions u and ũ, l(r) = l̃(r) for all possible r if and only if u is a

positive linear transformation of ũ, implying that they represent the same preference

relations. Moreover, if l(r) > l̃(r) for all r in an interval [α, β], then for any decision

d with all possible returns in interval [α, β], ρd > ρ̃d. Hence, l(r) also gives an

indication of the strength of a DM’s risk aversion.

Furthermore, given only the absolute local risk aversion l(r), an analyst, knowing

the general solution to a homogeneous second-order ODE with variable coefficients,

can derive the DM’s utility function:

l(r) = −u
′′(r)

u′(r)
⇒ u′′(r) + l(r)u′(r) = 0 (6.16)

⇒ e
∫
l(r)dr[u′′(r) + l(r)u′(r)] = 0

⇒ d

dr

{
e

∫
l(r)dru′(r)

}
= 0

⇒ e
∫
l(r)dru′(r) = k1

⇒ u(r) = k1

∫
e−

∫
l(r)drdr + k2

As a utility function is only unique up to a positive linear transformation, the values

of constants k1 and k2 are irrelevant. Only the sign of k1 is important, and this can

be determined through the constraint that u′(r) > 0. Equation (6.16) also has an

important implication for adaptive utility. As was discussed in Chapter 4, a state

of mind θ characterises the DM’s preferences and hence characterises the DM’s true

utility function. Thus, Equation (6.16) demonstrates that a state of mind will also

characterise the DM’s true absolute local risk aversion.
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The connection between the DM’s absolute local risk aversion and her utility func-

tion means that, rather than only considering possibilities for the true utility func-

tion u(r|θ), a DM can derive her adaptive utility function from a list of possible

candidates for her absolute local risk aversion, l(r|θ), and their associated subjec-

tive probabilities of being true. This is demonstrated in the following example.

Example 6.2.1

A DM has opportunity to invest in a new venture, with V meaning investment and

V non-investment. Event S (S) indicates that the venture was (not) successful, and

prior beliefs are such that P (S) = 0.4 = 1 − P (S). If the DM invests and event S

occurs, then she will receive £200000, but if she invests and event S occurs, then

she will receive £0. If she does not invest, then she will keep the £500 that was

necessary for the investment.

The DM is uncertain of her utility function for monetary returns over the interval

[0, 200000], but is comfortable with considering possibilities for her own level of

risk aversion. Indeed, with probability 0.8 she believes that she has a positive

risk aversion, but one which diminishes as her wealth increases. Alternatively, she

considers she has a positive risk aversion, but constant over all monetary values

considered in this problem.

The DM’s true absolute local risk aversion over this region will be denoted by l(r|θ),

and from the above we assume that with probability 0.2, l(r|θ) = l(r|θ1) = 0.001,

and with probability 0.8, l(r|θ) = l(r|θ2) = 1
r+1

. Application of Equation (6.16) thus

results in (where λ1, λ2, µ1, µ2 ∈ R):

l(r|θ) = l(r|θ1) = 0.001 ⇒ u(r|θ1) = −λ1e
−0.001r + λ2, (with λ1 > 0) (6.17)

l(r|θ) = l(r|θ2) =
1

r + 1
⇒ u(r|θ2) = µ1 ln(1 + r) + µ2, (with µ1 > 0)
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As described in Section 4.3, such possible classical utility functions require scaling

to ensure that they are commensurable, i.e., so they can be meaningfully compared.

Hence the DM must now consider her preferences over rewards that are conditioned

on different possibilities for the state of mind θ. Assuming that the correct value

for the local risk aversion will not influence the DM’s preferences for receiving the

particular amounts2 of £200000 or £0 (e.g., the DM is just as happy to receive

£200000 if θ = θ1 as she is if θ = θ2), we can scale each of the two possible classical

utility functions by suitably choosing values for constants λ1, λ2, µ1 and µ2 to ensure

that u(£200000|θ1) = u(£200000|θ2) = 1 and u(£0|θ1) = u(£0|θ2) = 0.

