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Abstract

This thesis is concerned with the generalisation of Bayesian inference towards the use of
imprecise or interval probability, with a focus on model behaviour in case of prior-data
con�ict.
Bayesian inference is one of the main approaches to statistical inference. It requires to

express (subjective) knowledge on the parameter(s) of interest not incorporated in the data
by a so-called prior distribution. All inferences are then based on the so-called posterior
distribution, the subsumption of prior knowledge and the information in the data calculated
via Bayes' Rule.
The adequate choice of priors has always been an intensive matter of debate in the

Bayesian literature. While a considerable part of the literature is concerned with so-called
non-informative priors aiming to eliminate (or, at least, to standardise) the in�uence of
priors on posterior inferences, inclusion of speci�c prior information into the model may be
necessary if data are scarce, or do not contain much information about the parameter(s) of
interest; also, shrinkage estimators, common in frequentist approaches, can be considered
as Bayesian estimators based on informative priors.
When substantial information is used to elicit the prior distribution through, e.g, an

expert's assessment, and the sample size is not large enough to eliminate the in�uence of
the prior, prior-data con�ict can occur, i.e., information from outlier-free data suggests
parameter values which are surprising from the viewpoint of prior information, and it may
not be clear whether the prior speci�cations or the integrity of the data collecting method
(the measurement procedure could, e.g., be systematically biased) should be questioned.
In any case, such a con�ict should be re�ected in the posterior, leading to very cautious
inferences, and most statisticians would thus expect to observe, e.g., wider credibility
intervals for parameters in case of prior-data con�ict. However, at least when modelling
is based on conjugate priors, prior-data con�ict is in most cases completely averaged out,
giving a false certainty in posterior inferences.
Here, imprecise or interval probability methods o�er sound strategies to counter this

issue, by mapping parameter uncertainty over sets of priors resp. posteriors instead over
single distributions. This approach is supported by recent research in economics, risk
analysis and arti�cial intelligence, corroborating the multi-dimensional nature of uncer-
tainty and concluding that standard probability theory as founded on Kolmogorov's or
de Finetti's framework may be too restrictive, being appropriate only for describing one
dimension, namely ideal stochastic phenomena.
The thesis studies how to e�ciently describe sets of priors in the setting of samples from

an exponential family. Models are developed that o�er enough �exibility to express a wide
range of (partial) prior information, give reasonably cautious inferences in case of prior-



xiv Summary

data con�ict while resulting in more precise inferences when prior and data agree well,
and still remain easily tractable in order to be useful for statistical practice. Applications
in various areas, e.g. common-cause failure modeling and Bayesian linear regression, are
explored, and the developed approach is compared to other imprecise probability models.



Zusammenfassung

Das Thema dieser Dissertation ist die Generalisierung der Bayes-Inferenz durch die Ver-
wendung von unscharfen oder intervallwertigen Wahrscheinlichkeiten. Ein besonderer Fo-
kus liegt dabei auf dem Modellverhalten in dem Fall, dass Vorwissen und beobachtete
Daten in Kon�ikt stehen.
Die Bayes-Inferenz ist einer der Hauptansätze zur Herleitung von statistischen Inferenz-

methoden. In diesem Ansatz muss (eventuell subjektives) Vorwissen über die Modellpara-
meter in einer sogenannten Priori-Verteilung (kurz: Priori) erfasst werden. Alle Inferenzaus-
sagen basieren dann auf der sogenannten Posteriori-Verteilung (kurz: Posteriori), welche
mittels des Satzes von Bayes berechnet wird und das Vorwissen und die Informationen in
den Daten zusammenfasst.
Wie eine Priori-Verteilung in der Praxis zu wählen sei, ist dabei stark umstritten. Ein

groÿer Teil der Literatur befasst sich mit der Bestimmung von sogenannten nichtinformati-
ven Prioris. Diese zielen darauf ab, den Ein�uss der Priori auf die Posteriori zu eliminieren
oder zumindest zu standardisieren. Falls jedoch nur wenige Daten zur Verfügung stehen,
oder diese nur wenige Informationen in Bezug auf die Modellparameter bereitstellen, kann
es hingegen nötig sein, spezi�sche Priori-Informationen in ein Modell einzubeziehen. Au-
ÿerdem können sogenannte Shrinkage-Schätzer, die in frequentistischen Ansätzen häu�g
zum Einsatz kommen, als Bayes-Schätzer mit informativen Prioris angesehen werden.
Wenn spezi�sches Vorwissen zur Bestimmung einer Priori genutzt wird (beispielsweise

durch eine Befragung eines Experten), aber die Stichprobengröÿe nicht ausreicht, um ei-
ne solche informative Priori zu überstimmen, kann sich ein Kon�ikt zwischen Priori und
Daten ergeben. Dieser kann sich darin äuÿern, dass die beobachtete (und von eventuellen
Ausreiÿern bereinigte) Stichprobe Parameterwerte impliziert, die aus Sicht der Priori äu-
ÿerst überraschend und unerwartet sind. In solch einem Fall kann es unklar sein, ob eher
das Vorwissen oder eher die Validität der Datenerhebung in Zweifel gezogen werden sol-
len. (Es könnten beispielsweise Messfehler, Kodierfehler oder eine Stichprobenverzerrung
durch selection bias vorliegen.) Zweifellos sollte sich ein solcher Kon�ikt in der Poste-
riori widerspiegeln und eher vorsichtige Inferenzaussagen nach sich ziehen; die meisten
Statistiker würden daher davon ausgehen, dass sich in solchen Fällen breitere Posteriori-
Kredibilitätsintervalle für die Modellparameter ergeben. Bei Modellen, die auf der Wahl
einer bestimmten parametrischen Form der Priori basieren, welche die Berechnung der
Posteriori wesentlich vereinfachen (sogenannte konjugierte Priori-Verteilungen), wird ein
solcher Kon�ikt jedoch einfach ausgemittelt. Dann werden Inferenzaussagen, die auf einer
solchen Posteriori basieren, den Anwender in falscher Sicherheit wiegen.
In dieser problematischen Situation können Intervallwahrscheinlichkeits-Methoden einen

fundierten Ausweg bieten, indem Unsicherheit über die Modellparameter mittels Mengen
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von Prioris beziehungsweise Posterioris ausgedrückt wird. Neuere Erkenntnisse aus Risi-
koforschung, Ökonometrie und der Forschung zu künstlicher Intelligenz, die die Existenz
von verschiedenen Arten von Unsicherheit nahelegen, unterstützen einen solchen Modellan-
satz, der auf der Feststellung aufbaut, dass die auf den Ansätzen von Kolmogorov oder de
Finetti basierende übliche Wahrscheinlichkeitsrechung zu restriktiv ist, um diesen mehrdi-
mensionalen Charakter von Unsicherheit adäquat einzubeziehen. Tatsächlich kann in diesen
Ansätzen nur eine der Dimensionen von Unsicherheit modelliert werden, nämlich die der
idealen Stochastizität.
In der vorgelegten Dissertation wird untersucht, wie sich Mengen von Prioris für Stich-

proben aus Exponentialfamilien e�zient beschreiben lassen. Wir entwickeln Modelle, die
eine ausreichende Flexibilität gewährleisten, sodass eine Vielfalt von Ausprägungen von
partiellem Vorwissen beschrieben werden kann. Diese Modelle führen zu vorsichtigen In-
ferenzaussagen, wenn ein Kon�ikt zwischen Priori und Daten besteht, und ermöglichen
dennoch präzisere Aussagen für den Fall, dass Priori und Daten im Wesentlichen über-
einstimmen, ohne dabei die Einsatzmöglichkeiten in der statistischen Praxis durch eine zu
hohe Komplexität in der Anwendung zu erschweren. Wir ermitteln die allgemeinen Inferenz-
eigenschaften dieser Modelle, die sich durch einen klaren und nachvollziehbaren Zusammen-
hang zwischen Modellunsicherheit und der Präzision von Inferenzaussagen auszeichnen,
und untersuchen Anwendungen in verschiedenen Bereichen, unter anderem in sogenann-
ten common-cause-failure-Modellen und in der linearen Bayes-Regression. Zudem werden
die in dieser Dissertation entwickelten Modelle mit anderen Intervallwahrscheinlichkeits-
Modellen verglichen und deren jeweiligen Stärken und Schwächen diskutiert, insbesondere
in Bezug auf die Präzision von Inferenzaussagen bei einem Kon�ikt von Vorwissen und
beobachteten Daten.
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1. Introduction

In this introductory chapter, we will �rst deal with some preliminaries in Section 1.1, where
will give an overview on the contents of this thesis, declare the sources these contents are
based on, and present some notational conventions. In Section 1.2, we will discuss some
basic fundamentals that frame the work we want to accomplish. There, we will describe
the basics of statistical inference using parametric models, and give a brief introduction
to the Bayesian approach to statistical inference. Section 1.3 then presents a motivating
example, illustrating the advantages in uncertainty modelling that can be gained from
using imprecise probability models, thus serving as a preview on the general concepts we
will then introduce in the later chapters.

1.1. Preliminaries

1.1.1. Overview

In this thesis, a generalisation of Bayesian inference towards the use of imprecise or interval
probability is investigated. A general framework for models based on sets of conjugate
priors is established, and some new models within this framework are proposed. These
models are then compared to some other models based on sets of priors discussed in the
literature, focussing on model behaviour in case of prior-data con�ict.

With the fundamentals of Bayesian inference based on parametric distributions and
conjugate priors covered in Section 1.2, a motivating example in Section 1.3, considering
the reliability analysis problem of common-cause failure modelling, serves to show the
potential of generalised Bayesian inference using sets of conjugate priors.
Chapter 2 then gives a general introduction to the methodology of imprecise probability

models, presenting the general approach to generalised Bayesian inference with lower pre-
visions or sets of priors. Furthermore, motives for the use of imprecise probability methods
are discussed, among which prior-data con�ict (encountered already in the motivating ex-
ample) and weakly informative priors are the central topics guiding our assessments of the
speci�c imprecise probability models covered then in Chapter 3.
There, we �rst present a general framework for generalised Bayesian inference using sets

of conjugate priors, giving a superstructure for some notable imprecise probability models
which have been central to the development and application of imprecise probability meth-
ods in statistical inference (Section 3.1). Some important favourable inference properties
for these models are demonstrated, and a number of models that can be subsumed under
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this framework are discussed with respect to the handling of prior-data con�ict and the
possibility to model weak prior information.
Section 3.2 brie�y discusses some alternative models based on sets of priors, and com-

pares these to models of the framework from Section 3.1. The remainder of Chapter 3
reproduces two works that suggest novel models that provide a sophisticated handling of
prior-data con�ict (Sections 3.3 and 3.5), and gives a short overview on a software imple-
mentation (Section 3.4).
Chapter 4 concludes the thesis, giving a summary and discussion of the central achiev-

ments, and sketching some opportunities for applications and avenues for further research.
The Appendix (Chapter A) provides some supplemental material. Section A.1 studies

prior-data con�ict sensitivity in Bayesian linear regression, while Section A.2 describes an
informal rationale and some �rst technical results for a novel approach that, in addition
to prior-data con�ict sensitivity, leads to favourable behaviour in case of strong agreement
between prior information and data.

1.1.2. Sources

This thesis is partly based on previously published works where the author of this thesis
was the �rst or second author. These works, also listed in the Bibliography, are given
below.

Augustin, T., G. Walter, and F. Coolen (2013). �Statistical Inference�. In: Introduction to
Imprecise Probabilities. Ed. by F. Coolen, M. Tro�aes, T. Augustin, and G. de Cooman.
In preparation. Wiley (cit. on pp. 3, 43, 47, 63).

Tro�aes, M., G. Walter, and D. Kelly (2013). A Robust Bayesian Approach to Modelling
Epistemic Uncertainty in Common-Cause Failure Models. Preprint available at http:
//arxiv.org/abs/1301.0533. Accepted for publication at: Reliability Engineering &
System Safety (cit. on pp. 3, 19, 23).

Walter, G. (2012). A Technical Note on the Dirichlet-Multinomial Model � The Dirichlet
Distribution as the Canonically Constructed Conjugate Prior. Tech. rep. 131. Depart-
ment of Statistics, LMU Munich. url: http://epub.ub.uni-muenchen.de/14068/
(cit. on p. 3).

Walter, G. and T. Augustin (2009a). Bayesian linear regression � di�erent conjugate mod-
els and their (in)sensitivity to prior-data con�ict. Tech. rep. 69. Substantially extended
version of Walter and Augustin 2010. http://epub.ub.uni-muenchen.de/11050/
1/tr069.pdf. Department of Statistics, LMU Munich. url: http://epub.ub.uni-
muenchen.de/11050/1/tr069.pdf (cit. on pp. 3, 135).

Walter, G. and T. Augustin (2009b). �Imprecision and Prior-data Con�ict in General-
ized Bayesian Inference�. In: Journal of Statistical Theory and Practice 3. Reprinted in
Coolen-Schrijner, Coolen, Tro�aes, Augustin, et al. (2009), pp. 255�271. issn: 1559-8616
(cit. on pp. 3, 9, 28, 55, 59, 64�66, 79, 104, 106, 119, 138, 155).

http://arxiv.org/abs/1301.0533
http://arxiv.org/abs/1301.0533
http://epub.ub.uni-muenchen.de/14068/
http://epub.ub.uni-muenchen.de/11050/1/tr069.pdf
http://epub.ub.uni-muenchen.de/11050/1/tr069.pdf
http://epub.ub.uni-muenchen.de/11050/1/tr069.pdf
http://epub.ub.uni-muenchen.de/11050/1/tr069.pdf
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Walter, G., T. Augustin, and F. P. Coolen (2011). �On Prior-Data Con�ict in Predictive
Bernoulli Inferences�. In: ISIPTA'11: Proceedings of the Seventh International Sym-
posium on Imprecise Probabilities: Theories and Applications. Ed. by F. Coolen, G.
de Cooman, T. Fetz, and M. Oberguggenberger. SIPTA, pp. 391�400. url: http:
//www.sipta.org/isipta11/proceedings/046.html (cit. on pp. 3, 55, 59, 66, 103).

In detail, these works have been used in this thesis as described below.

In Chapter 1, Section 1.2 is based on Augustin, Walter, and Coolen (2013), using
��1.1�1.5 and �4.1. Section 1.2.3.5 is instead based on Walter (2012). Section 1.3 is based
on Tro�aes, Walter, and Kelly (2013), except Section 1.3.1, which was newly written for
this thesis.

In Chapter 2, Section 2.1 was newly written for this thesis, except Section 2.1.3, which
is based on Augustin, Walter, and Coolen (2013, ��4.2, 4.4). Also, Section 2.1.4 uses parts
of Augustin, Walter, and Coolen (2013, �5.2), and Augustin, Walter, and Coolen (2013,
�6.1). Section 2.2 was newly devised for this thesis, under use of Augustin, Walter, and
Coolen (2013, �2.3) for the last paragraph in Section 2.2.3.1, and Sections 2.2.3.2 and
2.2.3.3. Section 2.2.4 uses parts of Augustin, Walter, and Coolen (2013, ��2.2, 2.4), and a
paragraph from Augustin, Walter, and Coolen (2013, �7).

In Chapter 3, Section 3.1 is based on Augustin, Walter, and Coolen (2013, �4.3).
Section 3.2 was newly written for this thesis, using some minor parts of Augustin, Walter,
and Coolen (2013, ��4.2, 4.4). Section 3.3 is a slightly abriged reproduction of Walter
and Augustin (2009b), with a minor change of notation towards the one introduced in
Section 1.2.3.1. Section 3.4 gives a short overview on a software implementation of the
model presented in Section 3.3, and was newly written for this thesis. Section 3.5 consists of
Walter, Augustin, and Coolen (2011), again with a slight change of notation for consistency
with the rest of the material presented in this thesis. Here, it was also possible to add a
few explanatory paragraphs that could not appear in the original publication due to page
restrictions.

Chapter 4 was newly written for this thesis.

In the Appendix (Chapter A), Section A.1 consists of Walter and Augustin (2009a),
which is a substantially extended version of Walter and Augustin (2010), reproduced here
with a slight change in notation and some added comments. Section A.2 was instead
written newly for this thesis.

1.1.3. Notation

Scalars are denoted by italic letters (x, θ), whereas vectors are denoted by bold italic letters
(x, θ). Matrices are written in bold regular (i.e., non-italic) uppercase letters, like X, Z,
and transposed matrices are marked by a raised uppercase sans serif `T' (XT). The trace of
a matrix is denoted by tr(X); unit or identity matrices are denoted by I, sometimes with

http://www.sipta.org/isipta11/proceedings/046.html
http://www.sipta.org/isipta11/proceedings/046.html
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an added subscript indicating their size (in the case that the size may be not obvious or
in order to emphasise it), such that Ip denotes a unit matrix of size p× p.
For statistical models, samples, i.e. realisations of random variables, are denoted by

lowercase letters (x, x), random quantities by uppercase letters (X, X); however, as
this thesis is mostly concerned with Bayesian methods, the strict distrinction between
random variables and `�xed' quantities as made in frequentist statistics is not maintained
throughout most of the thesis.
Sets or spaces are given as calligraphic uppercase letters (X , Y ,M). Some special sets

are denoted as follows: the real numbers by R, positive real numbers by R>0, nonnegative
real numbers by R≥0, and the space of q-dimensional tuples of real numbers by Rq.
In the Bayesian setting, prior and posterior probability distribution functions, i.e. den-

sities on parameters, are usually denoted by lowercase letter p; sample model densities
(probability distribution functions on observable quantities) are denoted by lowercase let-
ter f : f(x), p(θ).
This distinction for densities on parameters or samples is not maintained for the asso-

ciated probability measures and cumulative distribution functions: cumulative distribu-
tion functions are denoted by uppercase letter F, e.g., F(x) :=

∫ x
−∞ f(u) du, or F(θ) :=∫ θ

−∞ f(ψ) dψ; probability measures, e.g. for subsets A of a sample space Ω, or a subset
Θ1 of the parameter space Θ, are denoted by uppercase P, i.e. P(A) =

∑
ω∈A f(ω) if Ω is

countable, or P(Θ1) =
∫

Θ1
p(θ) dθ for continuous Θ.

Expectation and variance of a random quantity X are denoted by E[X] and Var(X),
respectively. In a Bayesian setting, quantities identifying the distribution (with respect to
which expectation and variance are calculated) are added in the argument, seperated by a
vertical line, as in f(x | θ), or E[θ | n(0), y(0)].
Other notational conventions are declared upon introduction of the concepts they are

representing.
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1.2. Some Fundamentals

In this section, we will brie�y introduce our notion of statistical inference, and discuss
models that are used to describe random samples. Then, we will give a short introduction
into the basic principles of Bayesian inference based on conjugate priors.

1.2.1. Statistical Inference

Statistical inference is about learning from data. It is basically concerned with inductive
reasoning, i.e., establishing a general rule from observations. As is long known as the
problem of induction (Hume 2000), it is impossible to justify inductive reasoning by pure
reason, and therefore one cannot infer general statements (laws) with absolute truth from
single observations. The statistical remedy for this inevitable and fundamental dilemma of
any type of inductive reasoning is (postulated, maybe virtual) randomness of the sampling
process that generates the data. If, and only if, the sample is, or can be understood as,
drawn randomly, probability theory allows to quantify the error of statistical propositions
concluded from the sample.
Speci�cally, to model the randomness, a statistical model is formulated. It is a tuple

(X ,Q), consisting of the sample space X , i.e. the domain of the random quantity X
under consideration, and a set Q of probability distributions,1 collecting all probability
distributions that are judged to be potential candidates for the distribution of X. In
this setting Q is called sampling model and every element P ∈ Q (potential) sampling
distribution. The inferential task is to learn the true element P∗ ∈ Q from multiple
observations of the random process producing X.

1.2.2. Parametric Models

In this thesis, generally, so-called parameteric models are considered, where Q is parame-
trised by a parameter ϑ of �nite dimension, assuming values in the so-called parameter
space Θ, Θ ⊆ Rq, q <∞, i.e. Q = (Pϑ)ϑ∈Θ. Here, the di�erent sampling distributions Pϑ

are implicitly understood as belonging to a speci�c class of distributions, the basic type
of which is assumed to be known completely (e.g., normal distributions, see Example 1.1
below), and only some characteristics ϑ (e.g., the mean) of the distributions are unknown.
Throughout, we will assume (as is the case for all common applications) that the underly-

ing candidate distributions Pϑ of the random quantity X are either discrete or absolutely
continuous with respect to the Lebesgue measure (see, e.g., Karr 1993, pp. 32f, 38 for
some technical details) for every ϑ ∈ Θ. Then it is convenient to express every Pϑ in
the discrete case by its mass function fϑ, with fϑ(x) := Pϑ(X = x),∀x ∈ X , and in

1Most models of statistical inference rely on σ-additive probability distributions. Therefore, technically,
in addition an appropriate (σ-)�eld σ(X ), describing the domain of the underlying probability measure,
has to be speci�ed. In most applications there are straightforward canonical choices for σ(X ), and thus
σ-�elds are not explicitly discussed here.
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the continuous case by its probability density function (pdf) fϑ, where fϑ is such that
Pϑ(X ∈ [a, b]) =

∫ b
a
fϑ(x) dx.

An i.i.d. sample of size n (where i.i.d. abbreviates independent, identically distributed)
based on the parametric statistical model (X , (pϑ)ϑ∈Θ) is a vector

X = (X1, . . . , Xn)T

of independent random quantities Xi with the same distribution Pϑ. Then X is de�ned
on X n with probability distribution P⊗nϑ as the n-dimensional product measure describing
the independent observations. For Bayesian approaches as discussed here, independence is
often replaced by exchangeability (see, e.g., Bernardo and Smith 2000, �4.2). P⊗nϑ thus has
the probability mass or density function

fϑ(x1, . . . , xn) :=
n∏
i=1

fϑ(xi) .

The term sample is then also used for the concretely observed value(s) x = (x1, . . . , xn)T.

Now we will present two examples for basic parametric models that will be repeatedly
discussed further on.

Example 1.1 (Normal distribution). A common model for observations that in principle
can assume any value on the real line is the normal distribution with parameters µ and
σ2, also called the Gaussian distribution. Typical examples for data of this kind are scores
in intelligence testing, or technical measurements in general.2

For each observation xi, i = 1, . . . , n, the normal probability density is

f(µ,σ2)(xi) =
1√

2πσ2
exp

{
− 1

2σ2
(xi − µ)2

}
,

with the two parameters µ ∈ R and σ2 ∈ R>0 being in fact the mean and the variance of
(the distribution of) xi, respectively. As a shortcut, we write xi ∼ N(µ, σ2).
With the independence assumption, the density of x = (x1, . . . , xn) amounts to

f(µ,σ2)(x) =
n∏
i=1

f(µ,σ2)(xi) = (2πσ2)−
n
2 exp

{
− 1

2σ2

n∑
i=1

(xi − µ)2
}
. (1.1)

Later on, we restrict considerations to the case where the variance is known to be equal
to σ2

0, denoted by xi ∼ N(µ, σ2
0). Inference may thus concern the parameter µ directly, or

future observations xn+1, xn+2, . . . in a chain of i.i.d. observations.

2The normal distribution is distinguished by the central limit theorem (see, e.g., Karr 1993, �7.3, or
Breiman 1968, �9), stating that, under regularity conditions, the distribution of an appropriately scaled
sum of n standardized random variables converges to a normal distribution for n→∞.
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Example 1.2 (Multinomial distribution). The multinomial distribution is a common
model for samples where only a limited number of distinct values can be observed. These
distinct values are often named categories (hence the term categorical data), and are usu-
ally numbered from 1 to k, without imposing any natural ordering on these values. We
have therefore a discrete distribution, giving the probability for observing certain category
counts (n1, . . . , nk) = n in a sample of n observations in total. Thus,

∑k
j=1 nj = n.

We start the de�nition of the multinomial distribution by decomposing the collection of
n observations into its constituents, single observations of either of the categories 1, . . . , k.
Such a single observation, often named multivariate Bernoulli observation, can be encoded
as a vector xi of length k, where the j-th element, xij, equals 1 if category j has been
observed, and all other elements being 0. Given the vectorial parameter θ of length k,
where the component θj models the probability of observing category j in a single draw

(therefore
∑k

j=1 θj = 1), the probability for observing xi can be written as

fθ(xi) =
k∏
j=1

θ
xij
j .

Assuming independence, the probability for observing a certain sequence x = (x1, . . . ,xn)
of n observations can thus be written as

fθ(x) =
n∏
i=1

fθ(xi) ∝
n∏
i=1

k∏
j=1

θ
xij
j =

k∏
j=1

θ
∑n
i=1 xij

j =
k∏
j=1

θ
nj
j ,

where nj =
∑n

i=1 xij tells us how often category j was observed in the sample.
For the probability to observe a certain category count (n1, . . . , nk) = n, we have to

account for the di�erent possible orderings in x leading to the same count vector n. There-
fore,

fθ(n) =

(
n

n1, . . . , nk

) k∏
j=1

θ
nj
j =

n!

n1! · . . . · nk!

k∏
j=1

θ
nj
j . (1.2)

As a shortcut, we write n ∼ M(θ).

1.2.3. Statistical Inference with the Bayesian Paradigm

As the inference models discussed in this thesis are all based on the Bayesian approach
to statistical inference, we will now give a short introduction to the basic principles of
Bayesian inference.

The Bayesian approach requires (possibly subjective) knowledge on the parameter ϑ to
be expressed by a probability distribution on3 Θ, with the probability mass or density

3Again we implicitly assume that Θ is complemented by an appropriate σ-�eld σ(Θ).
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function p(ϑ) called prior distribution. Indeed, the basic assumption in the Bayesian ap-
proach is that any prior information about Θ can be su�ciently expressed by a (precise)
prior p(θ).4 Interpreting the elements fϑ(x) of the sampling model as conditional distribu-
tions of the sample given the parameter, denoted by f(x | ϑ) and called likelihood, turns
the problem of statistical inference into a problem of probabilistic deduction, where the
posterior distribution, i.e. the distribution of the parameter given the sample data, can be
calculated by Bayes' Rule.5 Thus, in the light of the sample x = (x1, . . . , xn), the prior
distribution is updated by Bayes' Rule to obtain the posterior distribution with density or
mass function

p(ϑ | x) ∝ f(x | ϑ) · p(ϑ) . (1.3)

The posterior distribution is understood as comprising all the information from the sample
and the prior knowledge. It therefore underlies all further inferences on the parameter ϑ,
like point estimators, interval estimators, or the posterior predictive distribution, which is
the distribution of further observations based on p(ϑ | x) (see Eq. (1.8) below).

1.2.3.1. Regular Conjugate Families of Distributions

Traditional Bayesian inference is frequently based on so-called conjugate priors related to
a speci�c likelihood. Such priors have the convenient property that the posterior resulting
from (1.3) belongs to the same class of parametric distributions as the prior, and thus only
the parameters have to be updated, which makes calculation of the posterior and thus the
whole Bayesian inference easily tractable.6

Fortunately, there are general results guiding the construction of conjugate priors in
several models used most frequently in practice, namely in the case where the sample
distribution belongs to a so-called (regular) canonical exponential family (e.g., Bernardo
and Smith 2000, pp. 202 and 272f). This indeed covers many sample distributions relevant
in a statistician's everyday life, like Normal and Multinomial models, Poisson models,
or Exponential and Gamma models. After presentation of the general framework, we will
discuss its instantiation for the Normal and the Multinomial sampling models as introduced
in Examples 1.1 and 1.2 above.
A sample distribution (from now on understood directly as the distribution P⊗nϑ of an

i.i.d. sample x of size n) is said to belong to the (regular) canonical exponential family if

4This assumption is refuted most prominently by Walley (1991), whose theory of Bayesian inference
without a need for precise priors will be discussed in Section 2.1.

5Gillies (1987, 2000) argues that Bayes' Theorem was in fact developed in order to confront the problem
of induction as posed by Hume (2000).

6This motivation for the use of conjugate priors can be founded on formal arguments. As will be explained
below, the posterior expectation of the parameter of interest is actually a linear function of a su�cient
statistic of the data and the prior expectation. It turns out that, under some regularity conditions,
requiring such linearity of posterior expectation implies the use of conjugate priors (Bernardo and
Smith 2000, p. 276).
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its density or mass function satis�es the decomposition

f(x | ϑ) ∝ exp
{
〈ψ, τ(x)〉 − nb(ψ)

}
, (1.4)

where ψ ∈ Ψ ⊂ Rq is a transformation of the (possibly vectorial) parameter ϑ ∈ Θ, and
b(ψ) a scalar function of ψ (or, in turn, of ϑ). τ(x) is a function of the sample x that
ful�lls τ(x) =

∑n
i=1 τ

∗(xi), with τ ∗(xi) ∈ T ⊂ Rq, while 〈·, ·〉 denotes the scalar product.7
From these ingredients, a conjugate prior on ψ can be constructed as8

p(ψ | n(0), y(0)) dψ ∝ exp
{
n(0)
[
〈y(0), ψ〉 − b(ψ)

]}
dψ , (1.5)

where n(0) and y(0) are now the parameters by which a certain prior can be speci�ed. We
will refer to priors of the form (1.5) as canonically constructed priors. The domain of y(0)

is Y , the interior of the convex hull of T ; the scalar n(0) must take strictly positive values
for the prior to be proper (i.e., integrable to 1).
An interpretation for these parameters will be given shortly. First, let us calculate the

posterior density for ψ. The prior parameters y(0) and n(0) are updated to their posterior
values y(n) and n(n) in the following way:

y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ(x)

n
, n(n) = n(0) + n , (1.6)

such that the posterior can be written as

p(ψ | x, n(0), y(0)) =: p(ψ | n(n), y(n)) ∝ exp
{
n(n)

[
〈y(n), ψ〉 − b(ψ)

]}
dψ . (1.7)

In this setting, y(0) and y(n) can be seen as the parameter describing the main characteristics
of the prior and the posterior, and thus we will call them main prior and main posterior
parameter, respectively. y(0) can also be understood as a prior guess for the random
quantity τ̃(x) := τ(x)/n summarizing the sample, as E[τ̃(x) | ψ] = ∇b(ψ), where in
turn E[∇b(ψ) | n(0), y(0)] = y(0) (e.g., Bernardo and Smith 2000, Prop. 5.7, p. 275).
Characteristically, y(n) is a weighted average of this prior guess y(0) and the sample

`mean' τ̃(x), with weights n(0) and n, respectively.9 Therefore, n(0) can be seen as �prior
strength� or �pseudocounts�, re�ecting the weight one gives to the prior as compared to
the sample size n. To make this more explicit, n(0) can be interpreted as the size of an
imaginary sample that corresponds to the trust on the prior information in the same way
as the sample size of a real sample corresponds to the trust in conclusions based on such
a real sample (Walter and Augustin 2009b, p. 258; see Section 3.3.2).

7It would be possible, and indeed is often done in the literature, to consider a single observation x in
Eq. (1.4) only, as the conjugacy property does not depend on the sample size. However, we �nd our
version with n-dimensional i.i.d. sample x more appropriate for a statistical treatment.

8In our notation, (0) denotes prior parameters; (n) posterior parameters.
9This weighted average property of Bayesian updating with conjugate priors is an important issue we
comment on in Sections 3.1.4 and 3.3.3.2. See also Section A.1.2 for an illustration of this issue for the
Normal-Normal and Multinomial-Dirichlet models.
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The posterior p(ψ | n(n), y(n)) can be transformed back to a distribution on ϑ in order
to deal with a commonly known parameter or distribution family for it (as we will do,
e.g., in Sections 1.2.3.3 and 1.2.3.5 below). Besides the posterior itself, also the posterior
predictive distribution

f(x∗ | x, n(0), y(0)) =

∫
f(x∗ | ψ)p(ψ | n(n), y(n)) dψ , (1.8)

the distribution of future samples x∗ after having seen a sample x, forms the basis for the
di�erent inference tasks. Next, we will brie�y describe a taxonomy of inference tasks.

1.2.3.2. Inference Tasks

We may structure the di�erent inference tasks by the type of statement one wants to infer
from the data. As such, this taxonomy is not exclusive to Bayesian inference methods, and
neither to the parametric models considered in Section 1.2.2, but it will be formulated in
terms of parameters in a Bayesian setting here.
We distinguish two groups of inferences, namely

1. static conclusions and

2. predictive conclusions.

Static conclusions refer directly to properties of the sampling model, typically to its
parameter(s). The following procedures, which are based directly on the posterior (1.7) in
the Bayesian paradigm, are the most common:

1a) Point estimators, where a certain parameter value is selected to describe the sample.

1b) Interval estimators, where the information is condensed in a certain subset of the
parameter space Θ, typically in an interval when Θ ⊆ R.

1c) Hypotheses tests, where the information in the sample is only used to decide between
two mutually exclusive statements about parameter(s) called hypotheses, usually de-
noted by H0 and H1.

Predictive conclusions instead summarize the information by statements on properties
of typical further units, either by describing the whole distribution (as with the posterior
predictive (1.8)), or by certain summary measures. Similar to static conclusions, one can
thus consider, e.g.,

2a) Point prediction, where a certain sample value is selected as the most likely to occur.
This is especially useful in the case of discrete sampling distributions, where this
procedure amounts to classi�cation of further sample units.

2b) Interval prediction, where instead a certain subset of the sample space X is deter-
mined, into which furter sample units are likely to fall. An example are prediction
bands in regression analysis.



1.2 Some Fundamentals 11

Both static and predictive conclusions can in fact be formally understood as special
cases of decision making, where, more generally, the conclusion is to select certain utility
maximising or loss minimising acts from a set of possible acts. We will �esh this out to
some extent in the examples below.10

The concretion of the framework for Bayesian inference with canonical conjugate priors
as presented in Section 1.2.3.1 is now demonstrated for the sampling models discussed
in Examples 1.1 and 1.2. As a �rst simple example, we will consider inference in the
Binomial model, being the special case of the Multinomial model with only two categories.
Then, we will brie�y turn to the Normal model, before we present the more complex
considerations for the Multinomial model with k > 2 categories. The latter model is
then used in Section 1.3 for common-cause failure modeling, which will serve as a real-
world example illustrating the powers and shortcomings of standard Bayesian inference,
ultimately motivating the shift to imprecise Bayesian inference.

1.2.3.3. The Beta-Binomial Model

As the special case of the multinomial model (1.2) with only two categories, we will consider
the Binomial model

f(x | θ) =

(
n

s

)
θs(1− θ)n−s , (1.9)

where x, the vector of n observations, is composed of scalar xi's being either 0 or 1, denoting
`failure' or `success' in an experiment with these two outcomes. s =

∑n
i=1 xi is the number

of successes, and the (unknown) parameter θ ∈ (0, 1) is the probability for `success' in a
single trial. (1.9) can be written in the canonical exponential family form (1.4):

f(x | θ) ∝ exp
{

log
( θ

1− θ

)
s− n

(
− log(1− θ)

)}
.

We have thus ψ = log(θ/(1 − θ)), b(ψ) = − log(1 − θ), and τ(x) = s. The function
log(θ/(1− θ)) is known as the logit, denoted by logit(θ).
From these ingredients, a conjugate prior on ψ can be constructed along (1.5), leading

here to

p
(

log
( θ

1− θ

)
| n(0), y(0)

)
dψ ∝ exp

{
n(0)
[
y(0) log

( θ

1− θ

)
+ log(1− θ)

]}
dψ .

This prior, transformed to the parameter of interest θ,

p(θ | n(0), y(0)) dθ ∝ θn
(0)y(0)−1(1− θ)n(0)(1−y(0))−1 dθ ,

is a Beta distribution with parameters n(0)y(0) and n(0)(1− y(0)), in short,

θ ∼ Beta(n(0)y(0), n(0)(1− y(0))) .

10For more details, see, e.g., Robert (2007, �2), where loss functions typical for statistical settings are
described in �2.5, pp. 77�.
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θ̂
θ

l(θ̂ − θ)A

θ̂
θ

l(θ̂ − θ)B

θ̂
θ

l(θ̂ − θ)C

Figure 1.1.: The quadratic (left), absolute (center), and check (right) loss functions.

The combination of a Binomial sampling model with this conjugate Beta prior is called
Beta-Binomial model. Here, y(0) = E[θ | n(0), y(0)] can be interpreted as prior guess of θ,
while n(0) governs the concentration of probability mass around y(0), with large values of
n(0) giving high concentration of probability mass. Due to conjugacy, the posterior on θ is
a Beta(n(n)y(n), n(n)(1 − y(n))), where the posterior parameters n(n) and y(n) are given by
(1.6).
A point estimator for θ can be extracted from the posterior distribution p(θ | x) by

considering Θ as the set of possible acts, and choosing a loss function. The loss function
l gives a functional form for the severity of deviations of an estimator to its goal; here, it
values the distance of a point estimator θ̂ to θ.
The quadratic loss function l(θ̂, θ) = (θ̂ − θ)2 values small deviations relatively low,

whereas large deviations are given a high weight (see Figure 1.1 A). As can be shown (see,
e.g., Casella and Berger 2002, pp. 352f), the quadratic loss function leads to the posterior
expectation as the Bayesian point estimator. Here, E[θ | x, n(0), y(0)] = E[θ | n(n), y(n)] =
y(n), and so the posterior expectation of θ is a weighted average of the prior expectation
E[θ | n(0), y(0)] = y(0) and the sample proportion s/n, with weights n(0) and n, respectively.
Taking the absolute loss function l(θ̂, θ) = |θ̂ − θ| leads to the median of the posterior

distribution as the point estimator (see Figure 1.1 B). Here, med(θ | n(n), y(n)) has no
closed form solution, and must be determined numerically. More generally, taking the
check function as the loss function,

l(θ̂, θ) =

{
2q(θ̂ − θ) if x ≥ 0

2(q − 1)(θ̂ − θ) if x < 0
,

a tilted version of the absolute loss function (see Figure 1.1 C), leads to the quantile
q ∈ (0, 1) of the posterior as point estimate.11

11The check function is usually given without the factor 2, as it is not relevant for the optimisation. We
have included it to make the relation to the absolute loss function more clear; for q = 0.5, the check
function becomes here indeed the absolute loss function.
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The indicator loss function

l(θ̂, θ) =

{
0 |θ̂ − θ| ≤ ε

1 else
,

for ε→ 0, leads to the maximum of the posterior, often abbreviated as MAP (maximum a
posteriori) estimator (see, e.g., Bernardo and Smith 2000, �5.1.5, p. 257, or Robert 2007,
�4.1.2, p. 166). For a Beta(n(n)y(n), n(n)(1− y(n))), the mode is

mode p(θ | n(n), y(n)) =
n(n)y(n) − 1

n(n) − 2
=
n(0)y(0) − 1 + s

n(0) − 2 + n
,

and thus is a weighted average of the prior mode n(0)y(0)−1
n(0)−2

(n(0) > 2) and the sample

proportion s/n, with weights n(0) − 2 and n, respectively.
Note that asymptotic optimality properties of maximum likelihood estimators (consis-

tency, e�ciency) are usually preserved for these Baysian point estimators (e.g., Robert
2007, Note 1.8.4, pp. 48f).
In the Bayesian approach, interval estimation is rather simple, as the posterior distri-

bution delivers a direct measure of probability for arbitrary subsets of the parameter space
Θ. Mostly, so-called highest posterior density (HPD) intervals are considered, where for a
given probability level γ the shortest interval covering this probability mass is calculated.
For unimodal densities, this is equivalent to �nding a threshold α such that the probability
mass for the set of all θ with p(θ | n(n), y(n)) ≥ α equals γ, hence the name.12 For the
Beta posterior, a HPD interval for θ must be determined by numeric optimisation. For ap-
proximately symmetric (around 1

2
) Beta posteriors, a good approximation is the symmetric

credibility interval, delimited by the 1−γ
2
- and the 1+γ

2
-quantile of the posterior.

The testing of hypotheses concerning the parameter of interest θ can be done by
comparing posterior probabilities of two (disjunct) subsets of the parameter space. Like
in frequentist Neyman-Pearson testing, these are often denoted by Θ0 and Θ1, but unlike
there, in Bayesian testing the hypotheses H0 : θ ∈ Θ0 and H1 : θ ∈ Θ1 play a symmetric
role. Therefore, it is also possible to express evidence in favour of H0, whereas frequentist
tests are constructed such that they can express conclusive evidence only when H0 is
rejected.13 However, point hypotheses, where one of Θ0 or Θ1 consists of a single element of
the parameter space only (usually, Θ0 = {θ0}),14 require a special treatment if the prior on
Θ is absolutely continuous, as is the case for the priors (1.5) considered here, because then,
P(θ ∈ Θ0) = 0 for any θ0. Such an inference task can be considered in terms of a problem
of model selection, where θ = θ0 vs. θ 6= θ0 decides between two di�erent statistical models,

12See, e.g., Bernardo and Smith (2000, �5.1.5, pp. 259f), or Robert (2007, Def. 5.5.3, p. 260).
13In Neyman-Pearson testing, only the probability for the error of the �rst kind, denoted by α, of rejecting

H0 although it is true, is set to a low prede�ned level, whereas the probability for the error of the second
kind, denoted by β, of accepting H0 although it is false, may be very large. 1 − β, the probability of
correctly rejecting H0, is also known as the power of a test.

14Such a testing problem is often called two-sided in Neyman-Pearson testing.



14 1. Introduction

to each of which a prior probability is assigned (e.g., Robert 2007, �5.2.4). An overview
on Bayesian testing, including a detailed comparison with classical testing procedures, is
given in Robert (2007, �5.2�5.4).
Especially in model selection problems, evidence against, or in favor of, a hypothesis is

often not expressed in posterior probability for hypotheses, but by means of the so-called
Bayes factor, arising when considering odds instead of probability:15

p(H1 | x)

p(H0 | x)
=
f(x | H1)

f(x | H0)
· p(H1)

p(H0)

Here, the factor

B10 :=
f(x | H1)

f(x | H0)
,

translating prior to posterior odds, is the Bayes factor for comparing H1 to H0.16

Improper priors are problematic in Bayesian testing (Robert 2007, �5.2.5) and should be
avoided for parameters the test decides upon (Kass and Raftery 1995, p. 782).17 We see
this as a strong argument against the use of improper priors. An example where improper
priors seem inadequate also for parameter estimation will be given in Section 1.3.4; com-
ments on improper priors from the viewpoint of generalised Bayesian inference are given
in Section 3.1.2, item V, and in Section 3.1.3.
The posterior predictive distribution, giving the probability for s∗ successes in n∗

future trials after having seen s successes in n trials, is

f(s∗ | n(n), y(n)) =

(
n∗

s∗

)
B
(
s∗ + n(n)y(n), n∗ − s∗ + n(n)(1− y(n))

)
B
(
n(n)y(n), n(n)(1− y(n))

) ,

known as the Beta-Binomial distribution.18

1.2.3.4. The Normal-Normal Model

The normal density (1.1), here with the variance σ2 known to be equal to σ2
0, also adheres

to the exponential family form:

f(x | µ, σ2
0) ∝ exp

{ µ
σ2

0

n∑
i=1

xi −
nµ2

2σ2
0

}
.

15See, e.g., Robert (2007, �5.2.2, Def. 5.2.5, p. 227), or Kass and Raftery (1995, p. 776).
16Usually, more than two hypotheses are considered in model selection, by comparing competing models

H1, H2, . . . to a null model H0 with help of Bayes factors B10, B20, . . ..
17Walley (1991, �5.5.4 (j)) gives an instructing example for the problems that arise in testing with so-called

non-informative priors.
18Section 3.5 discusses imprecise Bayesian inference in the Beta-Binomial model, studying the probability

of the next observation to be a success in dependence on the number of successes s in n past observations.
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So we have here ψ = µ
σ2
0
, b(ψ) = µ2

2σ2
0
, and τ ∗(xi) = xi. From these ingredients, a conjugate

prior can be constructed with (1.5), leading to

p
( µ
σ2

0

| n(0), y(0)
)

d
µ

σ2
0

∝ exp
{
n(0)
(
〈y(0),

µ

σ2
0

〉 − µ2

2σ2
0

)}
d
µ

σ2
0

.

This prior, transformed to the parameter of interest µ and with the square completed,

p(µ | n(0), y(0)) dµ ∝ 1

σ2
0

exp
{
− n(0)

2σ2
0

(µ− y(0))2
}

dµ ,

is a normal distribution with mean y(0) and variance σ2
0

n(0) , i.e. µ ∼ N(y(0),
σ2
0

n(0) ).19

With (1.6), the parameters for the posterior distribution are

y(n) = E[µ | n(n), y(n)] =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· x̄ (1.10)

σ2
0

n(n)
= Var(µ | n(n), y(n)) =

σ2
0

n(0) + n
. (1.11)

The posterior expectation of µ thus is a weighted average of the prior expectation y(0) and
the sample mean x̄, with weights n(0) and n, respectively. The e�ect of the update step on
variance is that it decreases by the factor n(0)/(n(0) + n).
Here, all of the three standard choices of loss functions mentioned for the Beta-Binomial

model lead to the same point estimator µ̂ = y(n), as in normal distributions mean,
median, and mode coincide.
As interval estimation, the HPD interval can be calculated, due to symmetry of

the normal posterior, as [z
(n)
1−γ
2

, z
(n)
1+γ
2

], where, e.g., z(n)
1−γ
2

is the 1−γ
2
-quantile of the normal

distribution with mean y(n) and variance σ2
0

n(n) .
The testing of hypotheses about µ works again by comparing posterior probabilities

of two disjunct subsets of the parameter space. Note that the frequentist analogue to such
a test is the (one-sided) one-sample Z-test (or Gaussian test).
The posterior predictive distribution for n∗ future observations denoted by x∗ is again

a normal distribution, x∗ | n(n), y(n) ∼ N
(
y(n),

σ2
0

n(n) (n
(n) + n∗)

)
, centered at the posterior

mean (1.10), and with variance increasing with the posterior variance (1.11) and the number
of observations to be predicted.

19The conjugate prior if both µ and σ2 are unknown is the so-called normal-inverse gamma distribution, a
combination of the normal distribution above and the inverse gamma distribution (see, e.g., Bernardo
and Smith 2000, pp. 119, 431). This prior is a special case of the priors for Bayesian regression discussed
in Section A.1, where X = (1, . . . , 1)T and β = µ. When instead of the variance σ2 the precision
κ = 1/σ2 is considered, this prior can be written as a normal-gamma prior (see, e.g., Bernardo and
Smith 2000, pp. 136, 434).
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1.2.3.5. The Dirichlet-Multinomial Model

The construction of the canonical conjugate prior by Eq. (1.5) for the Multinomial model
M(θ) with k > 2 is more complex than for the case k = 2 as covered in Section 1.2.3.3. It
is a well-known result that this construction leads to the commonly used Dirichlet prior;
however, in the literature the construction is usually not derived in detail.20 We will cover
the construction of p(ψ | n(0), y(0)), and also the transformation to p(θ | n(0), y(0)), in more
detail here.
We will use the formulation of M(θ) as the multivariate Bernoulli distribution like in

Example 1.2. The distribution of a single multivariate Bernoulli observation is equivalent
to a Multinomial distribution with sample size 1, and i.i.d. repetitions of a multivariate
Bernoulli distribution lead to the Multinomial distribution. Since i.i.d. repetitions do not
interfere with conjugacy (as mentioned in Footnote 7, page 9.), we may construct the
canonical conjugate prior by considering a single multivariate Bernoulli observation.
To do without side conditions like

∑k
j=1 θj = 1 as needed in Example 1.2, we will

de�ne here as a single multivariate Bernoulli observation distinguishing k + 1 categories
j = 0, 1, . . . , k (instead of k categories j = 1, . . . , k as in Example 1.2) a vector x with k
components indexed 1, . . . , k such that

x ∈ {0, 1}k ∩
{
x :

k∑
j=1

xj ∈ {0, 1}
}
,

and x0 := 1−
∑

j=1 xj.
The parameter vector is treated in the same way, i.e., we consider now θ with k compo-

nents θj, j = 1, . . . , k such that

θ ∈ (0, 1)k ∩ {θ : 0 <
k∑
j=1

θj < 1} ,

and thus θ0 := 1−
∑k

j=1 θj.
Formulating the density (1.2) accordingly, and rewriting it towards (1.4), we get

p(x | θ) =

(
k∏
j=1

θ
xj
j

)(
1−

k∑
j=1

θj

)1−
∑k
j=1 xj

= θ0

k∏
j=1

(
θj
θ0

)xj
= exp

{
k∑
j=1

xj ln

(
θj
θ0

)
−
(
− ln(θ0)

)}
.

With ψ and b(ψ) derived from the sample model as

ψj = ln

(
θj
θ0

)
, j = 1, . . . , k and b(ψ) = − ln(θ0),

20E.g., Quaeghebeur and Cooman (2005, Table 1) tabulate, without proof, priors constructed for a number
of sample models. Note that the �rst version of the paper contains a sign error in the b(ψ) column for
both the Binomial (Bernoulli) and the Multinomial (multivariate Bernoulli) sampling model.
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the conjugate prior is at �rst constructed as a density over ψ, dropping the upper index
(0) in n(0) and the vectorial y(0) for ease of notation:

p(ψ | n,y) dψ ∝ exp

{
n

[
k∑
j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)]}
dψ , .

Written as a density over θ, we have

p(θ | n,y) dθ ∝ exp

{
n

[
k∑
j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)]}
·
∣∣∣∣det

(
dψ

dθ

)∣∣∣∣ dθ ,

with the elements of the Jacobian matrix
dψ

dθ
being

dψi
dθi

=
1

dθi
ln

(
θi

1−
∑k

j=1 θj

)
=

1−
∑k

j=1 θj

θi
·

1−
∑k

j=1 θj + θi

(1−
∑k

j=1 θj)
2

=
θ0 + θi
θ0θi

dψh
dθi

=
1

dθi
ln

(
θh

1−
∑k

j=1 θj

)
=

1−
∑k

j=1 θj

θh
· θh

(1−
∑k

j=1 θj)
2

=
1

θ0

, h 6= i

Thus,

det

(
dψ

dθ

)
= det


θ0+θ1
θ0θ1

1
θ0

. . . 1
θ0

1
θ0

θ0+θ2
θ0θ2

. . .
...

...
. . . . . . 1

θ0

1
θ0

. . . 1
θ0

θ0+θk
θ0θk



=

(
1

θ0

)k
det


θ0
θ1

+ 1 1 . . . 1

1 θ0
θ2

+ 1
. . .

...
...

. . . . . . 1

1 . . . 1 θ0
θk

+ 1


∗
=

(
1

θ0

)k k∏
j=1

θ0

θj
·

(
1 +

(
1 . . . 1

)
θ1
θ0

0
. . .

