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4 Martingales

4.1 Definition and some examples

A martingale is a generalized version of a fair game.

Definition 4.1.b A process (Mn)n≥0 is a martingale if

• for every n ≥ 0 the expectation EMn is finite, equivalently, E|Mn| <∞;

• for every n ≥ 0 and all mn, mn−1, . . . , m0 we have

E
(
Mn+1 |Mn = mn, . . . ,M0 = m0

)
= mn . (4.1)

Of course, (4.1) can just be written as E
(
Mn+1 |Mn, . . . ,M0

)
= Mn.

Definition 4.2.b We say that (Mn)n≥0 is a supermartingale 32 if the equality in

(4.1) holds with ≤, ie., E
(
Mn+1 | Mn, . . . ,M0

)
≤ Mn; and we say that (Mn)n≥0

is a submartingale, if (4.1) holds with ≥, ie., E
(
Mn+1 |Mn, . . . ,M0

)
≥Mn.

Definition 4.3.b A process (Mn)n≥0 is a martingale w.r.t. a sequence (Xn)n≥0
of random variables, if

• for every n ≥ 0 the expectation EMn is finite, equivalently, E|Mn| <∞;

• for every n ≥ 0 and all xn, xn−1, . . . , x0 we have

E
(
Mn+1 −Mn | Xn = xn, . . . , X0 = x0

)

≡ E
(
Mn+1 −Mn | Xn, . . . , X0

)
= 0 .

(4.2)

Example 4.4. Let (ξn)n≥1 be independent random variables 33 with Eξn = 0

for all n ≥ 1. Then the process (Mn)n≥0 defined via Mn
def
= M0 + ξ1 + · · ·+ ξn is

a martingale as long as the random variable M0 is independent of (ξn)n≥1 and
E|M0| <∞.

Solution. Indeed by the triangle inequality,

E|Mn| ≤ E|M0|+
n∑

j=1

E|ξj | <∞ for all n ≥ 0,

whereas the independence property implies

E
(
Mn+1 −Mn |Mn, . . . ,M0

)
≡ E

(
ξn+1 |Mn, . . . ,M0

)
= Eξn+1 = 0 .

Remark 4.4.1.Z Notice that if Eξn ≥ 0 for all n ≥ 1, then (Mn)n≥0 is a sub-
martingale, whereas if Eξn ≤ 0 for all n ≥ 1, then (Mn)n≥0 is a supermartingale.
More generally, if (ξn)n≥1 are independent random variables with E|ξn| < ∞
for all n ≥ 1, then the process Mn = M0 + (ξ1 − Eξ1) + · · ·+ (ξn − Eξn), n ≥ 0,
is a martingale.

32 If Mn traces your fortune, then “there is nothing super about a supermartingale”.
33 Notice that we do not assume that all ξn have the same distribution!
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Example 4.5. If (ξn)n≥1 are independent random variables with Eξn = 0 and
E(ξn)2 < ∞ for all n ≥ 1, then the process (Tn)n≥0 defined via Tn = (Mn)2,

where Mn
def
= M0 + ξ1 + · · ·+ ξn, is a submartingale w.r.t. (Mn)n≥0.

Solution. By the Cauchy inequality
(∑n

j=1 aj
)2 ≤ n

∑n
j=1(aj)

2, we obviously have

ETn <∞ for all n ≥ 0. Now, because Tn+1 − Tn = 2Mnξn+1 + (ξn+1)2 and

E
(
2Mnξn+1 |Mn, . . . ,M0

)
= 2MnE(ξn+1) = 0 ,

E
(
(ξn+1)2 |Mn, . . . ,M0

)
= E

(
(ξn+1)2

)
≥ 0 ,

we get E
(
Tn+1−Tn |Mn, . . . ,M0

)
≥ 0, ie., the process (Tn)n≥0 is a submartingale.

Example 4.6. Let (Zn)n≥0 be a branching process with EZ1 = m < ∞. We
have E|Zn| <∞ and E(Zn+1 | Zn, . . . , Z0) = mZn for all n ≥ 0. In other words,
the process (Zn)n≥0 is a martingale, a submartingale or a supermartingale de-
pending on whether m = 1, m > 1 or m < 1.
Notice also, that for every m ∈ (0,∞) the process (Zn/m

n)n≥0 is a martingale.

Exercise 4.7. Let ρ be the extinction probability for a branching process (Zn)n≥0;
show that ρZn is a martingale w.r.t. (Zn)n≥0.

Example 4.8.Z Let (Xn)n≥0 be a martingale. If, for some convex function

f( · ) we have E
(
|f(Xn)|

)
< ∞ for all n ≥ 0, then the process

(
f(Xn)

)
n≥0 is a

submartingale. Similarly, if for some concave f( · ) we have E
(
|f(Xn)|

)
<∞ for

all n ≥ 0, then the process
(
f(Xn)

)
n≥0 is a supermartingale.