We find λ1 = 1, λ2 = 1, µ1 = 0.08 and µ2 = 0. The adaptive utility is thus:

au(r) = Eθ[u(r|θ)] = 0.2(1− e−0.001r) + 0.8(0.08 ln(1 + r)) (6.18)

Using this adaptive utility function in combination with beliefs over the state of

nature allows the DM to determine the adaptive utility of the two decisions V and

V . In this case we find au(V ) = 0.49, whilst au(V ) = 0.4. Thus the DM should

invest in the venture. Note, however, that if it were assumed that θ = θ2 with

certainty, then the DM should not invest. �

As discussed above, risk aversion is a concept relating to the curvature of utility

as a function of r. However, in an adaptive utility setting, there is more than one

possible utility function, and the utility function u(r|θ) can be considered a function

of both r and θ. We consider the implication of this by first returning to the apple

or banana example.

2This statement can only be true for two amounts. To include a third would lead to no solutions

for the scaling of the two possible classical utilities. Once two values have been selected, the true

absolute local risk aversion will affect preferences over every other particular reward.
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Example 6.2.2

Consider again the apple or banana example, last seen in Example 6.1.3, but now

with three possible states of mind, θ ∈ {1, 2, 3}. The case θ = 1 corresponds to a

preference for apples, the case θ = 2 corresponds to indifference, and the case θ = 3

corresponds to a preference for bananas.

We assume prior beliefs over θ are such that P (θ = i) = 1/3 for i = 1, 2, 3. Thus

E[θ] = 2, corresponding to the situation that the DM is indifferent between apples

and bananas. However, consider possible classical utility functions u1(b|θ) = θ − 1,

u2(b|θ) = eθ − e2 + 1, u3(b|θ) = ln(θ/2) + 1, and ui(a|θ) = 1 for i = 1, 2, 3, with

commensurablility assumed within each ui over the various possible values for the

state of mind. Each of the utilities ui agrees with the above meanings for the possible

values of θ, however, all three lead to different decision selection in a one-period

adaptive utility problem:

u1(b|θ) = θ − 1 ⇒ au(b) = 1 (6.19)

u2(b|θ) = eθ − e2 + 1 ⇒ au(b) = 3.7

u3(b|θ) = ln(θ/2) + 1 ⇒ au(b) = 0.9

We see that, if possible classical utilities are as expressed by u2, the DM should

select the banana, whilst if they are expressed by u3, she should select the apple.

This is despite the DM’s prior beliefs being such that, in expectation, bananas are

just as good as apples. �

In Example 6.2.2 there is no risk in the result of decision selection, as selection of

either fruit leads to consumption of that fruit with certainty. Indeed, the only form
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of risk in the problem arises through uncertainty over true preferences.

All three utility possibilities have the same prior beliefs about the state of mind θ.

The only difference is the effect that various values for θ have on the possibilities

for the DM’s utility function. Thus, just as a DM may be averse to actuarially

fair gambles with uncertain outcomes, certain forms of adaptive utility functions

demonstrate an aversion to decisions whose utility values depend on an uncertain

state of mind.

Such a form of adaptive utility would be appropriate if, despite prior beliefs making

preferences indifferent in expectation, the DM would prefer the apple because she

feels safe in the knowledge of what to expect from it. She may be averse to trying

the banana because, even though there is the potential for even greater pleasure, she

does not wish to take the chance of consuming something she dislikes. To distinguish

this form of aversion from classical risk aversion, as reviewed at the beginning of

this section, we will refer to it as trial aversion. In Example 6.2.2, we would refer to

u1 as a trial neutral function, u2 as a trial seeking function, and u3 as a trial averse

function.

To formally define trial aversion, we require that Θ be a continuous space3, so as to

ensure that E[θ] always has a meaning as a possible state of mind itself, i.e., that

E[θ] ∈ Θ. In this is indeed the case, then we claim trial aversion to be a geometrical

feature of u(r|θ) when viewed as a function of θ only (i.e., r is assumed constant).

Given a reward r with uncertain utility value, we define a DM as being trial averse

with respect to r if u(r|E[θ]) > au(r). In addition, the DM is said to be trial seeking

if u(r|E[θ]) < au(r), and trial neutral if u(r|E[θ]) = au(r). Note that this definition

implies that a DM will be trial neutral for any reward she knows the true utility

value of.

3We assume this is possible, yet accept that Chapter 4 assumed discrete Θ when presenting

arguments for selecting decisions so as to maximise expected adaptive utility. Further discussion

on the development of adaptive utility theory for continuous Θ is presented in Chapter 7.
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If u(r|θ) is a non-decreasing and twice differentiable function of θ, then, for a given

reward r, a DM is trial averse if u(r|θ) is strictly concave as a function of θ. Similarly,

a DM is trial seeking if u(r|θ) is strictly convex in θ, and is trial neutral if u(r|θ) is

linear in θ.