0 θk
θ0


1
...
1

)

=
k∏
j=1

1

θj
·

(
1 +

k∑
i=1

θi
θ0

)
=

(
k∏
j=1

1

θj

)
θ0 +

∑k
i=1 θi

θ0

=

(
k∏
j=1

1

θj

)
1

θ0

=
k∏
j=0

1

θj
,
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where equality ∗ holds by the theorem

det(A + aaT) = det(A)(1 + aTA−1a)

for all column vectors a and appropriately sized, invertible matrices A (Rao et al. 2008,
Theorem A 16 (x), Appendix A3, p. 494).
With det

(
dψ
dθ

)
=
∏k

j=0
1
θj
, we get

p(θ | n,y) ∝ exp

{
n

[
k∑
j=1

yj ln

(
θj
θ0

)
−
(
− ln(θ0)

)]}
·
∣∣∣∣ k∏
j=0

1

θj

∣∣∣∣
= exp

{
n

[
k∑
j=1

yj

(
ln(θj)− ln(θ0)

)
+ ln(θ0)

]
−

k∑
j=0

ln(θj)

}

= exp

{
n

[
k∑
j=1

yj ln(θj) + ln(θ0)

(
1−

k∑
j=1

yj︸ ︷︷ ︸
=:y0

)]
−

k∑
j=0

ln(θj)

}

= exp

{
n

[
k∑
j=0

yj ln(θj)

]
−

k∑
j=0

ln(θj)

}

= exp

{
k∑
j=0

(n yj − 1) ln(θj)

}
= exp

{
k∑
j=0

ln
(
θ
n yj−1
j

)}

=
k∏
j=0

θ
n yj−1
j ,

which is the core of a Dirichlet density over θ. Therefore, the Dirichlet distribution is
the canonically constructed conjugate prior to the multivariate Bernoulli. Due to the
considerations from the beginning of this section, we see that the Dirichlet distribution
is the canonically constructed conjugate prior also to the Multinomial sample model with
arbitrary sample sizes.
The Dirichlet distribution can be seen as a direct generalisation of the Beta distribution,

and we will speak of the Dirichlet-Multinomial model as the analogue to the Beta-Binomial
model from Section 1.2.3.3.
Returning to the notation from Example 1.2, where k categories j = 1, . . . , k are consid-

ered, we have thus

p(θ | n(0),y(0)) ∝
k∏
j=1

θ
n(0)y

(0)
j −1

j (1.12)

as the prior. The vectorial y(0) is an element of the interior of the k − 1-dimensional unit
simplex ∆, thus ∀j y(0)

j ∈ (0, 1),
∑k

j=1 y
(0)
j = 1, in short y(0) ∈ int(∆). Here, the main
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posterior parameter is calculated as

y
(n)
j =

n(0)

n(0) + n
y

(0)
j +

n

n(0) + n
· nj
n
, j = 1, . . . , k,

and is thus again a weighted average of the main prior parameter (which can be interpreted
as prior guess for θ, as E[θ | n(0),y(0)] = y(0)) and the fractions of observations in each
category, with weights n(0) and n, respectively. n(0) again governs the concentration of
probability mass around y(0), with larger values of n(0) leading to higher concentrations.
With these tangible intuitions for n(0) and y(0), we will denote the Dirichlet prior directly

in terms of the canonical parameters, i.e. by θ ∼ Dir(n(0),y(0)). The canonical parameters
relate to the commonly used parameter, often denoted by α = (α1, . . . , αk), not to be
confused with α as discussed in Section 1.3.3, via

y
(0)
j =

αj∑k
l=1 αl

n(0) =
k∑
l=1

αl .

We will now present a problem in reliability analysis for which the most common model
relies on the Dirichlet-Multinomial model. The issues encountered in this application that is
based on Tro�aes, Walter, and Kelly (2013) will motivate the use of sets of distributions as
prior models, illustrating the advantages in uncertainty modelling that can be gained from
using imprecise probability models.21 The models discussed there will then be integrated
into a general framework of inference using sets of canonical conjugate priors in Section 3.1.

21Basic aspects of the theory of imprecise probability, and further motivations for using it, will be given
in Chapter 2.
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1.3. Dirichlet-Multinomial Model for Common-Cause

Failure

In reliability analysis of systems with redundant components, common-cause failure refers
to simultaneous failure of several redundant components due to a common or shared root
cause, like extreme environmental conditions (e.g., �re, �ood, or earthquake) (Høyland and
Rausand 1994, p. 325). It has been recognized as the dominant factor to the unreliability of
redundant systems, and its modeling has become an important part of reliability analysis
following the Reactor Safety Study (U.S. Nuclear Regulatory Commission 1975), which
was prepared in the wake of the Three Mile Island accident, where a partial core meltdown
in a nuclear power plant took place (e.g., Walker 2005).

1.3.1. An Example for the Need to Model Common-Cause Failure

For a nuclear power plant, a common-cause failure analysis can relate to, e.g., the diesel
generators that, if in an emergency the o�-site power supply is cut o�, provide the electricity
to power the emergency core cooling systems. Emergency core cooling systems are needed
to transfer away residual heat emitted from the core after shutdown, in case the normal
heat removal process22 is not available. When residual heat is not removed, it can overheat
the core, which could lead to a (partial) core meltdown, and subsequently to a possibly
catastrophic release of radioactive material.23

Due to their critical role for the functioning of emergency cooling systems, and thus for
the safety systems of nuclear power plants in general (Ishack et al. 1986, pp. 1, 4), there are
usually several diesel generators installed in a nuclear power plant, each of which can supply
enough energy to power the cooling systems on its own. The number of diesel generators
installed is typically in the range of two to four per reactor (see, e.g., Ishack et al. (1986),
pp. 121, 145). If the nuclear power plant has several reactors, diesel generators may be
shared between reactors (Chopra et al. 2004, p. 7). The Fukushima Daiichi nuclear disaster
is a recent example of an accident involving common cause failure of diesel generators. In
this case, all 12 available diesel generators at reactors 1 to 6 ceased to function due to a
tsunami wave �ooding the rooms where they were installed (Weightman et al. 2011, p. 31).
The tsunami wave had been caused by the T	ohoku earthquake (e.g., Ritsema, Lay, and
Kanamori 2012), which had promted the reactors to shutdown automatically, and in doing

22Heat from the core is transferred to steam generators, producing steam that drives turbines linked to gen-
erators producing electricity. Usually, the depressurized steam exiting the turbines is then condensated
to water, which is fed back into the steam generators.

23The residual heat that is present in the core of a nuclear power plant after shutdown of the nuclear
chain reaction is called decay heat. It results from secondary decay processes, i.e. from the decay of
�ssion products produced during normal operation of the power plant. Although comprising only a
small fraction of the energy output during normal operation (where the energy stems from the primary
�ssion process (United States Department of Energy 1993, Module 4, p. 33)), depending on the design
of the reactor, the decay heat may be enough to damage the core of a reactor signi�cantly (U.S. Nuclear
Regulatory Commission 1975, pp. VIII-9 and VIII-25f).
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so, switching to the diesel generators for power supply.24

The arguably most widely used model for common-cause failure is the so-called Basic
Parameter Model. The alpha-factor parametrisation of this model uses a multinomial
distribution as its aleatory model for observed failures (Mosleh et al. 1988). As seen in
Section 1.2.3.5, the conjugate prior to the multinomial model is the Dirichlet distribution.
In the standard Bayesian approach, the analyst speci�es the parameters (n(0),y(0)) of a
precise Dirichlet distribution to model epistemic uncertainty in the alpha-factors, which
are the parameters of the multinomial sample model.
We will �rst describe the Basic Parameter Model in its standard form, and subsequently

present its reparametrisation in terms of alpha-factors.

1.3.2. The Basic Parameter Model

Consider a system that consists of k components. Throughout, we make the following
standard assumptions: (i) repair is immediate, and (ii) failures follow a Poisson process.
For simplicity, we assume that all k components are exchangeable, in the sense that they

have identical failure rates. More precisely, we assume that all events involving exactly j
components failing have the same failure rate, which we denote by qj. This model is called
the basic parameter model, and we write q for (q1, . . . , qk).
For example, if we have three components, A, B, and C, then the rate at which we see

only A failing is equal to the rate at which we see only B failing, and is also equal to the
rate at which we see only C failing; this failure rate is q1. Moreover, the rate at which we
observe only A and B jointly failing is equal to the rate at which we observe only B and C
jointly failing, and also equal to the rate at which we observe only A and C jointly failing;
this failure rate is q2. The rate at which we see all three components jointly failing is q3.
In case of k identical components without common-cause failure modes, thus each failing

independently at rate λ, we would have25

q1 = λ and qj = 0 for j ≥ 2.

The fact that we allow arbitrary values for the qj re�ects the lack of independence, and
whence, our modelling of common-cause failures. At this point, it is worth noting that
we do not actually write down a statistical model for all possible common-cause failure
modes�we could do so if this information was available, and in fact, this could render
the basic parameter model obsolete, and allow for more detailed inferences. In essence,
the basic parameter model allows us to statistically model lack of independence between
component failures, without further detail as to where dependencies arise from: all failure
modes are lumped together, so to speak.
It is useful to note that it is possible, and sometimes necessary, to relax the exchangeabil-

ity assumption to accommodate speci�c asymmetric cases. For example, when components

24All six o�-site power lines were cut o�, also due to the earthquake (Weightman et al. 2011, p. 31).
25This is due to our Poisson assumption, and the assumption of immediate repair: independent Poisson

processes never generate events simultaneously when we observe failure times precisely.
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are in di�erent state of health, single failures would clearly not have identical failure rates.
Because the formulas become a lot more complicated, we stick to the exchangeable case
here.26

Clearly, to answer typical reliability questions, such as for instance �what is the proba-
bility that two or more components fail in the next month?�, we need q. In practice, the
following three issues commonly arise. First, q is rarely measured directly, as failure data
is often collected only per component. Secondly, when direct data about joint failures is
available, typically, this data is sparse, because events involving more than two components
failing simultaneously are usually quite rare. Thirdly, there are usually two distinct sources
of failure data, one usually very large data set related to failure per component, and one
usually much smaller data set related to joint failures. For these reasons, it is sensible
to reparametrise the model in terms of parameters that can be more easily estimated, as
follows.

1.3.3. The Alpha-Factor Model

The alpha-factor parametrisation of the basic parameter model (Mosleh et al. 1988) starts
out with considering the total failure rate of a component qt, which could involve failure
of any number of components, that is, this is the rate obtained by looking at just one
component, ignoring everything else. Clearly,

qt =
k∑
j=1

(
k − 1

j − 1

)
qj. (1.13)

For example, again consider a three component system, A, B, and C. The rate at which A
fails is then the rate at which only A fails (q1), plus the rate at which A and B, or A and
C fail (2q2), plus the rate at which all three components fail (q3).
Next, the alpha-factor model introduces αj�the so-called alpha-factor�which denotes

the probability of exactly j of the k components failing given that failure occurs; in terms
of relative frequency, αj is the fraction of failures that involve exactly j failed components.
We write α for (α1, . . . , αk). Clearly,

αj =

(
k
j

)
qj∑k

`=1

(
k
`

)
q`
. (1.14)

For example, again consider A, B, and C. Then the rate at which exactly one component
fails is 3q1 (as we have three single components, each of which failing with rate q1), the
rate at which exactly two components fail is 3q2 (as we have three combinations of two
components, each combination failing with rate q2), and the rate at which all components
fail is q3. Translating these rates into fractions, we arrive precisely at Eq. (1.14).

26A discussion of the asymmetric case, i.e., without the assumption of exchangeability of components, can
be found in Tro�aes and Blake (2013).
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It can be shown that (e.g., Mosleh et al. 1988, p. C-10f)

qj =
1(
k−1
j−1

) jαj∑k
`=1 `α`

qt . (1.15)

Eqs. (1.13), (1.14), and (1.15) establish a one-to-one link between the basic parameter
model (with parameters q) and the alpha-factor model (with parameters qt, α). The
bene�t of the alpha-factor model over the basic parameter model lies in its distinction
between the total failure rate of a component qt, for which there is generally a lot of
information, and common-cause failures modelled by α, for which there is generally very
little information.
Next, we will show how we can use the Dirichlet-Multinomial model from Section 1.2.3.5

to estimate the alpha factors α. Estimating the marginal failure rate qt is possible in
the framework from Section 1.2.3.1 as well, when failures are assumed to follow a Poisson
process. Then, the Gamma prior usually speci�ed for the intensity parameter is of the
form (1.5). We will not cover such a Gamma-Poisson model here further, but details for
this model can be found in Tro�aes, Walter, and Kelly (2013). There, also the combination
of the Dirichlet-Multinomial model for α and the Gamma-Poisson model for qt to make
inferences on q is discussed.

1.3.4. Dirichlet Prior for Alpha-Factors

Suppose that we have observed a sequence of n failure events, where we have counted the
number of components involved with each failure event, say nj of the n observed failure
events involved exactly j failed components. As in Example 1.2, we write n for (n1, . . . , nk).
With the alpha-factors taking the role of the parameter θ in (1.2), the multinomial sample
model for n has the form

f(n | α) ∝
k∏
j=1

α
nj
j .

As mentioned already, in this application of multinomial sample model, the nj are usually
very low for j ≥ 2, with zero being quite common for larger j. In such cases, standard
techniques such as maximum likelihood for estimating the alpha-factors fail to produce
sensible inferences. For any inference to be reasonably possible, it has been recognized
(Mosleh et al. 1988) that we have to rely on epistemic information, that is, information
which is not just described by the data.
A standard way to include epistemic information in the model is through speci�cation

of the conjugate Dirichlet prior (1.12) for the alpha-factors (Mosleh et al. 1988), i.e., using
the Dirichlet-Multinomial model for inferences about α:

p(α | n(0),y(0)) ∝
k∏
j=1

α
n(0)y

(0)
j −1

j
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To recap, n(0) > 0 and y(0) ∈ ∆, where ∆ is the (k − 1)-dimensional unit simplex:

∆ =

{
(y

(0)
1 , . . . , y

(0)
k ) : y

(0)
1 ≥ 0, . . . , y

(0)
k ≥ 0,

k∑
j=1

y
(0)
j = 1

}
Calculating the posterior density for α then results in

p(α | n(0),y(0),n) = p(α | n(n),y(n)) ∝
k∏
j=1

α
n(n)y

(n)
j −1

j =
k∏
j=1

α
n(0)y

(0)
j +nj−1

j .

Of typical interest is for instance the posterior expectation of the probability αj of
observing j of the k components failing due to a common cause given that failure occurs,

E[αj | n(0),y(0),n] =

∫
∆

αjp(α | n(0),y(0),n) dα

=
n(0)y

(0)
j + nj

n(0) + n
=

n(0)

n(0) + n
y

(0)
j +

n

n(0) + n

nj
n
, (1.16)

where n =
∑k

j=1 nj is the total number of observations.
Eq. (1.16) provides the interpretation for the hyperparameters n(0) and y(0) as mentioned

in Section 1.2.3.5, discussed here in terms of the alpha-factor model:

• If n = 0, then E[αj | n(0),y(0),n] = y
(0)
j , so y

(0)
j is the prior expected chance of

observing j of the k components failing due to a common cause, given that failure
occurs.

• E[αj | n(0),y(0),n] is a weighted average of y(0)
j and nj/n (the proportion of j-

component failures in the n observations), with weights n(0) and n, respectively. The
parameter n(0) thus determines how much data is required for the posterior to start
moving away from the prior. If n� n(0) then the prior will weigh more; if n = n(0),
then prior and data will weigh equally; and if n � n(0), then the data will weigh
more. In particular, E[αj | n(0),y(0),n] = y

(0)
j if n = 0 (as already mentioned), and

E[αj | n(0),y(0),n]→ nj
n
as n→∞.

1.3.5. Usual Handling of Epistemic Information for Alpha-Factors

Crucial to reliable inference in the alpha-factor model is proper modelling of epistemic
information about failures, which is in the above approach expressed through the choice
of (n(0),y(0)). By means of an example taken from Kelly and Atwood (2011), we will
demonstrate that posterior inferences rely crucially on this choice of hyperparameters,
particularly when faced with zero counts.
Consider a system with four redundant components (k = 4). The probability of j out

of k failures, given that failure has happend, was denoted by αj. We assume that the
analyst's prior expectation µspec,j for each αj is:

µspec,1 = 0.950 µspec,2 = 0.030 µspec,3 = 0.015 µspec,4 = 0.005 (1.17)
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We have 36 observations, in which 35 showed one component failing, and 1 showed two
components failing:

n1 = 35 n2 = 1 n3 = 0 n4 = 0

Atwood (1996) studied priors for the binomial model which maximise entropy (and
whence, are `non-informative'27) whilst constraining the mean to a speci�c value. Although
these priors are not conjugate, Atwood (1996) showed that they can be well approximated
by Beta distributions, which are conjugate. Kelly and Atwood (2011) applied this approach
to the multinomal model with conjugate Dirichlet priors, by choosing a constrained non-
informative prior for the marginals of the Dirichlet�which are Beta. This leads to an
over-speci�ed system of equalities, which can be solved via least-squares optimisation.
For the problem we are interested in, µspec,1 is close to 1. In this case, the solution of

the least-squares problem turns out to be close to:

y
(0)
j = µspec,j for all j ∈ {1, . . . , k}

n(0) =
1

2(1− µspec,1)

(1.18)

For our example, this means that n(0) = 10 (Kelly and Atwood 2011, p. 400, �3). Using
Eq. (1.16), under this prior (Kelly and Atwood 2011, p. 401, �3.1):

E[α1 | n(0),y(0),n] =
9.5 + 35

10 + 36
= 0.967 E[α2 | n(0),y(0),n] =

0.3 + 1

10 + 36
= 0.028

E[α3 | n(0),y(0),n] =
0.15 + 0

10 + 36
= 0.003 E[α4 | n(0),y(0),n] =

0.05 + 0

10 + 36
= 0.001

Kelly and Atwood (2011, p. 402, �4) compare these results against a large number of other
choices of priors, and note that the posterior resulting from Eq. (1.18) seems too strongly
in�uenced by the prior, particularly in the presence of zero counts. For instance, the
uniform prior is a Dirichlet distribution with hyperparameters y(0)

j = 0.25 and n(0) = 4,
which gives:

E[α1 | n(0),y(0),n] =
1 + 35

4 + 36
= 0.9 E[α2 | n(0),y(0),n] =

1 + 1

4 + 36
= 0.05

E[α3 | n(0),y(0),n] =
1 + 0

4 + 36
= 0.025 E[α4 | n(0),y(0),n] =

1 + 0

4 + 36
= 0.025

Je�rey's prior is again a Dirichlet distribution with hyperparameters y(0)
j = 0.125 and

n(0) = 4, which gives:

E[α1 | n(0),y(0),n] =
0.5 + 35

4 + 36
= 0.8875 E[α2 | n(0),y(0),n] =

0.5 + 1

4 + 36
= 0.0375

27We will comment on so-called non-informative priors in Section 3.1.2, item V, and in Section 3.1.3.
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E[α3 | n(0),y(0),n] =
0.5 + 0

4 + 36
= 0.0125 E[α4 | n(0),y(0),n] =

0.5 + 0

4 + 36
= 0.0125

The degree of variation in the posterior under di�erent priors is evidently somewhat
alarming. In the next section, we thus aim to robustify the model by using sets of priors
instead of a single Dirichlet prior to model epistemic information. We will argue that
bounds, rather than precise values, should be assigned for (n(0),y(0)), and that in this
application, assigning an interval for the learning parameter n(0) is especially important.
This e�ects to using the imprecise probability models that are at the core of this thesis.
A systematic presentation of these models, together with more arguments for employing
them in important statistical inference tasks, is given in Chapter 3.

1.3.6. Cautious Epistemic Information for Alpha-Factors

As a preview on the general concept of Bayesian inference with sets of conjugate priors,
we will now demonstrate how inferences on alpha-factors can bene�t from considering sets
of priors based on sets of hyperparameters.
For Bayesian inference in the Dirichlet-Multinomial model when no prior information is

available, Walley (1996b) proposes as a so-called near-ignorance prior 28 a set of Dirichlet
priors, with hyperparameters constrained to the set:

H = {(n(0),y(0)) : y(0) ∈ ∆}

for some �xed value of n(0), which determines the learning speed of the model (Walley
1991, p. 218, �5.3.2; Walley 1996b, p. 9, �2.3).29

When prior information is available, more generally, we may assume that we can specify
a subset H of (0,+∞) × ∆. Following Walley's suggestions (Walley 1991, p. 224, �5.4.3;
Walley 1996b, p. 32, �6), we take

H =
{

(n(0),y(0)) : n(0) ∈ [n(0), n(0)], y(0) ∈ ∆, y
(0)
j ∈ [y(0)

j
, y

(0)
j ]
}

(1.19)

where the analyst has to specify the bounds [y(0)
j
, y

(0)
j ] for each j ∈ {1, . . . , k}, and

[n(0), n(0)].30

As y(n) is linear in y(0) (see Eq. (1.6)), the posterior lower and upper expectations of αj
are:

E[αj | H,n] = min

{
n(0)y(0)

j
+ nj

n(0) + n
,
n(0)y(0)

j
+ nj

n(0) + n

}
=


n(0)y

(0)
j +nj

n(0)+n
if y(0)

j
≥ nj/n

n(0)y
(0)
j +nj

n(0)+n
if y(0)

j
≤ nj/n

(1.20)

28See Sections 3.1.2 and 3.1.3 for a more detailed discussion of the IDM and near-ignorance priors.
29Our notation relates to Walley's as n(0) ↔ s, y

(0)
j ↔ tj .

30We will discuss models based on this type of prior parameter set in Sections 3.3 and 3.5.2.2. Di�erent
choices of parameter sets are discussed in general in Section 3.1.1.
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E[αj | H,n] = max

{
n(0)y

(0)
j + nj

n(0) + n
,
n(0)y

(0)
j + nj

n(0) + n

}
=


n(0)y

(0)
j +nj

n(0)+n
if y(0)

j ≥ nj/n

n(0)y
(0)
j +nj

n(0)+n
if y(0)

j ≤ nj/n

(1.21)

For the model to be of any use, we must be able to elicit the bounds for the prior
parameters. The interval [y(0)

j
, y

(0)
j ] simply represents bounds on the prior expectation of

the chance αj.

1.3.6.1. Fixed Learning Parameter

Typically, the learning parameter n(0) is taken to be 2 (not without controversy; see in-
sightful discussions in Walley (1996b)). One might therefore be tempted to using the same
prior expectations y(0)

j for the αj as above (Eq. (1.17)), with n(0) = 2, resulting in the
following posterior expectations:

E[α1 | n(0),y(0),n] =
1.9 + 35

2 + 36
= 0.971 E[α2 | n(0),y(0),n] =

0.06 + 1

2 + 36
= 0.028

E[α3 | n(0),y(0),n] =
0.03 + 0

2 + 36
= 0.0007 E[α4 | n(0),y(0),n] =

0.01 + 0

2 + 36
= 0.0002

Whence, for this example, it is obvious that n(0) = 2 is an excessively poor choice: the
posterior expectations in case of zero counts are pulled way too much towards zero. One
might suspect that this is partly due to the strong prior information, that is, the knowledge
of y(0)

j . However, even if we interpret the prior expectations (1.17) as bounds, say:

[y(0)

1
, y

(0)
1 ] = [0.950, 1] (1.22a)

[y(0)

2
, y

(0)
2 ] = [0, 0.030] (1.22b)

[y(0)

3
, y

(0)
3 ] = [0, 0.015] (1.22c)

[y(0)

4
, y

(0)
4 ] = [0, 0.005] (1.22d)

we still �nd: [
E[α1 | H,n],E[α1 | H,n]

]
= [0.971, 0.974][

E[α2 | H,n],E[α2 | H,n]
]

= [0.026, 0.028][
E[α3 | H,n],E[α3 | H,n]

]
= [0, 0.0007][

E[α4 | H,n],E[α4 | H,n]
]

= [0, 0.0002]

Clearly, only the posterior inferences about α1 (and perhaps also α2) seem reasonable. We
conclude that the imprecise Dirichlet model with n(0) = 2 learns too fast from the data in
case of zero counts.
On the one hand, when counts are su�ciently far from zero, the posterior probability

with n(0) = 2, and perhaps even n(0) = 1 or n(0) = 0,31 seem appropriate. For zero counts,

31As mentioned on page 9, taking n(0) ≤ 0 would result in an improper prior.
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however, a larger value of n(0) seems mandatory. Therefore, it seems logical to pick an
interval for n(0).
A related argument for choosing an interval for n(0), in case of an informative set of

priors, is provided by Walley (1991, p. 225, �5.4.4): a larger value of n(0) ensures that the
posterior does not move away too fast from the prior, which is particularly important for
zero counts, and the di�erence between n(0) and n(0) e�ectively results in greater posterior
imprecision if nj/n /∈ [y(0)

j
, y

(0)
j ].32

To see this, note that, if y(0)
j
≤ nj/n ≤ y

(0)
j , it follows from Eqs. (1.20) and (1.21) that

both lower and upper posterior expectation are calculated using n(0). When nj/n ≤ y(0)
j

(or y(0)
j ≤ nj/n), the lower (upper) posterior expectation is calculated using n(0) instead,

which is nearer to nj/n due to the lower weight n(0) for the prior bound y(0)
j

(y(0)
j ). The

increased imprecision re�ects the con�ict between the prior assignment [y(0)
j
, y

(0)
j ] and the

observed fraction nj/n, and this is referred to as prior-data con�ict.33

1.3.6.2. Interval for Learning Parameter

We follow Good (1965, p. 19) (as suggested by Walley 1991, Note 5.4.1, p. 524), and reason
about posterior expectations of hypothetical data to elicit n(0) and n(0); also see Walley
(1991, p. 219, �5.3.3) for further discussion on elicitation on n(0)�our approach is similar,
but simpler for the case under study. We assume that y(0)

1 = 1 and y(0)
j

= 0 for all j ≥ 2.

The upper probability of multiple (j ≥ 2) failed components in trial m+ 1, given single-
component failures (j = 1) in all of the �rst m trials, is

E[αj | H, n1 = m,n = m] =
n(0)y

(0)
j

n(0) +m
, j ≥ 2 .

(Note: there is no prior-data con�ict in this case.) Whence, for the above probability to
reduce to y(0)

j /2 (i.e., to reduce the prior upper probability by half), we need that m = n(0).
In other words, n(0) is the number of one-component failures required to reduce the upper
probabilities of multi-components failure by half.
Conversely, the lower probability of single-component failure (j = 1) in trial m+1, given

only multiple (j ≥ 2) failed components in the �rst m trials, is

E[α1 | H, n1 = 0, n = m] =
n(0)y(0)

1

n(0) +m
.

32We will show in Sections 3.1.4 and 3.3.4 that this argument, generalising the issue of zero counts to the
issue of prior-data con�ict (see Footnote 33 below), makes sense also for the general case of canonically
constructed priors in Eq. (1.5).

33The issue of prior-data con�ict, and models that allow sensitivity of inferences in its presence, are
discussed in more detail in Sections 2.2.3.3 and 3.1.4. Walter and Augustin (2009b), reproduced in
Section 3.3, is the publication centered around this idea.
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(Note: there is strong prior-data con�ict in this case.) In other words, n(0) is the number of
multi-component failures required to reduce the lower probability of one-component failure
by half. Note that, in this case, a few alternative interpretations present themselves. First,
for j ≥ 2,

E[αj | H, nj = m,n = m] =
n(0)y

(0)
j +m

n(0) +m
.

In other words, n(0) is also the number of j-component failures required to increase the

upper probability of j components failing to (1+y
(0)
j )/2 (generally, this will be close to 1/2,

provided that y(0)
j is close to zero). Secondly, as y(0)

j
= 0 for j ≥ 2, we get, for j ≥ 2,

E[αj | H, nj = m,n = m] =
m

m+ n(0)
.

so n(0) is also the number of multi-component failures required to increase the lower prob-
ability of multi-component failures from zero to a half.
Any of these counts seem well suited for elicitation, and are easy to interpret. As a

guideline, we suggest the following easily remembered rules:

• n(0) is the number of one-component failures required to reduce the upper probabili-
ties of multi-component failures by half, and

• n(0) is the number of multi-component failures required to reduce the lower probability
of one-component failures by half.

Taking the above interpretation, the di�erence between n(0) and n(0) re�ects the fact that
the rate at which we reduce upper probabilities is less than the rate at which we reduce
lower probabilities, and thus re�ects a level of caution in our model.
Coming back to our example, reasonable values are n(0) = 1 (if we immediately observe

multi-component failures, we might be quite keen to reduce our lower probability for one-
component failure) and n(0) = 10 (we are happy to halve our upper probabilities of multi-
component failures after observing 10 one-component failures). With these values, when
taking for y(0)

j the values given in Eq. (1.17), we �nd the following posterior lower and
upper expectations of αj:[

E[α1 | H,n],E[α1 | H,n]
]

= [0.967, 0.972][
E[α2 | H,n],E[α2 | H,n]

]
= [0.0278, 0.0283][

E[α3 | H,n],E[α3 | H,n]
]

= [0.00041, 0.00326][
E[α4 | H,n],E[α4 | H,n]

]
= [0.00014, 0.00109]

These bounds indeed re�ect caution in inferences where zero counts have occurred (j = 3
and j = 4), with upper expectations considerably larger as compared to the model with
�xed s, while still giving a reasonable expectation interval for the probability of one-
component failure.



30 1. Introduction

If we desire to specify our initial bounds for y(0)
j more conservatively, as in Eqs. (1.22),

we �nd similar results:[
E[α1 | H,n],E[α1 | H,n]

]
= [0.967, 0.978][

E[α2 | H,n],E[α2 | H,n]
]

= [0.0270, 0.0283][
E[α3 | H,n],E[α3 | H,n]

]
= [0, 0.00326][

E[α4 | H,n],E[α4 | H,n]
]

= [0, 0.00109]

1.3.6.3. Conclusion

We have seen that choosing bounds, rather than precise values, for the hyperparameters of
the Dirichlet prior for the alpha-factors leads to more cautious inferences. This is especially
important here, as inferences are strongly sensitive to the choice of prior, due to the zero
counts that are common in this application of the Dirichlet-Multinomial model. We also
concluded that assigning an interval for the learning parameter was necessary to arrive
at reasonable posterior expectation intervals. Still, the method is relatively easy to use,
as we identi�ed simple ways to elicit bounds for the hyperparameters by reasoning on
hypothetical data; essentially, the analyst needs to specify how quickly he is willing to
learn from various sorts of hypothetical data.

In the above application, Bayesian inference in the Dirichlet-Multinomial model was
generalised to imprecise or interval probability methods. Next, in Chapter 2, we will give
a general introduction to the methodology of imprecise or interval probability, discuss
further motivations for the use of interval probability methods for statistical inference,
and demonstrate in Chapter 3 that inferences in canonical conjugates as described in
Section 1.2.3.1 can be generalised in the same way as was done above.



2. Imprecise Probability as

Foundation of Generalised

Bayesian Inference

After having seen a detailed example for Bayesian inference using sets of conjugate priors
in Section 1.3, in this chapter we will now give a general introduction to the methodology
of generalised Bayesian inference, before we give a systematic discussion of models for
generalised Bayesian inference with sets of conjugate priors in the central Section 3.1 of
this thesis.

In Section 2.1 below, we will try to outline the general theory of imprecise or interval
probability, describing its main formulations and interpretations, and discuss the gener-
alised Bayesian inference procedure. Section 2.2 then gives at �rst some general motives
for the use of imprecise probability methodology, concluding with the motives especially
relevant in the context of the Bayesian approach to statistical inference, among which
prior-data con�ict and weakly informative priors will receive special attention in the model
discussion in Chapter 3.
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2.1. Imprecise or Interval Probability

This Section will give a condensed introduction to the main theoretic concepts in interval
or imprecise probability as needed for the topics discussed in this thesis. Here, we take a
decidedly epistemic view on interval or imprecise probability, as we will argue in Section 2.2
that imprecise probability distributions are often a better tool for expressing prior beliefs
than precise probability distributions.

2.1.1. General Concept and Basic Interpretation

The central idea of imprecise or interval probability (Walley 1991; Weichselberger 2001;
Coolen, Tro�aes, and Augustin 2011) is to replace the usual, precise probability measure
P(A) for events A1 with a lower and upper probability, denoted by P(A) and P(A), respec-
tively, satisfying

0 ≤ P(A) ≤ P(A) ≤ 1 . (2.1)

In this setting, a usual probability measure forms the extreme case P(A) = P(A) = P(A),
when there is enough information to determine the distribution on the sample space Ω in
precise stochastic terms. On the other extreme, when P(A) = 0 and P(A) = 1, we have no
information at all on the probability for A to occur, and intermediate cases 0 ≤ P(A) <
P(A) ≤ 1 represent di�erent degrees of knowledge on this probability.
Therefore, interval or imprecise probability adds another modeling dimension: While

usual, precise probability measures can be used to model phenomena when there is per-
fect stochastical information, like, e.g., in a lottery where the number of winning tickets
(and the total number of tickets) is precisely known, imprecise probability measures can
account for cases where there is uncertainty about the probabilities themselves, just like
in a lottery where the number of winning tickets is not exactly known. Non-stochastic
uncertainty about model features like probabilities is often called ambiguity,2 forming a
crucial part of the human decision process, and there are studies suggesting that humans
process ambiguity in a way di�ering from pure probabilistic reasoning (Hsu et al. 2005).
In contrast to a probability measure P(A), the set functions P(A) and P(A) do not

adhere to the additivity axiom of Kolmogorov's (1933) formalisation of probability as a
normed measure, and thus are also known as non-additive probabilities. There is also a
link to fuzzy measures, which are also non-additive measures (see, e.g., Denneberg 1997).
In general, P(A) may be understood as accounting for evidence certainly in favour of

A, and P(A) accounting for all evidence speaking not strictly against A. The di�erence of
P(A) and P(A) thus allows for inconclusive evidence that may not speak unanimously in
favor of or against A, respectively. As evidence strictly against A can be seen as evidence
certainly in favour of AC, the complement of A, it is mostly assumed that P(AC) = 1−P(A),

1Events of interest A are taken to be subsets of the sample space Ω, forming a σ-algebra, a non-empty
collection of sets including countable unions and intersections of subsets of Ω.

2See Section 2.2.2.
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and thus it su�ces to determine either of P or P, the other one being de�ned through this
relation.
There are currently two main approaches to a general theory of statistical inference with

interval or imprecise probability:

(i) The theory by Weichselberger (2000; 2001) regards probability intervals [P(A),P(A)]
for all or some events A as the basic entity (Coolen, Tro�aes, and Augustin 2011,
p. 646), from which an interval-valued distribution on the sample space Ω is con-
structed. His approach is axiomatic, in the sense that it replaces Kolmogorov's (1933)
additivity axiom by two axioms,3 from which the theory is derived, while imposing
no speci�c interpretation on these constructs. This theory of interval probability was
developed as the foundation of a concept of logical probability (Weichselberger 2007),
where probability is not assigned to events, but to logical conclusions (from a premise
to a consequence), with the aim to arrive at a theory of statistical inference which
allows for �ducial-like probability statements, e.g., probability statements on param-
eters similar to those derived from a posterior distribution in a Bayesian setting, but
without the need to specify a prior distribution (see, e.g., Hannig, Yver, and Lee
2011).

(ii) In contrast, the theory by Walley (1991; 2000) aims to generalise the Bayesian ap-
proach to statistical inference, adopting a strictly subjective, behavioural interpre-
tation for imprecise probability as lower and upper betting rates (see below), and
extending the Bayesian inference paradigm (as discussed in Section 1.2.3) to im-
precise probability distributions. In generalising de Finetti (1937; 1970), the basic
entities are lower and upper previsions, i.e. expectation functionals, for gambles, i.e.
random quantities, instead of lower and upper probabilities for events. This is due
to the fact that unlike in the theory of precise probability�where the de�nition of a
distribution via expectations (often denoted linear previsions in the imprecise proba-
bility literature) is eqivalent to a de�nition via a precise probability distribution�the
de�nition of an imprecise distribution via lower and upper previsions is more general
than a de�nition via lower and upper probability for events (Walley 2000, p. 132).

As this thesis is concerned with a generalisation of Bayesian inference based on sets of
conjugate priors, the approach by Walley, and its reliance on a subjective, epistemic inter-
pretation of (imprecise) probability as (bounds for) betting rates, is now described in more
detail.

2.1.2. Main Formulations

The main mathematical formulations for imprecise distributions in the theory by Walley
(1991; 2000) are

3The �rst states that (2.1) holds, the second that the setM consisting of all usual, precise distributions
P(·) with P(A) ≤ P(A) ≤ P(A), for all A ∈ Ω, is non-empty. The second axiom guarantees that
there exists at least one precise probability distribution which is compatible with an interval-valued
probability distribution, and thus rules out the case of contradictory assignments of [P(A),P(A)].
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(i) lower previsions,

(ii) sets of (precise) probability distributions, and

(iii) sets of desirable gambles.

It is possible to switch between these formulations, although (ii) can be slightly more
general than (i), and to a greater extent, (iii) is more general than (ii) (Walley 2000).

We will �rst introduce lower previsions and the most important rationality requirements
guiding their assessment and use, then have a brief look at sets of desirable gambles as
the most comprehensive formulation. Sets of probability distributions, as the formulation
used to describe inference models in this thesis, are then explained in relation to the other
formulations, and the generalised Bayesian inference procedure as used in Section 1.3.6 is
justi�ed formally.

2.1.2.1. Lower Previsions

As mentioned in Section 2.1.1, the basic entities in the theory by Walley (1991) are lower
and upper previsions. These are functions on gambles, or random variables, de�ned as
bounded mappings from Ω to R. A gamble X can be understood as uncertain reward or
payout, where the reward X(ω) depends on ω ∈ Ω, the unknown `state of the world' from
the possibility space Ω. The reward is measured in units of utility assumed to form a linear
scale (Walley 1991, �2.2).
A lower prevision or lower expectation is then a mapping E : K → R, where K is a

set of gambles.4 Central to Walley's theory is the interpretation of E[X] as the subject's
supremum buying price for X, that is, the subject is disposed to pay at most the �xed
amount E[X] in exchange for the uncertain reward X.5 E[X] thus expresses the subject's
state of knowledge about the value of X, factoring in the propensity of all possible ω ∈ Ω
with their speci�c payouts X(ω). The upper prevision E[X] is the in�mum selling price for
X, i.e., the �xed amount the subject is willing to receive in exchange for X (Walley 1996a,
p. 9). Walley's theory is based on this behavioral, epistemic interpretation of previsions,
and all rationality criteria and inference procedures are deduced from this root (Walley
1996a, p. 5).
The theory allows thus a zone of indeterminacy, by E[X] < E[X], for prices of X at

which the subject is neither willing to buy nor to sell the gamble X, as illustrated in
Figure 2.1. This is in contrast to the usual epistemic operationalisation of subjective

4In Walley's central monography (Walley 1991), his papers and the imprecise probability literature in
general, lower previsions are usually denoted by P. Furthermore, events A ⊂ Ω are notationally
identi�ed with the indicator function IA(ω), being a gamble with payout 1 if ω ∈ A and else 0, such
that P(A) denotes the lower probability of A. In order to follow conventions in statistical literature,
however, lower previsions are denoted by E here, and P refers exclusively to lower probabilities.

5More precisely, the price the subject is disposed to pay for X is strictly less than E[X]. For sake
of readability, this mathematically important distinction is not rigorously maintained in this brief
treatment, as it is hardly relevant for the interpretation of the results in the later parts of this thesis.
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utility0

E[X] E[X]

acceptable buying prices acceptable selling prices

Figure 2.1.: Illustration of E and E as supremum buying and in�mum selling prices for a
gamble X on a linear utility scale.

Bayesian probability, which implies that E[X] and E[X] must coincide at a unique fair
price E[X]. This requirement is refuted by Walley, and called by him the Bayesian dogma
of precision (Walley 1991, �5).
A lower and upper prevision are called conjugate6 if the relation E[X] = −E[−X] holds

for all X ∈ K.7 Then, it su�ces to consider only either of E or E, and in the literature E is
chosen, the theory consequently being referred to as the theory of coherent lower previsions
(see, e.g., Coolen et al. 2013, �3.2).

2.1.2.2. Coherence and Avoiding Sure Loss

Before we come to the concept of coherence, a weaker rationality requirement put forward
by Walley is that a lower prevision E should ful�ll the property of avoiding sure loss (Walley
1991, �2.4). This means that a subject, whose state of information about the occurrence
of `states of the world' from the possibility space Ω is encoded in his or her choice of E,
acting by buying and selling gambles accordingly, should choose E such that there is no
combination of gambles that would result in a net loss, whatever ω ∈ Ω. As an analogy,
avoiding sure loss can be regarded like a logical inconsistency in a set of propositions,
i.e., there exist two propositions in the set of propositions (the analogy to E) which are
contradictory (Walley 1991, �2.4, footnote 1).
Continuing this analogy, E violating the stronger property of coherence is like the �failure

to deduce all [. . . ] logical implications� (Walley 1991, �2.4, footnote 1) from the set of
propositions. As an example, if a subject assesses E such that E[X] = E[Y ] = 1

4
, and also

that E[X + Y ] = 1
4
, E avoids sure loss, but is not coherent, because one can imply from

E[X] = E[Y ] = 1
4
that E[X + Y ] must be at least 1

2
(Walley 1991, p. 67). Coherence is a

�normative requirement of consistency� (Walley 2000, p. 130) that is a consequence of few
basic rationality requirements. In fact, if K is a linear space of gambles, i.e., K is closed
with respect to addition and multiplication with constants, then coherence is equivalent to
the three following conditions (e.g., Walley 1996a, p. 11):

(i) E[X] ≥ infω∈Ω X(ω), i.e., one is always prepared to buy a gamble for less than its

6Conjugacy in this sense should not be confused with conjugacy for prior distributions as discussed in
Section 1.2.3.1.

7This implies the relation P(AC) = 1 − P(A) of lower and upper probabilities for events A ⊂ Ω as
mentioned in Section 2.1.1.
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minimum possible reward. (Being prepared to pay more than infω∈Ω X(ω) amounts to
making a commitment to the possibility that other states ω′ withX(ω′) > infω∈Ω X(ω)
may occur.)

(ii) E[λX] = λE[X] for all X ∈ K, λ > 0. E should be such that if it postulates that
one should be prepared to buy a gamble X at a price of at most E[X], then one
should also buy gambles that are fractions or multiples of X at prices of at most
the original price divided or multiplied accordingly. This illustrates that prices are
to be understood on a linear utility scale (as mentioned above) and should not be
considered as plain monetary prices, for which this condition may not be reasonable.

(iii) E[X + Y ] ≥ E[X] + E[Y ]. This property of superlinearity or superadditivity implies
that the supremum acceptable buying price for X and Y combined should be at least
the sum of supremum acceptable buying prices for each of X and Y individually. It
could be, e.g., thatX and Y balance out each other in a way that buying both of them
at once makes the transaction less risky, such that a higher price limit for X + Y is
acceptable. Usual precise expectations, for which additivity E[X +Y ] = E[X] + E[Y ]
must hold, cannot directly accommodate such reasoning.

Consequently, in analogy to deducing all logical implications from a set of propositions,
there is a technique, called natural extension, that adjusts a given assessment of lower
and upper previsions (on some set of gambles K, which must avoid sure loss) to make it
coherent, in the least committal way as possible8 (see, e.g., Walley 1996a, pp. 15�). This
is accomplished by a linear program, and may involve raising E[X] for some X ∈ K in
order to make them coherent to the values of E[Y ], supremum buying prices for some
other gambles Y ∈ K as previously assessed, or newly de�ning E[Z] for gambles Z not
considered during assessment�explaining the name `extension'.

2.1.2.3. Sets of Desirable Gambles

Sets of desirable gambles (Walley 2000, �6; Quaeghebeur 2013) are an alternative for-
mulation for probability assessments as expressed by a lower prevision E. They are a
mathematically convenient formulation and as such a very useful tool in the development
of the theory of imprecise probability. However, a detailed understanding of this concept
is not necessary for the purpose of this thesis, and the account below is intended to give
some insight into this central concept in the theory of imprecise probability.
The gambles here are again a description of an uncertain reward as above, and all

bounded functions from Ω to R are forming the space L of all gambles. The assessment
in this formulation lies in the designation of a subset D of all gambles L as desirable
gambles, i.e., as supplying an uncertain reward (in utilities) for which, from the subject's
state of information about the propensity of occurence of the di�erent ω ∈ Ω, the potential
bene�ts outweigh the potential losses. Thus, all gambles X that will never incur a loss,

8This means that there may be other adjustments of E that are compatible with the initial assessments,
but are less conservative, i.e., give higher supremum buying prices.
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{X : X ≥ 0}, where X ≥ 0 denotes that X(ω) ≥ 0 ∀ω ∈ Ω, should be contained in a
coherent set of desirable gambles D. Indeed, the notion of coherence for lower previsions
translates to sets of desirable gambles as follows: D ⊂ L is coherent if and only if (Walley
2000, p. 137)

(D1) 0 /∈ D (0 is the gamble X with X(ω) = 0 ∀ω ∈ Ω),

(D2) if X ∈ L and X > 0 then X ∈ D
(X > 0 denotes that X ≥ 0 and ∃ω ∈ Ω : X(ω) > 0),

(D3) if X ∈ D and c ∈ R>0 then cX ∈ D,

(D4) if X ∈ D and Y ∈ D then X + Y ∈ D.

In L, a coherent set of gambles D is thus a convex cone containing all positive gambles
{X : X > 0} but not the zero gamble.9

A coherent set of desirable gambles can be derived from a coherent lower prevision E by
(Walley 2000, p. 139)

D =

{
X ∈ L : X >

n∑
i=1

ci(Xi − E[Xi] + ε) for some n ∈ N, ci > 0, ε > 0, Xi ∈ L

}
.

If we adopt E as the lower prevision expressing our beliefs about Ω, gambles Xi−E[Xi] + ε
should be desirabe for us; considering the price E[Xi] as the supremum acceptable buying
price for Xi, the gamble Xi − E[Xi] should�in our view�be at least as good as the zero
gamble.
Conversely, a coherent lower prevision can be deduced from a coherent set of desirable

gambles by E[X] := sup{c : X − c ∈ D}. If we make c as large as possible such that
the gamble X − c is still acceptable to us, then E[X] simply is our supremum acceptable
buying price for X.
As already mentioned, sets of desirable gambles are a more general formulation as com-

pared to lower previsions, illustrated by the fact that there can be several sets D leading
to the same E (Walley 2000, p. 139).10

2.1.2.4. Sets of Probability Distributions

We now turn to the formulation of imprecise probability assessments applied in this thesis,
sets of (precise) probability distributions, which are also called credal sets (e.g., Walley
2000, p. 136).

9As the weaker property, a set of gambles D avoids sure loss if posi(D) ∩ {X : X(ω) < 0 ∀ω ∈ Ω} = ∅.
Here, posi(D) := {

∑n
i=1 ciXi : ci ∈ R>0, Xi ∈ D, n ∈ N} is the positive hull of D, i.e. the set of gambles

resulting from application of (D3) and (D4) on D.
10Another formulation equivalent to sets of desirable gambles is the description as partial preference

orderings, where a partial ordering of the gambles in L is given to express beliefs on Ω (Walley 2000,
p. 138).
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There is a one-to-one correspondence between coherent lower previsions and non-empty,
closed and convex sets of (precise) probability distributions (Walley 1991, �3.6.1). When
dropping the conditions of convexity and closure, sets of probability distributions can
be slightly more general than coherent lower previsions (Walley 2000, �5). However, the
nature of this slight increase in generality is not relevant here, although we will consider
the question of convexity more closely later.
Given a coherent lower prevision E, the corresponding set of distributionsM is closed

and convex, and consists of all probability distributions whose expectations Ep dominate
E, i.e.,11

M = {p(ω) : Ep[X] ≥ E[X] ∀X ∈ L} .

In fact, for all p ∈ M and X ∈ L, the relation E[X] ≤ Ep[X] ≤ E[X] holds; the set M
consists of all probability distributions whose expectations are compatible with the bounds
de�ned by the lower prevision E and its conjugate upper prevision E.
Conversely, given a non-empty set of probability distributionsM, whereM needs not

necessarily be closed or convex, the corresponding coherent lower prevision, for any gamble
X ∈ L, is de�ned by

E[X] = inf
p∈M

Ep[X] ,

and in this case, E is called the lower envelope of Ep, p ∈M (Walley 1991, p. 132).
There are very important relations between the notions of avoiding sure loss and coher-

ence on the one hand, and the formulation of imprecise probability assessments via sets of
probability distributions on the other hand. The two equivalences below are known as the
lower envelope theorem (Walley 1991, �3.3.3).

(a) E avoids sure loss if and only if the corresponding set M is non-empty. Thus, an
assessment E for which there is no compatible probability distribution must incur
a sure loss, and cannot be considered as reasonable. On the contrary, any imprecise
probability distribution de�ned by assigning a setM of probability distributions avoids
sure loss.

(b) Furthermore, E is coherent if and only if it can be described as the lower envelope based
on its correspondingM. Therefore, all coherent lower previsions are characterised as
lower envelopes based on some set of precise distributionsM, and imprecise probability
assignments established via such a setM are, by design, coherent.

Although the one-to-one correspondence mentioned above holds only for closed and
convex sets M, there is nothing in the theory preventing us to consider open or non-
convex setsM as our probability model, because lower and upper previsions derived from
M are nevertheless coherent.
11The probability distributions contained in a credal setM will be referred to by their probability density

or mass functions p(·) in place of their probability measures P(·), as we will consider mostly the densities
in our later discussions.
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2.1.2.5. Conditioning and the Generalised Bayes' Rule

To use imprecise probability distributions for statistical inference in the same way as usual
Bayesian inference employs precise probability distributions, we need a notion of condi-
tioning or updating for imprecise probability distributions. In analogy to the procedure
described in Section 1.2.3, the objective is to express prior knowledge on a parameter
of interest ϑ by an imprecise prior distribution, and all inferences shall be based on the
(imprecise) posterior distribution derived from it. As in Bayesian inference with precise
distributions, the now imprecise prior should be conditioned on the observed data x.
A coherent lower prevision can be conditioned on an event B by using the so-called

Generalised Bayes' Rule (GBR, Walley 1991, �6.4), by which the conditional coherent
lower prevision E[X | B] based on a lower prevision E[X] can be derived. E[X | B] is then
also coherent to E[X], i.e., it is a model satisfying the rationality criteria as discussed for
E[X] now also for the beliefs expressed in E[X] contingent on B.12

In the formulation via a credal set, the Generalised Bayes' Rule is equivalent to con-
ditioning each distribution in the credal set on B via Bayes' Rule (Walley 1991, �6.4.2),
and the set of conditioned distributions is thus an equivalent model for E[X | B]. This
important result is known as the lower envelope theorem for conditional previsions.