We use the term ‘trial aversion’, not only to distinguish it from the classical meaning

of risk aversion, but also because in an n-period sequential problem the greater the

trial aversion the less likely the DM is to select the uncertain reward in order to

learn about it. For example, if there exists an alternative reward r′ with known

utility value such that u(r|E[θ]) > u(r′) > au(r) (i.e., the true utility of r′ does not

depend on the value of θ), then, in a one-period problem, the DM should select r′

over r. The reason she should not select r if θ were uncertain is because her trial

aversion implies that the potential cost of discovering that θ is worse than expected,

outweighs the potential benefit of discovering that θ is better than expected.

When u(r|θ) is considered over the region R × Θ, risk aversion is a geometrical

feature concerning the curvature of the function along the r-axis for a fixed value of

θ. Trial aversion is instead an orthogonal concept relating to the curvature of the

function along the θ axis for a fixed value of r. Another difference between the two

is that, as discussed above, it is meaningful to discuss local risk aversion, where all

possible outcomes of decisions fall in some subset of R. However, trial aversion is

necessarily a global concept, as the DM must consider all possible states of mind

when determining E[θ] or au(r).

Just as a risk aversion, for a given state of mind θ, can be measured through the

Arrow-Pratt measure of absolute risk aversion, a DM’s degree of trial aversion for

a given reward level r can be measured through an analogous measure of absolute

trial aversion. Provided u(r|θ) is a twice continuously differentiable function with

positive first derivative, we denote this measure by tr(θ) and define it by:
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tr(θ) = −∂
2u(r|θ)
∂θ2

/
∂u(r|θ)
∂θ

(6.20)

The function tr(θ) has analogous properties to the Arrow-Pratt measure of absolute

risk aversion l(r). Indeed, it applies the same calculation as the Arrow-Pratt mea-

sure, but simply upon a different variable. In particular, the DM is trial averse if

tr(θ) > 0, trial seeking if tr(θ) < 0, and trial neutral if tr(θ) = 0. This is because we

required ∂u(r|θ)/∂θ > 0, and so the sign of tr(θ) is opposite to that of ∂2u(r|θ)/∂θ2

and hence determines whether u(r|θ) is a convex or concave function of θ.

Applying this measure to the three utility functions considered in Example 6.2.2,

we find that for u1, tb(θ) = 0, for u2, tb(θ) = −1, and for u3, tb(θ) = 1/θ. All of

these are in line with the description of u1 as being trial neutral, u2 as being trial

seeking, and u3 as being trial averse.

Since the expected utility hypothesis of Bernoulli [18], it has been assumed that

most DMs act in a risk averse manner, especially when decisions concern monetary

returns (an exception being the act of gambling, but this can be explained through

a utility for the exhiliration that such an activity provides). As Arrow [6] notes,

this hypothesis explains many economic activities such as insurance, or the aversion

for entering high risk investments. Indeed, the assumption that a utility function

is bounded implies that eventually the DM must be risk averse beyond a certain

reward level.

However, it would appear that DMs are not necessarily trial averse in their attitudes

towards decision selection. Trial aversion relates to an unwillingness to experiment,

or to select the uncertain. Nevertheless, the opposite to this form of behaviour

can be observed frequently in everyday life. Indeed, every experience that a DM

encounters must have been novel to her at some point. DMs often order meals they

have never tasted before over others they are more familiar with, or a DM with a

severe medical problem may readily select a remedy which offers only the faintest

possibility of providing a lifestyle which she has never before experienced.
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That is not to say DMs are generally trial seeking, and not always do DMs wish

to try novel rewards. For example, a DM may be averse to trying a new pastime

such as attending a football match, or on holidaying in a new and different location.

Although we do not wish to over-generalize, it may be that there is a connection

between level of trial aversion and the age of a DM, with a potential hypothesis

being that at a younger age DMs demonstrate a level of trial seeking, with trial

aversion increasing as experience increases.

Perhaps the most obvious example of trial aversion within society, however, is the

preference of some DMs to stick with products that are produced by a familiar

brand. Indeed, Erdem & Keane [39] state “estimates indicate that consumers are

risk-averse4 with respect to variation in brand attributes, which discourages them

from buying unfamiliar brands.”