2.1.3. Generalised Bayesian Inference Procedure

Walley has thus established a general framework for coherent statistical inference under
imprecise probabilities. It allows to transfer the basic aspects of traditional Bayesian
inference to the generalised setting, as the fundamental paradigms of Bayesian inference
as discussed in Section 1.2.3 are maintained. Prior knowledge on the parameter, expressed
by a now imprecise prior distribution E(·) with credal setM, is updated in the light of the
observed sample x to the posterior E(· | x), with the credal setM|x, and this statistical
inference is again understood as a deductive process, obtained directly by conditioning on
the observed sample, now according to the Generalized Bayes' Rule that ensures coherence
of this inferential process. For practical implementation of the Generalized Bayes' Rule,
the lower envelope theorem for conditional previsions mentioned above is of particular
relevance. The prior credal setM is updated element by element to obtain the posterior
credal set

M|x = {p(· | x) : p(·) ∈M} , (2.2)

consisting of all posterior distributions (represented by their density or mass functions
p(· | x)) obtained by traditional Bayesian updating of elements of the prior credal set.

12The adequacy of the Generalised Bayes' Rule for statistical inference procedures has been questioned in
the literature, and there is doubt that it may reasonably represent learning. We will comment on this
topic in Section 2.1.3.2.
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2.1.3.1. Relation to Bayesian Sensitivity Analysis

Walley's lower envelope theorem also establishes a close connection to robust Bayesian
approaches and Bayesian sensitivity analysis (see, e.g., Berger et al. 1994; Ríos Insua and
Ruggeri 2000; Ruggeri, Ríos Insua, and Martín 2005) based on sets of distributions. In fact,
Walley's theory of lower previsions can be seen as providing a formal framework for these
approaches (see, e.g., Berger et al. 1994, �1.1). However, there is a basic di�erence in the
interpretation of the underlying sets of probability distributions. While in the imprecise
probability context a credal set is understood as an entity of its own, the robust Bayesian
approach emphasizes the single elements in the set, and very often discusses the e�ects of
deviations from a certain central element.13

As a consequence, for the robust Bayesian point of view it is quite natural and common
to impose some further regularity conditions on the elements in the set of distributions, like
additional smoothness constraints or unimodality of the underlying densities.14 Since lower
and upper posterior probabilities are determined by the extreme points of the underlying
credal sets, this distinction may indeed matter substantially in practice.
In essence, robust Bayesian inference and Bayesian sensitivity analysis understand ro-

bustness and insensitivity mostly as desirable properties, while the imprecise probability
framework may use such behavior actively in modelling, in particular in the context of
prior-data con�ict (see Sections 2.2.3.3 and 3.1.4).

2.1.3.2. Critique

The seemingly self-evident character of the Generalised Bayes' Rule has been questioned in
the literature. Walley (1991, p. 335) notes that, although the theory of coherence suggests
that �[. . . the GBR] is a reasonable updating strategy, [. . . ] there is nothing in the theory
that requires You to [. . . ] construct conditional previsions [. . . ] through the GBR� and to
�[. . . ] adopt [. . . them ] as Your new unconditional prevision�. He is also very clear about
the fact (see Walley 1991, p. 334) that �there is a role for other updating strategies, not
because the updated beliefs constructed through the GBR are unjusti�ed, but because they
are often indeterminate�. Indeed, Walley (1991, �6.11.1) lists twelve items summarizing
�[. . . ] the reasons for which the GBR may fail to be applicable or useful as an updating
strategy.�
One central argument is that the notion of coherence, of which the Generalised Bayes'

Rule is a consequence, may not be adequate to represent learning, especially when observed
data is rather surprising, and should overturn prior beliefs about the data generating
process. As posterior beliefs derived from the Generalised Bayes' Rule must be coherent
with both prior beliefs and data, they may be rather imprecise in case of very vague prior
beliefs or unexpected data. Essentially, the Generalised Bayes' Rule does not allow to
abandon prior beliefs in the light of surprising data, and both too vague or speci�c, but

13These so-called neighbourhood models are brie�y discussed in Section 3.2.1.1.
14However, in Section 3.1, in the case ofM(0) consisting of parametric distributions only, we will follow a

similar route, as the canonical conjugates typically are unimodal and smooth.
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(in the light of the data) inappropriate prior beliefs may in�uence posterior beliefs to an
intolerable extent.15

Indeed, it has been debated that�intuitively�posterior inferences derived via the Gen-
eralised Bayes' Rule are often too imprecise. As such possibly counterintuitive bounds
result from elements in the prior credal set under which the observed sample is rather un-
likely, in order to maintain the understanding of updating as conditioning on the sample,
several authors therefore suggested to reduce the prior credal sets in dependence on the
sample. A radical way to achieve this is to consider in the conditioning process only those
priors under which the observed sample has highest probability (see, e.g., Held, Kriegler,
and Augustin 2008; see also Walley and Fine 1982), resulting in a procedure that is related
to Dempster's rule of conditioning (see, e.g., Destercke and Dubois 2013a, �3.2). Other ways
to address this issue are update rules where imprecision is updated in accordance with an
information measure (Coolen 1993b; Coolen 1994; see also Coolen 1993a), or hierarchical
models, like the model suggested by Cattaneo (2008) in the (pro�le) likelihood context (see
the short description in Section 2.2.4.2), a variant of which also allows to incorporate prior
information by using a so-called prior likelihood.

Another approach to tackle these issues is to re�ne the concept of coherence itself, and
to replace or complement it with a notion that accounts for possible change of a subject's
beliefs in the light of new evidence. This concept of temporal coherence (Goldstein 1985)
attempts to frame, informally stated, only current beliefs about future beliefs, and not
the future beliefs themselves (that may take into account new evidence not according to
coherence). For an inference approach based on this notion, see Goldstein and Woo�
(2007); Tro�aes and Goldstein (2013) give some �rst results on consequences of temporal
coherence for inference with coherent lower previsions.

A very important foundational critique of the Generalised Bayes' Rule relates to issues
from a decision theoretic point of view. It has been shown that the decision theoretic
justi�cation of Bayes' Rule as producing prior risk minimising decision functions does not
extend to the case of sets of priors. Updating by Generalised Bayes' Rule does no longer
necessarily lead to optimal decision functions and thus, as one could argue, also not to
optimal inference procedures; see, in particular, Augustin (2003) for a detailed discussion,
Noubiap and Seidel (2001) and Augustin (2004) for algorithms to calculate optimal decision
functions.

These important criticisms notwithstanding, the models discussed in this thesis will rely
on the inference procedure described above, based on the Generalised Bayes' Rule to obtain
M|x. As will be discussed in Section 3.1, the suggested models nevertheless provide very
attractive inference features. Furthermore, we will sketch in Section 4.3 (see also some �rst
technical considerations in Section A.2) how models along this approach can be modi�ed
to cater for `bonus precision' if prior and data coincide especially well.

15However, as we will see in Section 3.1.2, items I. and II., in our model, data can outweigh prior beliefs,
leading to reasonable inferences.
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2.1.4. A Brief Glance on Related Concepts

The theory of imprecise probability outlined in Sections 2.1.2 and 2.1.3 above is of course
not the only attempt to complement probability theory as tool for handling uncertainty;16

there are many other concepts with a similar aim, like possibility distributions (which often
take the form of a fuzzy interval), or fuzzy probability measures, which are also known as
capacities (see Section 2.2 below).
In fact, many of these concepts are closely linked to lower previsions or sets of probability

distributions, and a large part can indeed be seen as special cases of generic lower previsions,
or as sets of probability distributions with certain restrictions (Destercke and Dubois 2013b,
Fig. 5.5). A considerable part of the imprecise probability literature explores these links,
of which Destercke and Dubois (2013a; 2013b) give a concise overview.
Although generally less expressive than coherent lower previsions, these special cases can

nevertheless be useful tools, as they may be more easy to handle or elicit for the problem
at hand, or simply be more easy to communicate to the practitioners involved (Destercke
and Dubois 2013b, �1).

2.1.4.1. Belief Functions

An important special case of coherent lower previsions are belief functions (see, e.g., Dester-
cke and Dubois 2013a, �2). Here, the corresponding upper probability (related through con-
jugacy as mentioned in Section 2.1.1) is often considered explicitely, denoted as plausibility
function. Belief and plausibility functions can be based on a probability mass assignment
m(·), valuing the occurrence propensity for subsets E of the sample space X by weights
m(E) ≥ 0 which sum up to 1, i.e.

∑
E⊆X m(E) = 1.17 The belief function is then de�ned,

for any A ⊆ X , by

Bel(A) =
∑

E⊆A,E 6=∅

m(E) ,

collecting the probability mass assignments for all sets that necessarily imply A; the plau-
sibility function is de�ned by

Pl(A) =
∑

E∩A 6=∅

m(E) ,

collecting the probability mass assignments for all sets that are compatible with A (have
common elements with A, i.e., do not contradict A).
This approach can be useful when, in the case of discrete sample spaces X , it is not

possible to obtain precise observations x ∈ X , but only subsets E ⊂ X as observations.
Consider, e.g., a poll where participants are allowed to name sets of political parties or

16A number of motives for going beyond usual probability measures will be discussed in Section 2.2.
17In a probability distribution, instead only singletons, or one-element subsets, may receive weightsm(·) >

0. Probability mass assignments can also be seen as providing a probability distribution on the power
set of the sample space X .
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candidates they intend to vote, instead of being forced to name only one, even if they are
currently undecided between, say, three parties or candidates.
Belief functions are indeed a special case of coherent lower previsions. If m(∅) = 0, then

belief functions coincide with ∞-monotone capacities, which are a special case of lower
previsions (e.g., Destercke and Dubois 2013a, �2.1). Only if m(∅) > 0, which does not seem
like a reasonable choice in most circumstances anyway, the set of corresponding probability
distributionsM is empty.

2.1.4.2. Examples for Frequentist Approaches

To avoid the impression that imprecise probability models are necessarily related to the
Bayesian approach to inference, we will now also mention brie�y some non-Bayesian ap-
proaches.
Augustin, Walter, and Coolen (2013, �5) introduce to some frequentist approaches to

inference using imprecise probability. A �eld that is so far comparatively widely developed
is the theory of statistical hypothesis testing, based on the so-called Huber-Strassen theorem
(Huber and Strassen 1973, Theorem 4.1). It allows to test between two hypotheses H0 and
H1, each representing a coherent lower prevision18 (instead of a probability distribution as
in classical Neyman-Pearson testing),

H0 : ‘P0 is true' versus H1 : ‘P1 is true' ,

by proving the existence of a so-called globally least favourable pair of probability distribu-
tions p0 ∈ M0 and p1 ∈ M1, whereM0 andM1 are the credal sets corresponding to P0

and P1, respectively. This least favourable pair is representative for the testing problem
regarding P0 and P1, in the sense that a test that is optimal for distinguishing p0 and p1

is also optimal in testing P1 against P0, independently of signi�cance level α and sample
size n.
An important, swiftly evolving, approach for predictive inferences using frequentist im-

precise probability is the framework of nonparametric predictive inference (NPI, Augustin
and Coolen 2004; Coolen 2006).19 It is based on Hill's (1968) assumption A(n), giving a
direct conditional probability for a future observable random quantity based on observed
values of related random quantities. Suppose that X1, . . . , Xn, Xn+1 are continuous and
exchangeable random quantities. Let the ordered observed values of X1, . . . , Xn be denoted
by x(1) < x(2) < . . . < x(n), and let x(0) = −∞ and x(n+1) =∞ for ease of notation. For a
future observation Xn+1, based on n observations, the assumption A(n) (Hill 1968) is

P
(
Xn+1 ∈ (x(j−1), x(j))

)
=

1

n+ 1
for j = 1, 2, . . . , n+ 1 .

18More precisely, Huber and Strassen (1973) proved the existence of least favourable pairs for capacities,
while Augustin (1998) proved existence of such pairs for the more general class F-Wahrscheinlichkeit,
which is the equivalence of coherent lower previsions in the framework by Weichselberger (2001).

19See also www.npi-statistics.com.

www.npi-statistics.com
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A(n) does not assume anything else, and is a post-data assumption related to exchange-
ability. The frequentist nature of A(n) can easily be understood by considering a simple
case like n = 2, for which A(2) states that the third observation has equal probability to
be the minimum, median or maximum of all three observations, no matter the values x1

and x2. For repeated applications in situations with exchangeable random quantities, this
post-data assumption is clearly seen to hold with a frequency interpretation of probability.
For one-o� applications, such an inference can be considered reasonable if one has no in-
formation at all about the location of X3 relative to x1 and x2, or if one explicitly does not
wish to use any such information. A(n) is also closely related to simple random sampling,
and for the case with n = 2 it just implies that the minimum, mean and maximum of the
three random quantities each have the same probability to be X3.20

Inferences based on A(n) are predictive and nonparametric, and avoid the use of so-called
counterfactuals, which play an important role in classical inferences like hypothesis testing,
and which are often criticised by opponents of frequentist statistics (see, e.g., Dawid 2000).
A(n) is not su�cient to derive precise probabilities for many events of interest, but it
provides optimal bounds for probabilities for all events of interest involving Xn+1. These
bounds are coherent lower (and upper) probabilities (Augustin and Coolen 2004).
NPI is a framework of statistical theory and methods that use these A(n)-based lower

and upper probabilities, and also considers several variations of A(n) which are suitable for
di�erent inferences. For example, NPI has been presented for Bernoulli data, multinomial
data, and lifetime data with right-censored observations; NPI also enables inference for
multiple future observations, with their interdependence explicitly taken into account. NPI
provides a solution to some central goals formulated for objective (Bayesian) inference,
which cannot be obtained when using precise probabilities (Coolen 2006). NPI is also
exactly calibrated (Lawless and Fredette 2005), which is a strong consistency property, and
it never leads to results that are in con�ict with inferences based on empirical probabilities.
Inferential problems for which NPI solutions have recently been presented or are being

developed include aspects of medical diagnosis with the use of ROC curves, robust classi�-
cation, inference on competing risks, quality control and acceptance sampling. To pick out
an important application, a generalisation of the Kaplan-Meier estimator for survival func-
tions (Kaplan and Meier 1958) was developed by Coolen and Yan (2004), which e�ectively
expresses the uncertainty inherent in the estimation by lower and upper bounds. We think
this is a striking example for the potential of imprecise probability methods, allowing to
draw conclusions from data without the need to add overreaching assumptions.
The nature of A(n) as a minimal model assumption also opens the possibility to study

the e�ect of common further modelling assumptions, by comparing NPI-based inferences
with the results of classical procedures. As we will repeatedly argue in Sections 2.2.1,
2.2.3.1 and 2.2.4.1 below, often the (imprecise) answers o�ered by imprecise probability
methods are already enough to solve the substantial question at hand, and adding further
assumptions to enable precise answers (as is the usual approach) is unnecessary, with
the serious risk of giving spuriously precise answers when these further assumptions are

20For a detailed study of A(n) see Hill (1988).
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unrealistic or unjusti�ed.

Having studied some theoretical foundations of imprecise probability and inference ap-
proaches based on them, we will now turn to the reasons motivating the use of imprecise
probability in statistical inference. Again, special attention is paid to motives from a
Bayesian perspective (Section 2.2.3).
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2.2. Motives for the Use of Imprecise Probability

Methods

Although strictly negated by advocates of Bayesian methods (e.g., by Lindley 1987), the
need to go beyond usual probability measures has been recognized for a long time,21 and
in more recent times most prominently by scientists involved in the development of expert
systems (see, e.g., Walley 1996a).
Expert systems have the task to formally represent the knowledege of one or several

experts in a �eld, properly modeling the reasoning of these experts in order to aid non-
experts in their decisions. A protoptypical example is MYCIN (Shortli�e 1976), which
was developed to assist physicians in diagnosing bacterial infections. The reasoning to be
modeled by expert systems typically involes �uncertainty, partial ignorance and incomplete
or con�icting information�, and thus provides �an especially good testing ground for theories
of uncertainty because they aim to formalise and automate as much as possible of the
reasoning process� (Walley 1996a, p. 2).
We will �rst discuss a central, or fundamental, motive in Section 2.2.1, along with

a number of motives that can be seen as derived from this central motive. Before we
discuss motives speci�c to the Bayesian approach in Section 2.2.3, we brie�y discern, in
consequence of the central motive, the notions of risk and ambiguity in Section 2.2.2.

2.2.1. The Fundamental Motive

The fundamental motive at play in expert systems, and in the study of uncertainty in arti-
�cial intelligence in general (see, e.g., Lawry et al. 2006), is the view that usual probability
measures are not expressive enough to model reasoning under uncertainty, and that, in
fact, probability is �t to cover only one aspect of the uncertainty involved. The exclusive
role of probability as a methodology for handling uncertainty has eloquently been rejected,
e.g., by Klir and Wierman (1999, p. 1):

For three hundred years [. . . ] uncertainty was conceived solely in terms of proba-
bility theory. This seemingly unique connection between uncertainty and probability
is now challenged [. . . by several other] theories, which are demonstrably capable of
characterizing situations under uncertainty. [. . . ]

[. . . ] it has become clear that there are several distinct types of uncertainty. That

is, it was realized that uncertainty is a multidimensional concept. [. . . That] multidi-

mensional nature of uncertainty was obscured when uncertainty was conceived solely

in terms of probability theory, in which it is manifested by only one of its dimensions.

Weichselberger (2001, �1.4) identi�es this multidimensionality as a meta motive, which
underlies a number of more manifest motives for the use of imprecise probability tools
(Weichselberger 2001, p. 92):

21Hampel (2009b) and Weichselberger (2001, �1) give a historical overview on the development of ideas
related to non-additive measures and interval probability.
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• The existence of pairs of events that may be not comparable in terms of probability
measures, as neither one of them can be seen as more probable than the other, nor
should they be seen as excactly equiprobable.

• Incomplete information with respect to a probability measure leads naturally to lower
and upper bounds for probabilities of events. These bounds may be, however, already
informative enough to decide upon the substantive question at hand.22

• Uncertainty in subjective probability assessments, which may manifest in di�ering
buying and selling prices (as discussed in Section 2.1.2). Indeed, Walley's (1991) cen-
tral motive is that subjective beliefs to be modelled by a prior are usually imprecise,
such that lower previsions, rather than probability distributions, are the adequate
model (see Section 2.2.3.1).

• The provision of basic tools that generalise probability measures, namely capacities
(Choquet 1954), also known as fuzzy measures (e.g., Murofushi and Sugeno 1989),
and the Choquet integral, which allows integration according to capacities. These
tools open up a wealth of modelling opportunities.23

• The need to model approximate adherence to a central probability distribution, which
is often done through neighbourhood models (see Section 3.2.1.1). This is the domi-
nant model type in robust Bayesian approaches (see, e.g., Berger et al. 1994).

• The available data may not be su�cient to excactly determine the parameters of a
usual proability model. Instead, only ranges for these parameters can be identi�ed.
A fastly growing literature is devoted to approaches along these lines, especially
in econometrics, where it is called partial identi�cation (e.g., Manski 2003), and in
biometrics, where it is known as systematic sensitivity analysis (e.g., Vansteelandt
et al. 2006).

• Sequences of experiments that do not warrant the assumption of convergence for rel-
ative frequencies, because, e.g., the notion of replication may not be satis�ed closely
enough as necessary for the validity of results from classical probability theory. In
similar veins, imprecise probability may allow to model imperfect randomisation
schemes, where, e.g., �symmetry of sample units cannot be fully established� (Au-
gustin, Walter, and Coolen 2013, �2.5).

22An important example for such an approach is the theory of nonparametric predictive inference (NPI,
see, e.g., Coolen 2011), where minimal model assumptions lead to a nonparametric model supplying
lower and upper probability bounds for events involving future observations. As mentioned in Sec-
tion 2.1.4.2, a striking application of this theory is a generalisation of the Kaplan-Meier estimator for
survival functions (Kaplan and Meier 1958), which e�ectively expresses the uncertainty inherent in the
estimation by lower and upper bounds (Coolen and Yan 2004).

23In fact, certain subclasses of capacities are a special case of lower previsions (see, e.g., Destercke and
Dubois 2013b, Fig. 5.5).
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In summary, the �exible, multidimensional perspective on uncertainty makes imprecise
probabilities capable of mirroring the quality of knowledge. Only well supported knowl-
edge is expressed by comparatively precise models, including the traditional concept of
probability as the special case of perfect stochastic information, while highly imprecise (or
even vacuous) models are used in the situation of scarce (or no) prior knowledge.

2.2.2. Risk and Ambiguity

The multidimensionality of uncertainty is most often accounted for by distinguishing two
speci�c dimensions, commonly denoted by risk and ambiguity (e.g., by Ellsberg 1961).

• Risk is the uncertainty involved in ideal lotteries, i.e., when the stochastic mechanism
driving the phenomenon under uncertainty (the data generating process) is known
completely. Precise probability distributions are the adequate tool to model such
uncertainty, arising, e.g., in a lottery where the number of winning tickets is exactly
known.

• Ambiguity arises when there is insu�cient information about the stochastic mecha-
nism, or information about it is lacking completely, and covers thus non-stochastic
uncertainty. Uncertain phenomena where there is no information at all about ocur-
rence or no-ocurrence of events would constitute a situation of pure ambiguity, like
a lottery for which there is no information whatsoever about the number of winning
tickets.

Ellsberg's (1961) seminal experiment demonstrated that, in contrast to the then dom-
inant theoretical frameworks for rational decisions under uncertainty (most prominently,
Savage 1954), not all decisions can be framed in terms of risk, and that aspects of ambiguity
do form a crucial part of the decision process and should not be glossed over.24

Indeed, in our view, real-life situations often pose mixtures of risk and ambiguity, and
should be modeled by lower previsions or sets of probability distributions. In the latter
formulation, the stochastic aspect is dealt with by the single distributions included in the
set, whereas ambiguity is expressed by the magnitude of the set itself, which manifests,
e.g., in the length of intervals for probabilities of events derived from the set. Sets of
probability distributions are thus, in our view, an adequate model to characterise, e.g., a
lottery where there is some limited information about the number of winning tickets, like
the information that there should be about 5 to 10 winning tickets per 100 tickets.25

24More recently, the study by Hsu et al. (2005) even suggests that decision problems involving ambiguity
are processed by di�erent cerebral mechanisms as those involving pure risk.

25We will comment on the seemingly attractive alternative of putting a second-order distribution on the
set of winning probabilities at Section 2.2.4.
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2.2.3. Motives from a Bayesian Perspective

From a decidedly Bayesian perspective as taken in this thesis, we �rst want to point out
foundational motives for the use of imprecise probability methods, before we come to two
speci�c motives in Sections 2.2.3.2 and 2.2.3.3.

2.2.3.1. Foundational Motives

We agree with Berger et al. (1994, �1.1) in the view that there are very strong foundational
arguments for the subjective Bayesian approach to statistical inference, which, however,
hold only �if it is assumed that one can make arbitrarily �ne discriminations in judgement
about unknowns and utilities� (Berger et al. 1994, p. 303). It is the implications of this ex-
tremely challenging requirement which advocates of Bayesian inference with precise priors
like Lindley (1987) do not seem to appreciate enough. In fact, it is hardly imaginable how
such �arbitrarily �ne discriminations� could be made in practice even for the most basic
inference tasks. The foundational arguments for Bayesian inference are thus worthless,
unless the requirement of arbitrarily �ne precision can be relaxed. Indeed, the framework
by Walley (1991) does just that: preserving the foundational arguments, especially the
notion of coherence, while allowing for incomplete and imprecise prior judgements.26

In fact, Walley consequently concludes that precise priors are unnecessary for coherent
inference, and that even the assumption of an underlying `ideal' precise prior (unobtainable
because of, e.g., time constraints in elicitation) is unjusti�ed, and calls this the dogma of
ideal precision (Walley 1991, �5.9).27

In a decision theoretic context (which can be seen as a superstructure for statistical
inference tasks, see Section 1.2.3.2), Walley argues that the strife to obtain precise prior
distributions is unnecessary also because often, imprecise probability will su�ce to deter-
mine an optimal decision, and in the contrary case, they adequately re�ect the lack of
information inherent in the decision problem. Then, precise decisions are in fact based
on some arbitrary modelling choices,28 but this arbitrariness is obscured by the method
insisting on precision, such that the precision of the method is merely a spurious one.
Consequently, it is better to acknowledge indecision instead of hiding it, as�if it must�a
decision can be made nevertheless, with the same arbitrariness as is hidden in a spuriously
precise method (Walley 1991, �5.7).
Concretely, the power to di�erentiate between di�erent degrees of partial knowledge dis-

tinguishes imprecise probabilities as an attractive modelling tool in statistics. In particular

26However, keep in mind the caveats for an inference procedure based on the Generalised Bayes' Rule as
adressed in Section 2.1.3.2.

27When disagreeing with such a view, remarking that precise Bayesian methods can be adequate in many
inference settings, Walley replies that nevertheless, �[...] we need a theory of imprecise probabilites to
tell us when precision is a poor idealisation� (Walley 1991, �5.8.1, item 3, p. 250).

28E.g., �the decisions which result from de�nite rules such as maximising entropy or assigning a `non-
informative' second-order distribution will depend on the arbitrary choice of a possibility space Ω�
(Walley 1991, �5.6, footnote 16, p. 531). We will comment on second-order distributions and hierarchi-
cal Bayesian models in Section 2.2.4.
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it allows to overcome two severe practical limitations inherent to Bayesian inference based
on precise probabilities, brie�y discussed below.

2.2.3.2. Weakly Informative Priors

A �rst important issue is the proper modelling of no (or extremely vague) prior knowledge.
In traditional statistics, so-called non-informative priors have been proposed, which, by
di�erent criteria, eventually all select a single traditional prior distribution, turning ig-
norance into a problem with rather precise probabilistic information. Furthermore, these
`non-informative' priors are usually improper, leading to severe problems in hypotheses
testing (as mentioned in Section 1.2.3.3). We will comment on this issue in more detail in
Section 3.1.2, item V, and in Section 3.1.3.

2.2.3.3. Prior-Data Con�ict

Moreover, increasing imprecision to make the conclusions more cautious is the natural way
to handle prior-data con�ict, i.e. when outlier-free data are observed that nevertheless are
rather unexpected under the prior assumptions. For instance, Evans and Moshonov (2006,
p. 893) warn that if �[. . . ] the observed data is surprising in the light of the sampling model
and the prior, then we must be at least suspicious about the validity of inferences drawn.�
While there is no way to express this caution (`being suspicious') in precise probabilistic
models, the imprecise probability models at the core of this thesis (see Chapter 3) were
developed speci�cally to take care of this issue in an appropriate way. A more detailed
discussion on the issue of prior-data con�ict will thus be given in Section 3.1.2, item IV,
and in Section 3.1.4; these treatments are in turn based on the studies in Sections 3.3 and
3.5. Some illustrative examples of prior-data con�ict can be found in Section A.1.2, while
the e�ect on Bayesian linear regression estimates is discussed in Sections A.1.3 and A.1.4.
As a topic related to prior-data con�ict, decreasing imprecision in sequential learning

may express naturally that the accumulating information is non-con�icting and stable.29

2.2.4. Critique and Discussion of Some Alternatives

We will brie�y discuss here some critiques on imprecise probability methods, and touch
on hierarchical models as an alternative. Other models based on sets of prior distributions
will instead be discussed in Section 3.2.

2.2.4.1. Objections to Imprecise Probability Models

It is often argued that imprecise probability methods are more di�cult to apply than
precise models, and lead to complicated and cumbersome inference procedures.
While the criticism of higher complexity is certainly true for the mathematical founda-

tions (lower previsions are indeed more complex than linear previsions or precise probability

29See the comment in footnote 10, page 61.
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distributions), we believe that increased e�ort (if actually substantial) in modeling and ap-
plication for imprecise probability methods is rewarded with a more realistic description of
the uncertainty involved. Imprecise probability models lead to more reliable conclusions,
by explicitely communicating the uncertainties inherent in the model or the data, in con-
trast to the often seemingly precise results from precise probability methods, which are
frequently obtained due to a multitude of, often heroic, model assumptions. This `over-
precision' is often o�set in statistical practice by `taking models not too seriously', and
to understand them as crude approximations to reality only. Box and Draper's statement
�Essentially, all models are wrong, but some of them are useful� (Box and Draper 1987,
p. 424) has become a frequently cited dictum, often understood as a guiding paradigm to
statistical modeling. Taking aside the problematic assumption of `continuity' of statistical
procedures inherent in this view,30 employing precise models and then discounting their
precise results seems somehow circuitous.
We think models are preferable that, by allowing for imprecision, can be taken seri-

ously in their implications. This is also the position of Manski, whose �Law of decreasing
credibility�,31

�The credibility of inferences decreases with the strength of the assumptions
maintained� (Manski 2003, p. 1),

can be understood as a compelling motto for statistical inference with imprecise proba-
bilities, bringing credibility, or reliability, of conclusions explicitly into the argument, and
encouraging us to impose justi�ed assumptions only.
Furthermore, the perceived di�culty of applying imprecise probability methods in prac-

tice is, at least in the subjective Bayesian inference paradigm, often negligible. Sets of
prior distributions are relatively easy to handle (see, e.g., the models in Section 3.1), and
the crucial point in practical analyses instead is often the choice of the prior. For this, e.g.,
probabilities or quantiles must be elicited by questioning an expert in the �eld under study.
To us it seems hardly questionable that it will be easier for such an expert to provide ranges
instead of precise numbers.32 What happens in practice already is that experts are often
much more comfortable to provide ranges instead of precise numbers,33 and again, it seems
unnecessary and circuitous to derive precise probability statements from such imprecise
assessments. We thus consider the common objection to imprecise Bayesian approaches
that eliciting two numbers instead of one must be more di�cult a misconception.34

30`Continuity' is understood here in the sense that small perturbations of the underlying model do not
destroy the substantive conclusions drawn from the data. Results about the robustness of statistical
models have undermined this assumption of `model continuity' (see Huber (1981) and Hampel et al.
(1986) for monographs on robust statistics).

31�Credibility� is used here in a non-technical sense.
32See a simple illustration of this in Walley (1991, �5.8, footnote 7, p. 535).
33See, e.g., the study by Rinderknecht, Borsuk, and Reichert (2011), where the imprecision naturally

present in experts' assessments is not ignored, but adequately modelled.
34See, e.g., Walley (1991, �5.8.2) for a more detailed discussion of this objection.
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2.2.4.2. Hierarchical Models

Another obvious approach when considering a set of probability distributions M as the
model for prior information is to rate the elements inM, and devise a second-order distri-
bution or a hyperprior onM. Indeed, this is a common approach, known as hierarchical
Bayesian modelling, where usually, M is a family of parametric distributions indexed by
a hyperparameter φ, and the hyperprior over φ is a non-informative prior.
As Walley (1991, �5.10.4, p. 260) notes, �hierarchical models can be very useful when

the hyperparameter φ has a clear meaning�. However, this is very often not the case,
and φ serves �merely as an index for the unknown, uninterpreted [ideal, precise prior] pT .�
Refuting the need for such an ideal precise prior pT (as noted in Section 2.2.3.1), Walley
(1991, �5.10.2) demonstrates that such an approach leads to incoherence when the priors
inM are meant to model behavioural dispositions, as is the case for subjective Bayesian
approaches.
Leaving aside the serious problems that can arise when ignorance about φ is modelled

by a non-informative prior,35 a second-order distribution approach actually de�nes, via
averaging over the elements in M, a precise prior on the �rst level, leading to precise
posterior inferences, thus obscuring the uncertainty in the model that was the reason for
devising a second-order distribution in the �rst place.
In our view, a much better alternative for hierarchical modelling was suggested by Cat-

taneo (2008). Here, information on the plausibility of elements in M is modelled by a
possibility distribution, such that uncertainty in posterior inferences is re�ected again by a
possibility distribution, which takes the form of a normalised likelihood function and can
be interpreted, like usual likelihoods, as a measure of relative plausibility.36

In a non-Bayesian context, the model consists of a set of sample distributionsM (it is
possible to take a whole family of sample distributions asM), and of the likelihood function
lik :M→ R≥0 as the second level, describing the plausibility of its elements based on the
sample. Inference on certain deduced quantities ϑ = g (p) , p ∈ M then can be based on
the so-called pro�le likelihood pro�ik(ϑ) = sup{p∈M|g(p)=ϑ} lik(p). A variant of this model
allows to incorporate prior information by using a so-called prior likelihood. The approach
can serve as a basis for a direct likelihood-based decision theory (Cattaneo 2007; Cattaneo
2012). It has been successfully applied in graphical models (e.g., Antonucci, Cattaneo,
and Corani 2011, see also Corani et al. 2013, �4.3), and in the context of regression with

35See, e.g., Walley (1991, �5.5.4 (h)), or Pericchi and Nazaret (1988, p. 367).
36The possibility distributions for quantities of interest can also be seen as fuzzy numbers, such that, e.g.,

the coverage probability for a certain parameter subset Θ1 is not a real number, but a fuzzy probability,
expressing the uncertainty for that probability by relative plausibility values (Cattaneo 2008). The
hierarchical model has thus close relations to approaches using fuzzy numbers and distributions, with
the advantage of a clear interpretation of the possibility functions as likelihoods. Furthermore, this
approach has a sound foundation for combination rules and deduction of inferences in probability theory.
In contrast, in the fuzzy literature, the interpretation of fuzzy numbers, or membership functions in
general, usually explained as expressing `degrees of membership', remains often unclear, the rules for
combining di�erent inference sources are controversially disputed, and the fuzzy literature disagrees on
how to update fuzzy probability models in the light of data (Cattaneo 2008, �3).
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imprecise data (Cattaneo and Wiencierz 2012).

After having described the theoretical foundations of, and having motivated the switch
to, imprecise probability models in general, in Chapter 3 we will now present models for
Bayesian inference with imprecise proabilities that are practicable and account for the
modelling opportunities discussed above.





3. Generalised Bayesian Inference

with Sets of Conjugate Priors in

Exponential Families

The imprecise probability models based on conjugate priors we will discuss in this chapter
are an important model class, and have been central to the development and application
of imprecise probability methods in statistical inference. They have lead to the so-called
Imprecise Dirichlet model (IDM, see Section 3.1.3 below) by Walley (1996b), and more
generally to powerful imprecise probability models for inference based on i.i.d. exponential
family sampling models by Quaeghebeur and Cooman (2005) and Quaeghebeur (2009).
These models were extended by Walter and Augustin (2009b, see Section 3.3) and Walter,
Augustin, and Coolen (2011, see Section 3.5) to allow in addition an elegant handling of
prior-data con�ict.

The chapter is structured as follows. Section 3.1 attempts to give a systematic overview
on these models, and illustrates some characteristic modelling opportunities of generalised
Bayesian inference, while Section 3.2 brie�y discusses some alternative models based on sets
of priors. Section 3.3 then presents one model in detail, namely the so-called generalised
iLUCK-model developed in Walter and Augustin (2009b), and illustrates its application to
the Normal-Normal and Dirichlet-Multinomial models. Section 3.4 gives a short overview
on a software implementation of generalised iLUCK-models, the add-on package luck

(Walter and Krautenbacher 2013) for the statistical programming environment R (R Core
Team 2013). Finally, Section 3.5 presents two attempts to further re�ne inference behaviour
in the presence of prior-data con�ict. While the �rst approach considers more sophisticated
shapes for prior parameter sets, the second is a fundamentally di�erent approach that
combining inferences from two arbitrary distinct models. Interestingly, the inferences from
these two approaches in Section 3.5 show nevertheless fascinating similarities.
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3.1. Model Overview and Discussion

This section gives a systematic overview on imprecise probability models for inference in
canonical exponential families based on sets of canonical conjugate priors. It integrates
the approaches discussed in Sections 3.3 and 3.5, and further approaches discussed in the
literature, into a general framework, and reviews their inference properties.

In Section 3.1.1, a general framework that characterises these models is elaborated,
and models discussed in the literature that can be subsumed under this framework are
described. Section 3.1.2 presents a number of inference properties that this framework
provides, along with two further criteria characterising the unique modelling opportunities
that generalised Bayesian inference can o�er: sensitivity to prior-data con�ict, and the case
of weakly informative priors. The models from Section 3.1.1 are then discussed in the light
of the two criteria in Sections 3.1.3 and 3.1.4, providing a summary of model strengths and
weaknesses.

3.1.1. The General Framework

Consider inference based on samples from a regular canonical exponential family (1.4) using
the conjugate prior (1.5) as discussed in Section 1.2.3.1. One speci�es a prior parameter set
IΠ(0) of (n(0), y(0)) values and takes as imprecise prior�described via the credal setM(0)�
the set of traditional priors with (n(0), y(0)) ∈ IΠ(0). The credal set M(n) of posterior
distributions,1 obtained by updating each element of M(0) via Bayes' Rule, then can be
described as the set of parametric distributions with parameters varying in the set of
updated parameters IΠ(n) = {(n(n), y(n))|(n(0), y(0)) ∈ IΠ(0)}.
Alternatively,M(0) can be de�ned as the set of all convex mixtures of parametric priors

with (n(0), y(0)) ∈ IΠ(0). In this case, the set of priors corresponding to IΠ(0) considered
above gives the set of extreme points for the actual convex set M(0). Updating this
convex prior credal set with the Generalized Bayes' Rule results in a setM(n) of posterior
distributions that is again convex, and M(n) conveniently can be obtained by taking the
convex hull of the set of posteriors de�ned by the set of updated parameters IΠ(n).
To see this, consider a mixture distribution pm(ϑ | n(0)
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Denoting the marginals by

f1(x) =

∫
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f(x | ϑ)p(ϑ | n(0)
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(0)
1 ) dϑ ,

1To emphasize the dependence of the sample size n, the posterior credal set is denoted byM(n) instead
ofM|x as in (2.2).
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where

κ∗ = κ
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The posterior of the κ-mixture distribution, based on parametric priors with parameters
(n
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1 ) and (n
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2 ), is thus the κ∗-mixture of the two parametric posteriors with

updated parameters (n
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2 ), respectively.

Now, the convex hull of p(ϑ | n(0)
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2 ) is given by the set of all

mixture distributions based on p(ϑ | n(0)
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2 ), where κ varies in

[0, 1]. As for any κ ∈ [0, 1], the corresponding κ∗ is again in [0, 1], and it holds that
{κ∗ | κ ∈ [0, 1]} = [0, 1], the convex hull of p(ϑ | n(n)
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equivalent to the set of updated mixtures pm(ϑ | n(0)
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2 , κ,x) for κ ∈ [0, 1].

Through complete induction, this result holds also for any �nite number of mixture com-
ponents, such that the set of updated mixture distributionsM(n) can thus be constructed
as the convex hull of the parametric posteriors with (n(n), y(n)) ∈ IΠ(n).
When the credal setM(0) is taken to contain all �nite mixtures of parametric priors,M(0)

is very �exible and contains, through the mixture distributions, a wealth of distributional
shapes.2 Nevertheless, maximisation and minimisation over M(n) is quite feasible for

2Indeed, if the parametric distributions are normal distributions and IΠ(0) is large enough, it can be
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quantities that are linear in the parametric posteriors contained in M(n), as then we
can be sure that suprema and in�ma are attained at the extreme points of M(n), which
are the parametric distributions generated by IΠ(n), enabling us to search over IΠ(n) only.
Extremes for prior and posterior quantities of interest that are not linear in the parametric
distributions may be very di�cult to obtain, or the model could even be useless for them
(because the model may give too imprecise, or even vacuous, bounds). Expectations are
linear in the parametric distributions, while variances are not.3

For both cases, the relationship between the parameter sets IΠ(0) and IΠ(n) and the credal
setsM(0) andM(n) will allow us to discuss di�erent modelsM(0) andM(n) by considering
the corresponding parameter sets IΠ(0) and IΠ(n).4

As an example, in the precise Beta-Bernoulli model as discussed in Section 1.2.3.3, the
posterior predictive probability for the event that a future single draw is a success is equal to
y(n), and so we get, for an imprecise model withM(0) = {p(θ | n(0), y(0))|(n(0), y(0)) ∈ IΠ(0)},
the lower and upper probability

y(n) := inf
IΠ(n)

y(n) = inf
IΠ(0)

n(0)y(0) + s

n(0) + n
,

y(n) := sup
IΠ(n)

y(n) = sup
IΠ(0)

n(0)y(0) + s

n(0) + n
.

Special imprecise probability models are now obtained by speci�c choices of IΠ(0). We
distinguish the following types of models:

(a) n(0) is �xed, while y(0) varies in a set Y(0).
The IDM (Walley 1996b), as well as its generalisation to all sample distributions of
the canonical exponential form (1.4) by Quaeghebeur and Cooman (2005) are of this
type. The approach by Boraty«ska (1997) also belongs to this category, as she speci�es
bounds for n(0)y(0) while holding n(0) constant (see Benavoli and Za�alon 2012, p. 1973).

(b) n(0) varies in a set N (0), while y(0) is �xed.
This type of model is rarely discussed in the literature, but is mentioned by Walley
(1991) in �7.8.3 and in �1.1.4, footnote no. 10. Both instances assume the Normal-
Normal model as described in Section 1.2.3.4, where the set of priors is spanned by
normal distributions with a �xed mean y(0) and a range of variances σ2

0/n
(0).

assumed thatM(0) contains a very wide range of priors, as mixtures of normal distributions are dense
in the space of well-behaved probability distributions (see, e.g., Priebe and Marchette 2000, p. 44, or
Ferguson 1983).

3In the context of decision making (as mentioned in Sections 1.2.3.2 and 1.2.3.3), the Bayes criterion selects
as optimal acts those acts which minimise posterior risk, where posterior risk is the expected loss under
the posterior distribution. With credal sets, the optimal acts are usually determined by minimising
the upper posterior risk (see, e.g., Huntley, Hable, and Tro�aes 2013, �3.2). The posterior risk, being
an expectation, is thus a quantity linear in the posterior distribution, such that its upper bound for
posteriors inM(n) can be easily determined even ifM(n) is taken to contain convex combinations.

4Note that, although, by the general framework, the credal setsM(0) andM(n) may be de�ned as convex
hulls, the parameter sets IΠ(0) and IΠ(n) generating them need not necessarily be so, and typically are
not convex, indeed. See, e.g., Figure 3.9 on page 107.
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(c) Both n(0) and y(0) vary in a set {(n(0), y(0)) | n(0) ∈ N (0), y(0) ∈ Y(0)}.
This type of model is �rst discussed in Walley (1991, �5.4.3) for the Beta-Bernoulli
model, and was later generalised by Walter and Augustin (2009b) to sample distri-
butions of the canonical exponential form (1.4).5 We have used a model of this type
in Section 1.3.6.2, and will discuss and illustrate this approach in more detail in Sec-
tion 3.3. It should be noted here that while the prior parameter set is a Cartesian
product of N (0) = [n(0), n(0)] and Y(0), the posterior parameter set is not. This is due
to Eq. (1.6), which results in di�erent ranges for y(n) depending on the value of n(0)

used in the update step.6

(d) Both n(0) and y(0) vary in other sets IΠ(0) ⊂ (R>0 × Y).
In this type, also in the prior parameter set the range of y(0) may depend on n(0), as
in Walter, Augustin, and Coolen (2011, �2.3, see Section 3.5.2.3), or, vice versa, the
range of n(0) may depend on the value of y(0), as in Benavoli and Za�alon (2012).

3.1.2. Properties and Criteria

Before discussing the approaches mentioned above in some detail, we will describe some
properties that all of them have in common. These properties are due to the update
mechanism (1.6) for n(0) and y(0) and the resulting size and position of IΠ(n), being a
direct consequence of the (Generalised) Bayes' Rule in the setting of canonical exponential
families. Remember that n(0) is incremented with n, while y(n) is a weighted average of
y(0) and the sample statistic τ̃(x), with weights n(0) and n, respectively. Thus, while the
(absolute) stretch of IΠ(n) in the n(0) resp. n(n) dimension will not change during updating,
the stretch in the y(0) resp. y(n) dimension will do so. When speaking of the size of IΠ(n), we
will thus refer to the stretch in the main parameter dimension, also denoted by ∆y(IΠ(n)).

I. The larger n relative to (values in the range of) n(0), ceteris paribus (c.p.) the smaller
IΠ(n), i.e. the more precise the inferences. Vice versa, the larger the n(0) value(s) as
compared to n, c.p. the larger IΠ(n), and the more imprecise the inferences. Thus, a
high weight on the imprecise priorM(0) will lead to a more imprecise posteriorM(n).7

II. In particular, for n → ∞, the stretch of y(n) in IΠ(n) will converge towards zero,
i.e. ∆y(IΠ(n)) → 0, with the limit located at τ̃(x). For inferences based mainly

5More precisely, Walter and Augustin (2009b, see Section 3.3) proposed a direct extension of the model
framework discussed in Section 3.1 by the de�nition of so-called LUCK-models, which were already
used in Walter, Augustin, and Peters (2007) to generalise Bayesian linear regression). These utilize the
fact that the central properties of the model framework (see Section 3.1.2 below) rely on the speci�c
form of the update step (1.6) only. Thus, they can be generalised to settings that are not based on i.i.d.
observations from canonical exponential family distributions, but nevertheless follow the same update
step.

6This change of shape of the parameter IΠ(n) set is illustrated in Figure 3.9, page 107. We discuss the
phenomenon of shape change in Section 3.5.2.2, and again in Sections 4.3 and A.2.1.

7For model types with �xed n(0), if n(0) = n, then ∆y(IΠ(n)) = ∆y(IΠ(0))/2, i.e. the width of the posterior
expectation interval is half the width of the prior interval. This fact may also guide the choice of n(0).
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on y(n), this leads to a convergence towards the `correct' conclusions. This applies,
e.g., to point estimators like the posterior mean or median, which converge to the
`true' parameter, to interval estimates (HPD intervals) contracting around this point
estimate (length of interval → 0), and to the probability that a test decides for the
`right' hypothesis, which converges to 1.8 This property, that holds also for traditional
(precise) Bayesian inferences, is similar to the consistency property often employed
in frequentist statistics.

III. The larger ∆y(IΠ(0)), the larger c.p. ∆y(IΠ(n)); a more imprecise priorM(0) will nat-
urally lead to a more imprecise posteriorM(n), which carries over to the inferences.

Apart from the above properties that are guaranteed in all of the four model types (a)
� (d), one might want the models to adhere to (either of) the following additional criteria:

IV. Prior-data con�ict sensitivity. In order to mirror the state of posterior infor-
mation, posterior inferences should, all other things equal, be more imprecise in the
case of prior-data con�ict. Reciprocally, if prior information and data coincide espe-
cially well, an additional gain in posterior precision may be warranted. Such models
could deliver (relatively) precise answers when the data con�rm prior assumptions,
while rendering much more cautionary answers in the case of prior-data con�ict, thus
leading to cautious inferences if, and only if, caution is needed.

Most statisticians using precise priors would probably expect a more di�use posterior
in case of prior-data con�ict. However, in the canonical conjugate setting of Eq. (1.5),
which is often used when data are scarce and only strong prior beliefs allow for a
reasonably precise inference answer, this is usually not the case. E.g., for the Normal-
Normal model, the posterior variance (1.11) is not sensitive to the location of x̄,
and decreases by the factor n(0)/(n(0) + n) for any x̄, thus giving a false certainty
in posterior inferences in case of prior-data con�ict. In the Beta-Binomial model,
the posterior variance y(n)(1 − y(n))/(n(0) + n) depends on the location of s/n, but
in a similar way as the prior variance y(0)(1 − y(0))/n(0) depends on y(0), mirroring
only the fact that Beta distributions centered at the margins of the unit interval
are constrained in their spread. Thus, there is no systematic reaction to prior-data
con�ict also in this case.

In the imprecise Bayesian framework as discussed here, prior-data con�ict sensitivity
translates into having a larger IΠ(n) (leading to a larger M(n)) in case of prior-data
con�ict, and, mutatis mutandis, into a smaller IΠ(n) if prior and data coincide espe-
cially well.

V. Possibility of weakly or non-informative priors. When only very weak or (al-
most) no prior information is available on the parameter(s) one wishes to learn about,

8In the binomial and normal example, the posteriors inM(n) will concentrate all their probability mass
at y(n) → τ̃(x), and as τ̃(x)→ θ in probability, all these inference properties follow.
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it should be possible to model this situation adequately. The traditional Bayesian ap-
proach to this problem, so-called non-informative priors, are, due to their nature as
single, i.e. precise, probability distributions, not expressive enough; a precise proba-
bility distribution necessarily produces a precise value for P(ϑ ∈ A) for any A ⊆ Θ,
which seems incompatible with the notion of prior ignorance about ϑ. Furthermore, in
the literature there are several, often mutually incompatible, approaches to construct
non-informative priors, such as Laplace's prior, Je�reys' prior, or reference priors (see,
e.g., Bernardo and Smith 2000, �5.6.2). Most of these precise priors seem to convey
mainly a state of indi�erence instead of ignorance (Rüger 1999, p. 271).9

The approaches mentioned in (a) � (d) are now discussed in detail, sorted according
to two basic scenarios regarding the intended use: When no prior information on ϑ is
available (or nearly so), so-called near-ignorance priors are used to model the state of
prior ignorance. When, in contrast, there is substantial prior information available, the
challenge is to model this information adequately in the prior, while ensuring easy handling
and prior-data con�ict sensitivity.10

3.1.3. The IDM and other Prior Near-Ignorance Models

The Imprecise Dirichlet model (IDM) was developed by Walley (1996b) as a model for
inferences from multinomial data when no prior information is available.11 As indicated by
its name, it uses as imprecise prior a (near-) noninformative set of Dirichlet priors, which

9E.g., in the designation of the uniform prior as a non-informative prior by the principle of insu�cient
reason (i.e., taking Laplace's prior), it is argued that there is no reason to favor one parameter value
over another, and thus, all of them should get the same probability resp. density value. For analysts
restricting themselves to precise priors, this argument leads necessarily to the uniform prior. When
considering imprecise priors, however, the principle of insu�cient reason does not uniquely determine a
certain prior. It only states that the probability resp. density interval should be equal for all parameter
values, but that interval may be any interval ⊆ [0, 1]. We may thus realise that the principle of insu�-
cient reason actually implies indi�erence between parameter values only, and that other considerations
are needed to distinguish a certain imprecise prior as (nearly) non-informative; usually, it is postulated
that (a certain class of) inferences based on the prior should be (nearly) vacuous (see, e.g., Benavoli
and Za�alon 2012), and speci�c information (e.g., symmetry of parameter values) would be needed to
reduce the size of the prior credal set. See, in particular, Weichselberger (2001, �4.3) formulating two
symmetry principles extending the principle of insu�cient reason, and the closely related discussion
of weak and strong invariance in Miranda and Cooman (2013, �3). For a critique on non-informative
priors from an imprecise probability viewpoint see, e.g., Walley (1991, �5.5); their partition dependence
is also discussed in the context of elicitation (see Smithson 2013, �3).

10As another possible modelling aim, in situations when data is revealed to the analyst sequentially in
distinct batches, it might also be useful if the model is able to resonate unusual patterns or extreme
di�erences between the batches. This actually e�ects to doubting the i.i.d. assumptions on which these
models are founded. This could be useful in the area of statistical surveillance (see, e.g., Frisén 2011),
where, e.g., the number of cases of a certain infectious disease is continuously monitored, with the aim
to detect epidemic outbreaks in their early stages.