Just as risk aversion can explain the existence of insurance companies, in this situ-

ation trial aversion can be used to explain the existence of marketing companies. If

a DM was not trial averse with respect to trying a new brand, then all that would

be needed for her to select a new product would be to know of its existence. No

longer would there be any need for marketing companies to attempt to ‘sell’ the new

product over existing possibilities, e.g., by offering trial samples. Indeed, it was for

real world observations such as this that Cyert & DeGroot [27] first considered a

mathematical model for decision making with uncertain preferences.

4Under the arguments presented in this section, we would refer to this behaviour as trial aver-

sion.



Chapter 7

Conclusions and Future Directions

This chapter provides a short summary of the main results of this thesis, followed

by a discussion of potential directions for further research.

7.1 Conclusions

This thesis has extended the adaptive utility concept that was first introduced by

Cyert & DeGroot [27]. In Chapter 2 we reviewed various suggestions in the decision

theory literature for solving single and sequential decision problems. Chapter 3 pro-

vided motivation for permitting uncertain utility and offered a formal definition of

an adaptive utility function. An interpretation of a utility parameter, our so-called

state of mind, was proposed in Chapter 4, and we discussed its role within decision

analysis. Chapter 4 also focused on important foundational issues of adaptive util-

ity that had been previously overlooked in the literature. The main result of the

chapter is that, under the assumption that the DM agrees with the classical system

of expected utility axioms and has scaled possible utility functions to ensure com-

mensurability, the logical strategy is to select decisions so as to maximise expected

adaptive utility.

Applications within sequential decision problems were illustrated in Chapter 5,

where an algorithm was developed for solving n-period sequential problems and

a discussion was given on how decision selection had to influence likely utility infor-

110
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mation for the theory to deviate from classical, known utility, solutions. Chapter 5

also discussed some possible methods for receiving utility information and a couple

of small hypothetical examples were presented to illustrate the potential of adaptive

utility for sequential problems within reliability theory.

Chapter 6 considered the implication of uncertain preferences for the classical util-

ity diagnostics of value of information and risk aversion, an area that has not been

discussed in any previous work on adaptive utility or related uncertain utility the-

ories. Whilst it was shown that the DM’s beliefs over her state of mind could

influence the expected value of sample information, it was demonstrated that no

simple monotone relation exists. Moreover, the hypothesis that a decrease in un-

certainty over the state of mind would necessarily lead to an increase in expected

value of sample information was shown to be false. Section 6.1 also considered the

value of information relating to the DM’s true preferences, and it was shown that,

when it is meaningful to talk about the utility value of a single decision within a

sequence, the expected adaptive utility of that decision could be decomposed into a

part arising from expected decision outcome, and a part arising from expected value

of information related to the DM’s preferences.

Section 6.2 considered effects on risk aversion, and it was shown that the state

of mind not only characterised the DM’s true complete preference ordering over

decisions, but also has a one-to-one relationship with the Pratt-Arrow measure of

absolute risk aversion. For this reason we demonstrated that a DM could derive

her adaptive utility function from only considering possibilities for her absolute risk

aversion. Finally, we introduced trial aversion, a concept relating to a DM’s aversion

or willingness to try rewards or select decisions that are novel, or are such that the

DM is uncertain about her preferences for them in comparison to alternative options.



7.2. Future Directions 112

7.2 Future Directions

Following the formal approach to the development of adaptive utility presented in

this thesis, there are many areas for further development of the theory. In particu-

lar, we accept that, though of philosophical interest, the current state of the theory

means that the benefit of allowing the DM to remain uncertain over her preferences

is overshadowed by the complexity of implementation in non-trivial decision prob-

lems. For this reason we conclude the thesis with a number of options for future

development that we have identified and believe to be necessary before the theory

can be applied to a wide variety of interesting problems.

As was mentioned at the end of Section 5.1, the employment of dynamic pro-

gramming and backward induction for solving sequential decision problems suffers

from the so-called curse of dimensionality, and the inclusion of a possibly multi-

dimensional state of mind for representing uncertainty over preferences only exas-

perates the situation. A DM must then consider whether or not the relative benefit

of remaining uncommitted to a specific and assumed correct utility function out-

weighs the increased cost of computational complexity that is required in solving

an adaptive utility problem. Such computational complexity is currently the great-

est hindrance in solving an adaptive utility problem, but as is discussed in Section

5.1, it may well be possible to identify forms of utility functions that are not only

reasonable for modelling possible preferences, but which also greatly reduce the

computational requirements of solution algorithms.

In addition to seeking combinations of probability distributions and forms of utility

functions that reduce the computational complexity of a sequential adaptive utility

problem, there are further issues that can be considered for enhancing the use of the

theory in solving real-world decision problems. For example, issues involving the

elicitation of the DM’s beliefs should be addressed, and additional problem types

in which it would be regarded as highly beneficial to permit the DM to remain

uncertain over preferences should be identified.
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Work on elicitation is required as now a collection of possible utility functions must

be considered and a probability distribution over them specified. This is a non-trivial

task, especially if the DM is not trained to think about uncertainties. Bedford et

al. [10] consider the problem of probability elicitation1, whilst Chajewska et al. [22]

consider the problem of eliciting utilities (see the discussion of this work in Section

5.2). However, there appears to be no discussion in the literature on how a DM who

is uncertain of her preferences may elicit her own possible utility functions and the

probabilities of each representing true preferences. The identification of a source of

utility information following decision selection and determination of an appropriate

likelihood function will also be difficult, yet necessary, hence any method of easing

this task will be of much use.

In addition to developing the theory so as to make it more suitable for real-world ap-

plication, there are a number of possibilities for development on a theoretical level.

For example, the adaptive utility setting considered here requires the DM to have a

known and precise prior probability distribution over her true preferences. However,

it may be that this is too strong a requirement for some DMs to commit to, and

instead imprecise or nonparametric extensions may be more reasonable. Sections

2.1.2 and 2.2.3 discussed recent research into imprecise probability and utility the-

ories, but the combination of imprecise utility information with learning following

decision implementation may be an interesting area for further development.

Augustin & Coolen [8] and Coolen [25] discuss nonparametric predictive inference

as an alternative to a precise parametric probability distribution for quantifying

uncertainty, and it may be that such a theory could also be useful for quantifying

uncertainty over utilities. For example, suppose a DM has known utility values for

ten types of fruit, with fruits numbered from 1 to 10 such that u(i) ≤ u(i + 1),

with i = 1, . . . , 9, and where utilities are bounded in the interval [0, 1]. Further

suppose that the DM is afforded opportunity to select a new fruit x with unknown

1Bedford et al. consider elicitation problems within reliable system design, discussing the need to

support decision making with suitable subjective assessments about likely future system reliability.
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utility. The nonparametric setting of Coolen [25] would assume that beliefs are

P (u(x) ∈ [0, u(1)]) = P (u(x) ∈ [u(i), u(i + 1)]) = P (u(x) ∈ [u(10), 1]) = 1/11. The

advantage of such a setting is that it allows the DM to remain uncommitted to

specifying a precise probability distribution over the value of u(x). Furthermore,

the values of known utilities u(1), . . . , u(10) will influence the DM’s decision as to

whether or not she should try fruit x, for if many fruits were seen to have low utility,

with only one or two having larger values, then with high probability the new fruit

x will also have low utility. The number of fruits the DM has knowledge of will also

affect the DM’s decision to try the new fruit, for if only 1 or 2 fruits had known

utility, then there would be increased uncertainty over u(x).

Unfortunately, as with the theories that imprecisely quantify uncertainty (see Sub-

section 2.2.3), such a nonparametric setting leads to a class P of possible probability

distributions for the value of u(x). This means there will be a set of possible ex-

pected utility values, and so the theory can not guarantee the identification of a

uniquely admissible decision.

The argument in Section 4.2 for the existence and uniqueness of an adaptive utility

function was only applicable in the context that decisions are lotteries with finite

support, i.e., the set of possible rewards R was assumed finite. This argument also

assumed a finite set Θ of possible states of mind. Nevertheless, we later assumed that

an adaptive utility function could be defined for when either R or Θ are continuous,

e.g., the discussion of risk aversion in Section 6.2. To be meaningful and ensure

that E[θ] ∈ Θ, the concept of trial aversion that was introduced in Section 6.2

specifically required a continuous set of possible states of mind Θ. For this reason

development of adaptive utility theory for continuous R or Θ is required. However,

as with our repeated application of Anscombe & Aumann’s subjective utility [5],

we expect this simply requires repeated application of traditional expected utility

results for permitting continuous R (for example, Herstein & Milnor [54] provide

the expected utility result in the case that decisions are discrete distributions over

a continuous reward space).
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There are also a number of possibilities in extending the work of Chapter 6 con-