11The imprecise Beta-Binomial model from Walley (1991, �5.3.2) can be seen as a precursor to the IDM,
covering the special case of two categories.
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is obtained by choosing Y(0) as the whole interior of the unit simplex ∆, with n(0) �xed,12

M(0) =

{
p(θ | n(0), y(0))

∣∣∣∣∣0 < y
(0)
j < 1 ∀j,

k∑
j=1

y
(0)
j = 1

}
.

The prior credal set is thus determined by the choice of n(0). Walley (1996b) argues for
choosing n(0) = 1 or n(0) = 2, where, in the latter case, inferences from the IDM encompass
both frequentist and Bayesian results based on standard choices for noninformative priors.
For any choice of n(0), this imprecise prior expresses a state of ignorance about θ, as, for
all j = 1, . . . , k,

E[θj] = y(0)

j
= inf

y
(0)
j ∈Y(0)

y
(0)
j = 0 ,

E[θj] = y
(0)
j = sup

y
(0)
j ∈Y(0)

y
(0)
j = 1 ,

and probabilities for events regarding θj are vacuous, i.e. [P,P](θj ∈ A) = (0, 1), for any
A ⊂ [0, 1].13

The posterior credal setM(n) is then the set of all Dirichlet distributions with parameters
n(n) and y(n) obtained by (1.6),

M(n) =

{
p(θ | n(n), y(n))

∣∣∣∣∣ 0 < y
(0)
j < 1 ∀j,

k∑
j=1

y
(0)
j = 1

}
.

For any event AJ that the next observation belongs to a subset J of the categories, J ⊆
{1, . . . , k}, the posterior lower and upper probabilities calculate as

P(AJ) =
n(AJ)

n(0) + n
P(AJ) =

n(0) + n(AJ)

n(0) + n
,

where n(AJ) =
∑

J nj is the number of observations from the category subset J .
The IDM is motivated by a number of inference principles put forward by Walley (1996b,

�1), most notably the representation invariance principle (RIP, see Walley 1996b, �2.9):
Inferences based on the IDM are invariant under di�erent numbers of categories considered
in the sample space.14 The usefulness of the RIP has been controversially discussed (see,

12Our notation relates to Walley's (1996b) as tj ↔ y
(0)
j , s↔ n(0), t∗j ↔ y

(n)
j .

13However, the IDM may give non-vacuous prior probabilities for some more elaborate events. An example
(Walley 1996b, p. 14) is the event (AJ , AK) that the next observation belongs to a category subset
J ⊆ {1, . . . , k}, and the observation following that belongs to a category subset K, where J ∩K = ∅
and |n(AJ)− n(AK)| < n(0).

14In the example discussed in Walley (1996b), where colored marbles are drawn from a bag, it does not
matter, e.g., for prior and posterior probabilities for �red� as the next draw, whether one considers the
categorization {red, other} or {red, blue, other}.
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e.g., the discussion to Walley 1996b), and alternative imprecise probability models that do
not rely on it have been developed.15

Due to its tractability, the IDM has been employed in a number of applications. Walley
(1996b) o�ers an application to data from medical studies; Bernard (2005) details an
extension of the IDM to contingency table data that was brie�y covered in Walley (1996b).
In 2009, a special issue of the International Journal of Approximate Reasoning (Bernard
2009) was devoted to the IDM. Since its introduction, the IDM has found applications
in, e.g., reliability analysis (e.g., Coolen 1997; Utkin and Kozine 2010; Utkin, Zatenko,
and Coolen 2010; Li et al. 2011), or operations research (e.g., Utkin 2006); however, the
IDM has had an especially strong impact in the area of arti�cial intelligence, namely
in the construction of classi�cation methods (including, e.g., pattern recognition) and in
inference based on graphical models, see, e.g., Corani et al. (2013) and Antonucci, Campos,
and Za�alon (2013) and their references. These IDM-based methods, in turn, are used in
a vast variety of tasks from all kinds of subjects, such as medicine (e.g., Za�alon, Wesnes,
and Petrini 2003), agriculture (e.g., Za�alon 2005), or geology (e.g., Antonucci, Salvetti,
and Za�alon 2007). The IDM can be regarded as the most in�uential imprecise probability
model so far.

In the IDM, satisfying near-ignorance for the prior and still having non-vacuous posterior
probabilities is possible because the domain of the prior main parameter y(0) is bounded
(Y = int(∆)). For most conjugate priors to exponential family distributions, Y is not
bounded, and thus, trying to reach prior ignorance in the same way as in the IDM, by
taking Y(0) = Y for a �xed n(0), would lead to vacuous posterior probabilities.16 Instead,
as was shown by Benavoli and Za�alon (2012), for conjugate priors to one-parameter
exponential family distributions, one needs to vary n(0) in conjunction with y(0) to get
both prior near-ignorance and non-vacuous posterior probabilities. In essence, the term
n(0)y(0) appearing in (1.6) must be bounded while letting Y(0) = Y , which e�ects to a prior
parameter set IΠ(0) where the range of n(0) depends on y(0).

To summarize, imprecise probability methods allow for a much more adequate mod-
eling of prior ignorance than non-informative priors, the traditional Bayesian approach
to this problem, can deliver. Instead of the somehow awkward choice of a certain non-
informativeness approach, to de�ne an imprecise non-informative prior, the analyst just
needs to specify one parameter (or two, as partly in Benavoli and Za�alon (2012)) deter-
mining the learning speed of the model, namely n(0) for the IDM.

15See, e.g., Coolen and Augustin (2005; 2009) for an alternative based on the NPI approach (see Sec-
tion 2.1.4.2). Important di�erences between this model and the IDM are also brie�y discussed at the
end of Augustin, Walter, and Coolen (2013, �6.1). Other alternatives to the IDM are discussed by
Bickis (2009, see Section 3.2.2), and by Mangili and Benavoli (2013).

16From (1.6), it follows that for y(0) →∞ we get y(n) →∞ if n(0) is �xed.
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3.1.4. Substantial Prior Information and Sensitivity to Prior-Data
Con�ict

Models intended speci�cally for use in situations with substantial prior information are
presented in Walley (1991, footnote no. 10 in �1.1.4, and �7.8.3), Quaeghebeur and Cooman
(2005), and Walter and Augustin (2009b);17 the IDM can be modi�ed by not taking Y(0) =
int(∆), but a smaller set Y(0) �tting the prior information, as was done in Section 1.3.6.1.
Generalising the IDM approach to conjugate priors for sample distributions of the canon-

ical form (1.4), Quaeghebeur and Cooman (2005) proposed an imprecise priorM(0) based
on IΠ(0) = Y(0)×n(0). E.g., in the Normal-Normal model as described in Section 1.2.3.4, one
can take as imprecise prior all convex mixtures of normals with mean in Y(0) = [y(0), y(0)]

and a �xed variance σ2
0/n

(0). Y(n), the posterior set of expectations (or modes, or medians)
of µ, is then bounded by

y(n) = inf
IΠ(0)

y(n) = inf
Y(0)

n(0)y(0) + nx̄

n(0) + n
=
n(0)y(0) + nx̄

n(0) + n
(3.2)

y(n) = sup
IΠ(0)

y(n) = sup
Y(0)

n(0)y(0) + nx̄

n(0) + n
=
n(0)y(0) + nx̄

n(0) + n
. (3.3)

The lower (upper) posterior expectation of µ is thus a weighted average of the lower (upper)
prior expectation and the sample mean, with weights n(0) and n, respectively. As mentioned
above, Quaeghebeur and de Cooman's (2005) model for Bernoulli or multinomial data leads
to the IDM; because Y , the domain of y(0), is not bounded in the general case, the model
is normally used to express substantial prior information.18

More generally in case of a one-parameter exponential family, IΠ(0) is fully described
by the three real parameters y(0), y(0), and n(0), which are straightforward to elicit; fur-
thermore, also IΠ(n) is fully described by y(n), y(n), and n(n), and many inferences will be
expressible in terms of these three parameters only. Models of this kind allow for a simple
yet powerful imprecise inference calculus, where the amount of ambiguity in the prior in-
formation can be represented by the magnitude of the set Y(0), with n(0) determining the
learning speed.
The downside of this easily manageable model is that it is insensitive to prior-data

con�ict, as the imprecision for the main posterior parameter,

∆y(IΠ
(n)) = y(n) − y(n) =

n(0)(y(0) − y(0))

n(0) + n
, (3.4)

does not depend on the sample x. Imprecision is thus the same for any sample x of size n,
whenever prior information about µ as encoded in Y(0) is in accordance with data infor-
mation τ̃(x) or not. The relation of ∆y(IΠ(n)) (which determines the precision of posterior

17See Section 3.3 for a more detailed coverage and examples.
18However, it could be used for near-ignorance prior situations in case of other sampling models where
Y(0) can encompass the whole domain without causing posterior vacuousness. This applies, e.g., to
circular distributions like the von Mises distribution, where the mean direction angle µ has the domain
(−π, π], see Quaeghebeur (2009, �B.1.4) and Mardia and El-Atoum (1976).
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inferences) to the inferential situation at hand is loosened, as possible con�ict between
prior and data is not re�ected by increased imprecision. In that sense, the IDM with prior
information and the model by Quaeghebeur and Cooman (2005) do not utilize the full
expressive power of imprecise probability models, behaving similar to precise conjugate
models by basically ignoring prior-data con�ict.
To counter this unwanted behaviour, Walter and Augustin (2009b) suggested that im-

precise priors to canonical sample distributions (1.4) should be based on parameter sets of
the form

IΠ(0) = [n(0), n(0)]× Y(0) , (3.5)

as Walley (1991, �5.4.3) had already implemented for the Beta-Binomial model. Then,
(3.2) and (3.3) become

y(n) =


n(0)y(0) + nx̄

n(0) + n
x̄ ≥ y(0)

n(0)y(0) + nx̄

n(0) + n
x̄ < y(0)

, y(n) =


n(0)y(0) + nx̄

n(0) + n
x̄ ≤ y(0)

n(0)y(0) + nx̄

n(0) + n
x̄ > y(0)

.

If y(0) < x̄ < y(0), both y(n) and y(n) are calculated using n(0); when x̄ falls into [y(0), y(0)],
the range of prior expectations for the mean, prior information gets maximal weight n(0)

in the update step (1.6), leading to the same results as for a model with �xed n(0) = n(0).
If, however, x̄ < y(0), then y(n) is calculated using n(0), giving less weight to the prior
information that turned out to be in con�ict with the data. Thus, as y(n) is a weighted
average of y(0) and x̄, with weights n(0) and n, respectively, y(n) will be lower (nearer
towards x̄) as compared to an update using n(0), resulting in increased imprecision ∆y(IΠ(n))
compared to the situation with y(0) < x̄ < y(0). In the same way, there is additional
imprecision ∆y(IΠ(n)) if x̄ > y(0).19

Indeed, (3.4) can then be written as

∆y(IΠ
(n)) =

n(0)(y(0) − y(0))

n(0) + n
+ inf

y(0)∈Y(0)
|τ̃(x)− y(0)| n(n(0) − n(0))

(n(0) + n)(n(0) + n)
,

such that we have the same ∆y(IΠ(n)) as for a model with IΠ(0) = Y(0) × n(0) when τ̃(x) ∈
Y(0), whereas ∆y(IΠ(n)) increases if τ̃(x) /∈ Y(0), the increase depending on the distance
of τ̃(x) to Y(0), as well as on n(0), n(0), and n. This model is described in more detail in
Section 3.3, along with illustrative examples (see Figure 3.5 for the Dirichlet-Multinomial
model, and Figure 3.4 for the Normal-Normal model).
Models with IΠ(0) as in (3.5), i.e., belonging to model type (c), are sensitive to prior-data

con�ict, where prior-data con�ict is operationalised as τ̃(x) /∈ Y(0). There is no such direct

19In the above, x̄ can be replaced by τ̃(x) to hold for canonical priors (1.5) in general. See Section 3.3.4
for an de�nition in general terms.
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mechanism for a gain in precision when prior and data information coincide especially
well.20 However, Y(0) could be chosen relatively small such that it mirrors this situation,
considering as the neutral situation τ̃(x) being not too far away from Y(0), and taking as
prior-data con�ict situations when τ̃(x) is in a greater distance to Y(0).21

As mentioned in Section 3.1.1, page 59, the parameter set IΠ(n) resulting from up-
dating IΠ(0) as in (3.5) by (1.6) is not a Cartesian product of Y(n) and N (n), i.e., a
rectangle set in case of one-dimensional y(0), as was the case for IΠ(0). It might there-
fore be necessary to minimize and maximize over IΠ(n) itself if inferences depend on y(n)

and n(n) simultaneously. If, e.g., n(n)y(n) must be minimised to determine the posterior
lower bound of a characteristic of interest, minIΠ(n) n(n)y(n) may not be found at y(0), i.e.,
minIΠ(n) n(n)y(n) 6= minN (0) n(n)y(n).
The model of type (b), where IΠ(0) = N (0)×y(0), brie�y mentioned only in Walley (1991,

footnote no. 10 in �1.1.4, and �7.8.3), also leads to a more complex description of IΠ(n) as
compared to the models with IΠ(0) = n(0) × Y(0) (type (a)).
In principle, IΠ(0) could have any form �tting the prior information at hand (type (d)).

On close inspection, a rectangular shape for IΠ(0) may not be appropriate in many situa-
tions. One could, e.g., argue that the y(0) interval should be narrower at n(0) than at n(0),
because we might be able to give quite a precise y(0) interval for a low prior strength n(0),
whereas for a high prior strength n(0), we should be more cautious with our elicitation of
y(0) and thus give a wider interval; interestingly, one could also argue the other way round
based on similarly convincing arguments.22 To fully specify IΠ(0) along these lines, lower
and upper bounds for y(0) must be given for all intermediate values of n(0) between n(0) and
n(0), e.g., by some functional form y(0)(n(0)) and y(0)(n(0)). The choice of such general forms
is not straightforward, as it may heavily in�uence the posterior inferences, and it may be
very di�cult to elicit as a whole. One such choice is discussed in Walter, Augustin, and
Coolen (2011, �2.3, see Section 3.5.2.3) for the Binomial case, developed with the intention
to create a smoother reaction to prior-data con�ict than in the model with rectangle IΠ(0).
In summary, there is a trade-o� between easy description and handling of IΠ(0) on one

side, and modeling accuracy and ful�llment of desired properties on the other:

• The model in Quaeghebeur and Cooman (2005), which takes IΠ(0) = n(0)×Y(0), is very
easy to handle, as the posterior parameter set IΠ(n) = n(n) ×Y(n) has the same form
as IΠ(0), and it often su�ces to consider the two elements (n(0), y(0)) and (n(0), y(0)) to
�nd posterior bounds for inferences. It is, however, insensitive to prior-data con�ict.

• The model by Walter and Augustin (2009b) is sensitive to prior-data con�ict, but
this advantage is payed for by a more complex description of IΠ(n).

• More general set shapes IΠ(0) ⊂ R>0 × Y are possible, but may be di�cult to elicit

20However, �rst ideas and some preliminary results for a set shape allowing this are given in Sections 4.3
and A.2, respectively.

21See also Section 3.5.4 for this idea.
22See, e.g., the rationale discussed at the beginning of Section 3.5.2.3.
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and complex to handle.23

To conclude, when substantial prior information is available, that, however, is not per-
mitting the identi�cation of a single prior distribution, imprecise probability models allow
for adequate modeling of partial information and prior-data con�ict sensitivity, and will
ultimately result in more reliable inferences.

Before we will study two choices for IΠ(0) in more detail in Sections 3.3 and 3.5 (Section 3.4
describes a software implementation of the model from Section 3.3), we will now discuss
some other models based on sets of priors in Section 3.2.

23For an example see, as mentioned above, the work in Section 3.5, speci�cally in Section 3.5.2.3. First
ideas and some preliminary results for another approach to a set shape allowing also more precise
inferences when prior and data coincide especially well are given in Sections 4.3 and A.2, respectively.
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3.2. Alternative Models Using Sets of Priors

In Section 3.1, we have discussed a speci�c wide of models based on parametrically con-
structed sets of conjugate priors, described important properties of inferences based on this
class in general terms, and illustrated the potential of generalised Bayesian inference meth-
ods for the situations of prior near-ignorance and substantial prior information. Now, we
will discuss two alternative frameworks for inference based on sets of priors in Section 3.2.1,
and consider a number of inference models that could serve as an alternative to the models
discussed in Section 3.1. The two frameworks based on sets of priors in alternative to the
model framework discussed in this thesis are neighbourhood models (Section 3.2.1.1) and
the density-ratio class (Section 3.2.1.2).24 Then, we will brie�y describe a few concrete
inference models, some of which are based on these two model frameworks, distinguishing
between models that are based on conjugate priors (Section 3.2.2) and models that are not
(Section 3.2.3).

3.2.1. Some Alternative Model Frameworks

3.2.1.1. Neighbourhood Models

An important class of models that make use of sets of priors are neighborhood models.
These are typically considered in the robust Bayesian approach (see, e.g., Berger et al.
1994; Ríos Insua and Ruggeri 2000), where a certain prior distribution P0 is singled out
as a potential model for prior information, but, due to lack of con�dence in this choice, a
neigbourhood around P0 is considered, consisting of distributions `near' P0. The rationale
for this approach is to ensure robustness of the Bayesian analysis based on a single prior
P0 by checking that small deviations from P0 do not lead to large deviations in posterior
inferences. As mentioned in Section 2.1.3.1, imprecise probability o�ers a formal, not casu-
istic framework for such Bayesian sensitivity analysis ; however, interpretation of the sets
of priors, and the modelling intention is di�erent, especially with respect to the inference
situations we perceive as important modelling opportunities for generalised Bayesian infer-
ence.25 We will thus touch only brie�y on neighbourhood models, picking out two typical
examples, although many di�erent kinds of neighbourhood models are discussed in the
literature (see, e.g., the surveys by Berger, Ríos Insua, and Ruggeri (2000) and Ruggeri,
Ríos Insua, and Martín (2005)).
A typical example is the ε-contamination class (see, e.g., Berger et al. 1994, �4.3.2), which

can be informally described as follows: In a (virtual) sample distribution, not all data are
distributed according to P0; instead, 100 · ε% of the data is distributed according to any
distribution from a set Q, and depending on the choice for Q, a variety of ε-contamination

24By some authors, the density ratio class is considered a neighbourhood model where instead of one
central distribution P0 two distributions are considered (e.g., Pericchi and Walley 1991, �4.3). We
think, however, that the density ratio class is better characterised as a separate model framework.

25These are (i) the possibility of modeling prior near-ignorance (see Sections 2.2.3.2 and 3.1.3), and (ii)
prior-data con�ict sensitivity in case of informative priors (see Sections 2.2.3.3 and 3.1.4).
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classes can be de�ned.26

Another example for a neighbourhood model is the odds-ratio model. It tries to model
approximate adherence to a central probability law with distribution P0 by giving the
following constraints for pairs of events A and B:

P(A)

P(B)
≤ (1− ε)P0(A)

P0(B)
, A,B ⊆ Ω

The set of distributions P compatible with these restrictions forms then an odds-ratio
model with parameter ε, and can be represented by a lower prevision Eε. When such
a model is taken as an imprecise prior in Bayesian inference, the set of posteriors can
again be expressed as an odds-ratio model (Destercke and Dubois 2013b, �7.2). Other
neighbourhood models, like, e.g., variants of the ε-contamination class mentioned above,
may instead not be closed under Bayesian updating.

3.2.1.2. The Density Ratio Class

The density ratio class, also known as interval of measures (DeRobertis and Hartigan 1981;
Berger 1990), provides also an interesting model framework for Bayesian inference using
sets of priors. Here, instead of generating the set of prior distributions by varying their
parameters in a set (as in Section 3.1), the set of priors M is de�ned by bounding the
probability density functions p(ϑ) ∈ M via a lower bounding function l(ϑ) and an upper
bounding function u(ϑ).27

A set of (prior) distributions on ϑ is de�ned by

Ml,u = {p(ϑ) : ∃c ∈ R>0 : l(ϑ) ≤ cp(ϑ) ≤ u(ϑ)} , (3.6)

where l(ϑ) and u(ϑ) are bounded non-negative functions (i.e., non-normalised densities) for
which l(ϑ) ≤ u(ϑ) ∀ ϑ. l(ϑ) and u(ϑ) are often called lower and upper density functions,
and only need to be known up to a multiplicative constant. If l(ϑ) > 0 ∀ ϑ, then (3.6) can
also be written as

Ml,u =

{
p(·) :

p(ϑ)

p(ϑ′)
≤ u(ϑ)

l(ϑ′)
∀ ϑ, ϑ′

}
,

hence the name `density ration class'.
The density ratio class de�nes a certain type of credal sets; thus, as discussed in Sec-

tion 2.1.2, it can also be expressed via an associated coherent lower prevision El,u. The

26For Q taken as `all distributions', the ε-contamination class is also called `linear-vacuous mixture' in
the imprecise probability literature (e.g., Destercke and Dubois 2013b, �7.3), constituting an important
special case of coherent lower previsions.

27A very accessible presentation of density-ratio classes with parametric bounding shapes l(ϑ) and u(ϑ),
along with a method for elicitation from an expert providing quantiles (or quantile ranges) for a number
of probability values, is given in Rinderknecht, Borsuk, and Reichert (2011). We discuss this model in
Section 3.2.3.
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density ratio class has a number of advantageous properties, especially as compared to
many neighbourhood models (see, e.g., Rinderknecht, Borsuk, and Reichert 2011, �2.3);
most importantly, it has the convenient property of invariance under Bayesian updating.
The set of posteriors derived fromMl,u through the Generalised Bayes' Rule (i.e., by up-
dating element by element, see Sections 2.1.2.5 and 2.1.3) can again be expressed as a
density ratio class, with l(ϑ) and u(ϑ) updated according to Bayes' Rule (DeRobertis and
Hartigan 1981).
Although this invariance property is advantageous, a consequence of it is that also the

ratio u(ϑ)/l(ϑ) is constant under updating, such that posterior imprecision, as measured
by the magnitude of Ml,u is the same as prior imprecision, for any sample size n (see,
e.g., Rinderknecht 2011, �4.2.2). This is in strong contrast to the behaviour of the models
discussed in Section 3.1, whereM(0) converges to a one-element set for n→∞.
It is important to note here that even if the bounding functions l(ϑ) and u(ϑ) are de�ned

parametrically (or, as in the approaches by Coolen (1993b; 1994) described below, even as
conjugates),Ml,u does not contain only these parametric densities (or conjugate densities).
Instead, Ml,u contains a variety of shapes, where (if l(ϑ) and u(ϑ) are not proportional)
the tail behaviour can vary between that of l(ϑ) and u(ϑ).28

The density ratio class is thus similar to sets of priors discussed in the model framework
from Section 3.1.1 where M(0) is taken as all convex mixtures of parametric priors with
parameters in IΠ(0). Then, also M(0) contains a variety of shapes that, however, do not
allow for substantially di�erent tail behaviour, but it also has the same property of invari-
ance under Bayesian updating, because M(n) can be constructed as the set of all convex
mixtures of distributions with parameters in IΠ(n).29

3.2.2. Some Approaches Based on Conjugate Priors

We discuss here some approaches based on conjugate priors. First, a density ratio class
model using conjugate distributions for the bounding functions l(ϑ) and u(ϑ) by Coolen
(1993b; 1994) is described in Section 3.2.2.1. Then, a brief summary of an approach by
Bickis (2009) is given, who constructs a conjugate to the multinomial sample distribution
where a speci�c correlation structure for the categories can be speci�ed (Section 3.2.2.2).
Afterwards, some results of the study by Pericchi and Walley (1991) are reported in Sec-
tion 3.2.2.3, who compare models for inference on the mean of a normal distribution with
known variance that are based on a number of conjugate and non-conjugate sets of priors.

3.2.2.1. The Model by Coolen (1993b; 1994)

Coolen (1993b) proposed an interesting model for sample distributions from the one-
parameter exponential family using the density ration class. In this model, the prior bound-
ing functions l(ϑ) and u(ϑ) from (3.6) are linked through the relation u(ϑ) = c0 ·l(ϑ), where
c0 ≥ 1 is independent of ϑ. De�ning l(ϑ | ψ(0)) as (proportional to) the conjugate prior,

28See, e.g., Rinderknecht, Borsuk, and Reichert 2011, �3.2, or Pericchi and Walley 1991, �4.3.
29See Equation (3.1) in Section 3.1.1.



3.2 Alternative Models Using Sets of Priors 71

with hyperparmeter ψ(0), calculation of the posterior lower bounding function l(ϑ | x, ψ(0))
is straight-forward, by30

l(ϑ | x, ψ(0)) = l(ϑ | ψ(0))f(x | ϑ) = l(ϑ | ψ(n)) ,

and the posterior upper bounding function is de�ned as

u(ϑ | x, ψ(0)) =:
cn
c0

u(ϑ | ψ(0))f(x | ϑ) = cnl(ϑ | ψ(n)) ,

where cn is introduced to allow the magnitude of Ml,u to decrease in dependence of the
samples size n.31 cn must thus be chosen as a function decreasing in n, and Coolen (1993b)
suggests a functional form with cn → 1 for n → ∞, containing a parameter ξ that has a
meaning similar to n(0), in the sense that if n = ξ, an information measure (suggested by
Walley 1991, �5.3.7) is doubled.32

To use the model, one has to elicit the parameter(s) of the conjugate prior ψ(0), along with
c0 and ξ. The model is quite easy to handle, as the density ratio class provides relatively
simple formulas for, e.g., lower and upper cumulative density functions, and lower and
upper predictive densities. These formulas are easy to calculate if the involved integrals
are easy to obtain, as is the case for a conjugate choice of l(ϑ). However, this model is
insensitive to prior-data con�ict, owing to the requirement of c0 and cn to be independent
of ϑ and x (except for the sample size n); furthermore, as mentioned by Coolen (1993b,
p. 341), there could be many other functional forms for cn that were equally reasonable as
the one suggested in the paper.
Coolen (1994) presents a further study of this model with a focus on predictive inferences,

considering the special case of Bernoulli observations. There, l(θ) is proportional to a
Beta(α, β), and u(θ) is de�ned as

u(θ) = l(θ) + c∗0 · a(θ) ,

where a(θ) is proportional to a Beta(µ, λ), and c∗0 is again a factor that determines the
prior imprecision.33 For the case µ = α, β = λ, and c∗0 = c∗n = c for all n, formulas are
derived that allow to study imprecision in posterior predicitive probabilities analytically.
This model gives interesting insights into the dependence of imprecision on s, but the
fact that posterior imprecision is the very same as prior imprecision if s/n = α/(α + β)
(i.e., data and prior assignments are perfectly in line) suggests that models with constant
c∗n should be avoided, and that instead c∗n should decrease with n (Coolen 1994, p. 160).
Furthermore, our conjecture is that the in�uence of s on posterior imprecision is mainly
due to the restriction that the two bounding functions have to be proportional to Beta

30Remember that l(·) needs to be known up to a multiplicative constant only.
31Note that cn 6= c0 means that we actually do not updateM according to the Generalised Bayes' Rule.
32Imprecision for models with �xed n(0) (Section 3.1.1, item a) is halfed when n(0) = n, see Section 3.1.2,

item I.
33The relation between c0 and c∗0 is thus c∗0 = c0 − 1.
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densities. For the case of s/n = α/(α+ β), imprecision decreases for any s 6= n/2 (Coolen
1994, Table 1). This is very similar to the phenomenon that, in the Multinomial-Dirichlet
model, the posterior variance of θj decreases for any nj if y

(0)
j = 1/2 (see Section A.1.2.2).

Afterwards, Coolen (1994, �4) illustrates the general case with µ 6= α, β 6= λ, and c∗n as in
Coolen (1993b) with some numeric examples, showing a reasonable behaviour of the model.
Unfortunately, there are no theoretical results for model behaviour of the general case (as
we were able to give in Section 3.1.2). Elicitation of the parameters (α, β, µ, λ, c∗0, ξ) for an
informative prior would possibly involve some elaborate pre-posterior procedures (Coolen
1994, p. 163), as the in�uence of di�erent choices of l(θ) and a(θ) onMl,u is not straight-
forward to ascertain.34

3.2.2.2. The Model by Bickis (2009)

Bickis (2009) suggests a multivariate logit-normal model as an alternative to the IDM for
an application where neighbouring category probabilities θj are correlated. Instead of the
conjugate Dirichlet prior for θ (see Section 1.2.3.5), a multivariate normal prior is assumed
for the (element-wise) logits of θ, i.e., log(θ/(1−θ)) ∼ Nk(µ1, σ

2M), where 1 = (1, . . . , 1),
and M is a (k×k) matrix giving the correlation structure. The resulting posterior in terms
of θ is itself not tractable, but can be approximated by an exponential family that can be
seen as the convex hull of the logit-normal and dirichlet families (Bickis 2009, p. 189), and
that contains the Dirichlet distribution for the limit σ2 →∞. Although a conjugate prior
in the sense that there is a simple update step for the hyperparameters, posterior inferences
for this prior are derived by simulation, as the posterior is not analytically tractable.
In the paper, a near-noninformative set of priors is constructed by means of a set of

hyperparameters, used for an interesting application to estimate a discrete hazard function
for which it is useful to mirror an autocorrelation structure in M. By giving a numeric
example, Bickis (2009) shows that posterior inferences based on this set of priors can be
calculated using relatively simple algorithms. A number of interesting research questions
present themselves for this model, regarding the potential for applications where no corre-
lation structure must be assumed, possible di�erences to inferences based on the IDM, and
the behaviour in case of prior-data con�ict when an informative set of priors is chosen.

3.2.2.3. Some of the Models Studied by Pericchi and Walley (1991)

By studying credibility intervals for an unknown mean µ for samples from a normal dis-
tribution with known variance σ2, Pericchi and Walley (1991) give a neat overview on
a number of approaches based on sets of priors, a part of which are based on conjugate
priors. As we do in Section 3.1, this overview makes the distinction of modelling near-
noninformativeness versus models for substantial prior information, the latter of which are

34An alternative for eliciting α, β, µ, λ, and c∗0 could be to use the elicitation method by Rinderknecht,
Borsuk, and Reichert (2011), who require the analyst to specify quantile intervals [qpl , q

p
u] for some given

probability levels p ∈ (0, 1), and �tMl,u such that the corresponding cumulative density functions do
not exceed the constraints given by the quantile intervals.
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investigated with respect to prior-data con�ict sensitivity.35

For modelling near-noninformativeness, Pericchi and Walley (1991, �3) present several
`translation-invariant' models, i.e., models whose posterior inferences do not depend on the
location of x̄. This includes a model whereM consists of conjugate normal distributions
µ ∼ N(µ0, ν

2) for which |µ − µ0| ≤ cν2/2σ, and where ν → ∞. It is considered inferior
to a model whereM consists of all double exponential distributions with a �xed variance
but the mean varying in R, showing the potential for models going beyond conjugate
distributions.
Pericchi and Walley (1991, �4) denote all models that are considered for substantial

prior information as `neighbourhood models', and two variants of the ε-contamination
class (see Section 3.2.1.1) are studied that, however, are not satisfactorily according to
the desiderata the authors had established in �2. The model they advocate in �5 for
this situation is instead a density ratio class that can be seen as a special case of the
approach by Rinderknecht (2011, see below), where l(ϑ) is proportional to the conjugate
normal distribution, and u(ϑ) is the improper uniform density u(ϑ) ∝ 1 (Pericchi and
Walley 1991, �4.3). It shows a favourable behaviour similar to the model we argued for in
Section 3.1.4 (which is discussed in more detail in Section 3.3 below).

3.2.3. Some Other Approaches Using Sets of Priors

In this section, we will discuss two approaches based on sets of priors that are, in con-
trast to the approaches discussed in Section 3.2.2, not based on conjugate distributions.
In Section 3.2.3.1, we will give a short overview on Rinderknecht (2011, �4), discussing a
density ratio class model based on not necessarily conjugate bounding functions. In Sec-
tion 3.2.3.2, we will comment on an approach based on the discretisation of the parameter
space (Whitcomb 2005).36

3.2.3.1. The Model by Rinderknecht (2011)

Rinderknecht (2011, �4) presents a model for inferences based on sets of priors of the form
of a density-ratio class, where the bounding functions l(ϑ) and u(ϑ) are parametric, but
not necessarily conjugate (we already mentioned his work with respect to elicitation in
footnote 27, page 69). It is demonstrated that also marginals derived from a density ratio
class with a multivariate parameter take again the form of density ratio classes, and can be
calculated straight-forwardly. Also, it is shown that deduced quantities (like probabilistic
predictions) derived from the set of posteriors can be framed as a density ratio class.
However, while for quantities that are a deterministic function of the model parameters
the resulting density ratio class is exact, the bounding functions for probabilistic predictions

35In fact, Pericchi and Walley (1991) was our inspiration to make this distinction in the �rst place.
36A further, very recent, contribution on Bayesian inference with sets of priors is Mangili and Benavoli

(2013), modelling prior near-ignorance on the unit simplex by several sets of non-conjugate priors which
provide an alternative to the IDM.
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are too wide, thus providing a conservative approximation for the exact set of posterior
predictive distributions (Rinderknecht 2011, �4.2.4).
The theoretical results are implemented and demonstrated via an example, a model for

prediction of a certain type of river biomass that depends on six model parameters. Prior
sets for these parameters were elicited from an expert, and combined with data from surveys
of di�erent streams. As the priors seem to be non-conjugate (there is no reference to the
respective likelihoods in the publication), joint and marginal posteriors, along with biomass
predicitions, were calculated using Markov Chain Monte Carlo (MCMC) techniques (see,
e.g., Gilks 1998). Interestingly, Rinderknecht (2011, �4.3) shows that MCMC results for a
single precise distribution can be used to approximate the set of posterior distributions,
such that computational burden for the density ratio class is only marginally more extensive
than in case of a precise prior.
Results are reasonably precise if prior information for only one of the six model pa-

rameters is modelled by a density ratio class, and for the other by precise probability
distributions. If prior information for each of the six parameters is modelled by a density
ratio class and combined independently, results are higly imprecise and of no practical use;
the posterior marginals are even much more imprecise than their prior counterparts.37 This
undesirable phenomenon is called dilation (see Seidenfeld and Wasserman 1993). Here, it
seems to result primarily from a kind of `curse of dimension', but may also be due to the
fact that, as noted above, the magnitude ofM does not decrease with n for density ratio
classes updated via the Generalised Bayes' Rule.
Although being quite attractive for problems with a one-dimensional parameter (or where

there is su�cient information to model further parameters by precise priors), the model is
currently inadequate for higher-dimensional problems. This could be adressed through the
development of multivariate elicitation procedures, eliciting also the dependence stucture
for model parameters, or by replacing the independent combination of marginal prior sets
by another strategy (as mentioned in Rinderknecht 2011, �5.2). A solution could be to
factor a multivariate prior p(ϑ1, . . . , ϑp) recursively by

p(ϑ1, . . . , ϑp) = p(ϑ1 | ϑ2, . . . , ϑp)p(ϑ2, . . . , ϑp)

= p(ϑ1 | ϑ2, . . . , ϑp)p(ϑ2 | ϑ3, . . . , ϑp) · · · p(ϑp−1 | ϑp)p(ϑp) ,
where usually the dependencies can be reduced by a large degree through assumptions of
conditional independence. This is the approach in probabilistic graphical models, where
(in)dependencies between model parameters are visualised by a graph. Important guid-
ance could be drawn from the vivid research conducted in the area of imprecise graphical
models, also known as imprecise Bayesian or credal networks, especially with respect to
independence concepts and e�cient calculations (for a recent overview, see Antonucci,
Campos, and Za�alon 2013).
More importantly, however, we �nd the model unsatisfactory because it o�ers no clear

mechanism to model posterior imprecision in dependence of sample size. The model is thus
37In the example, the marginal posterior lower bounding functions l(ϑ | x) are indistinguishable from zero

if plotted in the same coordinate system as their respective the upper bounding functions u(ϑ | x),
such that the posterior set of distributions contains also nearly uniform distributions.
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inable to model prior near-ignorance, and does not exhibit a natural decrease in imprecision
as information accumulates.38

Also, except for a very speci�c special case (Pericchi and Walley 1991, �4.3, as discussed
above), for this model there are so far no studies or general results regarding the behaviour
in case of prior-data con�ict. This could be a promising topic of research, given the model
described in Pericchi and Walley (1991, �4.3) shows favourable behaviour, while the model
by Coolen (1993b) does not. Our conjecture is that the di�erence, or the ratio, of u(ϑ) to
l(ϑ) must vary with ϑ to provide prior-data con�ict sensitivity, where Pericchi and Walley
(1991, �4.3) represents an extreme case, combining a l(ϑ) proportional to the light-tailed
normal distribution with u(ϑ) ∝ 1 that gives the most heavy tails possible.

3.2.3.2. The Model by Whitcomb (2005)

Whitcomb (2005) studies imprecise Bayesian inference in discrete parameter spaces. The
inference procedure is illustrated with three examples where substantial prior information
is combined with relatively few observations, and its results are discussed with a focus on
the relation of prior to posterior imprecision.
Contrary to the other studies mentioned so far, Whitcomb considers a discretised pa-

rameter space, i.e., there is only a �nite number of values ϑ1, . . . , ϑm the parameter ϑ
can assume, and uses a linear programming formulation of the Generalised Bayes' Rule to
derive posterior inferences from discrete prior distributions (Whitcomb 2005, �3). These
discrete priors are derived from expert elicitations, given either as lower and upper bounds
for p(ϑj), j = 1, . . . ,m, or as lower and upper bounds for probability ratios p(ϑj)/p(ϑj′), j ∈
{1, . . . ,m}\j′, where one of the parameter values θ1, . . . , θm serves as pivot. From the lat-
ter, Whitcomb then derives lower and upper bounds for p(ϑj), j = 1, . . . ,m, such that in
both cases the set of prior probability functions is given by

M = {p(ϑ) | p
j
≤ p(ϑj) ≤ pj ∀j = 1, . . . ,m} ,

where p
j
and pj are the lower and upper (indirectly) elicited bounds for p(ϑj), respectively.

As a summary measure for imprecision, Whitcomb chooses ∆ =
∑m

j=1 pj − pj.
We focus here on the example of a reliability analysis problem regarding the mean time to

failure θ of a technical component (Whitcomb 2005, �4.1), studying the in�uence of several
hypothetical data sets on posterior imprecision. The hypothetical data is assumed to come
from a life testing experiment with observations following an exponential distribution, such
that each data set can be represented by its exponential likelihood. Likelihoods based on
a mean in agreement and in con�ict with the elicited prior are considered,39 with three

38However, a possibly attractive approach could be to combine ideas from Coolen (1993b) and
Rinderknecht (2011) in a density ratio class model with non-Bayesian updating where cn is de�ned
such that posterior inferences also re�ect prior-data con�ict.

39However, as Krautenbacher (2011, �4.3) shows, the mean meant to be in agreement with the prior spec-
i�cations is actually outside the interval

[
E[θ],E[θ]

]
derived from the prior probability speci�cations.

We discuss this work below.
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sample sizes n = 2, 6, 10 in each group. For the resulting six posteriors, imprecision in the
probability intervals for the discrete parameter values is compared to likewise imprecision
in the prior.
In accordance to intuition, imprecision ∆ decreases with the sample size for those like-

lihoods based on a mean in agreement with the elicited prior, the posterior probability
intervals being more precise than the respective prior intervals. For the likelihoods based
on a mean in contrast with the prior, the picture is di�erent. Here, for n = 2 and n = 6,
posterior imprecision is instead larger than prior imprecision, mirroring the con�ict of in-
formation from prior and data. ∆ is largest for n = 6, indicating that in this case prior and
data seem to have a similar weight.40 Only for the largest sample size n = 10, posterior
imprecision is less than prior imprecision, indicating that the prior is now overwhelmed
by the data. Strangely, posterior imprecision for this likelihood is even less than for the
likelihood based on the same sample size and a mean in agreement with the prior. This
seems somehow unintuitive, and could be due to speci�cs of the elicited prior probability
intervals, or could be an artefact of the relatively low number of distinct parameter values
m = 7.
Krautenbacher (2011, �4) compared the results from this example with a model of the

framework from Section 3.1 (model type c, see also Section 3.3.4 below). To derive a
prior parameter set IΠ(0) from the expert assessments given by Whitcomb (2005, Table I),
he suggested and implemented an algorithm that determined IΠ(0) by searching over a
parameter grid, starting from a precise distribution in accordance with the prior probability
intervals. His results are generally similar to those of Whitcomb (2005, �4.1), but with some
interesting di�erences in the details.
As the conjugate prior model is formulated in terms of λ = 1/θ, Krautenbacher �rst

calculates expectation intervals and (approximate) unions of highest density intervals for
λ based on the discrete prior and posteriors of Whitcomb. These are then compared
with expectation intervals and unions of highest density intervals for λ derived from the
determined IΠ(0).41

In Whitcomb's model, imprecision as regarded through highest density and expectation
intervals for λ is naturally somewhat di�erent from the imprecision ∆ based on θ. All
posterior expectation intervals are shorter than the prior expectation interval; for the prior-
data agreement case, expectation interval results are similar to those based on ∆, with[
E[λ] − E[λ]

]
decreasing according to sample size. For the prior-data con�ict situations,

however, similarities vanish: while ∆ increased for n = 2 and n = 6, and dropped sharply
for n = 10,

[
E[λ]−E[λ]

]
is decreasing with n just like in the prior-data agreement case, but

with now even shorter intervals. However, with regards to the skewness of Whitcombs's
posteriors in terms of λ (depicted in Krautenbacher 2011, Abb. 24, p. 62), the expectation
intervals are probably misleading here. Unions of highest density intervals for λ, which
are considered as an alternative, can be determined only very coarsely, as the number

40In contrast to the models discribed in Section 3.1 where the parameter n(0) clearly communicates the
weight of the prior as compared to the sample, the prior is here de�ned non-parametric and does not
entail any parameters by which the weight of an elicited prior can be gauged.

41See also Example 3.3, page 86, for calculation of unions of highest density intervals in these models.
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Whitcomb (2005, �4.1) Krautenbacher (2011, �4)

n HD interval ∆HD HD interval ∆HD

prior 0 0.00 2.00 2.00 0.05 1.01 0.96

pda 2 0.10 1.00 0.90 0.12 1.07 0.95
6 0.20 1.00 0.80 0.22 1.09 0.87
10 0.25 1.00 0.75 0.30 1.09 0.79

pdc 2 0.20 2.00 1.80 0.14 1.39 1.25
6 0.33 2.00 1.67 0.34 2.01 1.67
10 0.50 2.00 1.50 0.54 2.52 1.98

Table 3.1.: Highest density intervals for λ based on the discrete model (Whitcomb 2005,
�4.1, left) and on the conjugate model (Krautenbacher 2011, �4, right), as given
in Krautenbacher (2011, Tab. 2, Tab. 3). ∆HD gives the length of the HD in-
terval; `pda' indicates posterior intervals for data in agreement with the prior,
`pdc' indicates posterior intervals for the situation of prior-data con�ict.

of distinct parameter values in Whitcomb's model is very low. Nevertheless, results for
these are more intuitive. Starting from length 2.00 of the prior HD interval, posterior HD
intervals get shorter with growing sample size in both groups, and the intervals in case of
prior-data con�ict are always larger than their counterparts in the prior-data agreement
case (see Table 3.1).
In the conjugate-based model, expectation intervals instead behave as expected. Kraut-

enbacher derived the prior parameter set as IΠ(0) = [2.39, 2.85]× [2.91, 4.08]; however, the
set of priorsM(0) based on IΠ(0) �t the constraints posed by Whitcomb's prior probability
intervals not very well (see Krautenbacher 2011, Abb. 20); the conjugate Gamma distri-
butions do not seem to capture all aspects of the prior information in this case. As is
clear from the general properties described in Section 3.1.4, imprecision as measured by[
E[λ]−E[λ]

]
decreases with sample size, with slightly higher imprecision in the prior-data

con�ict case. Owing to the caveat above, we will not compare these with the expectation
intervals from Whitcomb's model, and instead look more closely on the HD intervals from
both models, as given in Table 3.1.
Although the prior HD interval of the discrete model has double the length of the con-

jugate model, posterior HD intervals are surprisingly similar in length and position for the
prior-data agreement case. The conjugate-based posterior HD interval lengths in case of
prior-data con�ict are, in contrast to the discrete model, growing with n; from compari-
son with the expectation intervals that behave as expected, we think that this unintuitive
result can be appropriated to peculiarities of the Gamma distribution.42

In summary, both models show more or less adequate results, with the discrete model

42While for the prior variance holds Var(λ) ∈ [0.028, 0.070], the variance for the posterior with n = 10 in
case of prior-data con�ict ranges in [0.120, 0.263]. The upper variance thus almost quadruples, leading
to a very wide posterior HD interval.
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showing some unintuitive behaviour with respect to the expectation intervals, and the
conjugate model with respect to HD intervals. Although the conjugate model behaves,
as ensured by the general results, `right' in terms of expectation intervals, the picture
can be di�erent for other inferences, depending on the functional form of the conjugate
distributions. The example here makes it clear that, in considering expectations only
(as is often done in the literature on imprecise probability methods, being based on the
notion of previsions), important e�ects on inference can be obscured. On the other hand,
a prerequisite for a conjugate model to give meaningful posterior inferenes is that the
parametric priors are indeed a good model for the prior information at hand. For this
example, this seems not to be the case.
A model based on a discretised parameter space o�ers more �exibility, at the cost of

higher computational complexity. For the approach byWhitcomb, it also di�cult to discern
the e�ects of a chosen prior in interplay with a parametric likelihood.43 This could be
tackled by considering more re�ned elicitation strategies involving `pre-posterior' elements,
in which the analyst is asked to indicate what she is willing to learn from hypothetical data
(see Section 3.5.2.3, where such a strategy is used to develop a shape for IΠ(0)).
The question whether a discrete, nonparameteric model or instead a parametric, of-

ten continuous, model should be used is widespread in statistical inference in general. In
traditional statistics, absolutely continuous distributions are usually employed when in-
ference using discrete distributions becomes too complex, typically approximating a non-
parametric model with a parametric one.44 Similarly, the algorithms to compute posterior
credal sets and inferences for discrete models, often framed via the alternative model for-
mulation as conditional lower previsions (see, e.g., Tro�aes and Hable 2013), may easily
become unfeasible for large m; the alternative is then to consider sets of continuous prior
distributions like in the model framework from Section 3.1.

After having reviewed some models in alternative to the model framework from Sec-
tion 3.1, we will now study some examples for models from this framework in more detail.
Section 3.3 discusses models of type (c) (p. 59), and a software implementation is brie�y
described in Section 3.4. Section 3.5 then presents a model of type (d) (p. 59), along with
a fundamentally di�erent approach that combines (posterior) inferences from two di�erent
models.

43As mentioned above, there is no natural summary measure giving the weight of the information encoded
in the prior in comparison in the data, as is given by n(0) in the conjugate models.

44As an example, consider the test for independence in contingency tables. Fisher's exact test, a non-
parametric test using a permutation argument (thus resulting in a discrete distribution), can become
di�cult to calculate for large samples. An alternative is then the chi-squared test that is based on the
continuous, one-parametric χ2(df) distribution, which, for large samples, is a good approximation of
the distribution of the χ2 test statistic then used to determine the test decision.
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3.3. Imprecision and Prior-Data Con�ict in Generalised

Bayesian Inference

This section reproduces the work �Imprecision and Prior-Data Con�ict in Generalised
Bayesian Inference�, published as a peer-reviewed article in the Journal of Statistical The-
ory and Practice, and reprinted as a book chapter in Imprecision in Statistical Theory
and Practice (Walter and Augustin 2009b). As such, it is reproduced here almost ver-
batim, except for some minor shortenings, especially in the Introduction (Section 3.3.1),
and the addition of some comments and footnotes linking this work to other parts of this
thesis. Furthermore, the notation was changed slightly towards the one introduced in Sec-
tion 1.2.3.1 (most importantly, writing n(n) and y(n) for the canonical posterior parameters
instead of n(1) and y(1), respectively), and citations were updated and changed to the style
employed throughout this thesis.

Abstract

A great advantage of imprecise probability models over models based on precise, traditional
probabilities is the potential to re�ect the amount of knowledge they stand for. Conse-
quently, imprecise probability models promise to o�er a vivid tool for handling situations of
prior-data con�ict in (generalised) Bayesian inference. In this paper, we consider a general
class of recently studied imprecise probability models, including the Imprecise Dirichlet
Model (IDM, Walley 1996b) under prior information, and more generally the framework of
Quaeghebeur and Cooman (2005) for imprecise inference in canonical exponential families.
We demonstrate that such models, in their originally proposed form, prove to be insensitive
to the extent of prior-data con�ict. We propose an extension reestablishing the natural
relationship between knowledge and imprecision: the higher the discrepancy between the
observed sample and what was expected from prior knowledge, the higher the impreci-
sion in the posterior, producing cautious inferences if, and only if, caution is needed. Our
approach is illustrated by some examples and simulation results.