cerning utility diagnostics. For example, it was demonstrated in Section 6.1 that

a decrease in uncertainty over the state of mind does not necessarily lead to an

increase in expected value of information. However, it may be that such a relation

does exist for certain utility forms or decision settings, and identification of these

cases, and understanding why they display such a property, will be of interest. The

relationship between expected value of information and trial aversion also requires

investigation. In comparison to a trial seeking DM, we would expect that the length

of a sequential problem must be extended before a trial averse DM would select an

unfamiliar decision or reward (assuming that such decision selection leads to infor-

mation concerning preferences). Whether this is because a trial averse DM places

less expected value on utility information than does a trial seeking DM, or whether

it is because a trial averse DM places less ‘pure’ value on decisions, is also of interest.

Other types of sequential decision problems, as opposed to that considered in this

thesis, may also be considered in an adaptive utility setting. For example, the

sequential problem of sampling termination is considered by DeGroot [34], and it

may be of interest to consider generalising classical results in that setting, e.g., the

Sequential Probability Ratio Test.

Finally, a suggested hypothesis in Section 6.2 was that DMs become increasingly

trial averse with age. Though we have sought to provide a normative theory for the

problem of sequential decision making, the descriptive validity of adaptive utility

and uncertain preferences, along with such hypotheses concerning trial aversion,

may well be of interest to psychologists and economists.
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Glossary

cd Certainty equivalence of decision d.

d,D d ∈ D is a decision, with D the set of possible decisions.

ed Expected return of decision d.

H i, aH
i H i lists history of decisions and returns prior to i-th decision, aH

i also

lists observed information about the state of mind.

Iy, aIy Iy is a function for determining value of information about uncertain

quantity y, with aIy used when utility is uncertain.

l Function detailing absolute local risk aversion

P,P P ∈ P is a probability distribution, with P the set of

probability distributions.

r,R r ∈ R is a return following decision selection, with R the set of possible

returns.

tr Function detailing absolute trial aversion at reward level r.

u, au u is a traditional utility function, au is an adaptive utility function.

z,Z z ∈ Z is information about the state of mind, with Z the set of possible

information statements.

θ,Θ θ ∈ Θ is the true state of mind, with Θ the set of possible states of mind.

πi Decision strategy for period i.

ρd Risk premium for decision d.

ω,Ω ω ∈ Ω is the state of nature, with Ω the set of possible states of nature.

�,�,∼ Binary preference relations.
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Extension to Example 5.3.1

The calculation of expected adaptive utilities and the maximisation over various

decision histories that were necessary in Example 5.3.1 (denoted by the E’s and

L’s in that example) were performed using the software package Maple 10. It is

not feasible to include them in full detail within this thesis. For example, lists

L5, L6 and L7 must between them contain all 8 dimensional vectors representing

possible observed failure histories by the final period, of which there are 10,000.

The expected adaptive utility functions are also rather messy calculations of up to 8

variables. Nevertheless, given the problem description, the adaptive utility function

and prior beliefs, these calculations can easily be verified using the algorithm given

in Section 5.1.

Example 5.3.1 is based on a hypothetical scenario and it is hoped that the omission

of these calculations do not prevent the reader from appreciating the implications

of, and possibilities for, adaptive utility theory. However, as an example of how

these calculations are performed, and as a demonstration of the general procedure,

the description of how list L2 was determined is included below. Examination of

the row in Table 5.1 containing E2 and L2 informs us that these were relevant if

decision dB had previously been made. Thus the current decision is whether or not

to permanently fix failure types A, and as beliefs over the number and severity of

future failures of type A will not depend on previous observed failures of type B,

attention is restricted to the timing and perceived severity of failures of type A.
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Because Table 5.1 represents the decision to be made in the final epoch, entries in

L2 will be of the form of a 4 dimensional vector (z1
AS, z

1
AM , z

2
AS, z

2
AM), with ziAj being

the observed number of failures of type A that occurred with perceived severity j

in epoch i. Furthermore, as there can be at most 3 type A failures of any perceived

severity within an epoch, there are 100 possible decision histories that must be

considered.

To evaluate the expected adaptive utility of the decision d3 = dN , the updated

beliefs over θA and ωA for all possible histories must be determined (examination

of the adaptive utility function assumed for this problem demonstrates that beliefs

over θB and ωB are no longer relevant). Those histories that lead to updated beliefs

over these parameters being such that the expected adaptive utility of d3 = dN is

greater than −80 are then placed in list L2.