3.3.1. Introduction

As discussed in Sections 2.1 and 2.2, imprecise probability provides a powerful methodology
to handle the multidimensional nature of uncertainty neglected by the traditional concept
of probability. The most common � closely related � mathematical tools in that theory are
non-additive set-functions, interval-valued probabilities and sets of classical probabilities
(often called credal sets).45 The width of the interval or the �magnitude� of the set are
then seen as a measure for the imprecision in the probabilistic assignment, allowing to take
into account ambiguity (non-stochastic uncertainty) in statistical inference and decision
making, where in the tradition of Ellsberg's (1961) seminal experiments ambiguity has

45See Section 2.1.2 for a short exposition of these mathematical tools and their relations.
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proven to be a constitutive element.46

Many imprecise probability models are constructed by a generalisation of Bayesian ap-
proaches.47 The Bayesian paradigm relies on the assumption that the complete knowledge
on the parameter ϑ of a statistical model can be expressed by a probability distribution
on the parameter space Θ. Learning from a sample observation x is then performed by
updating the prior distribution, describing the knowledge before having seen the sample
x, to obtain the posterior distribution via Bayes' rule. The posterior distribution, often
shortened to `posterior', then is understood to subsume the complete knowledge on ϑ after
having seen the sample, and therefore it underlies exclusively all inferences drawn from the
data. If the prior p(ϑ) is a precise probability distribution, then the posterior p(ϑ |x) can
be directly calculated via Bayes' rule48

p(ϑ | x) ∝ f(x | ϑ) · p(ϑ) ,

where f(x | ϑ) denotes the sample model, also called likelihood in this context.
Imprecise probabilities allow to overcome the �dogma of precision� (Walley 1991, �5) un-

derlying common statistical models, in particular with respect to the often rather arbitrary
choice of the prior distribution.49 The ambiguity in the prior speci�cation, or positively
formulated, the quality of prior knowledge, can be modelled by considering setsM of prior
distributions. The most straightforward way to proceed is then to update this setM el-
ement by element via Bayes' rule to obtain the set M|x of posterior distributions. This
updating procedure is understood as self-evident in the robust Bayesian framework (e.g.,
Ríos Insua and Ruggeri 2000), and can be moreover justi�ed by deriving it from general
coherence arguments in the theory developed by Walley (1991), where it is referred to as
the Generalised Bayes' Rule.50 Although there are some strong arguments for a plurality
of learning rules,51 we will strictly rely on this approach in this contribution.
Probably the most popular model along this line is the Imprecise Dirichlet Model (IDM)

for handling categorical data, introduced by Walley (1996b)52 (see in particular Bernard
(2005) and Bernard (2009) for an overview on further developments). This model has
been extended by Quaeghebeur and Cooman (2005) to generalised Bayesian inference from
canonical exponential families, not only covering the omnipresent Normal and Multinomial
models as described in the Examples below, starting with Examples 3.3 and 3.4, but also
almost all other sample distributions relevant in a Statistician's everyday life, such as
Poisson models, often used in ecology and insurance mathematics, or exponential models

46See the distinction of risk and ambiguity in Section 2.2.2.
47See the discussion of the Bayesian approach to statistical inference in Section 1.2.3.
48See Equation (1.3).
49See the description of lower previsions, Walley's central formulation of imprecise probability, in Sec-

tion 2.1.2.1, and the motives from a Bayesian perspective in Section 2.2.3.
50See Sections 2.1.2.5 and 2.1.3.
51See, e.g., Coolen and Augustin (2009), Weichselberger (2007), Cattaneo (2007), Held, Kriegler, and

Augustin (2008), Held (2007), Coolen and Augustin (2009), Augustin and Coolen (2004), and Augustin
(2003). We discuss some of these approaches in Section 3.2, and the critical aspects of the Generalised
Bayes' Rule discussed in others in Section 2.1.3.2 and again in Section 4.3.

52See Section 3.1.3.
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and gamma models common in reliability and survival analysis. In Walter, Augustin, and
Peters (2007), Quaeghebeur and de Cooman's model was further generalised to a class
of models (called LUCK-models there and throughout this paper) which includes linear
regression models.
While up to now the main focus in generalized Bayesian inference has been on robustness

issues given perturbations of an ideal prior (e.g., Ríos Insua and Ruggeri 2000) or on mod-
els for prior near ignorance (as in the IDM), the present paper is devoted to the important
problem of handling prior-data con�ict. Prior-data con�ict53 is a generic term to name
situations in which informative prior beliefs and trusted data54 are con�icting. A formal-
isation of this concept for the models considered in this paper is given in De�nition 3.3.
If prior and likelihood are precise, then in updating via Bayes' rule, prior-data con�ict is
averaged out, and there is no way to see whether the posterior arose from a situation with
or without substantial prior-data con�ict.55

Generalised Bayesian models, in contrast, promise to solve this problem in an elegant
way: With the magnitude of the set M|x mapping the posterior ambiguity, high prior-
data con�ict should, ceteris paribus, lead to a large M|x resulting in high imprecision in
the posterior probabilities, while in the case of no prior-data con�ict M|x, and thus the
imprecision, should be much smaller.
Although Walley (1991, �5.2.2) explicitly emphasizes this possibility to express prior-

data con�ict as one of the main motivations for the paradigmatic change from precise
to imprecise probability, surprisingly little attention has been paid to this issue. The
very rare exceptions include two short sections in Walley (1991, p. 6 and �5.4), and the
papers by Pericchi and Walley (1991), Coolen (1994) and Whitcomb (2005). Moreover,
even the powerful models mentioned above, including the IDM under prior information
and Quaeghebeur and de Cooman's extension, are, in their originally proposed form, not
able to take into account prior-data con�ict, and therefore do not fully utilize the expressive
power of imprecise probabilities.
By extending these models, and some of their generalizations in this paper, we overcome

their serious de�ciency with respect to prior-data con�ict. We arrive at powerful infer-
ences where the degree of prior-data con�ict is transferred into a corresponding amount
of imprecision in the posterior quantities, resulting in reliable inferences by being cautious
whenever caution is needed, also providing a neat basis for decision making.56 Our method
can be shown to extend the basic ingredients used in Walley (1991) for the normal case
and the IDM to the general class considered here.

The remainder of this section is structured as follows: In Section 3.3.2, we provide the
formal background by distinguishing a wide class of classical, precise probability models
where Bayesian inference has a particular form, being directly suitable to a generalisation to

53See also the discussion of prior-data con�ict in Sections 2.2.3.3 and 3.1.4.
54Our development neglects here the additional problems of outliers. So we simply assume that the data

are not spoilt by outliers, or that outliers have been removed in advance.
55See also the comment in Section 1.2.3.1 on this central averaging property evident from Equation (1.6).
56See Tro�aes (2007) for a review of decision criteria based on imprecise probabilities.
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imprecise probabilities by varying the linearly updated main parameter (Section 3.3.3). We
illustrate these models and then show in Section 3.3.4 how these models can be extended
to deal with prior-data con�ict in a more sensible way, by additionally varying another
parameter. Section 3.3.5 illustrates our procedure in two important special cases: inferences
on the mean of a normal distribution and in the IDM.

3.3.2. Traditional Bayesian Inference and LUCK-models

In many cases, traditional Bayesian inference is based on so-called conjugate priors (related
to a speci�c likelihood). These distributions have the convenient property that the posterior
resulting from Bayes' Rule (1.3) belongs to the same class of parametric distributions as
the prior. The posterior thus remains easily tractable, and updating can be described
in terms of parameters only. For describing the imprecise probability model used later
on more easily, we want to distinguish certain standard situations (called models with
`Linearly Updated Conjugate prior Knowledge' (LUCK) here) of Bayesian updating with
classical (traditional, precise) probabilities, where prior and posterior �t nicely together
in the sense that (i) they belong to the same class of parametric distributions, and, in
addition, (ii) the updating of one parameter (y(0) below) of the prior is linear given a
second parameter (n(0)). More precisely, we return to the following de�nition, originally
introduced in Walter, Augustin, and Peters (2007):57

De�nition 3.1 (LUCK-models). Consider traditional Bayesian inference on a parameter
ϑ based on a sample x as described in Section 1.2.3 (Equation (1.3)), and let the prior
p(ϑ) be characterized by the (vectorial) parameter ϑ(0). The pair

(
p(ϑ), p(ϑ | x)

)
is said

to constitute a LUCK-model of size n ∈ N with respect to the likelihood f(x | ϑ) in the
natural parameter ψ with prior parameters n(0) ∈ R>0 and y(0) and sample statistic τ(x)
i� p(ϑ) and p(ϑ | x) can be rewritten in the following way:

p(ϑ) ∝ exp
{
n(0)
[
〈ψ, y(0)〉 − b(ψ)

]}
(3.7)

and

p(ϑ | x) ∝ exp
{
n(n)

[
〈ψ, y(n)〉 − b(ψ)

]}
, (3.8)

with

y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ(x)

n
, n(n) = n(0) + n , (3.9)

where ϑ is transformed to ψ and b(ψ), and ϑ(0) to n(0) and y(0).

57Compare to the model presented in Section 1.2.3.1. There, the likelihood f(x | ϑ) was considered to
have the functional form (1.4). Here, f(x | ϑ) may have instead any form, given that the update
step from prior to posterior distribution adheres to Equations (3.7) � (3.9). The model discussed in
Section 1.2.3.1 is a special case, as Equations (3.7) and (3.9) are the same as Equations (1.5) and (1.6),
respectively. This is again elaborated in Example 3.1 below.



3.3 Imprecision and Prior-Data Con�ict in Generalised Bayesian Inference 83

y(0) and y(n) can be seen as the parameter describing the main characteristics of the prior
and the posterior, respectively, and so later on, y(0) and y(n) will be called main prior and
main posterior parameter. In the models considered here, y(0) can also be understood as a
prior guess for the random quantity τ̃(x) := τ(x)/n summarizing the sample. According
to the left part of (3.9) these two di�erent sources of information are linearly combined to
obtain the main posterior parameter:

y(n) =
n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ̃(x) . (3.10)

This relation also equips n(0) with a vivid interpretation as �prior strength� or as �pseudo-
counts�, re�ecting the weight one gives to the prior with respect to the sample. So, n(0)

can be interpreted as the size of an imaginary sample that corresponds to the trust on
the prior information in the same way as the sample size of a real sample corresponds to
the trust in conclusions based on such a real sample. As a preparation for the general-
izations considered later, let us turn to some characteristic examples, also illustrating the
interpretations of y(0) and n(0).

Example 3.1 (Bayesian Inference in Exponential Families). In the case of independently
and identically distributed (i.i.d.) observations x = (x1, . . . , xn) from regular canonical
exponential families (Bernardo and Smith 2000, p. 202 and p. 272f), a general result (see,
e.g., ibid., Proposition 5.4) is available on how to construct conjugate priors. A prior ob-
tained by this method then constitutes a LUCK-model of size n (the sample size) with the
sample statistic of the whole sample being the sum of statistics for each sample element
(which can be concluded from the canonical form of the likelihood), so τ(x) =

∑n
i=1 τ

∗(xi),
and τ̃(x) = 1

n

∑n
i=1 τ

∗(xi).
58 This is e�ectively the framework of Bayesian inference with

regular conjugate priors as presented in Section 1.2.3.1. To perceive the generality of this
result, recall that many of the sample models most often used in practice form an exponen-
tial family, as shown earlier in this thesis for the Binomial distribution (Section 1.2.3.3),
the Normal or Gaussian distribution (Section 1.2.3.4), and the Multinomial distribution
(Section 1.2.3.5).

Example 3.2 (Bayesian Inference in Linear Regression). As shown by Walter (2006),
Walter, Augustin, and Peters (2007), and Walter (2007), the importance of LUCK-models
is not limited to the i.i.d. case but also provides a formal superstructure containing in
particular the practically important case of linear regression models, modelling the (lin-
ear) in�uence of certain variables (called covariates, confounders, regressors, stimulus or
independent variables) on a certain outcome (also called response or dependent variable).59

58Quaeghebeur and Cooman (2005) consider this special case of LUCK-models in their seminal work
motivating the generalisations presented here.

59See Section A.1 for alternative models that adhere to the regular conjugate framework of Section 1.2.3.1.
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3.3.3. Imprecise Priors for Inference in LUCK-models

Our de�nition of LUCK-models was inspired by the work of Quaeghebeur and Cooman
(2005), who develop a general approach for inference with imprecise priors, which was
proven in Walter, Augustin, and Peters (2007) to be generalisable to arbitrary LUCK-
models. Quaeghebeur and de Cooman's seminal idea was that the seemingly strange
parameterisation in terms of y(0) and n(0) in (3.7) and (3.8) is perfectly suitable to be
generalised to credal sets of priors. The crucial point is that y(0), the main prior parameter60

is updated linearly, when the prior strength n(0) is taken as �xed. This makes an easily
tractable imprecise calculus possible: When sets of priors are de�ned via sets of main
parameters y(0), and these sets of y(0) are de�ned by lower and upper bounds, the lower
and upper bounds of the sets of posterior main parameters y(n) can be obtained directly
from (3.9).

3.3.3.1. iLUCK-models

In constructing a conjugate prior to a given likelihood, Quaeghebeur and de Cooman
strictly rely on the method described in Section 1.2.3.1 (Example 3.1), but their technique
to construct an imprecise conjugate prior, i.e. a set of priors, by considering a set of y(0),
does not depend on this derivation, but rather on the linearity of the updating of values of
y(0) given n(0) when the set of posterior distributions is calculated. As the LUCK-models
capture exactly this property, it is possible to construct imprecise conjugate priors for
arbitrary LUCK-models according to Quaeghebeur and de Cooman's technique.61 We give
a general exposition of this model class, illustrate it by continuing the previous examples,
and elaborate their serious de�ciency with respect to the handling of prior-data con�ict,
which then will be overcome in Section 3.3.4.
Due to the linearity of the updating for �xed n(0), minimisation and maximisation prob-

lems on the set of posteriors can be reduced to minimisation and maximisation problems
on the set of priors when the parameter y(n) (or a linear function of it) is the quantity of
interest. This very same update procedure is used in the Imprecise Dirichlet Model (IDM),
which is based on the Dirichlet-Multinomial model as presented in Section 1.2.3.5. Just as
Walley required s to be �xed in the IDM, Quaeghebeur and de Cooman consider sets of
y(0) but only a single value for the other prior parameter, denoted by n(0) here. As we will
show in detail in Section 3.3.3.2, the resulting models necessarily ignore prior-data con-
�ict. However, as a preparation for our generalisation presented in Section 3.3.4, we want
to present the model with varying y(0) but �xed n(0), which will be called iLUCK-model
(for imprecise LUCK-model), in more detail:62

60In the Normal-Normal model: the prior mean for µ; in the Dirichlet-Multinomial model: the vector of
prior expected values for the category probabilities θ.

61See Walter (2006); Walter, Augustin, and Peters (2007); Walter (2007) for an application of this idea to
obtain linear regression models with imprecise prior distributions.

62In the systematic of model types developed in Section 3.1.1, iLUCK-models correspond to models of
type (a).
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De�nition 3.2 (iLUCK-models). Consider the situation of De�nition 3.1, and a set of
LUCK-models

(
p(ϑ), p(ϑ | x)

)
(with respect to the likelihood f(x | ϑ) in the natural pa-

rameter ψ with prior parameters n(0) ∈ R>0 and y(0) and sample statistic τ(x)), produced
by y(0) varying in some set Y(0) ⊂ Y, where the parameter space Y is taken as the convex
hull (without the boundary) of the range of τ(x). Let furthermore the credal sets M and
M|x consist of all convex mixtures obtained by this variation of p(ϑ) and p(ϑ | x). Then(
M,M|x

)
is called the corresponding imprecise LUCK-model (iLUCK-model) based on

Y(0) and n(0).

Remark 3.1. Note that if M is used as an imprecise prior, by construction, M|x is
the corresponding imprecise posterior. Although the imprecise prior contains not only the
parametric distributions, but also arbitrary convex mixtures of them, it is nevertheless easy
to obtain the imprecise posterior: Since it is su�cient to update the extreme points and the
updating process is linear in Y(0), the imprecise posterior M|x is simply obtained as the
set of all convex mixtures of posteriors p(ϑ | x) arising from (3.8) by varying y(n) in Y(n),
where

Y(n) =

{
n(0)y(0) + τ(x)

n(0) + n

∣∣∣∣ y(0) ∈ Y(0)

}
=

n(0)

n(0) + n
· Y(0) +

n

n(0) + n
· τ̃(x) . (3.11)

In generalisation of (3.10), Y(n) can actually be seen as a shifted and rescaled version
of Y(0), which allows us to keep the vivid interpretation of n(0) as �prior strength� or as
�pseudocounts�, as it plays again the same role for the prior as n for the sample.63

Remark 3.2. In iLUCK-models, the �magnitude� of Y(0) and Y(n) naturally re�ects the
imprecision in the prior and the posterior, respectively. Consequently, we will de�ne64,
with

y(i) := inf
{
y(i)
∣∣ y(i)∈ Y(i)

}
and y(i) := sup

{
y(i)
∣∣ y(i)∈ Y(i)

}
, i = 0, n , (3.12)

the main parameter prior imprecision and main parameter posterior imprecision MPI(0)

and MPI(n) by
MPI(i) := y(i) − y(i), i = 0, n. (3.13)

A natural tool to summarize basic properties of the updating process is to look at

PG := MPI(0) −MPI(n) , (3.14)

which is called main parameter precision gain here.

Taking the Normal-Normal and the Dirichlet-Multinomial model as concretisations of
Example 3.1, inference with iLUCK-models is now illustrated.

63Y(0) must be bounded, as for any y(0) = ∞, it holds that y(n) = ∞ as well. For the IDM, introducing
explicit bounds is not necessary, as the parameter space Y itself is already bounded, being the unit
simplex.

64If the main parameter is multidimensional (denoted by y(i), i = 0, n), then, throughout the paper, the

in�mum, the supremum, and the measure MPI(i) and related quantities, are to be understood as de�ned
component by component. Natural choices for real-valued measures derived from vector-valued MPI(i)

would be to consider appropriate norms.
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Figure 3.1.: Prior (left) and posterior (right) credal sets for a sample from N(µ, 1) drawn
as sets of normal cdfs. (Example 3.3 in the situation of no prior data con�ict.)

Example 3.3 (Normal-Normal Model). In the Normal-Normal model as presented in Sec-
tion 1.2.3.4, y(0) corresponds to the expected value for µ; the choice of Y(0) in application
should thus be easy. To simplify notation, we will assume here and later on that σ2

0 = 1.
Let us assume Y(0) = [y(0); y(0)] = [3; 4], and for �xing n(0), suppose further that we are not
very certain about this prior range for µ, but still think it is quite a reasonable assumption,
and so we base it on 5 pseudo observations by choosing n(0) = 5, giving a value of the
variance for the prior distribution on µ of 1

5
. Updating this prior with the i.i.d. sample

x ∈ Rn yields

y(n) =
n(0)y(0) +

∑n
i=1 xi

n(0) + n
, y(n) =

n(0)y(0) +
∑n

i=1 xi
n(0) + n

, n(n) = n(0) + n .

To make this concrete, consider a sample of size n = 10 with τ̃(x) = x̄ = 4. Then
Y(n) = [55

15
; 60

15
] ≈ [3.67; 4], MPI(n) = 1

3
and n(n) = 15. The posterior credal set consists

therefore of all convex combinations of normal distributions with means in [3.67; 4] and
variance 1

15
. Prior and posterior beliefs can be illustrated by the union of credal intervals

calculated as highest density (HD) intervals65 for all distributions in the corresponding
credal set. As the normal distributions with mean y(0) ∈ Y(0) are the extreme points of
the prior credal set, and the normal distributions are stochastically ordered with respect
to the mean, the prior union is the interval from the lowest lower border of HD intervals
(calculated from N(y(0), 1

n(0) )) to the highest upper border (calculated from N(y(0), 1
n(0) )). For

a probability weight γ = 0.95, we get [2.123; 4.877]. The posterior union of HD intervals
is [3.161; 4.506] and, covering a much smaller range as a priori, shows the decreasing of

65See the concept of highest posterior density (HPD) intervals as mentioned in Section 1.2.3.3, which is
used here also to illustrate the prior state of knowledge.
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uncertainty obtained by the update step, also re�ected in a main parameter precision gain of
PG = 2

3
. This update step is illustrated in Figure 3.1, where the prior and posterior credal

set are displayed by the normal cumulative distribution functions, the black lines indicating
the functions de�ned by the vertices of Y(0) and Y(n), respectively. The observation τ̃(x)
is marked by the point of the triangle in both graphs, and the prior and posterior union
of HD intervals are marked by a thick line in the graph for the prior and posterior set,
respectively.

Example 3.4 (Dirichlet-Multinomial Model). An iLUCK-model based on the Dirichlet-
Multinomial Model as discussed in Section 1.2.3.5 is, for Y(0) = Y, equivalent to the
imprecise Dirichlet model (IDM, see Section 3.1.3), and was considered in Section 1.3.6.1
for the common-cause failure application.

In the usual applications of the IDM, the aim is to start with prior ignorance; this is
modelled by choosing Y(0) as the unit simplex. For n(0) values of 1 or 2 are suggested. Here,
we must rely on the interpretation of n(0) as prior strength, as there is no interpretation
in terms of other parameters as in Example 1a. Considering prior knowledge for a three-
category multinomial model suggesting that extreme values for θ1 and θ2 are implausible,
one could choose Y(0) = {y(0)

1 ∈ [0.2; 0.8] × y
(0)
2 ∈ [0.2; 0.8] × y

(0)
3 ∈ [0; 0.6]}, where the

upper bound for y
(0)
3 is a result of the unit simplex constraint

∑k
j=1 y

(0)
j = 1. In addition,

we choose again n(0) = 5 as in Example 3.3. Considering a sample of size 5, where 3
observations are of category 1, and 2 of category 2, we get n(n) = 10 and the ranges
y

(n)
1 ∈ [0.4; 0.7], y

(n)
2 ∈ [0.3; 0.6], and y

(n)
3 ∈ [0; 0.3] for the posterior class probabilities.

In analogy to Example 3.3, this update step is illustrated with the left and center graph of
Figure 3.2, where prior and posterior credal sets are represented by cutouts from a plane
in the three-dimensional parameter space. Each point in the plane cutout for the prior set
on the left graph represents a certain combination of y

(0)
1 , y

(0)
2 , and y

(0)
3 by the magnitude

of coordinates. The same applies for the posterior set depicted in the center graph. Some
additional lines were drawn to make locating the cutouts in space more easy.

Remark 3.3. Inference in iLUCK-models has the following important properties, where
the �rst three items in essence generalize results that have been discussed in the literature
for the IDM, where, as already said above, n(0) usually is denoted by s.66

i) The larger n(0) relative to n, the more weight is placed on the prior knowledge expressed
by Y(0), resulting in wider posterior expectation intervals and larger MPI(n).

ii) For growing sample sizes n, the set Y(n) will converge towards a one-element set, as
the weight of the `imprecise' Y(0) decreases with respect to the `precise' sample τ̃(x),
ultimately resulting in an (almost) precise posterior with MPI(n) = 0 just as in classical
methods.

66See the discussion of inference properties in Section 3.1.2.
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Figure 3.2.: Prior (left) and posterior (center, right) credal sets for samples from M(θ) in
accordance with (center) and, as studied in Section 3.3.3.2, contrary to (right)
prior beliefs. Note that both posterior sets have the same shape and size and
di�er only in location, in contrast to the ones depicted in Figure 3.5.

iii) In particular, for n(0) = n, the width of the posterior expectation interval is half the
width of the prior interval, i.e., MPI(n) = 1

2
MPI(0). This property is easily derived

from (3.15) below, and provides another vivid interpretation of n(0).

iv) Ceteris paribus, a smaller choice of Y(0) will result in a smaller Y(n), leading to more
precise inference statements as opposed to the choice of a larger Y(0).67

v) For the main posterior parameter imprecision, we obtain:

MPI(n) =
n(0)

(
y(0) − y(0)

)
n(0) + n

. (3.15)

While items i) � iv) demonstrate the intuitively appealing behavior of iLUCK-models,
we are seriously concerned with the fact that MPI(n) is independent of τ̃(x), and, as studied
in more detail in the next subsection, therefore insensitive to prior-data con�ict.

3.3.3.2. iLUCK-models and Prior-Data Con�ict

In the linear setting of iLUCK-models, the generic concept of prior-data con�ict can be
formalized by considering the distance of the observed quantity τ̃(x) to its nearest prior
guess y(0) ∈ Y(0):

67This item has not been widely considered in the context of the IDM, which typically is used to describe
inference from a state of prior ignorance.
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De�nition 3.3 ((Degree of) Prior-Data Con�ict). For iLUCK-models, the degree of prior-
data con�ict can be de�ned as

∆
(
τ̃(x); y(0), y(0)

)
:= inf

{∣∣τ̃(x)− y(0)
∣∣ : y(0) ≤ y(0) ≤ y(0)

}
. (3.16)

Consequently, if ∆
(
τ̃(x); y(0), y(0)

)
> 0, we have an instance of prior-data con�ict.68

This De�nition can be illustrated by, e.g., Example 3.3, where τ̃(x) = x̄ is the sample
mean. A sample mean outside Y(0), the a priori assumed interval of means for the normal
distribution on µ, is an instance of prior-data con�ict. If a sample mean of 8 was observed
in the numerical example discussed above, where [y(0); y(0)] = [3; 4] had been assumed, we
would obtain ∆( ) = 4, formalizing our intuition that prior-data con�ict is at hand.
As we argued in Sections 2.2.3.3 and 3.3.1, imprecise probability models that allow to

take prior information into account should lead to more imprecision if prior-data con�ict
is present than in situations where it is not. It is easy to see that iLUCK-models do not
ful�ll this property because the main parameter posterior imprecision in (3.15) does not
depend on the sample statistic τ̃(x). Thus, for any sample of size n, an iLUCK-model
leads to the same main parameter posterior precision gain whether the sample supports
the prior assumptions modelled in Y(0) or it confronts them. As a consequence of the
Bayesian paradigm that all inference is only allowed to depend on the posterior, this holds
also for all derived quantities like HD intervals. To make this concrete, let us continue
Examples 3.3 and 3.4.

Example 3.5 (Normal-Normal Model, continued). Assume, in the situation considered
in Section 3.3.3.1, that the sample had led to τ̃(x) = 8, suggesting the mean µ to be
nearer to 8 than to the range [3; 4] assumed for it before having seen the sample. Then
Y(n) = [95

15
; 100

15
] ≈ [6.33; 6.67] and again n(n) = 15. The posterior range of expected values

for µ has now moved towards the value suggested by the sample, but we have the same
posterior main parameter imprecision 1

3
as in the case with τ̃(x) = 4, which was not

con�icting with the prior assumptions. Intuitively, this fact gets maybe more perplexing
when considering the union of posterior HD intervals: For τ̃(x) = 4, it is [3.161; 4.506],
covering a length of 1.345; for τ̃(x) = 8, it is [5.827; 7.172], covering the very same length,
and therefore � although being completely surprised by the outcome of the sample � we
would not be more cautious. These disturbing results are illustrated in Figure 3.3.

Example 3.6 (Dirichlet-Multinomial Model, continued). Here, the same phenomenon oc-
curs: Having observed categories 1 to 3 now 0, 1, and 4 times, respectively, Y(n) covers
the same area, despite of the clear con�ict of these observations with the prior knowledge
expressed in Y(0), and has only moved in location, as can be seen in the right graph of
Figure 3.2.

68Instead of ∆( ) > 0, one could also consider some threshold ∆( ) > ε > 0 as a criterion for prior-data
con�ict, making De�nition 3.3 also reasonable for LUCK-models. However, with respect to Remark 3.5
below, we prefer ε = 0.
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Figure 3.3.: In iLUCK-models, an observation contrary to prior beliefs leads to the same
amount of imprecision as an observation in accordance with prior beliefs (see
Figure 3.1). Generalized iLUCK-models overcome this de�ciency, as visualized
in Figure 3.4.

3.3.4. Improved Imprecise Priors for Inference in LUCK-models

There do exist some imprecise probability models that react on prior-data con�ict in rea-
sonable ways. The approaches by Pericchi and Walley (1991) and Coolen (1994) are re-
stricted to speci�c one-parameter situations with a di�erent type of models for the prior.
Whitcomb (2005), on the other hand, by partially relying on models from the exponen-
tial family, considers closely related classes of underlying distributions without using their
speci�c structure. The important hint for properly handling prior-data con�ict in LUCK-
models is again obtained from Walley (1991). In �5.4, he discusses prior-data con�ict in
the imprecise Beta-Binomial model,69 which is a special case of the Imprecise Dirichlet
Model recalled in Example 3.4. His successful idea is to vary the hyperparameter s in
addition. Additionally, he also brie�y mentions the normal case underlying Example 3.3
(Walley 1991, �1.1.5 (k)), where he suggests to use an imprecise prior with an imprecise
variance. In the light of the general framework of LUCK-models, both exemplary solutions
can be subsumed under the idea to use an imprecise prior strength, thus weighting prior
and sample information in (3.11) in a more �exible way, i.e. to vary additionally the prior
strength parameter n(0) in some set N (0). Indeed this way to proceed will turn out to be
successful. We start by describing the powerful generalisation we want to propose in more
detail and then discuss some of its basic properties.70

69See Section 1.2.3.3.
70In the systematic of model types developed in Section 3.1.1, generalised iLUCK-models correspond to

models of type (c).
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De�nition 3.4 (generalised iLUCK-models). Consider the situation of De�nitions 3.1 and
3.2, and a set of LUCK-models

(
p(ϑ), p(ϑ | x)

)
that is produced by y(0) varying in some

set Y(0) ⊂ Y and, in addition, n(0) varying in a set N (0) ⊂ R>0. Let furthermore again the
credal setsM andM|x consist of all convex mixtures obtained from this variation of p(ϑ)
and p(ϑ | x). Then

(
M,M|x

)
is called the corresponding generalised iLUCK-model based

on Y(0) and N (0).

Remark 3.4. Again, by construction, whenM is used as an imprecise prior,M|x is the
corresponding posterior. It is obtained as the set of all convex mixtures of distributions
de�ned by the parameter set{(

n(n), y(n)
) ∣∣ n(n) = n(0) + n, y(n) =

n(0)y(0) + τ(x)

n(0) + n
, n(0) ∈ N (0), y(0) ∈ Y(0)

}
.

Note that the set of posterior parameters is not a cartesian product, i.e., rectangular. How-
ever, extreme values for the main posterior parameter y(n) are still easy to derive:71

y(n) =


n(0)y(0)+ τ(x)

n(0)+n
if τ̃(x) ≥ y(0)

n(0)y(0)+ τ(x)

n(0)+n
if τ̃(x) < y(0) ⇐⇒ prior-data con�ict

(3.17)

y(n) =


n(0)y(0)+ τ(x)

n(0)+n
if τ̃(x) ≤ y(0)

n(0)y(0)+ τ(x)

n(0)+n
if τ̃(x) > y(0) ⇐⇒ prior-data con�ict.

(3.18)

For minimising and maximising y(n), the value n(0) is used only in the situation of prior-
data con�ict, that is, if τ̃(x) /∈ Y(0). When no prior-data con�ict occurs, the extreme
values are attained for n(0). Therefore, the �xed value of n(0) in iLUCK-models in the
spirit of Quaeghebeur and Cooman (2005) can be seen as the upper border of an implicit
set N (0), and considering only a �xed n(0) means that prior-data con�ict is neglected.
On the other hand, if observations are such that τ̃(x) ∈

[
y(0); y(0)

]
, then no prior-data

con�ict is present, and inference in generalised iLUCK-models leads to very similar results
as inference in iLUCK-models.72

71As d
dy(0)

y(n) = n(0)

n(0)+n
≥ 0 ∀n, n(0), τ(x), it holds that y(n) is growing in y(0) regardless of the value

of n(0), and thus, for obtaining y(n), we must insert y(0), and for obtaining y(n), we must insert y(0)

in (3.9), just as in iLUCK-models, where n(0) is �xed. Then, with d
dn(0) y

(n) = y(0)n−τ(x)
(n(0)+n)2

, we see that

y(n) is growing in n(0) if y(0) > τ̃(x) and decreasing in n(0) if y(0) < τ̃(x), leading to Equations (3.17)
and (3.18).

72From (3.17) and (3.18) it gets clear why varying n(0) in addition does change the update step in the
desired way. When τ̃(x) < y(0), then n(0) is still used to calculate y(n), but n(0) to calculate y(n). The

use of n(0) instead of n(0) results in a lower value for y(0), as then more weight is given to τ̃(x) with

respect to y(0). (Equation (3.11) makes this most visible.) The same type of reasoning applies for the

case τ̃(x) > y(0), where n(0) is still used to calculate y(n), but n(0) to calculate y(n).
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Remark 3.5. By construction, the attractive properties of inferences by iLUCK-models
formulated in i) to iv) of Remark 3.3 are still satis�ed in our extended model. Now also in
addition prior-data con�ict is handled in a convincing way: Considering the relationship
between the main parameter posterior imprecision de�ned as in (3.13) and the degree of
prior-data con�ict as de�ned in (3.16),73 the very same results as derived by Walley (1991,
p. 224) for the two-category Dirichlet-Multinomial model hold in general for any generalised
iLUCK-model:

MPI(n) =
n(0)(y(0) − y(0))

n(0) + n
+ ∆

(
τ̃(x); y(0), y(0)

) n(n(0) − n(0))

(n(0) + n)(n(0) + n)
.

It is only through ∆( ) that MPI(n) is depending on the actual shape of observation x besides
its size n, and increasing it if prior-data con�ict occurs. When no prior-data con�ict is
present, ∆

(
τ̃(x); y(0), y(0)

)
= 0, and we have the same amount of posterior imprecision in

substantial parameters as in iLUCK-models, given by (3.15).
Consequently, Walley's (1991, �5.4, footnote 3) observation that the factor to ∆( ) gets

maximal if n =
(
n(0)n(0)

) 1
2 remains valid. Then, the main parameter posterior imprecision

is maximal for a given degree of con�ict, implicitly telling that then the weight of the
prior and sample must be the same, as more weight on any of them compared to the other
(preferring one source of information to the other) would lead to a less wide Y(n). This fact
gives additional orientation for choosing N (0), by considering the global strength of prior
knowledge, being equivalent to n(0) :=

(
n(0)n(0)

) 1
2 .

3.3.5. Illustration of the Generalised iLUCK-model

The theoretical considerations in Section 3.3.4 are now illustrated by means of Examples 3.3
� 3.6, and some simulated data for larger sample sizes.

Example 3.7 (Normal-Normal model, continued). For the case of the Normal-Normal
Model (Examples 3.3 and 3.5), the behavior of an appropriate generalised iLUCK-model is
shown for the situations previously modeled with an iLUCK-model as depicted in Figures 3.1
and 3.3. In Figure 3.4, the top row shows the updating in absence of prior-data con�ict,
whereas the lower row displays the update step in presence of prior-data con�ict. Again,
the vertices of the credal set, the set of normal distribution functions, is represented by the
shaded area, and the lines indicate the distributions that are obtained by updating the four
extreme distributions from N (0) × Y(0).
Contrary to the iLUCK-model, also a range of variances is considered in the prior,

allowing for reasonable posterior inference, as can be seen in the right hand graphs: when
the prior model is consistent with the observation τ̃(x) = x̄, a similar union of posterior
HD intervals is obtained as for the model displayed in Figure 3.1; when instead prior

73Remark 3.2 and De�nition 3.3 can directly be applied also to generalised iLUCK-models.
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Figure 3.4.: Prior (left) and posterior (right) credal sets for samples from N(µ, 1) in ac-
cordance with (upper) and contrary to (lower) prior beliefs. With generalised
iLUCK-models, the posterior set in the latter case is signi�cantly larger than
in the former, leading to more cautious inference as desired.
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Figure 3.5.: Prior (left) and posterior (center, right) credal sets for samples from M(θ) in
accordance with (center) and contrary to (right) prior beliefs. As in Figure 3.4,
with generalised iLUCK-models the sets di�er in size according to the degree
of prior-data con�ict induced by the observations.

assumptions and data are con�icting, the posterior credal set re�ects our uncertainty on
which to trust, being substantially larger than the prior credal set. Therefore, the union of
posterior HD intervals as indicated by the thick line in the lower right graph is not only wider
than in the absence of prior-data con�ict as seen in the top right graph, but not much shorter
than its prior counterpart, which is [1.040; 5.960]. In order to give comparable results, N (0)

was chosen to give the same global prior strength as the iLUCK-model for Example 3.3 by
�xing n(0) = 5 and a minimal prior strength n(0) = 1, resulting in n(0) = 25.

Example 3.8 (Dirichlet-Multinomial model, continued). For the Dirichlet-Multinomial
model (Examples 3.4 and 3.6), the behavior of the generalised iLUCK-model is visualized
in Figure 3.5. Here, the same set of main parameters as in Figure 3.2 is updated, leading
to plane cutouts (symbolising posterior parameter sets) that di�er not only in location
as before, but also in size (and shape) for the two cases. For the center graph, prior
assumptions on the category probabilities are in accordance with the observations 3, 2 and
0 for category one, two, and three, respectively, and thus the posterior plane cutout is a
subset of the prior plane. In contrast, when observations 0, 1, and 4 are made, being
in con�ict with the prior assumptions for category one and three, the resulting posterior
parameter intervals for those two categories do actually get wider, as can be seen in the
right graph, and thus, inference drawn in this case is more cautious.

Example 3.9 (Larger sample sizes). Su�ciently precise inference can be drawn never-
theless when the sample size gets much larger with respect to the prior strength, giving
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Figure 3.6.: (Unions of) 95%-posterior HD intervals (vertical lines) for observations in ac-
cordance (upper row, drawn from N(4, 1)) and in con�ict (lower row, drawn
from N(8, 1)) with prior assumptions based on a single prior (left), an iLUCK-
model (center) and a generalised iLUCK-model (right) in dependence on the
sample size n. The development of the sample mean is indicated by the wiggly
line. Through the averaging, the HD intervals in the lower left and center
graph are not enlarged but only shifted and thus do not cover the sample
mean.
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data more weight than the prior guess. When no prior-data con�ict occurs, the impreci-
sion obtained with generalised iLUCK-models is not substantially larger than obtained with
iLUCK-models or even with a classical, precise prior. These three model classes are com-
pared by means of the Normal-Normal model (Examples 3.3, 3.7 and 3.7) in Figure 3.6,
where the �rst column gives posterior HD (further denoted by HPD) intervals for a precise
prior, the second column unions of HPD intervals for the iLUCK-model, and the third
column unions of HPD intervals for the generalised iLUCK-model, in all three cases drawn
as vertical black lines for sample sizes n = 2, 4, 6, . . . , 100.
In the upper row, these prior models are updated successively with observations drawn

from a N(4, 1) being in accordance with the prior assumptions, whereas for the lower row,
observations in con�ict with the prior assumptions were simulated by observations drawn
from a N(8, 1). In the upper row, the (unions of) intervals tend to the sample mean
indicated by the wiggly line more or less uniformly for all three models. Naturally, the most
precise prior gives the most precise posterior inferences, but the HPD interval lengths do not
di�er excessively between the model classes, especially when the sample size n approaches
100.
The lower row demonstrates the de�ciency that the classical and the iLUCK-model un-

fortunately share. For them, observations confronting the prior assumptions lead only to
an adjustment in location of the intervals through the averaging, but not in their length,
giving a false certainty in posterior inference. Here, the generalised iLUCK-model is more
truthful to the character of the situation, giving very wide unions of HPD intervals for low
sample sizes covering both the a priori assumed range and the sample mean. With growing
sample size, more con�dence is given to the data, and thus, the unions of HPD intervals
tend the more to the sample mean the larger the sample gets.

3.3.6. Concluding Remarks

In this work, we considered generalised Bayesian inference in a wide class of imprecise
probability models. We �rst demonstrated that, in their originally proposed form, these
models do not react to prior-data con�ict and so do not utilise the full expressive power
of imprecise probabilities. We extended these models such that the natural relationship
between knowledge and imprecision is reestablished: the higher the discrepancy between
prior assumptions and sample observations, the more cautious the posterior inference. We
compare the previous modelling and our extension in two running examples covering two
widely used situations, inference from a scaled normal and from a multinomial distribution,
corroborating that our extension shows promising behavior.
Further research will start with a more detailed study of the behavior of the proposed

model, also taking into consideration that it may have some problems with dealing with
either minor or very extreme degrees of con�ict.74 Then careful attention should also be
paid to other approaches for generalised Bayesian inference in exponential families (Coolen
1993b; Boraty«ska 1997) under prior data con�ict, as well as to a thorough comparison of

74See the study in Section 3.5.
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the inference developed here with the discretisation-based models considered by Whitcomb
(2005), and with the approaches of Pericchi and Walley (1991) and Coolen (1994), who
use di�erent prior classes.75

Far beyond these further developments, it should well be remembered that this study
consciously con�ned the whole argumentation to a certain Bayesian setting: we studied how
far one can go if one relies strictly on the Generalised Bayes' Rule, transferring sets of priors
to sets of posteriors element by element via Bayes' Rule (1.3). Alternative learning rules,
including the approaches enumerated in footnote 51, p. 80,76 could prove very important
as, to use one of the referees' felicitous words, �Bayesian methods cannot allow for surprise,
the same is true for robusti�ed or generalised Bayesian methods, although these may hide
this shortcoming better. One could argue, therefore, that they cannot be used to represent
learning.�
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75A discussion of the approaches by Coolen (1993b; 1994), Whitcomb (2005), and Pericchi and Walley
(1991) is given in Section 3.2; The approach by Boraty«ska (1997) was mentioned in Section 3.1.1,
where we concluded that her approach belongs to models of type (a) that are insensitive to prior-data
con�ict.

76See also the critique regarding the Generalised Bayes' Rule in Section 2.1.3.2.
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3.4. The luck Package

This secion gives a short overview on a software implementation of the models discussed in
Section 3.3, the add-on package luck (Walter and Krautenbacher 2013) for the statistical
programming environment R. Author and maintainer of this package is Gero Walter, with
Norbert Krautenbacher as a second author, who contributed code for an application to
exponentially distributed data.

Introduction. In recent years, the statistical programming environment R (R Core Team
2013) is used more and more frequently for every-day statistical analyses in academia
and inside corporations. It has also become a de facto standard among statisticians for
software implementations of novel methods, which can be easily distributed by means
of so-called packages via the online repository `cran' (Comprehensive R Archive Network,
http://www.cran.R-project.org). The present implementation is programmed in a class
system of R that re�ects the hierarchy between the uni�ed description in terms of LUCK-
models77 and the concrete application of this framework by, e.g., considering inference
on the mean of scaled normal distribution using sets of conjugate priors (as described in
Example 3.3). This hierarchical structure makes extensions of the package in order to
enable inference in a wide class of sample distributions very easy.

Object-oriented Programming. Such hierarchical structures can be implemented us-
ing the object-oriented paradigm for programming. The central tools in this paradigm
are classes and methods. Classes are used to represent general concepts that should be
modelled in software. Such a concept is structured through a class by de�ning the traits
that examples for the general concept should have. Classes thus provide the blueprint for
objects, by de�ning a number of attributes or slots these objects have. Given concrete
values for the slots of the class, a concrete object can be created according to the blueprint
provided by the class de�nition. These concrete realisations of a class are called instances.
Methods then provide functions to manipulate such instances, the class description guar-
anteeing a standardised input for the functions. However, the most prominent feature
of the object-oriented paradigm is that hierarchies between concepts can be modelled by
inheritance. More speci�c concepts can be modelled as special cases of a general concept,
and the blueprint for such specialised objects are called subclasses, which inherit the traits
of the more general class. Moreover, also methods can be specialised to re�ect the class
hierarchies, by giving more speci�c output for subclasses. The relations between classes are
usually depicted in so-called UML graphs. Figure 3.7 gives an example for such a graph.

The Basic Classes. The package luck uses the S4 class system of R, providing the basic
framework for the de�nition, display and updating of sets of priors based on LUCK-models

77As described in footnote 5, page 59, LUCK-models generalise the framework of canoncial conjugate
priors from Section 1.2.3.1, by requiring only the form of the update step (1.6), and not the speci�c
functional form of (1.4) for f(x | ϑ) (see De�nition 3.1).

http://www.cran.R-project.org
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Figure 3.7.: Illustration of class hierarchies in object-oriented software. Each class is drawn
as a rectangle with three parts, the top part giving the name of the class. The
two lower parts name the slots and the methods for the class, respectively. A
class that inherts from another class is linked to this other class with an arrow.
Such graphs are called UML diagrams.

by de�ning the central class LuckModel. Inferences in a concrete sample distribution are
then carried out using lean subclasses that make the `translation' between the (abstract)
LUCK-model framework and a concrete sample distribution.
For de�ning prior parameter sets IΠ(0), the class LuckModel provides the slots n0 for n(0),

and y0 for y(0), respectively, the contents of which are de�ned internally as intervals, but
where the lower and upper bound may coincide, such that both N (0) and Y(0) can be either
an interval or a singleton.78 From the model types discussed in Section 3.1.1, type (a),
(b), and (c) can thus be implemented by choosing n0 and y0 accordingly as singletons or
intervals. To calculate the set of posterior distributions, the class LuckModel also provides
a data slot. This must contain an object of class LuckModelData, providing the data in
the needed form (τ(x) and n).

Posterior Parameter Sets. As the posterior parameter sets IΠ(n) resulting from updat-
ing all the priors in a prior parameter set IΠ(0) are, in the most general case of IΠ(0) =
[n(0), n(0)]× [y(0), y(0)], not cartesian products of [n(n), n(n)] and [y(n), y(n)] anymore, poste-
rior sets are not explicitely represented as LuckModel objects. Whenever posterior quanti-
ties are of interest (speci�ed in functions or methods for LuckModel objects by the option

78In case of y(0) ∈ Rk, Y(0) may be a multidimensional interval, i.e., a cartesian product of intervals

[y(0)
j
, y

(0)
j ], j = 1, . . . , k, (see Example 3.4), with y(0) and y(0) denoting the vectors of these element-

wise lower and upper bounds, respectively.
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"posterior = TRUE"), the range of these quantities are calculated by minimising and
maximising over IΠ(n), which in turn can be done by a box-constrained optimisation over
IΠ(0) that is a cartesian product. This is why the data object (LuckModelData) is directly
included in the LuckModel object. For the box-constrained optimisation, a helper func-
tion called wrapOptim is used, such that all cases (none, one or both of n0 and y0 are
interval-valued) can be treated in the same way.79

Subclasses for Concrete Distributions. As mentioned above, the class LuckModel in
fact only implements the general superstructure as given in the (abstract) de�nition of
LUCK-models (see De�nition 3.1). For inference in a concrete distribution family like the
Normal distribution, this general framework must be concretised by de�ning a subclass,
inheriting from LuckModel, for this speci�c distribution family, along with a subclass of
LuckModelData to specify how τ(x) is calculated for this distribution family. Currently,
this has been done for data from a scaled normal distribution, i.e., xi ∼ N(µ, 1),80 with
the classes ScaledNormalLuckModel and ScaledNormalData, and for data from an ex-
ponential distribution, i.e., xi ∼ Exp(λ),81 with the classes ExponentialLuckModel and
ExponentialData. Figure 3.8 shows the UML diagram, illustrating the hierarchical struc-
ture of the package.

Implemented Methods. For illustrations of LuckModel objects and inferences based on
them, some methods have been written. First, there are methods to display and print plain
LuckModel objects (existing only on the superstructure level):

• So-called constructor functions for the LuckModel and LuckModelData class make
the creation of LUCK-models more easy. They can be supplied with a number of
di�erent arguments, which are checked on consistency upon creation of the object.

• Due to the S4 implementation, so-called accessor and replacement functions are
de�ned, regulating the access and the replacement of object slots.

• The show method prints the contents of a LuckModel object in more readable form. If
the object contains a LuckModelData object, this is printed along as well, resorting
on a show method for LuckModelData objects.82

• The plot method for LuckModel objects represents the parameter sets graphically.

Secondly, there are methods for working with and displaying the resulting sets of prior or
posterior distributions for concrete data distributions, along with two exemplary inference
methods.
79The function optim provided by R for general-purpose multivariate optimisation is not recommended

for univariate optimisation.
80See Example 3.3, p. 86f.
81See the study by Krautenbacher (2011), who contributed the code for this distribution family. The

results of this study are brie�y discussed in Section 3.2.3.2.
82show methods are the S4 equivalent to print methods for S3 objects.
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LuckModel

n0: matrix

y0: matrix

data: LuckModelData

show()

plot()

unionHdi()
...

ScaledNormalLuckModel

singleHdi()

ExponentialLuckModel

singleHdi()

...

singleHdi()

LuckModelData

tauN: matrix

rawData: matrix

show()

ScaledNormalData

show()

ExponentialData

show()

...

show()

Figure 3.8.: UML diagram for the luck package, illustrating the class hierarchy. In UML
diagrams, the slots and methods that subclasses inherit are not specify ex-
plicitely; only new slots and methods are displayed. The class of each slot is
given next to its name. The data slot in LuckModel is of class LuckModelData,
indicated by the dashed arrow.

• The constructor functions are modi�ed, for example to check if the input �ts to the
data or prior distribution, or to allow the simulation of data according to the data
distribution when creating the LuckModelData object.

• The accessor and replacement functions need not be speci�ed again for the special-
ized classes, as those can be taken from the general classes, i.e., these functions are
'inherited' from the respective LuckModel or LuckModelData class. An exception is
the function for replacing the raw data in the LuckModelData object, as there, the
input must be checked to �t the sample space domain. As an example, in case of the
ExponentialData class, data must be strictly positive.

• The show methods for LuckModel and LuckModelData are specialised in order to
explain to the user the meaning of the canonical parameters n(0) and y(0).

• unionHdi calculates the union of highest density intervals for a specialised LuckModel

object.83 This method relies on a function singleHdi, that gives a highest density
interval for a single parameter combination (n, y) for the respective conjugate prior
or posterior distribution. Therefore, for each specialised LuckModel class, singleHdi
must be provided.

83Highest density (HD) intervals were discussed in Section 1.2.3.3, while unions of highest density intervals
were considered, e.g., in Example 3.3, p. 86f.
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• cdfplot plots the set of cumulative density functions for specialised LuckModel ob-
jects. Again, this method relies on a function singleCdf, returning values of the
cumulative density function for a single parameter combination (n, y) for the respec-
tive conjugate prior distribution.
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3.5. On Prior-Data Con�ict in Predictive Bernoulli

Inferences

This section reproduces the work �On Prior-Data Con�ict in Predictive Bernoulli Infer-
ences�, published as a peer-reviewed contribution to ISIPTA'11: Proceedings of the Seventh
International Symposium on Imprecise Probabilities: Theories and Applications (Walter,
Augustin, and Coolen 2011). As such, it is reproduced here almost verbatim, except for
some minor shortenings, especially in the Introduction (Section 3.5.1), and the addition of
some comments and footnotes linking this work to other parts of this thesis. Furthermore,
the notation was changed slightly to assure consistency with the rest of the material pre-
sented in this thesis. Speci�cally, the success probability in Bernoulli trials is denoted by
θ instead of p.

Abstract

By its capability to deal with the multidimensional nature of uncertainty, imprecise prob-
ability provides a powerful methodology to sensibly handle prior-data con�ict in Bayesian
inference. When there is strong con�ict between sample observations and prior knowledge,
the posterior model should be more imprecise than in the situation of mutual agreement
or compatibility. Focusing presentation on the prototypical example of Bernoulli trials, we
discuss the ability of di�erent approaches to deal with prior-data con�ict.
We study a generalised Bayesian setting, including Walley's Imprecise Beta-Binomial

model and his extension to handle prior data con�ict (called pdc-IBBM here). We inves-
tigate alternative shapes of prior parameter sets, chosen in a way that shows improved
behaviour in the case of prior-data con�ict and their in�uence on the posterior predictive
distribution. Thereafter we present a new approach, consisting of an imprecise weighting
of two originally separate inferences, one of which is based on an informative imprecise
prior, whereas the other one is based on an uninformative imprecise prior. This approach
deals with prior-data con�ict in a fascinating way.

3.5.1. Introduction

Imprecise probability has shown to be a powerful methodology to cope with the multidi-
mensional nature of uncertainty (see the discussion in Sections 2.1 and 2.2). Imprecision
allows the quality of information, on which probability statements are based, to be mod-
eled. Well supported knowledge is expressed by comparatively precise models, while highly
imprecise (or even vacuous) models re�ect scarce (or no) knowledge on probabilities. This
�exible, multidimensional perspective on uncertainty modeling has intensively been uti-
lized in generalised Bayesian inference to overcome the criticism of the arbitrariness of the
choice of single prior distributions in traditional Bayesian inference.84 In addition, only

84This criticism, subsumed by Walley (1991, �5) as the �dogma of precision�, is discussed more detailed in
Section 2.2.3.
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imprecise probability models react reliably to the presence of prior-data con�ict, i.e. situ-
ations where �the prior [places] its mass primarily on distributions in the sampling model
for which the observed data is surprising� (Evans and Moshonov 2006, p. 894). Lower and
upper probabilities85 allow a speci�c reaction to prior-data con�ict, and o�er reasonable in-
ferences if the analyst wishes to stick to his prior assumptions: starting with the same level
of ambiguity in the prior speci�cation, wide posterior intervals can re�ect con�ict between
prior and data, while no prior-data con�ict will lead to narrow intervals.86 Ideally, the
model could provide an extra `bonus' of precision if prior assumptions are very strongly
supported by the data. Such a model would have the advantage of (relatively) precise
answers when the data con�rm prior assumptions, while still rendering more cautionary
answers in the case of prior-data con�ict, thus leading to cautious inferences if, and only
if, caution is needed.
Although Walley (1991, p. 6) explicitly emphasizes this possibility to express prior-data

con�ict as one of the main motivations for imprecise probability, it has received surprisingly
little attention. Rare exceptions include two short sections in Walley (1991, p. 6 and �5.4)
and the papers by Pericchi and Walley (1991), Coolen (1994) and Whitcomb (2005). The
popular IDM (Walley 1996b; Bernard 2009) and its generalisation to exponential families
(Quaeghebeur and Cooman 2005) do not re�ect prior-data con�ict. Walter and Augustin
(2009b, see Section 3.3) used the basic ideas of Walley (1991, �5.4) to extend the approach
of Quaeghebeur and Cooman (2005) to models that show sensitivity to prior-data con�ict.
In this work, a deeper investigation of the issue of prior-data con�ict is undertaken,

focusing on the prototypic special case of predictive inference in Bernoulli trials:87 We
are interested in the posterior predictive probability for the event that a future Bernoulli
random quantity will have the value 1, also called a `success'. This event is not explicitly
included in the notation, i.e. we simply denote its lower and upper probabilities by P and
P, respectively. This future Bernoulli random quantity is assumed to be exchangeable with
the Bernoulli random quantities whose observations are summarised in the data, consisting
of the number n of observations and the number s of these that are successes. In our
analysis of this model, we will often treat s as a a real-valued observation in [0, n], keeping
in mind that in reality it can only take integer values, but the continuous representation
is convenient for our discussions, in particular in our predictive probability plots (PPP),
where for given n, P and P are discussed as functions of s.

Section 3.5.2.1 describes a general framework for generalised Bayesian inference in this
setting. The method presented in Walley (1991, �5.4.3), called `pdc-IBBM' in this pa-
per, is considered in detail in Section 3.5.2.2 and we show that its reaction to prior-data
con�ict can be improved by suitable modi�cations of the underlying imprecise priors. A
basic proposal along these lines is discussed in Section 3.5.2.3, with further alternatives

85See Section 2.1.2 for a short exposition of lower and upper previsions, and related mathematical tools
for handling uncertainty in statistical inference.

86See the discussions of prior-data con�ict sensitivity in Sections 2.2.3.3 and 3.1.4, and our contribution
centerd around this issue in Section 3.3.

87See also the discussion of the Beta-Binomial model in Section 1.2.3.3, and the imprecise Dirichlet-
Multinomial model discussed in several examples in Section 3.3.
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sketched in Section 3.5.2.4. Section 3.5.3 addresses the problem of prior-data con�ict from
a completely di�erent angle. There, we combine two originally separate inferences, one
based on an informative imprecise prior and one on an uninformative imprecise prior, by
an imprecise weighting scheme. We conclude the contribution with a brief comparison of
the di�erent approaches in Section 3.5.4.

3.5.2. Imprecise Beta-Binomial Models

3.5.2.1. The Framework

The traditional Bayesian approach for our basic problem is the Beta-Binominal model,
which expresses prior beliefs about the probability θ of observing a `success' by a Beta
distribution. With88 f(θ | n(0), y(0)) ∝ θn

(0)y(0)−1(1 − θ)n(0)(1−y(0))−1, y(0) = E[θ | n(0), y(0)]
can be interpreted as prior guess of θ, while n(0) governs the concentration of probability
mass around y(0), also known as `pseudo counts' or `prior strength'.89 These denominations
are due to the role of n(0) in the update step: With s successes in n draws observed, the
posterior parameters are90

n(n) = n(0) + n, y(n) =
n(0)y(0) + s

n(0) + n
. (3.19)

Thus y(n) is a weighted average of the prior parameter y(0) and the sample proportion s/n,
and potential prior data con�ict is simply averaged out.
Overcoming the dogma of precision, formulating generalised Bayes updating in this set-

ting is straightforward. By Walley's Generalised Bayes' Rule (Walley 1991, �6)91 the im-
precise prior M(0), described by convex sets of precise prior distributions, is updated to
the imprecise posteriorM(n) obtained by updatingM(0) element-wise. In particular, the
convenient conjugate analysis used above can be extended:92 One speci�es a prior param-
eter set IΠ(0) of (n(0), y(0)) values and takes as imprecise prior the setM(0) consisting of all
convex mixtures of Beta priors with (n(0), y(0)) ∈ IΠ(0). In this sense, the set of Beta priors
corresponding to IΠ(0) gives the set of extreme points for the actual convex set of priors
M(0). Updating M(0) with the Generalised Bayes' Rule results in the convex set M(n)

of posterior distributions, that conveniently can be obtained by taking the convex hull of
the set of Beta posteriors, which in turn are de�ned by the set of updated parameters
IΠ(n) = {(n(n), y(n)) | (n(0), y(0)) ∈ IΠ(0)}. This relationship between the sets IΠ(0) and IΠ(n)

and the sets M(0) and M(n) will allow us to discuss di�erent models M(0) and M(n) by

88Our notation relates to Walley's (1991) as n(0) ↔ s0, y
(0) ↔ t0.

89As in previous parts of the thesis, (0) denotes prior parameters; (n) posterior parameters.
90Compare to Section 1.2.3.1, Equation (1.6): the model is prototypic for conjugate Bayesian analysis in

canonical exponential families, for which updating of the parameters n(0) and y(0) can be written as
(3.19).

91For more details on the Generalised Bayes' Rule and the generalised Bayesian inference procedure, see
Sections 2.1.2.5 and 2.1.3, respectively.

92See the discussion of the general framework for generalised Bayesian inference based on sets of conjugate
priors in Section 3.1.1.
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depicting the corresponding parameter sets IΠ(0) and IΠ(n). When interpreting our results,
care will be needed with respect to convexity. Although M(0) and M(n) are convex, the
parameter sets IΠ(0) and IΠ(n) generating them need not necessarily be so. Indeed, convex-
ity of the parameter set is not necessarily preserved in the update step: Convexity of IΠ(0)

does not imply convexity of IΠ(n).

Throughout, we are interested in the posterior predictive probability [P,P] for the event
that a future draw is a success. In the Beta-Bernoulli model, this probability is equal to
y(n), and we get

P = y(n) := min
IΠ(n)

y(n) = min
IΠ(0)

n(0)y(0) + s

n(0) + n
, (3.20)

P = y(n) := max
IΠ(n)

y(n) = max
IΠ(0)

n(0)y(0) + s

n(0) + n
. (3.21)

3.5.2.2. Walley's pdc-IBBM

Special imprecise probability models are now obtained by speci�c choices of IΠ(0). If
one �xes n(0) and varies y(0) in an interval [y(0), y(0)], Walley's (1991, �5.3) model with
learning parameter n(0) is obtained, which typically is used in its near-ignorance form
[y(0), y(0)] → (0, 1), denoted as the imprecise Beta (Binomal/Bernoulli) model (IBBM)93,
which is a special case of the popular Imprecise Dirichlet (Multinomial) Model (Walley
1996b; Walley and Bernard 1999). Unfortunately, in this basic form with �xed n(0), the
model is insensitive to prior-data con�ict (Walter and Augustin 2009b, p. 263, see Sec-
tion 3.3.3.2). Walley (1991, �5.4) therefore generalised this model by additionally varying
n(0). In his extended model, called pdc-IBBM in this work, the set of priors is de�ned via
the set of prior parameters IΠ(0) = [n(0), n(0)]× [y(0), y(0)], being a two-dimensional interval,
or a rectangle set. Studying inference in this model, it is important to note that the set of
posterior parameters IΠ(n) is not rectangular anymore. The resulting shapes are illustrated
in Figure 3.9: For the prior set IΠ(0) = [1, 5]× [0.4, 0.7]�thus assuming a priori the fraction
of successes to be between 40% and 70% and rating these assumptions with at least 1 and
at most 5 pseudo observations�the resulting posterior parameter sets IΠ(n) are shown for
data consisting of 3 successes in 6 draws (left) and with all 6 draws successes (right). We
call the left shape spotlight, and the right shape banana. In both graphs, the elements of
IΠ(n) yielding y(n) and y(n), and thus P and P, are marked with a circle.

The transition point between the spotlight and the banana shape in Figure 3.9 is the
case when s

n
= y(0). Then y(n), being a weighted average of y(0) and s

n
, is attained for all

n(0) ∈ [n(0), n(0)], and the top border of IΠ(n) in the graphical representation of Figure 3.9
is constant. Likewise, y(n) is constant if s

n
= y(0). Therefore, (3.20) and (3.21) can be

93We use `IBBM' also for the model with prior information.
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Figure 3.9.: Posterior parameter sets IΠ(n) for rectangular IΠ(0). Left: spotlight shape; right:
banana shape.

subsumed as

P =


n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S1

n(0)y(0)+s

n(0)+n
if s ≤ n · y(0) =: S1

,

P =


n(0)y(0)+s

n(0)+n
if s ≤ n · y(0) =: S2

n(0)y(0)+s

n(0)+n
if s ≥ n · y(0) =: S2

.

The interval [S1, S2] gives the range of expected successes [n ·y(0), n ·y(0)] and will be called
`Total Prior-Data Agreement' interval, or TPDA. For s in the TPDA, we are `spot on':
y(n) and y(n) are attained for n(0) and IΠ(n) has the spotlight shape. But if the observed
number of successes is outside TPDA, IΠ(n) goes bananas and either P or P is calculated
with n(0).
To summarise, the predictive probability plot (PPP), displaying P and P for s ∈ [0, n],

is given in Figure 3.10. For the pdc-IBBM, the speci�c values are

S1 = ny(0) A =
n(0)y(0)

n(0) + n
C =

n(0)y(0) + n

n(0) + n

S2 = ny(0) B =
n(0)y(0)

n(0) + n
D =

n(0)y(0) + n

n(0) + n
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Figure 3.10.: P and P for models in Sections 3.5.2.2 and 3.5.2.3.

E1 = y(0) E2 =
n(0)y(0) + ny(0)

n(0) + n
sl. 1 =

1

n(0) + n

F2 = y(0) F1 =
n(0)y(0) + ny(0)

n(0) + n
sl. 2 =

1

n(0) + n
.

As noted by Walley (1991, p. 224), the posterior predictive imprecision ∆ = P−P can be
calculated as

∆ =
n(0)(y(0) − y(0))

n(0) + n
+

n(0) − n(0)

(n(0) + n)(n(0) + n)
∆(s, IΠ(0)) ,

where ∆(s, IΠ(0)) = inf{|s− ny(0)| : y(0) ∈ [y(0), y(0)]} is the distance of s to the TPDA. If
∆(s, IΠ(0)) 6= 0, we have an e�ect of additional imprecision as desired, increasing linearly
in s, because IΠ(n) is going bananas. However, when considering the fraction of observed
successes instead of s, the onset of this additional imprecision immediately if s

n
6∈ [y(0), y(0)]

seems very abrupt. Moreover, and even more severe, it happens irrespective of the number
of trials n. When updating successively, this means that all single Bernoulli observations,
being either 0 or 1, have to be treated as if being in con�ict (except if y(0) = 1 and s = n
or if y(0) = 0 and s = 0). Furthermore, regarding s/n = 7/10 as an instance of prior-data
con�ict when y(0) = 0.6 had been assumed seems somewhat picky. To explore possibilities
to amend this behaviour, alternative approaches are explored next.
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3.5.2.3. Anteater Shape Prior Sets

Choosing a two-dimensional interval IΠ(0) seems logical, but the resulting inference is not
fully satisfactory in case of prior data con�ict. Recall that IΠ(0) is used to produceM(0),
which then is processed by the Generalised Bayes rule. Any shape can be chosen for IΠ(0),
including the composure of single pairs (n(0), y(0)). Here, we investigate an alternative
shape, with y(0) a function of n(0), aiming at a more advanced behaviour in the case of
prior-data con�ict. To elicit IΠ(0), one could consider a thought experiment:94 Given the
hypothetical observation of sh successes in nh trials, which values should P and P take?
In other words, what would one like to learn from data sh/nh in accordance with prior
beliefs? As a simple approach, we can de�ne IΠ(0) such that P = c and P = c are constants
in n(n) = n(0) + nh. Then, the lower and upper bounds for y(0) must be

y(0)(n(0)) =
(nh + n(0))c− sh

n(0)
,

y(0)(n(0)) =
(nh + n(0))c− sh

n(0)
,

(3.22)

for n(0) in an interval [n(0), n(0)] derived by the range [n(n), n(n)] one wishes to attain for
P and P given the nh hypothetical observations.95 The resulting shape of IΠ(0) is as in
Figure 3.11 (left) and called anteater shape. Rewriting (3.22), IΠ(0) is now de�ned by

IΠ(0) =
{

(n(0), y(0))
∣∣∣n(0) ∈ [n(0), n(0)], y(0)(n(0)) ∈

[
c− nh

n(0)

( sh
nh
− c
)
, c+

nh

n(0)

(
c− sh

nh

)]}
.

With the reasonable choice of c and c such that c ≤ sh/nh ≤ c, IΠ(0) can be interpreted as
follows: The range of y(0) protrudes over [c, c] on either side far enough to ensure P = c
and P = c if updated with s = sh for n = nh, the amount of protrusion decreasing in n(0)

as the movement of y(0)(n(0)) towards sh/nh is slower for larger values of n(0). As there is
a considerable di�erence in behaviour if n > nh or n < nh, these two cases are discussed
separately.
If n > nh, the PPP graph in Figure 3.10 holds again, now with the values

A =
c(n(0) + nh)− sh

n(0) + n
S1 = sh + c(n− nh)

B =
c(n(0) + nh)− sh

n(0) + n
S2 = sh + c(n− nh)

C =
c(n(0) + nh)− sh + n

n(0) + n
sl. 1 = 1/(n(0) + n)

D =
c(n(0) + nh)− sh + n

n(0) + n
sl. 2 = 1/(n(0) + n)

94This strategy is also known as `pre-posterior' analysis in the Bayesian literature.
95For the rest of this section, we tacitly assume that nh, sh, n(0) and c/c are chosen such that y(0) ≥ 0

resp. y(0) ≤ 1 to generate Beta distributions as priors.
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Figure 3.11.: IΠ(0) and IΠ(n) for the anteater shape.

E1 = c E2 = c+
n(0) + nh

n(0) + n
(c− c) = c− n− nh

n(0) + n
(c− c)

F2 = c F1 = c− n(0) + nh

n(0) + n
(c− c) = c+

n− nh

n(0) + n
(c− c) .

As for the pdc-IBBM, the TPDA boundaries S1 and S2 mark the transition points where
either y(n) or y(n) are constant in n(0). We now have

S1

n
= c+

nh

n

( sh
nh
− c
)
,

S2

n
= c− nh

n

(
c− sh

nh

)
,

so this TPDA is a subset of [c, c]. The anteater shape is, for n > nh, even more strict than
the pdc-IBBM, as, e.g., y(0)(n(0)) = c− nh

n(0)

(
sh

nh
− c
)
< S1

n
.

The situation for n < nh is illustrated in Figure 3.12, where A, B, C, D, E1, F2 and
slopes 1 and 2 are the same as for n > nh, but

E2 = c+
n(0) + nh

n(0) + n
(c− c) = c+

nh − n
n(0) + n

(c− c) ,

F1 = c− n(0) + nh

n(0) + n
(c− c) = c− nh − n

n(0) + n
(c− c) .

Note that now S2 < S1, so the TPDA is [S2, S1]. In this interval, P and P are now
calculated with n(0); for s 6∈ [S2, S1] the same situation as for n > nh applies, with the
bound nearer to s/n calculated with n(0) and the other with n(0).
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Figure 3.12.: P and P for the anteater shape if n < nh.
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Figure 3.13.: Posterior parameter sets IΠ(n) for anteater prior sets IΠ(0). Left: the transition
point where the lower contour of the posterior parameter set is attained for
all n(n), right: the banana shape.
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The upper transition point S1 can now be between y(0)(n(0)) and y(0)(n(0)), and having
S1 decreasing in n now makes sense: the smaller n, the larger S1, i.e. the more tolerant
is the anteater set. The switch over S1 (with s/n increasing) is illustrated in the three
graphs in Figures 3.11 (right) and 3.13 (left, right): First, IΠ(0) from Figure 3.11 (left) is
updated with s/n = 3/6 < S1/n, leading again to an anteater shape, and so we get P
and P from the elements of IΠ(n) at n(n), as marked with circles. Second, the transition
point is reached for s = S1 = 4.27, and now P is attained for any n(n) ∈ [n(n), n(n)], as
emphasized by the arrow. Third, as soon as s exceeds S1 (in the graph: s/n = 6/6), it
holds that y(n)(n(n)) > y(n)(n(n)), and P is now attained at n(n). As for the pdc-IBBM, for
s outside the TPDA IΠ(n) goes bananas, leading to additional imprecision. The imprecision
∆ = P− P if n < nh is

∆ =
n(0)+ nh

n(0)+ n
(c− c) +

n(0) − n(0)

(n(0)+ n)(n(0)+ n)
∆(s, n, c),

where ∆(s, n, c) = n
∣∣c∗− s

n

∣∣−nh∣∣c∗− sh

nh

∣∣, and c∗ = arg maxc∈[c,c] | sn − c| is the boundary of
c := [c, c] with the largest distance to s/n. For s ∈ [S2, S1], ∆(s, n, c) = 0, giving a similar
structure as for the pdc-IBBM, except that ∆(s, n, c) does not directly give the distance
of s/n to IΠ(0) but is based on [c, c]. The imprecision increases again linearly with s, but
now also with n. The distance of s/n to the opposite bound of [c, c] (weighted with n) is
discounted by the distance of sh/nh to the same bound (weighted with nh). In essence,
∆(s, n, c) is thus a reweighted distance of s/n to sh/nh. The more dissimilar these fractions
are, the larger the posterior predictive imprecision is.
For n = nh, S1 = S2 = sh, so the TPDA is reduced to a single point. In this case,

the anteater shape can be considered as an equilibrium point, with any s 6= sh leading to
increased posterior imprecision. In this case, the weights in ∆(s, n, c) coincide, and so the
posterior imprecision depends directly on |s− sh|.
For n > nh the transition behaviour is as for the pdc-IBBM: As long as s ∈ [S1, S2], IΠ(n)

has the spotlight shape, where both P and P are calculated with n(n); ∆ for s ∈ [S1, S2] is
thus calculated with n(n) as well. If, e.g., s > S2, P is attained with n(n), and ∆(s, n, c)
gives directly the distance of s/n to sh/nh, the part of which is inside [c, c] is weighted
with n, and the remainder with nh. Table 3.2 provides an overview of the possible shapes
of IΠ(n).

3.5.2.4. Intermediate Résumé

Despite the (partly) di�erent behaviour inside the TPDA, both pdc-IBBM and the anteater
shape display only two di�erent slopes in their PPPs (Figures 3.10 and 3.12), with ei-
ther n(n) or n(n) used to calculate P and P. It is possible to have shapes such that
for some s other values from [n(n), n(n)] are used. As a toy example, consider IΠ(0) =
{(1, 0.4), (3, 0.6), (5, 0.4)}, so consisting only of three parameter combinations (n(0), y(0)).
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IΠ(n) shape

n > nh
s < S1 s ∈ [S1, S2] s > S2

banana spotlight banana

n = nh
s < sh s = sh s > sh

banana rectangular banana

n < nh
s < S2 s ∈ [S2, S1] s > S1

banana anteater banana

Table 3.2.: Shapes of IΠ(n) if IΠ(0) has the anteater shape.

P is then derived as y(n) = max{0.4+s
1+n

, 1.8+s
3+n

, 2+s
5+n
}, leading to

y(n) =


0.4+s
1+n

if s > 0.7n+ 0.3
1.8+s
3+n

if 0.1n− 1.5 < s < 0.7n+ 0.3
2+s
5+n

if s < 0.1n− 1.5

.

So, in a PPP we would observe the three di�erent slopes 1/(1+n), 1/(3+n) and 1/(5+n)
depending on the value of s. Our conjecture is therefore that with carefully tailored sets
IΠ(0), an arbitrary number of slopes is possible, and so even smooth curvatures. Using
a thought experiment as for the anteater shape, IΠ(0) shapes can be derived to �t any
required behaviour. Another approach for constructing a IΠ(0) that is more tolerant with
respect to prior-data con�ict could be as follows: As the onset of additional imprecision in
the pdc-IBBM is caused by the fact that y(n)(n(n)) > y(n)(n(n)) as soon as s/n > y(0), we
could de�ne the y(0) interval at n(0) to be narrower than the y(0) interval at n(0), so that
the banana shape results only when s/n exceeds y(0)(n(0)) far enough. Having a narrower
y(0) interval at n(0) than at n(0) could also make sense from an elicitation point of view: We
might be able to give quite a precise y(0) interval for a low prior strength n(0), whereas for
a high prior strength n(0) we must be more cautious with our elicitation of y(0), i.e. giving
a wider interval. The rectangular shape for IΠ(0) as discussed in Section 3.5.2.2 seems thus
somewhat peculiar. One could also argue that if one has substantial prior information, but
acknowledges that this information may be wrong, one should not reduce the weight of the
prior n(0) on the posterior while keeping the same informative interval of values of y(0).
Generally, the actual shape of a set IΠ(0) in�uences the inferences, but for a speci�c

inference, only a few aspects of the set are relevant. So, while a detailed shape of a prior
set may be very di�cult to elicit, it may not even be that relevant for a speci�c inference.
A further general issue seems unavoidable in the generalised Bayesian setting as developed
here, namely the dual role of n(0). On the one hand, n(0) governs the weighting of prior
information y(0) with respect to the data s/n, as mentioned in Section 3.5.2.1: The larger
n(0), the more P and P are dominated by y(0) and y(0). On the other hand, n(0) governs also
the degree of posterior imprecision: the larger n(0), the larger c.p. ∆. A larger n(0) thus
leads to more imprecise posterior inferences, although a high weight on the supplied prior
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information should boost the trust in posterior inferences if s in the TPDA, i.e. the prior
information turned out to be appropriate. In the next section, we thus develop a di�erent
approach separating these two roles: Now, two separate models for predictive inference,
each resulting in di�erent precision as governed by n(0), are combined with an imprecise
weight α taking the role of regulating prior-data agreement.

3.5.3. Weighted Inference

We propose a variation of the Beta-Binomial model that is attractive for prior-data con�ict
and has small yet fascinating di�erences with the models in Sections 3.5.2.2 and 3.5.2.3.
We present a basic version of the model in Section 3.5.3.1, followed by an extended version
in Section 3.5.3.2. Opportunities to generalise the model are mentioned in Section 3.5.3.3.

3.5.3.1. The Basic Model

The idea for the proposed model is to combine the inferences based on two models, each part
of an imprecise Bayesian inferential framework using sets of prior distributions, although
the inferences can also result from alternative inferential methods. The combination is
not achieved by combining the two sets of prior distributions into a single set, but by
combining the posterior predictive inferences by imprecise weighted averaging. When the
weights assigned to the two models can vary over the whole range [0, 1] we actually return
to imprecise Bayesian inference with a prior set, as considered in this subsection. In
Section 3.5.3.2 we restrict the values of the model weights. The basic model turns out to
be relevant from many perspectives, in particular to highlight similarities and di�erences
with the methods presented in Sections 3.5.2.2 and 3.5.2.3, and it is a suitable starting
point for more general models. These aspects will be discussed in Subsection 3.5.3.3.
We consider the combination of the imprecise posterior predictive probabilities [Pi,P

i
]

and [Pu,P
u
] for the event that the next observation is a success with

Pi =
si + s

ni + n+ 1
and P

i
=
si + s+ 1

ni + n+ 1
, (3.23)

Pu =
s

n+ 1
and P

u
=
s+ 1

n+ 1
. (3.24)

The superscript i indicates `informative', in the sense that these lower and upper probabil-
ities relate to an `informative' prior distribution re�ecting prior beliefs of similar value as
si successes in ni observations. The superscript u indicates `uninformative', which can be
interpreted as absence of prior beliefs. These lower and upper probabilities can for example
result from Walley's IBBM, with Pi and P

i
based on the prior set with n(0) = ni + 1 and

y(0) ∈
[

si

ni+1
, s

i+1
ni+1

]
, and Pu and P

u
on the prior set with n(0) = 1 and y(0) ∈ [0, 1]. There

are other methods for imprecise statistical inference that lead to these same lower and
upper probabilities, including Nonparametric Predictive Inference for Bernoulli quantities
(Coolen 1998)96, where the si and ni would only be included if they were actual observa-
96See the short description in Section 2.1.4, and for more resources also www.npi-statistics.com.

www.npi-statistics.com
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tions, for example resulting from a second data set that one may wish to include in the
`informative' model but not in the `uninformative' model.
The proposed method combines these lower and upper predictive probabilities by im-

precise weighted averaging. Let α ∈ [0, 1], we de�ne

Pα= αPi + (1− α)Pu, Pα= αP
i
+ (1− α)P

u
, (3.25)

and as lower and upper predictive probabilities for the event that the next Bernoulli random
quantity is a success,97

P = min
α∈[0,1]

Pα and P = max
α∈[0,1]

Pα .

Allowing α to take on any value in [0, 1] reduces this method to the IBBM with a single
prior set, as discussed in Section 3.5.2, with the prior set simply generated by the union of
the two prior sets for the `informative' and the `uninformative' models as described above.
For all s these minimum and maximum values are obtained at either α = 0 or α = 1. With
switch points S1 = (n+ 1) s

i

ni
− 1 and S2 = (n+ 1) s

i

ni
, they are equal to

P =

{
Pu = s

n+1
if s ≤ S2

Pi = si+s
ni+n+1

if s ≥ S2

, P =

{
P
i

= si+s+1
ni+n+1

if s ≤ S1

P
u

= s+1
n+1

if s ≥ S1

.

The PPP graph for this model is displayed in Figure 3.14. Note that the lower probability
P is made up of two line segments, one from s = 0 to s = S2 and a second line segment,
with smaller slope, for the larger values until s = n. The upper probability P is also made
up of two line segments, one from s = 0 to s = S1 and a second line segment, with larger
slope, for the larger values until s = n. These switch points are the same for the special
cases of the weighted inference method as discussed in detail in this section.
The upper probability for s = S1 and the lower probability for s = S2 are both equal to

si

ni
. The TPDA contains only a single possible value of s (except if S1 and S2 are integer),

namely the one that is nearest to si

ni
. The speci�c values for this basic case are

A = 0 B =
si + 1

ni + n+ 1
C =

si + n

ni + n+ 1

D = 1 E =
si

ni
− 1

n+ 1
F =

si

ni
+

1

n+ 1

sl. 1 =
1

ni + n+ 1
sl. 2 =

1

n+ 1
.

If s is in the TPDA, it re�ects optimal agreement of the `prior data' (ni, si) and the (really
observed) data (n, s), so it may be a surprise that both the lower and upper probabilities in
this case correspond to α = 0, so they are fully determined by the `uninformative' part of

97While in (3.20) and (3.21), prior and sample information are imprecisely weighted, here informative and
uninformative models are combined.
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Figure 3.14.: P and P for the weighted inference model.

the model. This is an important aspect, it will be discussed in more detail and compared
to the methods of Section 3.5.2 in Subsection 3.5.3.3. For s in the TPDA, both P and P
increase with slope 1

n+1
, and imprecision ∆ = 1

n+1
.

Figure 3.14, with the speci�c values for this basic case given above, illustrates what
happens for values of s outside this TPDA. Moving away from the TPDA in either direction,
the imprecision increases, as was also the case in the models in Section 3.5.2. For s
decreasing towards 0, this is e�ectively due to the smaller slope of the upper probability,
while for s increasing towards 1 it is due to the smaller slope of the lower probability. For
s ∈ [0, S1], the imprecision is ∆ = si+1

ni+n+1
− sni

(ni+n+1)(n+1)
. For s ∈ [S2, n], the imprecision is

∆ = 1
n+1
− si

ni+n+1
+ sni

(ni+n+1)(n+1)
. For the two extreme possible cases of prior data con�ict,

with either si = ni and s = 0 or si = 0 and s = n, the imprecision is ∆ = ni+1
ni+n+1

. For this
combined model with α ∈ [0, 1], we have P ≤ s

n
≤ P for all s, which is attractive from the

perspective of objective inference.

There are important further aspects of this model to be discussed, in particular how
to meaningfully choose si and ni, but this is postponed until Section 3.5.3.3, where we
will start discussing these aspects by again focussing �rst on this basic model followed by
discussion of an extended version of this model, which is introduced next.
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3.5.3.2. The Extended Model

We extend the basic model from Subsection 3.5.3.1, perhaps remarkably by reducing the
interval for the weighting variable α. We assume that α ∈ [αl, αr] with 0 ≤ αl ≤ αr ≤ 1.
We consider this an extended version of the basic model as there are two more parameters
that provide increased modelling �exibility. It is important to remark that, with such a
restricted interval for the values of α, this weighted model is no longer identical to an
IBBM with a single set of prior distributions. One motivation for this extended model is
that the basic model seemed very cautious by not using the informative prior part if s is in
the TPDA. For αl > 0, the informative part of the model in�uences the inferences for all
values of s, including the one in the TPDA. As a consequence of taking αl > 0, however,
the line segment (s, s

n
) with s ∈ [0, n] will not always be in between the lower and upper

probabilities anymore, speci�cally not at, and close to, s = 0 and s = n, as follows from
the results presented below.
The lower and upper probabilities resulting from the two models that are combined by

taking an imprecise weighted average are again as given by formulae (3.23)�(3.24), with
the weighted averages Pα and Pα, for any α ∈ [αl, αr], again given by (3.25). This leads
to the lower and upper probabilities for the combined inference

P = min
α∈[αl,αr]

Pα and P = max
α∈[αl,αr]

Pα .

The lower and upper probabilities have, as function of s, the generic forms presented in

Figure 3.14, with [S1, S2] =
[
(n+ 1) s

i

ni
− 1, (n+ 1) s

i

ni

]
as in Section 3.5.3.1. The speci�c

values for Figure 3.14 are

A = αls
i

ni+n+1
B = 1

n+1
+ αr[si(n+1)−ni]

(ni+n+1)(n+1)

D = 1− αl(n
i−si)

ni+n+1
C = n

n+1
− αr[(ni−si)(n+1)−ni]

(ni+n+1)(n+1)

sl. 1 = ni+n+1−αrni
(ni+n+1)(n+1)

E = si

ni
− 1

n+1

[
1− αln

i

ni+n+1

]
sl. 2 = ni+n+1−αlni

(ni+n+1)(n+1)
F = si

ni
+ 1

n+1

[
1− αln

i

ni+n+1

]
.

The increase in imprecision when s moves away from the TPDA can again be considered
as caused by the informative part of the model, which is logical as the uninformative part
of the model cannot exhibit prior-data con�ict. Maximum prior-data con�ict occurs again
if si = 0 and s = n, in which case P = n

n+1
− αrnin

(ni+n+1)(n+1)
and P = 1− αln

i

ni+n+1
, or if si = ni

and s = 0, when P = αln
i

ni+n+1
and P = 1

n+1
+ αrnin

(ni+n+1)(n+1)
.

The possibility to choose values for αl and αr provides substantially more modelling
�exibility compared to the basic model presented in Section 3.5.3.1. One may, for example,
wish to enable inferences solely based on the informative part of the model, hence choose
αr = 1, but ensure that this part has in�uence on the inferences in all situations, with equal
in�uence to the uninformative part in case of TPDA. This latter aspect can be realized by
choosing αl = 0.5. When compared to the situation in Section 3.5.3.1, this choice moves,
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in Figure 3.14, A and D away from 0 and 1, respectively, but does not a�ect B and C.
It also brings E and F a bit closer to the corresponding upper and lower probabilities,
respectively, hence reducing imprecision in the TPDA.

3.5.3.3. Weighted Inference Model Properties

The basic model presented in Section 3.5.3.1 �ts in the Bayesian framework, but its use
of prior information is di�erent to the usual way in Bayesian statistics. The lower and
upper probabilities are mainly driven by the uninformative part, which, e.g., implies that
P ≤ s

n
≤ P for all values of s. While in (imprecise, generalised) Bayesian statistics any

part of the model that uses an informative prior can be regarded as adding information
to the data, the informative part of the basic model leads to more careful inferences when
there is prior-data con�ict. Figure 3.14 shows that, for the basic case of Section 3.5.3.1,
the points A and D are based only on the uninformative part of the model, but the points
B and C are based on the informative part of the model.
Prior-data con�ict can be of di�erent strength, one would expect to only talk about

`con�ict' if consideration is required, hence the information in the prior and in the data
should be su�ciently strong. The proposed method in Section 3.5.3.1 takes as starting
point inference that is fully based on the data, it uses the informative prior part of the
model to widen the interval of lower and upper probabilities in the direction of the value
si

ni
. For example, if one observed s = 0, the upper probability of a success at the next

observation is equal to si+1
ni+n+1

, which re�ects inclusion of the information in the prior set
for the informative part of the model that is most supportive for this event, equivalent to
si + 1 successes in ni + 1 observations. As such, the e�ect of the prior information is to
weaken the inferences by increasing imprecision in case of prior-data con�ict.
One possible way in which to view this weighted inference model is as resulting from a

multiple expert or information source problem, where one wishes to combine the inferences
resulting individually from each source. The basic model of Section 3.5.3.1 leads to the
most conservative inference such that no individual model or expert disagrees, while the
restriction on weights provides a guaranteed minimum level for the individual contributions
to the combined inference.
It should be emphasized that the weighted inference model has wide applicability. The

key idea is to combine, by imprecise weighting, the actual inferences resulting from mul-
tiple models, and as such there is much scope for the use and further development of this
approach. The individual models could even be models such as those described in Sec-
tions 3.5.2.2 and 3.5.2.3, although that would lead to more complications. If the individual
models are coherent lower and upper probabilities, i.e. provide separately coherent infer-
ences, then the combined inference via weighted averaging and taking the lower and upper
envelopes is also separately coherent.98

In applications, it is often important to determine a sample size (or more general design
issues) before data are collected. If one uses a model that can react to prior-data con�ict,

98This follows, e.g., fromWalley (1991, �2.6.3f).
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this is likely to lead to a larger data requirement. One very cautious approach is to choose n
such that the maximum possible resulting imprecision does not exceed a chosen threshold.
In the models presented in this paper, this maximum imprecision will always occur for either
s = 0 or s = n, whichever is further away from the TPDA. In such cases, a preliminary
study has shown an attractive feature if one can actually sample sequentially. If some data
are obtained with success proportion close to si/ni, the total data requirement (including
these �rst observations) to ensure that the resulting maximum imprecision cannot exceed
the same threshold level is substantially less than had been the case before any data were
available. This would be in line with intuition, and further research into this and related
aspects is ongoing, including of course the further data need in case �rst sampled data is
in con�ict with (ni, si), and the behaviour of the models of Section 3.5.2 in such cases.
The weighted inference method combines the inferences based on two models, and can

be generalised to allow more than two models and di�erent inferential methods. It is also
possible to allow more imprecision in each of the models that are combined, leading to
more parameters in the overall model that can be used to control the behaviour of the
inferences. Similar post-inference combination via weighted averaging, but with precise
weights, has been presented in the frequentist statistics literature (Hjort and Claeskens
2003; Longford 2003), where the weights are actually determined based on the data and a
chosen optimality criterion for the combined inference. In Bayesian statistics, estimation
or prediction inferences based on di�erent models can be similarly combined using Bayes
factors (Kass and Raftery 1995), which are based on both the data (via the likelihood
function) and prior weightings for the di�erent models.99 In our approach, we do not use
the data or prior beliefs about the models to derive precise weights for the models, instead
we cautiously base our combined lower and upper predictive probabilities on those of the
individual models with a range of possible weights. This range is set by the analyst and
does not explicitly take the data or prior beliefs into account, but it provides �exibility
with regard to the relative importance given to the individual models.

3.5.4. Insights and Challenges

We have discussed two di�erent classes of inferential methods to handle prior-data con�ict
in the Bernoulli case. These can be generalised to the multinomial case corresponding to
the IDM. It also seems possible to extend the approaches to continuous sampling models
like the normal or the gamma distribution, by utilizing the fact that the basic form of
the updating of n(0) and y(0) in (3.19) underlying (3.20) and (3.21) is valid for arbitrary
canonical exponential families (see Quaeghebeur and Cooman 2005; Walter and Augustin
2009b, and Section 3.1). Further insight into the weighting method may also be provided by
comparing it to generalised Bayesian analysis based on sets of conjugate priors consisting
of nontrivial mixtures of two Beta distributions. There, however, the posterior mixture
parameter depends on the other parameters. For a deeper understanding of prior-data

99See also the brief characterisation of Bayes factors in the context of hypotheses testing and model
selection in Section 1.2.3.3.



120
3. Generalised Bayesian Inference with Sets of Conjugate Priors in

Exponential Families

con�ict, it may also be helpful to extend our methods to coarse data, in an analogous
way to Utkin and Augustin (2007) and Tro�aes and Coolen (2009), and to look at other
model classes of prior distributions, most notably at contamination neighbourhoods. Of
particular interest here may be to combine both types of prior models, considering contam-
ination neighbourhoods of our exponential family based-models with sets of parameters,
as developed in the Neyman-Pearson setting by Augustin (2002, � 5).
The models presented here address prior-data con�ict in di�erent ways, either by fully

utilizing the prior information in a way that is close to the traditional Bayesian method,
where this information is added to data information, or by not including them initially
as in Section 3.5.3. All these models show the desired increase of imprecision in case of
prior-data con�ict. It may be of interest to derive methods that explicitly respond to
(perhaps surprisingly) strong prior-data agreement.100 One possibility to achieve this with
the methods presented here is to consider the TPDA as this situation of strong agreement
in which one wants imprecision reduced further than compared to an `expected' situation,
and to choose the prior set (Section 3.5.2) or the two inferential models (Section 3.5.3)
in such a way to create this e�ect. This raises interesting questions for elicitation, but
both approaches provide opportunities for this and we consider it as an important topic
for further study.
Far beyond further extensions one has, from the foundational point of view, to be aware

that there are many ways in which people might react to prior-data con�ict, and we may
perhaps at best hope to catch some of these in a speci�c model and inferential method. This
is especially important when the con�ict is very strong, and indeed has to be considered as
full contradiction of modeling assumptions and data, which may lead to a revision of the
whole system of background knowledge in the light of surprising observations, as Hampel
argues.101 In this context, applying the weighting approach to the NPI-based model for
categorical data (Coolen and Augustin 2009) may provide some interesting opportunities,
as it explicitly allows to consider not yet observed and even unde�ned categories (Coolen
and Augustin 2005).
There is another intriguing way in which one may react to prior-data con�ict, namely

by considering the combined information to be of less value than either the real data
themselves or than both information sources. Strong prior beliefs about a high success
rate could be strongly contradicted by data, as such leading to severe doubt about what
is actually going on. The increase of imprecision in case of prior-data con�ict in the
methods presented in this paper might be interpreted as re�ecting this, but there may be
other opportunities to model such an e�ect. It may be possible to link these methods to
some popular approaches in frequentist statistics, where some robustness can be achieved
or where variability of inferences can be studied by round robin deletion of some of the
real observations. This idea may open up interesting research challenges for imprecise
probability models, where the extent of data reduction could perhaps be related to the
level of prior-data con�ict. Of course, such approaches would only be of use in situations

100See our suggestion for a parameter set shape that allows such a behaviour in Section 4.3 and Section A.2.
101See in particular the discussion of the structure and role of background knowledge in Hampel (2009a).
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with substantial amounts of real data, but as mentioned before, these are typically the
situations where prior-data con�ict is most likely to be of su�cient relevance to take its
modelling seriously. As (imprecise, generalised) Bayesian methods all work essentially by
adding information to the real data, it is unlikely that such new methods can be developed
within the Bayesian framework, although there may be opportunities if one restricts the
inferences to situations where one has at least a pre-determined number of observations to
ensure that posterior distributions are proper. For example, one could consider allowing
the prior strength parameter n(0) in the IBBM to take on negative values, opening up a
rich �eld for research and discussions.
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4. Concluding Remarks

We will conclude this thesis with a short summary of, and discussion of the central achiev-
ments in, this thesis in Sections 4.1 and 4.2, respectively. In Section 4.3, we will sketch
some opportunities for applications and avenues for further research.

4.1. Summary

After a detailed motivating example and application in Section 1.3, we presented some
theoretical foundations of imprecise or interval probability in Section 2, with a focus on
the approaches leading the way towards a generalisation of Bayesian inference. There,
we also gave some general motives for using imprecise probability methods, afterwards
focussing again on the Bayesian setting, where a foundational motive1 and two speci�c
motives were described: the case of weakly, or (near-) non-informative priors, and the
issue of prior-data con�ict (Section 2.2.3.3), where strong prior beliefs are in con�ict with
trusted data, but data is too sparse to overrule prior beliefs.
After a short view on some approaches understanding themselves as alternative to impre-

cise probability in Section 2.2.4, we proposed a general framework for imprecise Bayesian
inference based on sets of conjugate priors in Section 3.1,2 serving as a bracket and refer-
ence point for most of the models investigated in this thesis. Some general results regarding
inference properties of models in this framework were presented (we will comment on these
properties in the discussion below), and the two issues of weakly informative priors and
prior-data con�ict, problematic in usual Bayesian inference, could subsequently be consid-
ered as modelling opportunities of generalised Bayesian inference:

(i) Imprecise Bayesian methods allow to model weak prior information more adequately
than the so-called non-informative priors usually employed (see item V. on page 60,
and Section 3.1.3).

(ii) As we �nd that a common class of Bayesian inference procedures (those based on
the canonical conjugates described in Section 1.2.3.1) provides insu�ents inferences

1The Bayesian approach to inference requires an unattainable precision in prior assessments for the
foundational arguments for its use (e.g., coherence) to be valid (see Section 2.2.3.1).

2Based on the parametrisation of canonically constructed conjugate priors described in Section 1.2.3.1,
where a prior is identi�ed through a strength parameter n(0) and a main parameter y(0), the framework
considers sets of priors M(0) induced by sets of parameters IΠ(0), which consist of pairs (n(0), y(0)).
The set of posteriorsM(n), obtained by updating each distribution in the set of priorsM(0), can then
be conveniently described through the set of posterior parameters IΠ(n), consisting of pairs of updated
parameters (n(n), y(n)).
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in case of prior-data con�ict (see Section A.1.2 for some basic examples, and Sec-
tion A.1.3 and A.1.4 for the case of Bayesian linear regression), we developed im-
precise probability methods that overcome this de�ciency, by mapping ambiguity in
posterior inferences now also in dependence of prior-data con�ict (see Sections 3.1.4,
and speci�cally 3.3). In these models, a con�ict of prior beliefs and data entails larger
posterior parameter sets IΠ(n), leading to cautious inferences if, and only if, caution
is needed.

Section 3.2 considered some alternative models based on sets of priors, and discussed their
inference properties in comparison to the results in Section 3.1. Section 3.3 then motivated,
developed, and illustrated a central model type from Section 3.1 in more detail; afterwards,
Section 3.4 brie�y described a software implementation of this model framework.
Finally, Section 3.5 presented attempts to further re�ne inference behaviour in the pres-

ence of prior-data con�ict. In a �rst approach, the model discussed in Section 3.3 was
generalised by further tayloring the prior parameter set IΠ(0). The second, fundamentally
di�erent, approach attained prior-data con�ict sensitivity by combining inferences based
on two di�erent priors, an informative prior (expressing prior beliefs) and an uninformative
prior (a near-ignorance prior), through an imprecise weighting scheme.
As supplemental material, the Appendix (Chapter A) contains

(i) a study of prior-data con�ict sensitivity in Bayesian linear regression, presenting a
simpli�ed prior model that gives interesting insights into the updating step for the
regression parameters and o�ers opportunities for inferences based on sets of priors
(Section A.1);

(ii) some �rst technical results characterising a new prior parameter set shape, described
informally in Section 4.3 below (Section A.2).

4.2. Discussion

As the model overview in Section 3.1 gives already a detailed discussion of the imprecise
probability models considered in this thesis,3 we will try to emphasize some central points
here only.
The inference properties described in Section 3.1.2 for the generalised Bayesian model

framework established in Section 3.1.1 are quite remarkable in their generality, and illus-
trate the ability of imprecise probability models to realistically model partial information

3General motives for the use of imprecise probability models were discussed in Section 2.2, with a focus
on motives from a Bayesian perspective in Section 2.2.3. These motives can be subsumed as follows:
Generalised Bayesian models allow, in contrast to classical Bayesian models, a realistic modeling of
partial prior information, and can account for model uncertainty in a preferable way. Critique on, and
possible alternatives to, Generalised Bayesian inference models were discussed in Section 2.2.4, while
alternatives to the models covered in Section 3.1 are discussed in Section 3.2.
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for a wide �eld of inference tasks. In these models, ambiguity in prior speci�cations in�u-
ences ambiguity in posterior inferences in a natural and comprehensible way.4

Regarding the further model criterion `prior-data con�ict sensitivity', a central concept in
this thesis, we concluded that the shape of the prior parameter set IΠ(0) crucially in�uences
model behaviour, and noted at the end of Section 3.1.4 that there is a clear trade-o�
between easy handling of IΠ(0) or IΠ(n), and the desired model property. Models with �xed
prior strength parameter n(0), like the IDM under prior information and the model by
Quaeghebeur and Cooman (2005), are very easy to handle, with n(0), the lower (y(0)) and
upper (y(0)) bound of the prior main parameter as the only parameters to elicit, and IΠ(n)

being characterised again by the three values n(n), y(n) and y(n).5 However, these models
are insensitve to prior-data con�ict, and the model with IΠ(0) = [n(0), n(0)] × [y(0), y(0)]
presented in Section 3.3.4 mitigates this de�ciency, but at the cost of a more complex
shape of IΠ(n), not being a cartesian product of [n(n), n(n)] and [y(n), y(n)] anymore. The
more re�ned behaviour discussed in Section 3.5 is achieved by a more complex choice of
IΠ(0), where the range of y(0) values depends on n(0) via the contour functions y(0)(n(0))

and y(0)(n(0)) (see Section 3.5.2.3).
Revisiting and continuing the discussion of parameter set shapes in Section 3.5.2.4, the

general framework in principle allows arbitrary shapes for the prior parameter set IΠ(0).
However, freely elicting this set shape (e.g., by allowing for arbitrary contour functions
y(0)(n(0)) and y(0)(n(0))) from limited prior information might be very di�cult. If only
speci�c inferences are of interest, it is possible that only a few aspects of the shape are
relevant, such that elicitation of the entire shape might actually not be necessary. Further-
more, the derivation of posterior inferences from such complex prior shapes can be di�cult
as well.
In general, models based on sets of canonical conjugate priors form, in our view, a `sweet

spot' in the realm of (imprecise) statistical models, by allowing a sophisticated model
behaviour combined with easy elicitation and computation. In particular, these models
are distinguished by the following characteristics:

• They are relatively easy to elicit: there is a simple and straightforward interpreta-
tion of the model parameters n(0) and y(0) as prior strength and main parameter,
respectively (see Sections 1.2.3.1 and 3.3.2). In general terms, the weighted aver-
age structure of the update step (1.6) and the model behaviour resulting from it is
relatively clear.

• They are easy to apply in a variety of inference problems: it is possible to construct
conjugate priors as needed for the problem at hand, often resulting in closed form
solutions for many quantities of interest.

4In contrast, as mentioned in Section 3.2.3.2, in imprecise probability models for discrete parameter
spaces, it is for example di�cult to judge the weight of a certain prior model as compared to the data.

5For sake of a clarity, we consider only one-dimensional main parameters y(0) in the discussion here and
below, although the model framework allows for multidimensional y(0), as illustrated by the examples
involving the Dirichlet-Multinomial model.
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• Nevertheless, they give reasonable and sophisticated inferences: as discussed above,
uncertainty is adequately mirrored by the size of the set of posteriorsM(n), ful�lling
the inference properties I.�III. with the potential to implement prior-data con�ict
sensitivity or near-noninformativeness, as required by the inference task at hand.6

• They allow for �exible modelling, as it is possible to choose or tweak the prior set
shape according to inference needs, where, however, the trade-o� mentioned above
should be taken into account. Speci�cally, we think the model presented in Sec-
tion 3.3.4 (with IΠ(0) = [n(0), n(0)] × [y(0), y(0)])7 constitutes a sensible compromise
between model complexity and inference properties.

However, some doubts with respect to the rectangular shape of IΠ(0) are nevertheless
permitted. From a strictly behavioral point of view (e.g., ifM(0) should express an expert's
prior beliefs), taking IΠ(0) = [n(0), n(0)] × [y(0), y(0)], is, as we mentioned in Sections 3.1.4
and 3.5.2.4, a somewhat peculiar choice, as it entails that we assign the same interval for
the main parameter y(0) over a range of prior strengths.
Instead, it might be more reasonable to assume that the expert is able to give a more

precise interval estimate for lower prior strengths, while being more cautious in his prior
assignments for higher prior strengths by choosing a wider interval for y(0) at n(0).8

However, it seems equally reasonable to choose a shorter interval for y(0) at n(0) than
at n(0), by the considerations described at the beginning of Section 3.5.2.3, involving a
thought experiment, or `pre-posterior thinking': If we designate bounds for y(n) constant
in n(n) and a range of n(n) values to express what we want to learn from certain hypothetical
data, the corresponding IΠ(0) derived by doing a `backwards update' has, due to the update
mechanism (1.6), a wider range for low values of n(0), and a narrower range for high n(0)

values.9 For an actual sample size smaller than the hypothetical one, this `anteater' shape

6We think this is a major advantage to the alternative models discussed in Section 3.2, especially to
models based on the density ratio class. As noted in Section 3.2.1.2, the magnitude ofMl,u does not
decrease with n in density ratio class models that are updated according to the Generalised Bayes'
Rule.