Application of Bayes’ Theorem and use of independencies within the problem leads

to the result that for given history H = (z1
AS, z

1
AM , z

2
AS, z

2
AM), updated beliefs over

θA are such that P (θA = 0.7|H) = 1−P (θA = 0.3|H), with P (θA = 0.7|H) described

following simplification by:

P (θA = 0.7|H) =
4× 7z

1
AS+z2AS × 3z

1
AM+z2AM

4× 7z
1
AS+z2AS × 3z

1
AM+z2AM + 3z

1
AS+z2AS × 7z

1
AM+z2AM

(B.0.1)

Similarly, updated beliefs over parameter ωA given history H can also be determined

and are such that P (ωA = 0.005|H) = 1 − P (ωA = 0.1|H), with P (ωA = 0.005|H)

described following simplification by:

P (ωA = 0.005|H) =
7× 1996−k

7× 199k + 212 × 56 × 313−2k
(B.0.2)

with k= z1
AS + z1

AM + z2
AS + z2

AM
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Determining the updated expected values of parameters θA and ωA from the above

distributions, and putting them into the example’s adaptive utility function, then

provides expected adaptive utility equation E2. Finally, list L2 is generated by

considering each possible history and determining whether or not for that history

equation E2 has a greater value than −80 (the expected adaptive utility of decision

d3 = dN). The full list of histories in L2 is given below (note that these are expressed

in the form (z1
AS, z

1
AM , z

2
AS, z

2
AM)):

(0,0,0,0) (0,0,0,1) (0,0,0,2) (0,0,0,3) (0,0,1,0) (0,0,1,2) (0,1,0,0) (0,1,0,1) (0,1,0,2)

(0,1,0,3) (0,1,1,1) (0,1,1,2) (0,2,0,0) (0,2,0,1) (0,2,0,2) (0,2,0,3) (0,2,1,0) (0,2,1,1)

(0,2,1,2) (0,2,2,1) (0,3,0,0) (0,3,0,1) (0,3,0,2) (0,3,0,3) (0,3,1,0) (0,3,1,1) (0,3,1,2)

(0,3,2,0) (0,3,2,1) (1,0,0,0) (1,0,0,2) (1,0,0,3) (1,1,0,1) (1,1,0,2) (1,1,0,3) (1,1,1,2)

(1,2,0,0) (1,2,0,1) (1,2,0,2) (1,2,0,3) (1,2,1,1) (1,2,1,2) (2,0,0,3) (2,1,0,2) (2,1,0,3)



Appendix C

A Conjugate Utility Class

This appendix demonstrates how the use of a utility function from the polynomial

class of functions, as defined in Equation (5.5), leads to a closed and tractable

solution to the nested sequence of expectations in Equations (5.3) and (5.4) when

beliefs over the problem’s variables are represented by Normal distributions.

First we assume prior beliefs over the state of nature ω are such that it follows a

Normal distribution with known mean µ and known variance σ2. We also assume

that the distribution of reward r following decision d is Normal, with unknown mean

µd(ω) = αdω + βd (with αd and βd known constants) and known variance σ2
d.

Due to the conjugacy property of members of the exponential family of distributions

(see, for example, Bernardo & Smith [17] or DeGroot [34]), posterior beliefs for ω

can be easily found following the observation of rewards r1, . . . , rj when decisions

d1, . . . , dj were made, respectively:

fd1,...,dj(r
1, . . . , rj|ω) =

j∏
i=1

fdi(r
i|ω) ∝ exp

{
−

j∑
i=1

(ri − µdi(ω))2

2σ2
di

}
(C.0.1)

f(ω) ∝ exp

{
− (ω − µ)2

2σ2
di

}
⇒ f(ω|{ri, di}ji=1) ∝ exp

{
− (ω − µ)2

2σ2
di
−

j∑
i=1

(ri − µdi(ω))2

2σ2
di

}
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Using that µd(ω) = αdω + βd and making suitable rearrangement then leads to:

f(ω|{ri, di}ji=1) ∝ exp

{
− 1

2σ2/(1 + σ2
∑j

i=1

α2
di

σ2
di

)

(
ω −

µ+ σ2
∑j

i=1

αdi (r
i−βdi )
σ2
di

1 + σ2
∑j

i=1

α2
di

σ2
di

)2}

Hence posterior beliefs for ω follow a Normal distribution with mean ηj1 and variance

ηj2, where:

ηj1 =
µ+ σ2

∑j
i=1

αdi (r
i−βdi )
σ2
di

1 + σ2
∑j

i=1

α2
di

σ2
di

ηj2 =
σ2

1 + σ2
∑j

i=1

α2
di

σ2
di

(C.0.2)

Similarly, assuming that prior beliefs about θ follow a Normal distribution with

known mean ν and known variance τ 2, and assuming that the distribution of utility

information zi following selection of decision di is also Normal with unknown mean

νd(θ) = φdθ+ψd (with φd and ψd known constants) and known variance τ 2
d , then after

the observation of z1, . . . , zj posterior beliefs about θ follow a Normal distribution

with mean λj1 and variance λj2, where:

λj1 =
ν + τ 2

∑j
i=1

φdi (z
i−ψdi )
τ2
di

1 + τ 2
∑j

i=1

φ2
di

τ2
di

λj2 =
τ 2

1 + τ 2
∑j

i=1

φ2
di

τ2
di

(C.0.3)

In this setting it can also be shown that, knowing that previous decisions d1, . . . , dj−1

led to rewards r1, . . . , rj−1, respectively, the posterior predictive distribution of re-

ward rj following selection of decision dj is also Normal with mean γj1 = αdjη
j−1
1 +βdj

and variance γjs = α2
djη

j−1
2 + σ2

dj .

Equations (5.3) and (5.4) detailed the solution algorithm for an n-period sequential

adaptive utility decision problem. However, as was discussed in Chapter 5, such an

algorithm requires that the DM compute a nested sequence of expectations, which

in most cases leads to an intractable solution.
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Nevertheless, if the DM’s beliefs over problem variables are as detailed within this

appendix, then one possibility for ensuring a closed form solution to such a sequence

of expectations is to consider the use of a utility function that is a member of the

the polynomial class that was given in Equation (5.5).

In determining optimal decision dj when decision history aH
j is known, the DM

is required to compute two types of expectations. The first of these is of the form

Eθ|aHj [u(r1, . . . , rn|θ)], whilst the second is of the form E
aHk+1|aHk,dk [au(r1, . . . , rn)]

for k = j, . . . , n− 1.

Presuming u(r1, . . . , rn|θ) is a member of the polynomial class of Equation (5.5), we

may solve Eθ|aHj [u(r1, . . . , rn|θ)] by the following:

Eθ|aHj [u(r1, . . . , rn|θ)] =

∫
Θ

u(r1, . . . , rn|θ)f(θ|aHj) (C.0.4)

=

∫
Θ

m0∑
k0=0

m1∑
k1=0

· · ·
mn∑
kn=0

ak0,k1,...,kn(r1)k1 · · · (rn)knθk0f(θ|aHj)

=

m0∑
k0=0

m1∑
k1=0

· · ·
mn∑
kn=0

ak0,k1,...,kn(r1)k1 · · · (rn)kn
∫

Θ

θk0f(θ|aHj)

=

m0∑
k0=0

m1∑
k1=0

· · ·
mn∑
kn=0

ak0,k1,...,kn(r1)k1 · · · (rn)knEθ|aHj [θk0 ]

Given aH
j, posterior beliefs over θ follow a Normal distribution with known mean

and variance. Hence determination of Eθ|aHj [θk0 ] is the same as the determination

of the raw moments of a Normal distribution, and these can be expressed as a

polynomial function of the mean and variance of the distribution (see Papoulis [82]).

The same technique can also be applied to determine E
aHk+1|aHk,dk [au(r1, . . . , rn)],

and although the following can be equally well applied when determining predictive

beliefs over both rk and zk, we will assume utility information is not included in

decision histories.
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Noting that au(r1, . . . , rn) = Eθ|aHj [u(r1, . . . , rn|θ)] is a polynomial function of

r1, . . . , rn, we use the result that, given aH
k, the predictive distribution of rk when

decision dk is selected is Normal with known mean and variance. Hence again the so-

lution is equivalent to determining the raw moments of a Normal distribution, again

leading to another polynomial of the returns r1, . . . , rk−1, rk+1, . . . , rn. Sequentially

solving expectations of the form E
aHk+1|aHk,dk [au(r1, . . . , rn)] by taking k backwards

from n to 1 then permits calculation of necessary expected adaptive utilities.
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