7This kind of prior set shape was also employed in the motivational example from Section 1.3, where we
argued for an interval-valued n(0) at the end of Section 1.3.6.1, and demonstrated the merits of such a
parameter shape for this speci�c situation of prior-data con�ict in Section 1.3.6.2.

8As described in Section 3.5.2.4, such a choice can also lead to a more `tolerant' behaviour in case of prior-
data con�ict. If, e.g., y(0)(n(0)) < y(0)(n(0)) was chosen and τ̃(x) > y(0)(n(0)), the higher weight n(0) for
y(0)(n(0)) in the update step would move y(n)(n(n)) more slowly towards τ̃(x) as compared to y(n)(n(n)),
but for moderate degrees of prior-data con�ict, the faster movement of y(n)(n(n)) would be o�set by the
`head start' of y(0)(n(0)). As the upper bound for y(n) is attained at y(n)(n(n)) if τ̃(x) < y(0)(n(0)) (i.e.,
data is in agreement with the prior assignements), the e�ect of extra imprecision would only appear as
soon as y(n)(n(n)) `overtakes' y(n)(n(n)) in the move towards τ̃(x), i.e., when y(n)(n(n)) > y(n)(n(n)).

9For this model, to elicit the pre-posterior bounds, certain hypothetical data have to be chosen. Sec-
tion 3.5.2.3 touches only very brie�y on these hypothetical data (that are a part of the model parame-
ters) and how to choose them, and there is ample opportunity for research here. One could also further
modify the model by allowing to choose the `pre-posterior IΠ(n)' more freely, with bounds for y(n) not
constant in n(n).
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is more `tolerant' as the rectangular shape.10 (A suggestion for another more sophisticated
shape of IΠ(0), with the aim to allow for extra precision if prior and data coincide especially
well, is discussed in the outlook below.)
However, the favourable properties given in general terms in Section 3.1 should not

obscure the restrictions that are imposed by the canonical conjugate priors the framework
is based on.
The study by Krautenbacher (2011, see the discussion in Section 3.2.3.2) reminds us

that �tting a prior parameter set IΠ(0) to available prior information can be non-trivial,
and that also the generally well-understood conjugate distributions may exhibit unintuitive
inference behaviours when focussing on prior and posterior expectations only, as the model
framework tempts us to do. It is thus advisable to not loose sight of the distributions in
M(0) andM(n) in their entirety, e.g., by considering unions of highest density intervals for
di�erent credibility levels.
The restrictions imposed by canonical conjugate priors can be mitigated, or even com-

pletely overcome, when choosing M(0) not to contain parametric distributions only, but
to comprise all �nite mixtures of parametric distributions, i.e., considering M(0) as the
convex hull of the parametric distributions.11 However, as mentioned in Section 3.1.1,
then only inferences that are linear in the parametric posteriors are easy to obtain, and
the model may deliver very imprecise, or even vacuous, results for nonlinear functions of
p(ϑ | n(n), y(n)) like, e.g., the posterior variance.
It seems that models based on the density ratio class, the model framework most similar

to this variant of the model framework of Section 3.1.1 (similar in that they both allow non-
parametric priors in the set of prior distributions, although the model is generated by use
of parametric distributions), do not have this issue of tractability of nonlinear inferences
(see the discussion of the model by Rinderknecht (2011, �4) in Section 3.2.3.1); while this
seems a major strength of the model, it is in our view o�set by a fundamental weakness,
the lack of a clear mechanism by which imprecision in coherent posterior inferences can be
modelled in dependence of sample size.12

Another, more fundamental, handicap of the model framework from Section 3.1 is the
double role of n(0) as mentioned at the end of Section 3.5.2.4. There, the issue is framed
in terms of the imprecise Beta-Binomial model, but it is actually valid for the general case
of updating in imprecise probability models based on canonical conjugate priors: On the

10The `anteater' shapes are somewhat similar to shapes that would result if we required, for information
on the main prior parameter y(0) symmetrical around 0, |n(0) · y(0)| to be constant. Such a shape was
proposed by Benavoli and Za�alon (2012) for canonical priors to one-parameter exponential family
likelihoods, with the aim to generate near-noninformative prior setsM(0).

11As noted in footnote 2, p. 57, if the parametric distributions are normal distributions and IΠ(0) is large
enough, it can be assumed that M(0) contains a very wide range of priors, as mixtures of normal
distributions are dense in the space of well-behaved probability distributions.

12As mentioned in Sections 3.2.1.2 and 3.2.3.1, imprecision as measured by the magnitude ofMl,u is the
same for any sample size n if Ml,u is updated according to Bayes' Rule. Only if the requirement of
coherence, the foundation of the Generalised Bayes' Rule, is dropped, density ratio class models are
possible that allow for imprecision to depend on sample size n. See also footnote 38 on page 75, where
we suggested a model based on a combination of ideas from Coolen (1993b) and Rinderknecht (2011).



128 4. Concluding Remarks

one hand, n(0) governs the weighting of prior information y(0) with respect to the data
τ̃(x); the larger n(0), the more the values of y(n) and y(n) are dominated by y(0) and y(0),
respectively. On the other hand, n(0) governs also the degree of posterior imprecision: the
larger n(0), the larger c.p. MPI(n) = y(n) − y(n). A larger n(0) thus leads to more imprecise
posterior inferences, although a high weight on the supplied prior information should boost
the trust in posterior inferences if τ̃(x) ∈ [y(0), y(0)], i.e., if prior beliefs turned out to be
appropriate.
In Section 3.5.3, an approach separating these two roles of n(0) was developed, by consid-

ering two separate models, an uninformative and an informative model,13 with individual
levels of precision induced by di�erent choices of n(0). Inference intervals based on these
two models are then combined using an imprecise weight, forming the actual inference
interval.
This model of weighted inference is a very general approach, being applicable for a wide

variety of inference tasks and accomodating all sorts of models that provide interval-valued
inferences. Combining favourable properties for the inference situation discussed in Sec-
tion 3.5 with feasible elicitation and handling (see Section 3.5.3.3), it is an approach going
beyond the model framework of Section 3.1.1, and thus the general properties described in
Section 3.1.2 do not necessarily hold.

In summary, we think the model framework from Section 3.1.1 exploits the full expressive
power of imprecise probability in a very elegant way, by allowing a realistic description and
treatment of model uncertainty, and thus, as expressed in Section 2.2.4.1, enable us to
avoid heroic model assumptions, and the spuriously precise inferences they entail.
We also think that there is still further potential to models based on sets of conjugate

priors. As described in the Outlook below, further advances are within reach that, in
addition to the properties I.�III. and prior-data con�ict sensitivity (see Section 3.1.2),
allow for more precise posterior inferences when prior and data coincide especially well.14

4.3. Outlook

Here, we will summarise central ideas discussed in several concluding sections (3.3.6, 3.5.4,
A.1.5), carrying some of them further, presenting opportunities for applications and poten-
tial avenues for further research. In particular, an idea for modelling of strong prior-data
agreement will be explained in more detail.
We will subsume our ideas for further research and developments in three steps: First,

we will consider some potential applications and areas of study for the currently existing
models in the framework from Section 3.1.1. Then, we will sketch some ideas to extend
the presently available models, including a discussion of a novel parameter set shape that
allows to cater for strong prior-data agreement (see the technical details in Section A.2).

13These two models could also be denoted by `cautious' and `bold', respectively. While the cautious model
tries to use only a minimal amount of information, the bold model goes for more daring assumptions.

14We already mentioned this this modelling goal in Section 3.5.4, where we spoke of strong prior-data

agreement.
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These further developments still follow the lines of generalised Bayesian inference using sets
of priors as described in Sections 2.1.2.5 and 2.1.3 that ensure coherence of inferences by
updating the set of priors via the Generalised Bayes' Rule. In the last part of this outlook,
we will look instead beyond this framework of coherent Bayesian inference, by discussing
some general thoughts about updating and learning in the context of statistical inference.

As seen in Section 3.2, there are a number of alternative models for statistical inference
using sets of priors. Besides the study by Krautenbacher (2011), no studies comparing
inferences from the models described in Setions 3.3 and 3.5 with those based on the al-
ternative models named in Section 3.2 (most importantly, models based on the density
ratio class) in detail have yet been conducted to our knowledge. Such studies could be
rewarding by giving more detailed insight into strengths and weaknesses of the respective
models. Further insight could also be gained from a comparison to the hierarchical model
developed by Cattaneo (2008, see Section 2.2.4.2).
There are of course many opportunities for application of the models described in this

thesis, and we will mention just two interesting general cases here.
The canonical conjugate prior for Bayesian linear regression constructed in Section A.1.4

could be used for an imprecise regression analysis based on sets of priors. Although being
probably the most important concept in modern statistical inference, in the imprecise
probability literature, so far only very few contributions considering regression analysis
have been published.15 Work in this direction could contribute to a major step towards
a wider application of imprecise probability models in statistical practice.16 With priors
based on IΠ(0) of type (c), the model could o�er favourable inference properties in situations
that are prone to prior-data con�ict (see the discussion in Section A.1.5).
Another potentially fruitful area of application is models for statistical surveillance (for

a brief overview see, e.g., Frisén 2011). Here, the aim is to monitor a data-generating
process over time to detect changes in the process as early as possible, without generating
too many `false alarms'. A typical example is disease monitoring, where the number of
cases of a certain infectious disease reported by clinicians is continuously monitored on
the national level, with the aim to detect epidemic outbreaks in their early stages. Such
outbreak detection is usually analysed using likelihood ratios, comparing new observations
with a model derived from previous observations. As mentioned in footnote 10, page 61,
we could also consider this problem in terms of prior-data con�ict: if a new batch of m
observations does not �t our current model (a setM(n) subsuming prior information and
previous data of size n), the posterior model, based onM(n+m), resonates this by increased
imprecision, triggering the alarm. We would expect rectangular parameter set shapes to
perform quite well in such a task, but also other set shapes could prove useful here.

Now, we will present some ideas for further development within the framework described
in Section 3.1.1, i.e., for models based on sets of canonical conjugate priors that are updated

15Among the few exceptions are Walter, Augustin, and Peters (2007), Utkin (2010), Utkin and Coolen
(2011), Cattaneo and Wiencierz (2012), and Utkin and Wiencierz (2013).

16In contrast, classi�cation models are a thriving subject area in imprecise probability. For a recent
overview see, e.g., Corani et al. (2013).
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via the Generalised Bayes' Rule; afterwards, we will also consider some potential approaches
outside this framework.
As a �rst important development, the models discussed in this thesis rely on a precise

sampling model, but the generalised Bayesian inference framework also allows for imprecise
sampling models (see, in particular, Walley 1991, �8.5), also discussed under the notion
of likelihood robustness (e.g., Shyamalkumar 2000) in the robust Bayesian framework, not
idealising the the sampling model in the same way as we ceased to idealise the prior model.
Another important area for further study concerns the case of multidimensional y(0).

Elicitation of such high-dimensional parameter sets IΠ(0) poses interesting challenges. The
simple, `hyper-rectangle' set suggested in Section 1.3.6, Equation (1.19), although an e�ec-
tive choice for the application considered there, might not be adequate in all circumstances.
However, elicitation of more general sets Y(0) × [n(0), n(0)], or even arbitrary subsets of
Y ×R>0, can be very di�cult, and further inquiries into this problem could be rewarding,
also in connection to the application of the prior constructed in Section A.1.4, as problems
in regression typically involve many covariates.
Also, for IΠ(0) as in Equation (1.19), prior-data con�ict is mirrored by increased im-

precision for each dimension separately (see also Example 3.8, Figure 3.5). It is an open
question if other prior set shapes entail di�erent consequences with respect to multidi-
mensional prior-data con�ict sensitivity. A possible approach to simplify elicitation in
high-dimensional cases (that could also be useful for lower-dimensional y(0)) is to not con-
sider N (0) = [n(0), n(0)], but N (0) = {n(0), n(0)}, i.e., taking only a pair of n(0) values.
This would not only simplify elicitation, but also make computation of posterior inferences
probably more feasible. However, similar to the discussion of the rectangular shape in
Section 4.2 above, the behavioural implications of such a choice of parameter set would
have to be studied in detail.
Before we will discuss more general arguments about learning and updating, we will

now describe a novel idea for generating parameter prior sets IΠ(0) that, in addition to
prior-data con�ict sensitivity, allow to mirror strong prior-data agreement (i.e., the case
when prior and data coincide especially well) by increased posterior precision.
As mentioned in Sections 3.1.4 and 3.5.2.4, the shape of IΠ(0) determines the shape of

IΠ(n) and, via M(n), has a crucial in�uence on posterior inferences. In general lines, this
in�uence is clear (see the studies on the behaviour of rectangular shapes in Sections 3.3 and
3.5), but it is nevertheless quite di�cult to elicit more general set shapes and to ascertain
their consequences.
Although the updating of the canonical parameters according to (1.6), i.e., the weighted

average update step for y(0), and the increment step for n(0), seems very intuitive (and is
central to the behaviour of the model, see the list of inference properties in Section 3.1.2),
the shape change of IΠ(0) to IΠ(n) through this update step, and its e�ects on posterior
inferences, is di�cult to grasp. This is due to the fact that, while the update of a single
coordinate (n(0), y(0)) is a simple shift, this shift is di�erent for each of the coordinates in
a set; in fact, the shift of the y(0) component changes with both n(0) and y(0).17 These

17As given by (1.6), for the n(0) coordinate holds n(0) 7→ n(0) + n, while for the y(0) coordinate holds
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di�erent shifts for the coordinates within a set lead to the change of shape from IΠ(0) to
IΠ(n).
As this shape change is so problematic for understanding of the update step, a di�erent

parametrisation of the canonical priors in which each coordinate has the same shift in
updating would be advantageous, such that updating of parameter sets could be expressed
as a shift of the entire set within the parameter space.
In fact, such a parametrisation has been developed by Mik�elis Bickis (2011, personal

communication), and he is currently preparing a manuscript elaborating the details of
his �ndings. In this parametrisation, a canonical prior is represented by a coordinate
(η

(0)
0 , η

(0)
1 ), where η(0)

1 replaces the main prior parameter y(0), while η(0)
0 is just a di�erent

name for n(0).18 In the parametrisation from Section 1.2.3.1, y(0) had the convenient
property of being equal to E

[
E[τ̃(x) | ψ] | n(0), y(0)

]
, giving the (prior) expectation, or a

prior guess, for the mean sample statistic τ̃(x). Naturally, η(0)
1 cannot have this property,

but in the transformed space for the Beta-Binomial model, the points on rays emanating
from the coordinate (−2, 0) will give a constant expectation of E[τ̃(x) | ψ], such that
interpretation of parameter sets in terms of (η

(0)
0 , η

(0)
1 ) is still relatively easy. With the set

shape unchanged by the update, tailoring shapes for desired inference behaviour is much
easier in this representation. Indeed, Frank Coolen and the author of this thesis have
devised a set shape that allows for both prior-data con�ict sensitivity and more precise
inferences in case of strong prior-data agreement, a behaviour deemed very desirable in
Section 3.5.4 and in the discussion of the Generalised Bayes' Rule in Section 2.1.3.2. We
are thus able to o�er a solution to this issue that allows to remain within the generalised
Bayesian framework by using the Generalised Bayes' Rule for updating.
As our preliminary studies show some very appealing results in case of the Beta-Binomial

model, for which a possible parametrisation of our shape is discussed in Section A.2, we
are con�dent that these encouraging results also hold for the Normal-Normal model and
in the general case of canonical conjugates. A joint publication of Mik�elis Bickis, Frank
Coolen and the author of this thesis is planned that will elaborate these �ndings in more
detail.

Concluding the outlook, we will now turn to more general thoughts about updating and
learning in the context of statistical inference using sets of priors.
As we wrote in Section 3.3.6, it should well be remembered that the models considered in

this thesis consciously con�ned the whole argumentation to a certain Bayesian setting: we
studied how far one can go if one relies strictly on the Generalised Bayes' Rule, transferring
sets of priors to sets of posteriors element by element via Bayes' Rule (1.3). Considering the
criticisms regarding the Generalised Bayes' Rule discussed in Section 2.1.3.2, alternative
learning rules could thus provide superiour model behaviour.19

y(0) 7→ n(0)y(0)+τ(x)
n(0)+n

= y(0) + τ(x)−ny(0)
n(0)+n

.
18This parametrisation is described in more detail in Section A.2, along with some �rst technical results

that con�rm the desired properties for the novel shape suggested there.
19In Section 3.2, we discussed some of the approaches mentioned in footnote 51, page 80, that consider

alternative learning rules.
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However, we argue that some aspects of inferences based on the Generalised Bayes' Rule
that are critizised in the literature can be confronted, or at least mitigated, by a careful
choice of the sets of priors.
We consider this, to some extent, to be the case for the critique that the Generalised

Bayes' Rule is too in�exible when prior information is confronted with surprising data, as
it insists on coherence of posterior inferences with prior assumptions that, in the light of
the data, may turn out to be inadequate. The models discussed in Sections 3.1.4 and 3.3.4
mitigate this issue by allowing for prior-data con�ict sensitivity. The resulting posterior
sets are still, in essence, a compromise between the prior set and the data, but mirror the
con�ict between them by increased imprecision. This increased imprecision can then serve
as a `warning light', highlighting the doubts with regards to the posterior model in such a
con�ict, which may ultimatively motivate the analyst to reconsider her prior assignments.
Another critique based on the perceived in�exibility of the Generalised Bayes' Rule

relates to posterior inferences being often `too imprecise'. For the case of weak prior
information, this has been confronted by approaches by Walley (1996b), Bickis (2009),
Benavoli and Za�alon (2012), and, most recently, by Mangili and Benavoli (2013). Although
starting from a set of near-noninformative priors, these approaches lead to reasonably
precise posterior inferences. Our approach for a novel parameter set IΠ(0), described above
and in Section A.2, may be able to fend o� this criticism also for informative priors by
o�ering especially precise inferences when prior information and data are in accordance.
Other critical aspects of the Generalised Bayes' Rule are more di�cult to tackle. Espe-

cially the caveat by Augustin (2003), showing that the decision theoretic justi�cation of
Bayes' Rule as producing prior risk minimising decision functions does not extend to the
case of sets of priors, should motivate us to look beyond the Generalised Bayes' Rule. The
issue here is that the Generalised Bayes' Rule may not lead to optimal inference proce-
dures, as the optimality of the corresponding decision functions is not guaranteed.20 From
this angle, the desire for alternative learning rules gains a more solid footing in our view.
Indeed, we already considered some models going beyond the generalised Bayesian frame-

work. Apart from our suggestion in footnote 38, page 75, that could lead to an interesting
density ratio class model combining sophisticated elicitation with reasonable handling of
imprecision, we think that a very attractive approach to inference where prior information
can be included in the reasoning is the model by Cattaneo (2008, see Section 2.2.4.2).
Along the lines of Antonucci, Cattaneo, and Corani (2011), it would even be possible to
apply the hierarchical modelling to the framework of Section 3.1.1.
An approach beyond the Generalised Bayes' Rule that we studied in more detail is the

weighting model from Section 3.5.3. As mentioned in Section 4.2 above, it was motivated by
the dual role of n(0) in the framework from Section 3.1.1, controlling both posterior precision
and derivation from prior assignments that can lead to unintuitive results in case of strong
prior data agreement (see Section 3.5.2.4). Another idea for models outside the generalised
Bayesian framework related to the role of n(0) was discussed in Section 3.5.4, where we

20For a brief overview on decision theory in the context of imprecise probability methods, see Huntley,
Hable, and Tro�aes (2013).
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argued that a possible way to react to prior-data con�ict could be to consider the combined
information of prior and data to be of less value than either the data themselves or than
both information sources separately. When strong prior beliefs collide with contradicting
data, this could lead to severe doubt about what is actually going on. To model this
behaviour, one could consider allowing the prior strength parameter n(0) to take on negative
values, opening up a rich �eld for research and discussions.
We also hope that further studies like, e.g., those in temporal coherence as mentioned in

Section 2.1.3.2, re�ning the concept of coherence towards allowing very substantial revisions
in case of surprising data, will pave the way for models resonating the reasoning of Hampel
(2009a; 2011), who argues that in order to represent learning, our models must allow to
revise the whole system of background knowledge in the light of surprising observations.





A. Appendix

A.1. Bayesian Linear Regression: Di�erent Conjugate

Models and Their (In)Sensitivity to Prior-Data

Con�ict

This section reproduces the work �Bayesian Linear Regression � Di�erent Conjugate Mod-
els and Their (In)Sensitivity to Prior-Data Con�ict�, published as technical report no. 69
at the Department of Statistics of Ludwig-Maximilians-University Munich (LMU) (Wal-
ter and Augustin 2009a). This technical report is a substantially extended version of a
contribution to �Statistical Modelling and Regression Structures: Festschrift in Honour
of Ludwig Fahrmeir� (Walter and Augustin 2010). As such, it is reproduced here almost
verbatim, except for some minor rewording, and the addition of some comments and foot-
notes linking this work to other parts of this thesis. Furthermore, the notation was changed
slightly towards the one introduced in Section 1.2.3.1 (most importantly, denoting poste-
rior parameters with upper index (n) instead of (1), e.g., writing y(n) instead of y(1)), and
citations were updated and changed towards the style employed throughout this thesis.

Abstract

The paper is concerned with Bayesian analysis under prior-data con�ict, i.e. the situation
when observed data are rather unexpected under the prior (and the sample size is not
large enough to eliminate the in�uence of the prior). Two approaches for Bayesian linear
regression modeling based on conjugate priors are considered in detail, namely the standard
approach, described, e.g., in Fahrmeir et al. (2013), and an alternative adoption of the
general construction procedure for exponential family sampling models. We recognize that
� in contrast to some standard i.i.d. models like the scaled normal model and the Beta-
Binomial / Dirichlet-Multinomial model, where prior-data con�ict is completely ignored �
the models may show some reaction to prior-data con�ict, however in a rather unspeci�c
way. Finally we brie�y sketch the extension to a corresponding imprecise probability model,
where, by considering sets of prior distributions instead of a single prior, prior-data con�ict
can be handled in a very appealing and intuitive way.

A.1.1. Introduction

Regression analysis is a central tool in applied statistics that aims to answer the om-
nipresent question how certain variables (called covariates / confounders, regressors, stim-
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ulus or independent variables, here denoted by x) in�uence a certain outcome (called
response or dependent variable, here denoted by z). Due to the complexity of real-life data
situations, basic linear regression models, where the expectation of the outcome zi simply
equals the linear predictor xTiβ, have been generalized in numerous ways, ranging from
generalised linear models (Fahrmeir and Tutz 2001, see also Fahrmeir and Kaufmann 1985
for classical work on asymptotics) for non-normal distributions of zi | xi, or linear mixed
models allowing the inclusion of clustered observations, over semi- and nonparametric mod-
els (Kauermann, Krivobokova, and Fahrmeir 2009; Fahrmeir and Raach 2007; Scheipl and
Kneib 2009), up to generalised additive (mixed) models and structured additive regression
(Fahrmeir and Kneib 2009; Fahrmeir and Kneib 2006; Kneib and Fahrmeir 2007).
Estimation in such highly complex models may be based on di�erent estimation tech-

niques such as (quasi-) likelihood, general estimation equations (GEE) or Bayesian meth-
ods. Especially the latter o�er in some cases the only way to attain a reasonable estimate
of the model parameters, due to the possibility to include some sort of prior knowledge
about these parameters, for instance by �borrowing strength� (e.g., Higgins and Whitehead
1996).
The tractability of large scale models with their ever increasing complexity of the under-

lying models and data sets should not obscure that still many methodological issues are
a matter of debate. Since the early days of modern Bayesian inference one central issue
has, of course, been the potentially strong dependence of the inferences on the prior. In
particular in situations where data is scarce or unreliable, the actual estimate obtained by
Bayesian techniques may rely heavily on the shape of prior knowledge, expressed as prior
probability distributions on the model parameters. Recently, new arguments came into
this debate by new methods for detecting and investigating prior-data con�ict (Evans and
Moshonov 2006; Bousquet 2008), i.e. situations where �[. . . ] the observed data is surprising
in the light of the sampling model and the prior, [so that] we must be at least suspicious
about the validity of inferences drawn.� (Evans and Moshonov 2006, p. 893)1

The present contribution investigates the sensitivity of inferences on potential prior-data
con�ict: What happens in detail to the posterior distribution, and the estimates derived
from it, if prior knowledge and what the data indicates are severely con�icting? If the
sample size n is not su�ciently large to discard the possibly erroneous prior knowledge
and thus to rely on data only, prior-data con�ict should a�ect the inference and should
� intuitively and informally � result in an increased degree of uncertainty in posterior
inference. Probably most statisticians would thus expect a higher variance of the posterior
distribution in situations of prior-data con�ict.
However, this is by no means automatically the case, in particular when adopting con-

jugate prior models, which are often used when data are scarce, where only strong prior
beliefs allow for a reasonably precise answer in inference. Two simple and prominent ex-
amples of complete insensitivity to prior-data con�ict are recalled in Section A.1.2: i.i.d.
inferences on the mean of a scaled normal distribution and on the probability distribution

1See also the discussion on prior-data con�ict in Sections 2.2.3.3, 3.1.4, and in the paper reproduced in
Section 3.3.
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of a categorical variable by the Dirichlet-Multinomial model.2

Sections A.1.3 and A.1.4 extend the question of (in)sensitivity to prior-data to regression
models. We con�ne attention to linear regression analysis with conjugate priors, because
� contrary to the more advanced regression model classes � the linear model still allows a
fully analytical access, making it possible to understand potential restrictions imposed by
the model in detail. We discuss and compare two di�erent conjugate models:

(i) the standard conjugate prior (SCP, Section A.1.3) as described in Fahrmeir et al.
(2013) or, in more detail, in O'Hagan (1994); and

(ii) a conjugate prior, called �canonically constructed conjugate prior� (CCCP, Section A.1.4)
in the following, which is derived by a general method used to construct conjugate
priors to sample distributions that belong to a certain class of exponential families,
described, e.g., in Bernardo and Smith (2000).3

Whereas the former is the more general prior model, allowing for a very �exible modeling
of prior information (which might be welcome or not), the latter allows only a strongly
restricted covariance structure for β, however o�ering a clearer insight in some aspects of
the update process.
In a nutshell, the result is that both conjugate models do react to prior-data con�ict by

an enlarged factor to the variance-covariance matrix of the distribution on the regression
coe�cients β; however, this reaction is unspeci�c, as it a�ects the variance and covariances
of all components of β in a uniform way � even if the con�ict occurs only in one single
component.
Probably such an unspeci�c reaction of the variance is the most a (classical) Bayesian

statistician can hope for, and traditional probability theory based on precise probabilities
can o�er. Indeed, Kyburg (1987) notes that

[. . . ] there appears to be no way, within the theory, of distinguishing between the

cases in which there are good statistical grounds for accepting a prior distribution,

and cases in which the prior distribution re�ects merely ungrounded personal opinion.

and the same applies, in essence, to the posterior distribution.
A more sophisticated modeling would need a more elaborated concept of imprecision than

is actually provided by looking at the variance (or other characteristics) of a (precise) prob-
ability distribution. Indeed, recently the theory of imprecise probabilities (Walley 1991;
Weichselberger 2001) is gaining strong momentum.4 It emerged as a general methodology
to cope with the multidimensional character of uncertainty, also reacting to recent insights
and developments in decision theory5 and arti�cial intelligence,6 where the exclusive role
2See the description of these two models in Sections 1.2.3.4 and 1.2.3.5, respectively.
3This is the regular conjugate framework of Section 1.2.3.1.
4See Section 2.1 for a short exposition of the theoretical foundations and motivations for the use of
imprecise probability in statistical inference.

5See Hsu et al. (2005) for a neuro science corroboration of the constitutive di�erence of stochastic and
non-stochastic aspects of uncertainty in human decision making, in the tradition of Ellsberg's (1961)
seminal experiments.

6See, e.g., Walley (1996a) for the use of imprecise probability methods in expert systems.
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of probability as a methodology for handling uncertainty has eloquently been rejected Klir
and Wierman 1999:

For three hundred years [. . . ] uncertainty was conceived solely in terms of proba-
bility theory. This seemingly unique connection between uncertainty and probability
is now challenged [. . . by several other] theories, which are demonstrably capable of
characterizing situations under uncertainty. [. . . ]

[. . . ] it has become clear that there are several distinct types of uncertainty. That

is, it was realized that uncertainty is a multidimensional concept. [. . . That] multidi-

mensional nature of uncertainty was obscured when uncertainty was conceived solely

in terms of probability theory, in which it is manifested by only one of its dimensions.

Current applications include, among many other, risk analysis, reliability modeling and
decision theory, see Augustin et al. (2009), Coolen et al. (2011) and Coolen-Schrijner
et al. (2009) for recent collections on the subject.7 As a welcome byproduct, imprecise
probability models also provide a formal superstructure on models considered in robust
Bayesian analysis (Ríos Insua and Ruggeri 2000), and frequentist robust statistic in the
tradition of Huber and Strassen (1973), see also Augustin and Hable (2010) for a review.
By considering sets of distributions, and corresponding interval-valued probabilities for

events, imprecise probability models allow to express the quality of the underlying knowl-
edge in an elegant way. The higher the ambiguity, the larger c.p. the sets. The traditional
concept of probability is contained as a special case, appropriate if and only if there is
perfect stochastic information. This methodology allows also for a natural handling of
prior-data con�ict. If prior and data are in con�ict, the set of posterior distributions are
enlarged, and inferences become more cautious.8

In Section A.1.5, we brie�y report that the CCCP model has a structure that allows
a direct extension to an imprecise probability model along the lines of Quaeghebeur and
de Cooman's (2005) imprecise probability models for i.i.d. exponential family models. Ex-
tending the models further by applying arguments from Walter and Augustin (2009b, see
Section 3.3) yields a powerful generalisation of the linear regression model that is also
capable of a component-speci�c reaction to prior-data con�ict.

A.1.2. Prior-data Con�ict in the i.i.d. Case

As a simple demonstration that conjugate models might not react to prior-data con�ict
reasonably, inference on the mean of data from a scaled normal distribution and inference
on the category probabilities in multinomial sampling will be described in the following
two subsections.

7See also, e.g., the list of applications of the IDM given in Section 3.1.3.
8For more details on the topic of imprecision and prior-data con�ict, see Section 3.3.
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A.1.2.1. Samples from a scaled Normal distribution

The conjugate distribution to an i.i.d.-sample x of size n from a scaled normal distribution
with mean µ, denoted by N(µ, 1) is a normal distribution with mean µ(0) and variance σ(0)29.
The posterior is then again a normal distribution with the following updated parameters:10

µ(n) =
1
n

1
n

+ σ(0)2µ
(0) +

σ(0)2

1
n

+ σ(0)2 x̄ =

1

σ(0)2

1

σ(0)2
+ n

µ(0) +
n

1

σ(0)2
+ n

x̄ (A.1)

σ(n)2
=

σ(0)2 · 1
n

σ(0)2
+ 1

n

=
1

1

σ(0)2
+ n

. (A.2)

The posterior expectation (and mode) is thus a simple weighted average of the prior mean
µ(0) and the estimation from data x̄, with weights 1/σ(0)2

and n, respectively.11 The
variance of the posterior distribution is getting smaller automatically.
Now, in a situation where data is scarce, but with prior information one is very con�dent

about, one would choose a low value for σ(0)2
, thus resulting in a high weight for the prior

mean µ(0) in the calculation of µ(n). The posterior distribution will be centered around a
mean between µ(0) and x̄, and it will be even more pointed as the prior, because σ(n)2

is
considerably smaller than σ(0)2

, the factor to σ(0)2
in (A.2) being quite smaller than one.

The posterior basically would thus say that one can be quite sure that the mean µ is
around µ(n), regardless if µ(0) and x̄ were near to each other or not, where the latter would
be a strong hint for prior-data con�ict. The posterior variance does not depend on this;
the posterior distribution is thus insensitive to prior-data con�ict.
Even if one is not so con�dent about one's prior knowledge and thus assigning a relatively

large variance to the prior, the posterior mean is less strongly in�uenced by the prior mean,
but the posterior variance still is getting smaller, no matter if the data support the prior
information or not.
The same insensitivity appears also in the widely used Dirichlet-Multinomial model as

presented in the following subsection:

A.1.2.2. Samples from a Multinomial distribution

Given a sample of size n from a multinomial distribution, with probabilities θj for categories
or classes j = 1, . . . , k, subsumed in the vectorial parameter θ (with

∑k
j=1 θj = 1), the

conjugate prior on θ is a Dirichlet distribution Dir(α). Written in terms of the canonical
parameters n(0) and y(0) as in Section 1.2.3.5, αj = n(0) · y(0)

j , such that
∑k

j=1 y
(0)
j = 1,

(y
(0)
1 , . . . , y

(0)
k )T =: y(0). Recall that the components of y(0) have a direct interpretation as

prior class probabilities, whereas n(0) is a parameter indicating the con�dence in the values

9Here, and in the following, parameters of a prior distribution will be denoted by an upper index (0),
whereas parameters of the respective posterior distribution by an upper index (n).

10This is the Normal-Normal model from Section 1.2.3.4, where σ2
0 = 1, y(0) = µ(0), and n(0) = 1/σ(0)2.

11The reason for using these seemingly strange weights will become clear later.
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of y(0), similar to the inverse variance as in Section A.1.2.1 (the quantity n(0) will appear
also in Section A.1.4).12

As seen in Section 1.2.3.5, the posterior distribution, obtained after updating via Bayes'
Rule with a sample vector n = (n1, . . . , nk),

∑k
j=1 nj = n collecting the observed counts

in each category, is a Dirichlet distribution with parameters

y
(n)
j =

n(0)

n(0) + n
y

(0)
j +

n

n(0) + n
· nj
n
, n(n) = n(0) + n .

The posterior class probabilities y(n) are calculated as a weighted mean of the prior class
probabilities y(0) and nj

n
, the proportion in the sample, with weights n(0) and n, respectively;

the con�dence parameter n(0) is incremented by the sample size n.
Also here, there is no systematic reaction to prior-data con�ict. The posterior variance

for each class probability θj is

Var(θj | n) =
y

(n)
j (1− y(n)

j )

n(n) + 1
=
y

(n)
j (1− y(n)

j )

n(0) + n+ 1
.

The posterior variance depends heavily on y(n)
j (1 − y(n)

j ), having values between 0 and 1
4
,

which do not change speci�cally to prior data con�ict. The denominator increases from
n(0) + 1 to n(0) + n+ 1.
Imagine a situation with strong prior information suggesting a value of y(0)

j = 0.25, so
one could choose n(0) = 5, resulting in a prior class variance of 1

32
. Consider a sample

of size n = 10 with all observations belonging to class j (thus nj = 10), being in clear
contrast to the prior information. The posterior class probability is then y

(n)
j = 0.75,

resulting the enumerator value of the class variance to remain constant. Therefore, due
to the increasing denominator, the variance decreases to 3

256
, in spite of the clear con�ict

between prior and sample information. Of course, one can also construct situations where
the variance increases, but this happens only in case of an update of y(0)

j towards 1
2
. If

y
(0)
j = 1

2
, the variance will decrease for any degree of prior-data con�ict.

A.1.3. The Standard Approach for Bayesian Linear Regression
(SCP)

The regression model is noted as follows:

zi = xTiβ + εi , xi ∈ Rp , β ∈ Rp , εi ∼ N(0, σ2) ,

where zi is the response, xi the vector of the p covariates for observation i, and β is the
p-dimensional vector of adjacent regression coe�cients.

12If θ ∼ Dir(n(0),y(0)), then Var(θj) =
y
(0)
j (1−y(0)j )

n(0)+1
. If n(0) is high, then the variances of θ will become

low, thus indicating high con�dence in the chosen values of y(0).
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The vector of regressors xi for each observation i is generally considered to be non-
stochastic, thus it holds that zi ∼ N(xTiβ, σ

2), or, for n i.i.d. samples, z ∼ Nn(Xβ, σ2I),
i.e., z ∈ Rn, the column vector of the responses zi, has a multivariate normal distribution
with vector of expectations Xβ, where X ∈ Rn×p is the design matrix (of which row i is
the vector of covariates xTi for observation i), and matrix of variances and covariances σ2I,
where I is the identity or unit matrix of size n.
Without loss of generality, one can either assume xi1 = 1 ∀i such that the �rst component

of β is the intercept parameter,13 or consider only centered responses z and standardized
covariates to make the estimation of an intercept unnecessary.
In Bayesian linear regression analysis, the distribution of the response z is interpreted as

a distribution of z given the parameters β and σ2, and prior distributions on β and σ2 must
be considered. For this, it is convenient to split the joint prior on β and σ2 as p(β, σ2) =
p(β | σ2)p(σ2) and to consider conjugate distributions for both parts, respectively.
In the literature, the proposed conjugate prior for β | σ2 is a normal distribution with

expectation vector m(0) ∈ Rp and variance-covariance matrix σ2M(0), where M(0) is a
symmetric positive de�nite matrix of size p × p. The prior on σ2 is an inverse gamma
distribution (i.e., 1/σ2 is gamma distributed) with parameters a(0) and b(0), in the sense
that

p(σ2) ∝ 1

(σ2)a(0)+1
exp

{
− b(0)

σ2

}
.

The joint prior on θ = (β, σ2)T is then denoted as a normal-inverse gamma (NIG) distri-
bution. The derivation of this prior and the proof of its conjugacy can be found, e.g., in
Fahrmeir et al. (2013), or in O'Hagan (1994), the latter using a di�erent parameterisation
of the inverse gamma part, where a(0) = d

2
and b(0) = a

2
.

For the prior model, it holds thus that (if a(0) > 1 resp. a(0) > 2)

E[β | σ2] = m(0) , Var(β | σ2) = σ2M(0) ,

E[σ2] =
b(0)

a(0) − 1
, Var(σ2) =

(b(0))2

(a(0) − 1)2(a(0) − 2)
.

(A.3)

As σ2 is considered as nuisance parameter, the unconditional distribution on β is of
central interest, because it subsumes the shape of prior knowledge on β as expressed
by the choice of parameters m(0), M(0), a(0) and b(0). It can be shown that p(β) is a
multivariate noncentral t distribution with 2a(0) degrees of freedom, location parameter
m(0) and dispersion parameter b(0)

a(0)
M(0), such that

E[β] = m(0) , Var(β) =
b(0)

a(0) − 1
M(0) = E[σ2]M(0) . (A.4)

The joint posterior distribution p(θ | z), due to conjugacy, is then again a normal-inverse
gamma distribution with the updated parameters

m(n) =
(
M(0)−1

+ XTX
)−1 (

M(0)−1
m(0) + XTz

)
,

13usually denoted by β0; however, we stay with the numbering 1, . . . , p for the components of β.



142 A. Appendix

M(n) =
(
M(0)−1

+ XTX
)−1

,

a(n) = a(0) +
n

2
,

b(n) = b(0) +
1

2

(
zTz +m(0)TM(0)−1

m(0) −m(n)TM(n)−1
m(n)

)
.

The properties of the posterior distributions can thus be analyzed by inserting the updated
parameters into (A.3) and (A.4).

A.1.3.1. Update of β | σ2

The normal distribution part of the joint prior is updated as follows:

E[β | σ2, z] = m(n)

=
(
M(0)−1

+ XTX
)−1(

M(0)−1
m(0) + XTz

)
= (I−A)m(0) + A β̂LS ,

where A =
(
M(0)−1

+XTX
)−1

XTX. The posterior estimate of β | σ2 thus can be seen as a
matrix-weighted mean of the prior guess and the least-squares estimate β̂LS. The larger the
diagonal elements of M(0) (i.e., the weaker the prior information), the smaller the elements
of M(0)−1

and thus the `nearer' is A to the identity matrix, so that the posterior estimate
is nearer to the least-squares estimate.
The posterior variance of β | σ2 is

Var(β | σ2, z) = σ2M(n) = σ2
(
M(0)−1

+ XTX
)−1

.

As the elements of M(n)−1
get larger with as compared to M(0)−1

, the elements of M(n)

will, roughly speaking, become smaller than those of M(0), so that the variance of β | σ2

decreases.
Therefore, the updating of β | σ2 is obviously insensitive to prior-data con�ict, because

the posterior distribution will not become �atter in case of a large distance between E[β]
and β̂LS. Actually, as O'Hagan (1994) derives, for any φ = aTβ, a ∈ Rp, i.e., any linear
combination of elements of β, it holds that Var(φ | σ2, z) ≤ Var(φ | σ2), becoming a strict
inequality if X has full rank. In particular, the variance of each βi decreases automatically
with the update step.

A.1.3.2. Update of σ2

It can be shown (O'Hagan 1994) that

E[σ2 | z] =
2a(0) − 2

2a(0) + n− 2
E[σ2] +

n− p
2a(0) + n− 2

σ̂2
LS +

p

2a(0) + n− 2
σ̂2
PDC , (A.5)
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where σ̂2
LS = 1

n−p(z −Xβ̂LS)T(z −Xβ̂LS) is the least-squares based estimate for σ2, and

σ̂2
PDC =

1

p
(m(0) − β̂LS)T

(
M(0) + (XTX)−1

)−1
(m(0) − β̂LS) .

For the latter it holds that E[σ̂2
PDC | σ2] = σ2; the posterior expectation of σ2 can thus

be seen as a weighted mean of three estimates:

(i) the prior expectation for σ2,

(ii) the least-squares estimate, and

(iii) an estimate based on a weighted squared di�erence of the prior mean m(0) and β̂LS,
the least-squares estimate for β.

The weights depend on a(0) (one prior parameter for the inverse gamma part), the sample
size n, and the dimension of β, respectively. The role of the �rst weight gets more plausible
when remembering the formula for the prior variance of σ2 in (A.3), where a(0) appears in
the denominator. A larger value of a(0) means thus smaller prior variance, in turn giving
a higher weight for E[σ2] in the calculation of E[σ2 | z]. The weight to σ̂2

LS corresponds to
the classical degrees of freedom, n− p. With the the sample size approaching in�nity, this
weight will dominate the others, such that E[σ2 | z] approaches σ̂2

LS.
Similar results hold for the posterior mode instead of the posterior expectation.
Here, the estimate σ̂2

PDC allows some reaction to prior-data con�ict: it measures the
distance betweenm(0) (prior) and β̂LS (data) estimates for β, with a large distance resulting
basically in a large value of σ̂2

PDC and thus an enlarged posterior estimate for σ2.
The weighting matrix for the distances is playing an important role as well. The in�uence

of M(0) is as follows: for components of β one is quite certain about the assignment of
m(0), the respective diagonal elements of M(0) will be low, so that these diagonal elements
of the weighting matrix will be high. Therefore, large distances in these dimensions will
increase σ̂2

PDC strongly. An erroneously high con�dence in the prior assumptions on β is
thus penalised by an increasing posterior estimate for σ2. The in�uence of XTX interprets
as follows: covariates with a low spread in x-values, giving an unstable base for the estimate
β̂LS, will result in low diagonal elements of XTX. Via the double inverting, those diagonal
elements of the weighting matrix will remain low and thus give the di�erence a low weight.
Therefore, σ̂2

PDC will not excessively increase due to a large di�erence in dimensions where
the location of β̂LS is to be taken cum grano salis.
As to be seen in the following subsection, the behavior of E[σ | z] is of high importance

for posterior inferences on β.

A.1.3.3. Update of β

The posterior distribution of β is again a multivariate t, with expectation

E[β | z] = E
[

E[β | σ2, z] | z
]

= m(n)
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as described in Section A.1.3.1, and variance

Var[β | z] =
b(n)

a(n) − 1
M(n)

= E[σ2 | z]M(n) (A.6)

=

(
2a(0) − 2

2a(0) + n− 2
E[σ2] +

n− p
2a(0) + n− 2

σ̂2
LS +

p

2a(0) + n− 2
σ̂2
PDC

)
·
(
M(0)−1

+ XTX
)−1

=

(
2a(0) − 2

2a(0) + n− 2
E[σ2] +

n− p
2a(0) + n− 2

σ̂2
LS +

p

2a(0) + n− 2
σ̂2
PDC

)
·
(
M(0) −M(0)XT(I + XM(0)XT)−1XM(0)

)
,

not being directly expressible as a function of E[σ2]M(0), the prior variance of β.
Due to the e�ect of E[σ2 | z], the posterior variance-covariance matrix of β can increase

in case of prior data con�ict, if the rise of E[β | z] (due to an even stronger rise of σ̂2
PDC) can

overcompensate the decrease in the elements of M(n). However, we see that the e�ect of
prior-data con�ict on the posterior variance of β is globally and not component-speci�c; it
in�uences the variances for all components of β with the same amount, even if the con�ict
was con�ned only to some or even just one single component. Taking it to the extremes, if
the prior assignment m(0) was (more or less) correct in all but one component, with that
one being far out, the posterior variances will increase for all components, also for the ones
with prior assignments that have turned out to be basically correct.

A.1.4. An Alternative Approach for Conjugate Priors in Bayesian
Linear Regression (CCCP)

In this section, a prior model for θ = (β, σ2) will be constructed along the general con-
struction method for sample distributions that form a linear, canonical exponential family
(see the canical conjugates framework in Section 1.2.3.1, and, e.g., Bernardo and Smith
2000). As shown for the examples in Sections 1.2.3.3, 1.2.3.4 and 1.2.3.5, the method is
typically used for the i.i.d. case, but the likelihood arising from z ∼ N(Xβ, σ2I) will be
shown to follow the speci�c exponential family form as well.
The canonically constructed conjugate prior (CCCP) model will also result in a normal-

inverse gamma distribution, but with a �xed variance-covariance structure. The CCCP
model is thus a special case of the SCP model, which � as will be detailed in this subsection
� o�ers some interesting further insights into the structure of the update step.
The likelihood arising from the distribution of z,

f(z | β, σ2)

=
n∏
i=1

f(zi | β, σ2)



A.1 Bayesian Linear Regression: Di�erent Conjugate Models and Their
(In)Sensitivity to Prior-Data Con�ict 145

=
1

(2π)
n
2 (σ2)

n
2

exp

{
− 1

2σ2

n∑
i=1

(zi − xTiβ)2

}
=

1

(2π)
n
2 (σ2)

n
2

exp
{
− 1

2σ2
(z −Xβ)T(z −Xβ)

}
=

1

(2π)
n
2

exp
{
− n

2
log(σ2)

}
exp

{
− 1

2σ2
zTz +

1

2σ2
zTXβ +

1

2σ2
(Xβ)Tz − 1

2σ2
(Xβ)T(Xβ)

}
=

1

(2π)
n
2︸ ︷︷ ︸

a(z)=
∏n
i=1 a(zi)

exp
{( β

σ2

)T
︸ ︷︷ ︸
ψ1

XTz︸︷︷︸
τ1(z)

− 1

σ2︸︷︷︸
ψ2

1

2
zTz︸ ︷︷ ︸

τ2(z)

−
( 1

2σ2
βTXTXβ +

n

2
log(σ2)

)
︸ ︷︷ ︸

nb(ψ)

}
,

indeed corresponds to the canonical exponential family form14

f(z | ψ) = a(z) · exp{〈ψ, τ(z)〉 − n · b(ψ)} ,

where ψ = ψ(β, σ2) is a certain function of β and σ2, the parameters of interest. τ(z) is
a p+ 1-dimensional su�cient statistic of z used in the update step. Here, we have

ψ =

(
β
σ2

− 1
σ2

)
, τ(z) =

(
XTz
1
2
zTz

)
, b(ψ) =

1

2nσ2
βTXTXβ +

1

2
log(σ2) . (A.7)

According to the general construction method, a conjugate prior for ψ can be obtained
from these ingredients by the following equation:15

p(ψ) = c(n(0),y(0)) · exp
{
n(0) · [〈ψ,y(0)〉 − b(ψ)]

}
, (A.8)

where n(0) and y(0) are the parameters that de�ne the concrete prior distribution of its
distribution family; whereas ψ and b(ψ) were identi�ed in (A.7). c(·) corresponds to a
normalisation factor for the prior.16

Here, the conjugate prior writes as

p(ψ)dψ = c(n(0),y(0)) exp
{
n(0)
[
y(0)T

(
β
σ2

− 1
σ2

)
− 1

2nσ2
βTXTXβ − 1

2
log(σ2)

]}
dψ .

As this is a prior on ψ, but we want to arrive at a prior on θ = (βT, σ2)T, we must transform
the density p(ψ):

p(θ)dθ = p(ψ)dψ ·
∣∣∣∣det(dψdθ

)∣∣∣∣
14In Equation 1.4, the integration constant a(·) was omitted.
15See Equation 1.5, where the integration constant c(·) was omitted as well.
16When applying the general construction method to the two examples from Section A.1.2, the priors as

presented there will result, where y(0) = µ(0) and n(0) = 1/σ(0)2 for the prior to the scaled normal
model. For details of the derivation, see Sections 1.2.3.4 and 1.2.3.5, respectively.
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For the transformation, we need the determinant of the Jacobian matrix dψ
dθ
. As it holds

that

dψi
dθj

=
1

dβj

βi
σ2

=

{
0 i 6= j
1
σ2 i = j

∀i, j ∈ {1, . . . , p} ,

dψp+1

dθj
=

1

dβj

(
− 1

σ2

)
= 0 ∀j ∈ {1, . . . , p} ,

dψi
dθp+1

=
1

dσ2

βi
σ2

= − βi
(σ2)2

∀i ∈ {1, . . . , p} ,

dψp+1

dθp+1

=
1

dσ2

(
− 1

σ2

)
=

1

(σ2)2
,

we get ∣∣∣∣det(dψdθ
)∣∣∣∣ =

∣∣∣∣∣det
(

1
σ2 I − β

(σ2)2

0 1
(σ2)2

)∣∣∣∣∣ =
1

(σ2)p+2
,

where I is the p×p identity matrix, and 0 a p-dimensional row vector of zeroes. Therefore,
the prior on θ = (β, σ2)T is

p(θ)dθ

= p(ψ)dψ ·
∣∣∣∣det(dψdθ

)∣∣∣∣
= c(n(0),y(0))

exp
{
n(0)y

(0)
1

T β

σ2
− n(0)y

(0)
2

1

σ2
− n(0)

2nσ2
βTXTXβ − n(0)

2
log(σ2)− (p+ 2) log(σ2)

}
,

(A.9)

where y(0) =
(
y

(0)
1

T

, y
(0)
2

)T
, and y(0)

1 ∈ Rp, y(0)
2 ∈ R>0.

θ can now be shown to follow a normal-inverse gamma distribution by comparing coef-
�cients. In doing that, some attention must be paid to the terms proportional to −1/σ2

(appearing as − log(σ2) in the exponent), because these can appear in both the normal
distribution p(β | σ2) and in the inverse gamma p(σ2) distribution. Furthermore, it is
necessary to complete the square for the normal part, resulting in an additional term for
the inverse gamma part.
The density of a normal distribution on β | σ2 with a mean vector17m(0) = m(0)(n(0),y(0))

and a variance-covariance matrix σ2M
(0)

= σ2M
(0)

(n(0),y(0)), both to be seen as functions
of the canonical parameters n(0) and y(0), has the following form:

p(β | σ2) =
1

(2π)
p
2 (σ2)

p
2

exp
{
− 1

2σ2

(
β −m(0)

)T
M

(0)−1(
β −m(0)

)}
17We will denote the parameters of the canonically constructed prior (CCCP) by an overlined version of

the parameters of the standard conjugate prior (SCP) in order to emphasise the di�erent meanings.
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=
1

(2π)
p
2

exp
{
m(0)TM

(0)−1 β

σ2
− 1

2σ2
βTM

(0)−1

β

− 1

2σ2
m(0)TM

(0)−1

m(0) − p

2
log(σ2)

}
.

Comparing coe�cients with the terms from (A.9) depending on β, we get

M
(0)−1

=
n(0)

n
XTX , m(0) = n (XTX)−1 y

(0)
1 ,

where the latter derives from

n(0)y
(0)
1

T β

σ2

!
= m(0)T n

(0)

nσ2
XTXβ

⇐⇒ n(0)y
(0)
1

T !
= m(0)T n

(0)

n
XTX

⇐⇒ y
(0)
1

T

(XTX)−1 n
!

= m(0)T .

We must thus complete the square in the exponent with

− 1

2σ2
m(0)TM

(0)−1

m(0) +
1

2σ2
m(0)TM

(0)−1

m(0)

= − 1

2σ2

(
n · n(0)y

(0)
1

T

(XTX)−1y
(0)
1

)
− 1

σ2

(
−n

(0)n

2
y

(0)
1

T

(XTX)−1y
(0)
1

)
,

such that the joint density of β and σ2 reads as

p(β, σ2) = c(n(0),y(0))

exp
{
n(0)y

(0)
1

Tβ

σ2
− n(0)

2nσ2
βTXTXβ − 1

2σ2

(
n · n(0)y

(0)
1

T

(XTX)−1y
(0)
1

)
− p

2
log(σ2)︸ ︷︷ ︸

to p(β|σ2) (normal distribution)

− 1

σ2

(
− n(0)n

2
y

(0)
1

T

(XTX)−1y
(0)
1

)
− n(0)y

(0)
2

1

σ2
−
(n(0) + p

2
+ 2
)

log(σ2)︸ ︷︷ ︸
to p(σ2) (inverse gamma distribution)

}
.

(A.10)

Therefore, one part of the conjugate prior (A.10) reveals as a multivariate normal distri-

bution with mean vector m(0) = n (XTX)−1 y
(0)
1 and variance-covariance matrix σ2M

(0)
=

nσ2

n(0) (XTX)−1, i.e.

β | σ2 ∼ Np

(
n (XTX)−1 y

(0)
1 ,

nσ2

n(0)
(XTX)−1

)
. (A.11)
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The other terms in (A.10) can be directly identi�ed with the core of an inverse gamma
distribution with parameters

a(0) =
n(0) + p

2
+ 1 and

b
(0)

= n(0)y
(0)
2 −

n(0)

2
y

(0)
1

T

n(XTX)−1y
(0)
1 = n(0)y

(0)
2 −

1

2
m(0)TM

(0)−1

m(0) ,

i.e., σ2 ∼ IG

(
n(0) + p+ 2

2
, n(0)y

(0)
2 −

n(0)

2
y

(0)
1

T

n(XTX)−1y
(0)
1

)
. (A.12)

We have thus derived the CCCP distribution on (β, σ2), which can be expressed either
in terms of the canonical prior parameters n(0) and y(0), or in terms of the prior parameters

from Section A.1.3, m(0), M
(0)
, a(0) and b

(0)
.

As already noted, M
(0)

= n
n(0) (X

TX)−1 can be seen as a restricted version of M(0).
(XTX)−1 is known as the variance-covariance structure from the least squares estimate
Var(β) = σ̂2

LS(XTX)−1, and is here the �xed prior variance-covariance structure for β | σ2.
Con�dence in the prior assignment is expressed by the choice of n(0): With n(0) chosen
large relative to n, strong con�dence in the prior assignment of m(0) can be expressed,
whereas a low value of n(0) will result in a less pointed prior distribution on β | σ2.
m(0) can be chosen freely from Rp, just like m(0) for the SCP, because y(0)

1 ∈ Rp; values
for a(0) are instead restricted by a(0) > p/2 + 1, as n(0) must be postive.

The condition y(0)
2 > 0 does not actually restrict the choice of b

(0)
, as the second term

−1
2
m(0)TM

(0)−1

m(0), containing a quadratic form with a postive de�nite matrix, is always

negative, such that the �rst term n(0)y
(0)
2 must be positive anyway in order to allow a

positive value for b
(0)

(which is needed to make the prior proper).
As seen in Section 1.2.3.1, the update step for a canonically constructed prior, expressed

in terms of n(0) and y(0), possesses a convenient form: In the prior (A.8), the parameters n(0)

and y(0) must simply be replaced by their updated versions n(n) and y(n), which calculate
as

y
(n)
j =

n(0)y
(0)
j + τ(z)j

n(0) + n
, ∀j ∈ {1, . . . , p+ 1} ,

n(n) = n(0) + n .

In the following, we will describe what this means for the update steps of β | σ2, σ2, and
β, and compare these results with those for the SCP.

A.1.4.1. Update of β | σ2

As y(0) and y(n) are not directly interpretable, it is certainly easier to express prior beliefs
on β via the mean vectorm(0) of the prior distribution of β | σ2 just as in the SCP model.
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As the transformation m(0) 7→ y(0) is linear, this poses no problem:

E[β | σ2, z] = m(n) = n(XTX)−1 y
(n)
1

= n(XTX)−1

(
n(0)

n(0) + n
y

(0)
1 +

n

n(0) + n
· 1

n
(XTz)

)
= n(XTX)−1 n(0)

n(0) + n
· 1

n
(XTX)m(0) + n(XTX)−1 n

n(0) + n
· 1

n
(XTz)

=
n(0)

n(0) + n
E[β | σ2] +

n

n(0) + n
β̂LS . (A.13)

The posterior expectation for β | σ2 is here a scalar-weighted mean of the prior expecta-
tion and the least squares estimate, with weights n(0) and n, respectively. The role of n(0)

in the prior variance of β | σ2 is directly mirrored here. As described for the generalised
setting in Section 1.2.3.1 (see also Section 3.3.2), n(0) can be seen as a parameter describ-
ing the �prior strength� or expressing �pseudocounts�. In line with this interpretation, high
values of n(0) as compared to n result here in a strong in�uence ofm(0) for the calculation
of m(n), whereas for small values of n(0), E[β | σ2, z] will be dominated by the value of
β̂LS.
The variance of β | σ2 is updated as follows:

Var(β | σ2, z) =
nσ2

n(n)
(XTX)−1 =

nσ2

n(0) + n
(XTX)−1 .

Here, n(0) is updated to n(n), and thus the posterior variances are automatically smaller
than the prior variances, just as in the SCP model.

A.1.4.2. Update of σ2

For the assignment of the parameters a(0) and b
(0)

to de�ne the inverse gamma part of the
joint prior, only y(0)

2 is left to choose, as n(0) and y(0)
1 are already assigned via the choice

of m(0) and M
(0)
. To choose y(0)

2 , it is convenient to consider the prior expectation of σ2

(alternatively, the prior mode of σ2 could be considered as well):

E[σ2] =
b

(0)

a(0) − 1
=
n(0)y

(0)
2 − 1

2
m(0)TM

(0)−1

m(0)

n(0)+p
2

+ 1− 1

=
2

n(0) + p

(
n(0)y

(0)
2 −

n(0)

2
y

(0)
1

T

n(XTX)−1y
(0)
1

)
=

2n(0)

n(0) + p
y

(0)
2 −

1

n(0) + p
m(0)TM

(0)−1

m(0) .

A value of y(0)
2 dependent on the value of E[σ2] can thus be chosen by the linear mapping
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y
(0)
2 =

n(0) + p

2n(0)
E[σ2] +

1

2n(0)
m(0)TM

(0)−1

m(0) .

For the posterior expected value of σ2, there is a similar decomposition as for the SCP
model, and furthermore two other possible decompositions o�ering interesting interpreta-
tions of the update step of σ2. The three decompositions are presented in the following.

Decomposition Including an Estimate of σ2 Through the Null Model. In a �rst
decomposition, the posterior variance of σ2 can be written as:

E[σ2 | z] =
b

(n)

a(n) − 1
=

2n(n)

n(n) + p
y

(n)
2 −

1

n(n) + p
m(n)TM

(n)−1

m(n)

=
2n(0)

n(0) + n+ p
y

(0)
2 +

1

n(0) + n+ p
zTz − 1

n(0) + n+ p
m(n)TM

(n)−1

m(n)

=
n(0) + p

n(0) + n+ p
E[σ2] +

n− 1

n(0) + n+ p

1

n− 1
zTz

+
1

n(0) + n+ p

(
m(0)TM

(0)−1

m(0) −m(n)TM
(n)−1

m(n)
)
,

(A.14)

and so can be seen as a weighted average of the prior expected value, 1
n−1
zTz, and a

term depending on prior and posterior estimates for β, with weights n(0) + p, n − 1 and
1, respectively. When adopting the centered z, standardized X approach, 1

n−1
zTz is the

estimate for σ2 under the null model, that is, if β = 0.
Contrary to what a cursory inspection might suggest, the third term's in�uence, having

the constant weight of 1, will not vanish for n→∞, as the third term does not approach
a constant.18

The third term re�ects the change in information about β:

(i) If we are very uncertain about the prior beliefs on β as expressed in m(0) and thus
assign a small value for n(0) as compared to n, we will get relatively large variances

and covariances inM
(0)

by the factor n/n(0) > 1 to (XTX)−1, resulting in a small term

m(0)TM
(0)−1

m(0). After updating, the elements inM
(n)

become smaller automatically
due to the updated factor n/(n(0) + n) to (XTX)−1.

If the values of m(n) do not di�er much from the values in m(0), then the term

m(n)TM
(n)−1

m(n) would be larger than its prior counterpart m(0)TM
(0)−1

m(0), ulti-
mately reducing the posterior expectation for σ2 through the third term being nega-
tive.

18Although m(n) approaches β̂LS, and m
(0) is a constant, M

(0)−1
and M

(n)−1
are increasing for growing

n, with M
(n)−1

increasing faster than M
(0)−1

. The third term will thus eventually turn negative,
reducing the null model variance that has weight n− 1.
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If m(n) does signi�cantly di�er from m(0), then the term m(n)TM
(n)−1

m(n) can ac-

tually be smaller than m(0)TM
(0)−1

m(0), and thus give a larger value of E[σ2 | z] as
compared with the situation m(n) ≈m(0).

(ii) On the contrary, large values for n(0) as compared to n, indicating high trust in prior

beliefs on β, lead to small variances and covariances in M
(0)

by the factor n/n(0) to

(XTX)−1, resulting in a larger term m(0)TM
(0)−1

m(0) as compared to the case with

low n(0). After updating, variances and covariances in M
(n)

will become even smaller,

amplifying the termm(n)TM
(n)−1

m(n) even more ifm(n) ≈m(0), ultimately reducing
the posterior expectation for σ2 more than in the situation with low n(0).

If, however, the values ofm(n) do di�er signi�cantly from the values inm(0), the term

m(n)TM
(n)−1

m(n) can be smaller than m(0)TM
(0)−1

m(0) also here, and even more so
as compared to the situation with low n(0), giving eventually an even larger posterior
expectation for σ2.

Decomposition Similar to the SCP Model. A decomposition similar to the one in
Section A.1.3.2 can be derived by considering the third term from (A.14) in more detail:

m(0)TM
(0)−1

m(0) −m(n)TM
(n)−1

m(n)

= n(0) · n · y(0)
1

T

(XTX)−1y
(0)
1 − n(n) · n · y(n)

1

T

(XTX)−1y
(n)
1

= n(0) · n · y(0)
1

T

(XTX)−1y
(0)
1 − (n(0) + n) · nn

(0)y
(0)
1

T

+ zTX

n(0) + n
(XTX)−1n

(0)y
(0)
1 + XTz

n(0) + n

=

(
n(0) · n− n · n(0)2

n(0) + n

)
y

(0)
1

T

(XTX)−1y
(0)
1 −

2n(0) · n
n(0) + n

y
(0)
1

T

(XTX)−1XTz

− n

n(0) + n
zTX(XTX)−1XTz

=
n

n(0) + n

[
m(0)TM

(0)−1

m(0) − 2m(0)TM
(0)−1

β̂LS −
n

n(0)
β̂TLSM

(0)−1

β̂LS

]
=

n

n(0) + n

[(
m(0) − β̂LS

)T
M

(0)−1(
m(0) − β̂LS

)
−
( n

n(0)
+ 1
)
β̂TLSM

(0)−1

β̂LS

]
=

n

n(0) + n

(
m(0) − β̂LS

)T
M

(0)−1(
m(0) − β̂LS

)
− zTX(XTX)−1XTz .

Thus, we get

E[σ2 | z] =
n(0) + p

n(0) + n+ p
E[σ2] +

1

n(0) + n+ p

(
zTz − zTX(XTX)−1XTz

)
+

1

n(0) + n+ p
· n

n(0) + n
(m(0) − β̂LS)TM

(0)−1

(m(0) − β̂LS)
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=
n(0) + p

n(0) + n+ p
E[σ2] +

n− p
n(0) + n+ p

· 1

n− p
(z −Xβ̂LS)T(z −Xβ̂LS)︸ ︷︷ ︸

σ̂2
LS

+
p

n(0) + n+ p
· n

n(0) + n

1

p
(m(0) − β̂LS)TM

(0)−1

(m(0) − β̂LS)︸ ︷︷ ︸
=:σ2

PDC

. (A.15)

The posterior expectation for σ2 can therefore be seen also here as a weighted average
of the prior expected value, the estimation σ̂2

LS resulting from least squares methods, and
σ2
PDC, an estimate for σ2 similar to σ̂2

PDC,
19 with weights n(0) + p, n− p and p, respectively.

As in the update step for β | σ2, n(0) is guarding the in�uence of the prior expectation
on the posterior expectation. Just as in the decomposition for the SCP model, the weight
for σ̂2

LS will dominate the others when the sample size approaches in�nity. Also for the
CCCP model, σ2

PDC is getting large if prior beliefs on β are skewed with respect to �what
the data says�, eventually in�ating the posterior expectation of σ2. The weighting of the
di�erences is similar as well: High prior con�dence in the chosen value ofm(0) as expressed

by a high value of n(0) will give a large M
(0)−1

, and thus penalising erroneous assignments

stronger as compared to a lower value of n(0). Again, XTX, the matrix structure in M
(0)−1

,
weighs the di�erences for components with covariates having a low spread weaker due to
the instability of the respective component of β̂LS under such conditions.
Now we give the proof that E[σ2

PDC | σ2] = σ2. As a preparation, it holds that

E[β̂LS | σ2] = E
[

E[β̂LS | β, σ2]
∣∣σ2
]

= E[β | σ2] = m(0) , and

Var(β̂LS | σ2) = E
[

Var(β̂LS | β, σ2)
∣∣σ2
]

+ Var
(

E[β̂LS | β, σ2]
∣∣σ2
)

= E[σ2(XTX)−1 | σ2] + Var(β | σ2)

= σ2(XTX)−1 +
nσ2

n(0)
(XTX)−1 =

n(0) + n

n(0)
σ2(XTX)−1 .

With this in mind, we can now derive

E
[(
m(0) − β̂LS

)T
M

(0)−1(
m(0) − β̂LS

)∣∣σ2
]

= E
[

tr
(
M

(0)−1(
m(0) − β̂LS

)(
m(0) − β̂LS

)T)∣∣σ2
]

= tr
(
M

(0)−1

E
[(
m(0) − β̂LS

)(
m(0) − β̂LS

)T∣∣σ2
])

= tr
(n(0)

n
(XTX) · n

(0) + n

n(0)
σ2(XTX)−1

)
= tr

(n(0) + n

n
σ2Ip

)
=
n(0) + n

n
· p · σ2 ,

such that the factor n
n(0)+n

1
p
in σ2

PDC cancels out, and indeed E[σ2
PDC | σ2] = σ2.

19E[σ2
PDC

| σ2] = σ2 computes very similar to the calculations given in O'Hagan (1994, p. 249) and is
given below.
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Decomposition with Estimates of σ2 Through Prior and Posterior Residuals. A
third interpretation of E[σ2 | z] can be derived by another reformulation of the third term
in (A.14):

m(0)TM
(0)−1

m(0) −m(n)TM
(n)−1

m(n)

=
n(0)

n
m(0)TXTXm(0) − n(n)

n
m(n)TXTXm(n)

=
n(0)

n
(z −Xm(0))T(z −Xm(0))− n(n)

n
(z −Xm(n))T(z −Xm(n))

+
n(n)

n
zTz − n(0)

n
zTz +

n(0)

n
2zTXm(0) − n(n)

n
2zTXm(n)

=
n(0)

n
(z −Xm(0))T(z −Xm(0))− n(n)

n
(z −Xm(n))T(z −Xm(n)) + zTz − 2zTXβ̂LS .

With this, we get

E[σ2 | z] =
n(0) + p

n(0) + n+ p
E[σ2] +

n(0) + p

n(0) + n+ p

n(0)

n
· 1

n(0) + p
(z −Xm(0))T(z −Xm(0))︸ ︷︷ ︸

=:σ(0)2, as E[σ(0)2|σ2]=σ2

+
2(n− p)

n(0) + n+ p
σ̂2
LS −

n(n) + p

n(0) + n+ p

n(n)

n
· 1

n(n) + p
(z −Xm(n))T(z −Xm(n))︸ ︷︷ ︸

=:σ(n)2, as E[σ(n)2|σ2,z]=E[σ(n)2|σ2]=σ2

.

(A.16)

Here, the calculation of E[σ2 | z] is based again on E[σ2] and σ̂2
LS, but now complemented

with two special estimates: σ(0)2
, an estimate based on the �prior residuals� z − Xm(0),

and a respective posterior version σ(n)2
, based on z −Xm(n).

However, E[σ2 | z] is only �almost� a weighted average of these ingredients, as the weights
sum up to n(0)− p+n instead of n(0) + p+n. Especially strange is the negative weight for
σ(n)2

, actually making the factor to σ(n)2
in (A.16) result to −1.

A possible interpretation would be to group E[σ2] and σ(0)2
as prior-based estimations

with joint weight 2(n(0) + p), and σ̂2
LS as data-based estimation with weight 2(n − p).

Together, these estimations have a weight of 2(n(0) + n), being almost (neglecting the
missing 2p) a �double estimate� that is corrected back to a �single� estimate with the
posterior-based estimate σ(n)2

.

A.1.4.3. Update of β

As for the SCP model, the posterior on β, being the most relevant distribution for in-
ferences, is a multivariate t with expectation m(n) as described in Section A.1.4.1. For
Var(β | z), one gets di�erent formulations, depending on the formula for E[σ2 | z]:

Var(β | z) =
b

(n)

a(n) − 1
M

(n)
= E[σ2 | z]

n

n(n)
(XTX)−1 (A.17)
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(A.14)
=

n(0) + p

n(0) + n+ p

n(0)

n(n)
E[σ2]

n

n(0)
(XTX)−1︸ ︷︷ ︸

Var(β)

+
n− 1

n(0) + n+ p

n

n(n)

1

n− 1
zTz(XTX)−1

+
1

n(0) + n+ p

n

n(n)

(
m(0)TM

(0)−1

m(0) −m(n)TM
(n)−1

m(n)
)

(XTX)−1

(A.15)
=

n(0) + p

n(0) + n+ p

n(0)

n(n)
E[σ2]

n

n(0)
(XTX)−1︸ ︷︷ ︸

Var(β)

+
n− p

n(0) + n+ p

n

n(n)
σ̂2
LS(XTX)−1︸ ︷︷ ︸

Var(β̂LS)

+
p

n(0) + n+ p

n

n(n)
σ2
PDC(XTX)−1

(A.16)
=

n(0) + p

n(0) + n+ p

n(0)

n(n)
E[σ2]

n

n(0)
(XTX)−1︸ ︷︷ ︸

Var(β)

+
n(0) + p

n(0) + n+ p

n(0)

n(n)
σ(0)2 n

n(0)
(XTX)−1︸ ︷︷ ︸

=:Var(0)(β)

+
2(n− p)

n(0) + n+ p

n

n(n)
σ̂2
LS(XTX)−1︸ ︷︷ ︸

Var(β̂LS)

− n(n) + p

n(0) + n+ p
σ(n)2 n

n(n)
(XTX)−1︸ ︷︷ ︸

=:Var(n)(β)

.

In these equations, it is possible to isolate Var(β), Var(β̂LS) and, in the formulation
with (A.16), the newly de�ned Var(0)(β) and Var(n)(β). However, all three versions do not
constitute a weighted average, even when the corresponding formula for E[σ2 | z] has this
property.
Just as in the SCP model, Var(β | z) can increase if the automatic decrease of the

elements in M
(n)

is overcompensated by a strong increase of E[σ2 | z]. Again, this reaction
to prior-data con�ict is unspeci�c because it depends on E[σ2 | z] alone, and a�ects all
elements of variance-covariance matrix in the same way.

A.1.5. Discussion and Outlook

For both the SCP and CCCP model, E[β | z] can be seen as a weighted average of E[β] and
β̂LS, such that the posterior distribution on β will be centered around a mean somewhere
between E[β] and β̂LS, with the location depending on the respective weights. The weights
for the CCCP model appear especially intuitive: β̂LS is weighted with the sample size n,
whereas E[β] has the weight n(0), re�ecting the �prior strength� or �pseudocounts�.
Due to this, prior-data con�ict may at most a�ect the variances only. Indeed, for both

prior models, E[σ2 | z] can increase in the presence of prior-data con�ict, as shown by the
decompositions in Sections A.1.3.2 and A.1.4.2.
Through the formulations (A.6) and (A.17) for Var(β | z), respectively, it can be seen

that the posterior distribution on β can in fact become less pointed than the prior when
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prior-data con�ict is present. Nevertheless, the e�ect might be not be as strong as desired:
In the formulations (A.5) and (A.15), respectively, the e�ect is based only on one term of
the decomposition, and furthermore may be foiled through the automatic decrease of M(n)

and M
(n)
. Probably the most problematic �nding is that this (possibly weak) reaction

a�ects the whole variance-covariance matrix uniformally, and thus, in both models, the
reaction to prior-data con�ict is by no means component-speci�c.

Therefore, the prior models lack the capability to mirror the appropriateness of the prior
assignments for each covariate individually. As the SCP model is already the most general
approach in the class of conjugate priors, this non-speci�city feature seems inevitable in
Bayesian linear regression based on precise conjugate priors.

In fact, as argued in Section A.1.1, a more sophisticated and speci�c reaction to prior-
data con�ict is only possible by extending considerations beyond the traditional concept of
probability. Imprecise probabilities, as a general methodology to cope with the multidimen-
sional nature of uncertainty, appears promising here. For generalised Bayesian approaches,
the possibility to mirror the quality of prior knowledge is one of the main reasons for the
paradigmatic skip from classical probability to interval or imprecise probability.20 In this
framework, ambiguity in the prior speci�cation can be modeled by considering setsM of
prior distributions. In the most common approach based on Walley's (1991) Generalised
Bayes' Rule (see Section 2.1.2.5), posterior inference is then based on a set of posterior
distributions M|z, resulting from updating the distributions in the prior set element by
element.21

Of particular computational convenience are again models based on conjugate priors,
as developed for the Dirichlet-Multinomial model by Walley (1996b), see also Bernard
(2009),22 and for i.i.d. exponential family sampling models by Quaeghebeur and Cooman
(2005), which were extended byWalter and Augustin (2009b)23 to allow an elegant handling
of prior-data con�ict: With the magnitude of the setM|z mapping the posterior ambiguity,
high prior-data con�ict leads, ceteris paribus, to a largeM|z, resulting in high imprecision
in the posterior probabilities, and cautious inferences based on it, while in the case of no
prior-data con�ictM|z, and thus the imprecision, is much smaller.24

The essential technical ingredient to derive this class of models is the general construction
principle, described in Section 1.2.3.1, underlying the CCCP model from Section A.1.4, and
thus that model can be extended directly to a powerful corresponding imprecise probability
model.25 A detailed development is beyond the scope of this contribution.

20See the discussion of this motive in Section 2.2.3.3.
21See Section 2.1.3.
22The IDM is discussed in more detail in Section 3.1.3.
23See Section 3.3 for a reproduction of this work.
24See the overview on imprecise probability models based on this class of conjugate priors in Section 3.1.
25For σ2 �xed, the model from Section A.1.3 can also be comprised under the more general structure

described in Section 3.3.2, that also can be extended to imprecise probabilities, see Walter, Augustin,
and Peters (2007), and Walter (2006) for details.
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A.2. A Parameter Set Shape for Strong Prior-Data

Agreement Modelling

In this section, we will explain an approach for parameter set shapes that allow for extra
precision in case of strong prior-data agreement as discussed in Section 4.3. First, we will
brie�y characterise the novel parametrisation of canoncial conjugate priors this approach
relies on. To keep things simple, we restrict ourselves here for the case of the Beta-Binomial
model (see Section 1.2.3.3), but the approach is generalisable to arbitrary canonical conju-
gate priors.26 Then we will suggest a shape in this parametrisation that accomplishes both
prior-data con�ict sensitivity and `bonus precision' in case of strong prior-data agreement.
We present a parametric description for such a shape and show that it will indeed lead to
the desired properties.

A.2.1. A Novel Parametrisation of Canonical Conjugate Priors

In the parametrisation in terms of n(0) and y(0), described in Section 1.2.3.1, a conjugate
priors is updated to its respective posterior by a shift in the parameter space, given by
(1.6):

n(0) 7→ n(0) + n , y(0) 7→ n(0)

n(0) + n
· y(0) +

n

n(0) + n
· τ(x)

n
= y(0) +

τ(x)− ny(0)

n(0) + n
.

We see thus that, while the shift for the n coordinate is the same for all elements (n(0), y(0))
in a prior parameter set IΠ(0), the shift in the y coordinate depends on n(0), and the location
of y(0) itself. Due to this, the shape of IΠ(0) will change during the update step.
This shape change to some extent obscures the posterior inference properties of a certain

shape of the prior parameter set IΠ(0). Therefore, a di�erent parametrisation of the canon-
ical priors in which each coordinate has the same shift in updating would be advantageous.
Then, updating of parameter sets could be expressed as a shift of the entire set within the
parameter space.
A parametrisation developed by Mik�elis Bickis (2011, personal communication) achieves

just that. He is currently preparing a manuscript elaborating the details of his �ndings,
and we will present here a preview on the results for the Beta-Binomial case.
In this parametrisation, a canonical prior is represented by a coordinate (η

(0)
0 , η

(0)
1 ),27

where η(0)
1 replaces the main prior parameter y(0), while η(0)

0 is just a di�erent name for
n(0). The relation of (η

(0)
0 , η

(0)
1 ) to (n(0), y(0)) is as follows:

n(0) = η
(0)
0 , y(0) =

η
(0)
1

η
(0)
0 + 2

+
1

2
. (A.18)

26For a more detailed derivation of this parametrisation, we have to refer to a future publication of Mik�elis
Bickis.

27Again, we denote prior parameters with superscript (0), and posterior parameters with superscript (n).
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Figure A.1.: Bounds for the domain of η0 and η1 for the Beta-Binomial model (black), with
rays of constant expectation for yc = {0.1, 0.2, . . . , 0.9} (grey).

The domain of η0 and η1 in case of the Beta-Binomial model is

H =
{

(η0, η1)
∣∣∣η0 > −2, |η1| <

1

2
(η0 + 2)

}
, (A.19)

and the update step in terms of η0 and η1 is given by

η
(n)
0 = η

(0)
0 + n ,

η
(n)
1 = η

(0)
1 +

1

2
(s− (n− s)) = η

(0)
1 + s− n

2
,

(A.20)

where s is the number of successes in the n Bernoulli trials. A `success' in a Bernoulli trial
thus leads to step of 1 in the η0 direction and of +1

2
in the η1 direction, while a `failure'

leads to step of 1 in the η0 direction and of −1
2
in the η1 direction.28

As we wrote in Section 4.3, η1 cannot have the convenient property of being equal to
the expectation of the mean sample statistic τ̃(x) (here, s/n), as was the case for y.29

However, from (A.18) we can derive that coordinates (η0, η1) ∈ H satifying

η1 = f(η0) = (η0 + 2)(yc −
1

2
) (A.21)

28As in Section 3.5, we will often treat s as a a real-valued observation in [0, n] because the continuous
representation is convenient for our discussions, keeping in mind that in reality it can only take integer
values.

29For y(0), it holds that y(0) = E
[

E[τ̃(x) | ψ] | n(0), y(0)
]
, as mentioned in Section 1.2.3.1.
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will have a constant expectation yc. The domain H, and these rays of constant expectation
emanating from the coordinate (−2, 0), are depicted in Figure A.1.

A.2.2. Informal Rationale for Boat-Shaped Parameter Sets

When Mik�elis Bickis presented this parametrisation of conjugate priors at a talk (Bickis
2011), both Frank Coolen and the author of this thesis had independently the same basic
idea for a set shape that allows for both prior-data con�ict sensitivity and more precise
inferences in case of strong prior-data agreement. The basic idea for this shape is described
informally below, while a suggestion for a parametrisation of such a shape is described and
discussed in Section A.2.3.
In the parametrisation in terms of (n(0), y(0)) and (n(n), y(n)), posterior inferences become

more precise, because the stretch in the main parameter dimension y, denoted by ∆y(IΠ(n)),
tends to 0 for n → ∞ (see the discussion in Section 3.1.2). In the domain H as depicted
in Figure A.1, instead the rays of constant expectation fan out for growing n, while a
parameter set will retain its size in updating. Increased precision in a posterior parameter
set H(n), which is just its prior counterpart H(0) shifted to the right, is given by the fact the
more H(n) is located to the right, the fewer rays of constant expectation H(n) will intercept.
Imprecision in terms of E

[
E[τ̃(x) | ψ] | n(n), y(n)

]
= y(n) can thus be imagined as the size

of the `shadow' that a set H(n) casts when considering a light source in (−2, 0) (the point
from which the rays of constant expectation emanate). In short, the smaller this shadow,
the more precise the inferences.
In the context of the model from Section A.2.1, we will denote by y(n) and y(n) the

bounds of this shadow, i.e.,

y(n) := min
(η

(n)
0 ,η

(n)
1 )∈H(n)

y(n) = min
(η

(n)
0 ,η

(n)
1 )∈H(n)

η
(n)
1

η
(n)
0 + 2

+
1

2
,

y(n) := max
(η

(n)
0 ,η

(n)
1 )∈H(n)

y(n) = max
(η

(n)
0 ,η

(n)
1 )∈H(n)

η
(n)
1

η
(n)
0 + 2

+
1

2
,

and we call the coordinates arg min(η0,η1)∈H(n) y(n) and arg max(η0,η1)∈H(n) y(n) the touchpoints
of H(n) responsible for the shadow [y(n), y(n)]. Mutatis mutandis, the same de�nitions can
be made for the prior set H(0).
Due to the fanning out of rays, most shapes for H(0) will lead to decreasing imprecision for

increasing n. Indeed, models of type (a) from Section 3.1.1, where IΠ(0) = n(0)× [y(0), y(0)],

are represented here again by a line segment H(0) = η
(0)
0 × [η(0)

1
, η

(0)
1 ], such that the posterior

touchpoints are, for any s and n, (η
(n)
0 , η(n)

1
) and (η

(0)
0 , η

(n)
1 ), where η(n)

1
and η

(n)
1 are the

updated versions of η(0)
1

and η(0)
1 , respectively. Due to (A.20), it holds that η(n)

1 − η(n)
1

=

η
(0)
1 − η(0)

1
; therefore, imprecision decreases here because a line segment of �xed size will

cast a smaller shadow when further to the right, as illustrated in Figure A.2.
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Figure A.2.: Parameter set H(0) = η
(0)
0 × [η

(0)
1 , η

(0)
1 ] and respective posterior sets H(n) for

s/n = 0.5 (left) and s/n = 0.9 (right). Note that all sets have the same size,
imprecision decreasing only through their position on the η0 axis.

For prior-data con�ict sensitivity, we need shapes that cover a range of η0 values, for
the same reasons as in the framework of Section 3.1.1, where only sets with a range of n(0)

values o�ered this property. Sets that are elongated along the rays of constant expectation
will behave here similar to the rectangular shapes of Section 3.1.1. When shifted along its
respective ray of constant expectation, imprecision will be reduced as the shadow of the
set will become smaller just as described above for line segments. When such a shape is
instead shifted away from its ray of constant expectation, imprecision will be increased, as
a prolonged shape that is now turned away from its ray will cast a larger shadow.30

A set H(0) allowing for less imprecison in case of strong prior-data agreement must also
be able to cast a smaller shadow if the update shift goes into the direction of its ray, but we
will enhance this e�ect by considering now also the properties of the canonical posteriors
the coordinates of H(n) represent.
We have seen that for the conjugate distributions themselves, n(0) is generally a param-

eter determining the spread of the distribution (e.g., in the Normal-Normal model (see
Section 1.2.3.4), n(0) was the inverse variance), such that we will have more precise infer-
ences if the shadow bounds y(n) and y(n) are attained at higher values of η0, leading to lower
variances in the `critical' distributions at the boundary of the posterior expectation interval
[y(n), y(n)]. For this to happen, we need a shape for which the touchpoints responsible for
y(n) and y(n) are attained at higher values of η0 in case of strong prior-data agreement.
Shapes that accomplish this must have a curvature along their length in the direction of
the constant rays of expectation. The shape we suggest thus looks like a bullett, or like a
boat with a transom stern (see, e.g., Figure A.3).

30This will become clear from the depiction of boatshape sets in Figure A.4.
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A.2.3. The Boatshape

In this section, we will suggest a parametrisation for such a shape. The de�nition, along
with some �rst graphical examples, is given in Section A.2.3.1, and we discuss some �rst
technical results for this shape in Sections A.2.3.2 � A.2.3.4.

A.2.3.1. Basic De�nition

We will now present a parametrisation for such a boat-shaped parameter set H(0). To keep
things simple, we will consider here and in the follwing only prior sets that are symmetric
around the η0 axis, i.e., centered around yc = 0.5, expressing prior the information that we
deem a fraction of successes of s

n
= 1

2
as the most probable.31

For the contours of H(0), we suggest an exponential function as the functional form,
where the `prow' of the set is located at (η

0
, 0). The lower and the upper contour c(0)(η0)

and c(0)(η0) are de�ned as

c(0)(η0) = −a
(

1− e−b(η0−η0)
)
,

c(0)(η0) = a
(

1− e−b(η0−η0)
)
,

where a and b are parameters controlling the shape. We will also need the respective
derivations with respect to η0, given by

d

dη0

c(0)(η0) = −abe−b(η0−η0) ,

d

dη0

c(0)(η0) = abe−b(η0−η0) .

For this basic situation, given the parameters η
0
, η0, a, and b, H(0) is thus de�ned as

H(0) = {(η0, η1) : η
0
≤ η0 ≤ η0, c

(0)(η0) ≤ η1 ≤ c(0)(η0)} . (A.22)

A prior boatshape set with η
0

= 1, η0 = 6, a = 2, and b = 0.8 is depicted in Figure A.3,
where the left graph shows this set as de�ned in terms of (η0, η1), and the right graph
shows the set from the left transformed into the space N × Y .
We have as yet no appealing formal description for the role of the parameters a and

b. Informally, a determines the half-width of the set; the width, i.e., the size in the η1

dimension, would be a if η0 → ∞. b instead determines the `bulkyness' of the shape.
Together with η

0
, a and b determine the prior interval for the expected success probability

[y(0), y(0)]. For �xed η
0
and a, increasing b leads to a wider prior expectation interval. For

[y(0), y(0)], the choice of η0 is irrelevant.32

31The general case of sets H(0) with central ray yc 6= 0.5 is discussed informally in Section A.2.4.
32η0 plays only a role in determining when the `unhappy learning' phase starts (see end of Section A.2.3.4).
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Figure A.3.: Boatshape prior set in the parametrisation via (η0, η1) (left) and via (n(0), y(0))
(right), with parameters η

0
= 1, η0 = 6, a = 2, and b = 0.8.
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Figure A.4.: Boatshape prior and posterior sets for data in accordance and in con�ict with
the prior. The prior set is the same as in Figure A.3. While the posterior
sets for s

n
= 0.5 move along the ray for yc = 0.5, the posterior sets for s

n
= 1

are shifted away from the ray for yc = 0.5, resulting in increased posterior
imprecision. Note that lower and upper touchpoints are in the middle of the
contour for the prior and the posterior resulting for data s

n
= 4

8
, while at least

one touchpoint is at the end for all other sets. (see also Figure A.5).
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Figure A.5.: Boatshape prior and posterior sets from Figure A.4 in the parametrisation
via (n(0), y(0)). Note that in the strong prior-data agreement case, posteriors
based on a rectangular set with the same prior main parameter imprecision
would be larger than the ones depicted here, illustrating the extra gain in
precision.

A.2.3.2. Finding the Touchpoints for the Basic Set

In contrast to models discussed in Section 3.1, where y(0) and y(0) were at either ends of
a set IΠ(0), here, for a set (A.22), the touchpoints y(0) and y(0) are not necessarily at η(0)

0

or η(0)
0 . 33 Instead, the rays of constant expectation (A.21) touching the parameter set

must be determined to �nd y(0) and y(0). To do this, the tangent equations for the lower
and the upper contour function depending on η0 are determined. As all rays of constant
expectation pass through the point (−2, 0), the tangent that passes through this point is
determined by inserting this point into the tangent equation, and the resulting equation is
solved for η0. The resulting points (ηu0 , c

(0)(ηu0 )) resp. (ηl0, c
(0)(ηl0)) then give the touchpoints

of the parameter set, and can be transformed to y(0) and y(0) by using (A.18).
As the basic set is symmetrical to the η0 axis, ηu0 = ηl0, and it su�ces to �nd, e.g., ηu0 ,

by considering the upper contour tangent.
We denote the tangent in contour point (η0, c

(0)(η0)) by

tη0(x) = dx+ i ,

where d = d
dη0
c(0)(η0) and i such that tη0(x) goes through the point (η0, c

(0)(η0)):

tη0(x) = dx+ i ⇐⇒

c(0)(η0) =
d

dη0

c(0)(η0)η0 + i

33See, e.g., the prior in Figure A.3.
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i = c(0)(η0)− d

dη0

c(0)(η0)η0

= a− ae−b(η0−η0) − η0abe
−b(η0−η0)

= a− a(1 + bη0)e−b(η0−η0)

=⇒ tη0(x) = abe−b(η0−η0)x+ a− a(1 + bη0)e−b(η0−η0)

= a− a
(
1 + b(η0 − x)

)
e−b(η0−η0)

Now, let us �nd the touchpoint (ηu0 , c
(0)(ηu0 )) whose tangent goes through (−2, 0), as this

gives us y(0). We insert (−2, 0) into the tangent equation and solve for η0.

a− a
(
1 + b(ηu0 + 2)

)
e−b(η

u
0−η0) !

= 0

1 + b(ηu0 + 2)
!

= eb(η
u
0−η0) (A.23)

This equation has only one solution for ηu0 > η
0
, that is, however, not available in closed

form.
As a general rule, the nearer ηu0 is to η

0
, the larger d

dη0
c(0)(ηu0 ), that is, y(0) is more away

from 1
2
. Here, this means that the larger ηu0 , the more imprecise is the prior parameter set.

A.2.3.3. Strong Prior-Data Agreement Property

We will now prove the essential property that sets (A.22) will lead to especially precise
inferences when data are strongly suporting prior information.
For a prior parameter set H(0) = η

(0)
0 × [η(0)

1
, η

(0)
1 ] symmetric around 0, the prior upper

expected value y(0) results from the transformation (A.18) of the point (η
(0)
0 , η

(0)
1 ). The

posterior upper expected value y(n), given data that coincide especially well with the prior,
i.e., data with s = n

2
, will then be found at the point (η

(0)
0 + n, η

(0)
1 ), because in this case,

the set does not move in the vertical (η1) direction. As y(0) is decreasing in η0 and η1 is
constant, y(n) will be lower than y(0), i.e., imprecision is reduced.
Imprecision is, however, even more strongly reduced for the boatshape parameter set

(A.22). Say, we de�ne the prior parameter set such that the prior upper touchpoint is
at the η0 coordinate ηu0 = η

(0)
0 . For this shape, the η0 coordinate for the posterior upper

touchpoint ηu0
(n) will be larger than the updated η(0)

0 , i.e., ηu0
(n) > η

(0)
0 +n (as will be shown

below), and thus y(n) is lower. Although the η1 coordinate will be slightly larger at the
point (ηu0

(n), c(ηu0
(n))) as compared to the point (η

(0)
0 + n, η

(0)
1 ), the corresponding y(n) is

still lower, as it holds that

d

dη0

c(ηu0
(n)) <

d

dη0

c(η
(0)
0 + n)

because d
dη0
c(η0) is decreasing in η0, and a smaller slope for the tangent through (−2, 0)

is equivalent to a lower y(n). This is the desired reduction in imprecision for the case of
strong prior-data agreement, also depicted exemplarily in Figures A.4 and A.5.
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The property ηu0
(n) > η

(0)
0 +n of the boatshape set will be shown below. Due to symmetry

of prior and posterior parameter shape around the η0 axis, ηu0
(n) = ηl0

(n)
, i.e., the touchpoint

at the upper contour (giving y(n)) is equal to the touchpoint at the lower contour (giving

y(n)), and thus, the argument formulated in terms of ηu0
(n) holds also for ηl0

(n)
.

The upper exponential contour for the posterior boatshape, updated with s = n
2
, has its

`prow' now at (η
0

+ n, 0), and is de�ned by the function

c(η0) = a
(

1− e−b(η0−n−η0)
)

d

dη0

c(η0) = abe−b(η0−n−η0) .

The tangent in contour point (η0, c(η0)) is

tη0(x) = a− a
(
1 + b(η0 − x)

)
e−b(η0−n−η0) .

Again, we insert (−2, 0) into this tangent equation and solve for η0.

a− a
(
1 + b(ηu0

(n) + 2)
)
e−b(η

u
0
(n)−n−η

0
) !

= 0

1 + b(ηu0
(n) + 2)

!
= eb(η

u
0
(n)−n−η

0
) . (A.24)

We compare now (A.24) to (A.23) and conclude that indeed ηu0
(n) > η

(0)
0 + n.

In Figure A.6, the two exponential graphs have the same curvature, the right one is the
same as the left, only being shifted to the right by n. The value of η(0)

0 + n, de�ned as the
abscissa of the intersection of the left exponential and the linear function, being shifted to
the right by n, would thus be on the right exponential curve. Because ηu0

(n) results from the
intersection of the right exponential curve and the linear function, it is necessarily larger
than ηu0

(0) + n, as the linear function is increasing.

A.2.3.4. General Update with s > n
2

Let us now consider the update of the basic boatshape (A.22) in the general case s 6= n
2
.

Due to symmetry of the prior set, we can, without loss of generality, consider again only
the case s > n

2
.

For the prior set, being symmetric around the η0 axis, both touchpoints are located
at the same η0 coordinate, the resulting y(0) and y(0) having the same distance to 0.5.
Regarding the posterior set, according to (A.20), η0 coordinates are incremented by n,
while η1 coordinates are incremented by s + n

2
. That is, if s 6= n

2
, the updated set is no

longer symmetric around the η0 axis, such that we must consider the lower and upper
contours separately.
The upper and lower contours and their respective derivatives for the updated boatshape

set are now

c(η0) = s− n

2
+ a− ae−b(η0−n−η0) ,
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d

dη0

c(η0) = abe−b(η0−n−η0) ,

c(η0) = s− n

2
− a+ ae−b(η0−n−η0) ,

d

dη0

c(η0) = −abe−b(η0−n−η0) .

The upper and lower tangents in contour point (η0, c(η0)) are now given by

tη0(x) = s− n

2
+ a− a

(
1 + b(η0 − x)

)
e−b(η0−n−η0) ,

tη0(x) = s− n

2
− a+ a

(
1 + b(η0 − x)

)
e−b(η0−n−η0) .

Inserting again (−2, 0), we get the equations de�ning the η0 coordinates ηu0
(n) and ηl0

(n)

that give us y(n) and y(n), respectively:

a

s− n
2

+ a

(
1 + b(ηu0 + 2)

) !
= eb(η

u
0−n−η0) , (A.25)

a
n
2
− s+ a

(
1 + b(ηu0 + 2)

) !
= eb(η

u
0−n−η0) . (A.26)

We see thus that the picture from Figure A.6 holds here as well, except that the linear
function (left hand side of equations (A.25) and (A.26)) is changed in slope and intercept
by a factor. (Equivalently, we can consider it to be rotated around the root −2− 1

b
.) For

s = n
2
, this factor is 1 for both the lower and the upper touchpoint, resulting in the situation

of strong prior-data agreement as considered in Section A.2.3.3, where ηu0
(n) = ηl0

(n)
moved

to the right.
Due to symmetry, we will consider the case s > n

2
only to describe ηu0

(n) and ηl0
(n)
.

Description of ηu0
(n). The factor to the linear function a

s−n
2

+a
in (A.25) is smaller than

1 and decreasing in s. Thus, the larger s, the smaller the factor, the most extreme case
being s = n, where the factor is a

n
2

+a
. As the linear function's slope will be less steep

(the intercept is lowered as well), the intersection with the exponential function moves to
the left, i.e. ηu0 (s) < ηu0 (n

2
) for n

2
< s ≤ n. This means that y(n)(s) > y(n)(n

2
) in general.

However, decrease of ηu0 (s) is limited by η
0
+n. When the intersection point reaches the left

end of the shape at η
0

+n, the gradual increase of y(n) through the changing tangent slope
for η

0
+ n ≤ ηu0 (s) ≤ ηu0 (n

2
) is replaced by a di�erent change mechanism, where increase of

y(n) is solely due to increase in the η1 direction. Due to (A.18), y(n) is then linear in s.

Description of ηl0
(n)
. In (A.26), the factor to the linear function is a

n
2
−s+a . Here, we have

to distinguish the two cases n
2
≤ s < n

2
+ a and s ≥ n

2
+ a. In the �rst case, the factor is

larger than 1 and increasing in s. Therefore, the intersection of the linear function with



168 A. Appendix

the exponential function will move towards the right, i.e., we will have a larger ηl0
(n)
, and

y(n) increases. In the second case, the factor is unde�ned (for s = n
2

+ a) or negative
(for s >= n

2
+ a). Either way, there will be no intersection of the linear function with

the exponential function for any η0 > η
0

+ n (For s → n
2

+ a, the slope → ∞). In fact,
for s ≥ n

2
+ a, the whole shape is above the η0 axis, and the touchpoint must be thus at

η0 + n. Actually, η0 + n will be the touchpoint already at some n
2
≤ s < n

2
+ a, when the

intersection point arrives at η0 + n. At this point, gradual increase of y(n) resulting from

the movement of ηl0
(n)

along the set towards the right is replaced by a linear increase in
s. Again, this linear increase is due to the η1 coordinate being incremented according to
(A.20), and from (A.18) we see that y(n) is linear in η1.

Synthesis. For s > n
2
, both y(n) and y(n) will at �rst increase gradually with s, as ηu0

(n)

moves to the left, and ηl0
(n)

moves to the right. We will call such updating of the prior
parameter set, where neither posterior touchpoints are at the left or the right end of the
set, as `happy learning'.
At some su, ηu0

(n) will arrive at η
0
+n, and at some sl, ηl0

(n)
will arrive at η0 +n. Whether

sl < su or the other way round depends on the choice of parameters η
0
, η0, a and b. Either

way, once s is larger than either of sl or su, we switch to �unhappy learning�, where data
s is very much out of line with our prior expectations as expressed by the prior parameter
set H(0). Ultimately, when s > su and s > sl, both y(n) and y(n) will increase linearly in
s, but with di�erent slopes. y(n) will increase with slope 1

η
0
+n+2

, whereas y(n) will increase

with a lower slope 1
η0+n+2

.

A.2.4. Discussion and Outlook

Taking advantage of a novel parametrisation derived by Mik�elis Bickis that was shortly
sketched in Section A.2.1, we proposed a prior parameter set shape with the aim to model
strong prior-data agreement. Our preliminary studies show some very appealing results
for the Beta-Binomial model. Our conjectures about boat-shaped parameter sets in the
parametrisation via (η0, η1), described in Section A.2.2, could be con�rmed in our prelim-
inary studies subsumed in Section A.2.3.
In these studies, we con�ned ourselves to sets symmetric around the η0 axis, thus express-

ing prior information suggesting values of s
n
close to 1

2
. As we mentioned in Section A.2.2,

prior sets symmetric around rays of constant expectation (A.21) may express prior infor-
mation with a stress on s

n
= yc; these can be obtained by rotating the set (A.22) such that

its symmetry axis is on the ray of constant expectation with yc. Then, basically everything
should work the same as described above, except that for yc near to 0 or 1, one would
have to take care to respect the bounds of the parameter space. Informally, we can also
think of this as rotating the whole parameter space (the wedge) under the boat-set until
its symmetry axis is alingned to yc.
So far, we have only vague intuitions for the role of the parameters a and b that, together
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with η
0
and η0, de�ne the shape. An idea to �nd elicitation rules is to investigate also here

`pre-posterior' strategies, by letting the analyst reason on hypothetical counts and what
she would like to learn from them.
Related to this, the concrete behaviour during `happy learning' is di�cult to pinpoint

exactly, as there are no closed form solutions for ηu0
(n) and ηl0

(n)
. Also, the exact threshold

for s where we transfer from `happy learning' to `unhappy learning' (where strong prior-
data con�ict indicated by a linear increase of y(n) and y(n)) is not available in closed form.
We plan to study these aspects of the model by numeric examples, drawing y(n) and y(n)

against s for some exemplary choices of a, b, η
0
and η0, similarly to the predictive probability

plots given in Section 3.5.34

Regarding more advanced considerations on elicitation, if the severity of deviations in
the upper ( s

n
> yc) and in the lower ( s

n
< yc) direction di�er for the analyst (e.g., she

wants to be less imprecise for s
n
< yc, although she still thinks s

n
≈ yc), a and b could

be di�erent for the lower and the upper contour. Furthermore, in this parametrisation,
it is possible to elicit sets H(0) that are near-noninformative with respect to y(0), but
nevertheless can express preferences towards a certain success fraction by being symmetric
around yc. Such an approach could be similar to the priors suggested by Atwood (1996)
and Kelly and Atwood (2011) mentioned in Section 1.3.5, opening up interesting research
questions regarding the relation of near-noniformativeness to situations with substantial
prior information.

34Examples for these plots are Figures 3.10, 3.12, and 3.14.
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