Exercise 4.9.Z Let (ηn)n≥0 be independent positive random variables with Eηn = 1
for all n ≥ 0. If a random variable M0 > 0 is independent of (ηn)n≥0 and EM0 <
∞, then the process (Mn)n≥0 defined via Mn = M0

∏n
j=1 ηj , is a martingale.

Remark 4.9.1. Interpreting ηn − 1 as the (fractional) change in the value of
a stock during the nth time interval, the martingale (Mn)n≥0 can be used to
model stock prices. Two often used examples are:

Discrete Black-Sholes model: take ηj = eζj , where ζj is Gaussian, ζj ∼ N (µ, σ2);

Binomial model:take ηj = (1 + a)e−r and ηj = (1 + a)−1e−r with probabilities p
and 1− p respectively.

Exercise 4.10. Let (Xn)n≥0 be a Markov chain with a (countable) state space S
and the transition matrix P. If ψ is a right eigenvector of P corresponding to the
eigenvalue λ > 0, ie., Pψ = λψ, show that the process λ−nψ

(
Xn

)
is a martingale

w.r.t. (Xn)n≥0.

Exercise 4.11.Z Let (Xn)n≥0 be a Markov chain with a (countable) state space S
and the transition matrix P, and let h(x, n) be a function of the state x and time
n such that 34

h(x, n) =
∑

y

pxyh(y, n+ 1) .

Show that (Mn)n≥0 with Mn = h(Xn, n) is a martingale w.r.t. (Xn)n≥0.

34 This result is useful, eg., if h(x, n) = x2 − cn or h(x, n) = exp{x− cn} for a suitable c.
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4.2 A few remarks on conditional expectation

Recall the following basic definition:

Example 4.12. Let (Ω,F ,P) be a probability triple and letX and Y be random
variables taking values x1, x2, . . . , xm and y1, y2, . . . , yn respectively. On the
event {Y = yj} one defines the conditional probability

P
(
X = xi | Y = yj

) def
=

P(X = xi, Y = yj)

P(Y = yj)

and the conditional expectation: E
(
X | Y = yj

)
≡ ∑i xiP

(
X = xi | Y = yj

)
.

Then the conditional expectation Z = E(X |Y ) of X given Y is defined as follows:

if Y (ω) = yj , then Z(ω)
def
= zj ≡ E

(
X | Y = yj

)
.

Notice that the value zj is completely determined by yj ; in other words, Z is a
function of Y , and as such, a random variable.

Definition 4.13.b If D = {D1, D2, . . . , Dm} is a finite partition 35 of Ω, the
collection G = σ(D) of all 2m possible subsets of Ω constructed from blocks Di is
called the σ-field generated by D. A random variable Y is measurable with respect
to G if it is constant on every block Di of the initial partition D.

In Example 4.12 above we see that Z is constant on the events {Y = yj}
(ie., Z is measurable w.r.t. the σ-field G def

= σ(Y ) ≡ σ({Y = yj})); moreover, for
every Gj ≡ {Y = yj}, we have

E
(
Z 1Gj

) = zjP(Y = yj) =
∑

i

xiP
(
X = xi | Y = yj

)
P(Y = yj)

=
∑

i

xiP
(
X = xi, Y = yj

)
= E

(
X1Gj

) ,

where the last equality follows from the observation that the random variable
X1Gj equals xi on every event Gj ∩ {X = xi} = {Y = yj} ∩ {X = xi} and
vanishes identically outside the set Gj .

Remark 4.13.1.Z The last two properties can be used to define conditional
expectation in general: Let (Ω,F ,P) be a probability triple, let G ⊆ F be a σ-
field, and let X be a rv, X : Ω → R. The conditional expectation of X w.r.t. G
is a random variable Z such that: Z is G measurable and for every set G ∈ G we
have

∫
G
ZdP ≡ E

(
Z1G) = E

(
X1G) ≡

∫
G
XdP.

35 In the general countable setting, if D = {D1, D2, . . . } forms a denumerable (ie., infinite
countable) partition of Ω, then the generated σ-field G = σ(D) consists of all possible subsets
of Ω which are obtained by taking countable unions of blocks of D. Similarly, a variable Y is
measurable w.r.t. G, if for every real y the event {ω : Y (ω) ≤ y} belongs to G (equivalently,
can be expressed as a countable union of blocks of D.

http://maths.dur.ac.uk/stats/courses/StochProc34/ 27



O.H. Stochastic Processes III/IV – MATH 3251/4091 M15

Notice that the last remark suggests the following interpretation of the con-
ditional expectation w.r.t. a partition D of the probability space Ω: if X is
any 36 random variable, then E(X |σ(D)) is a new random variable taking con-
stant values on all blocks of D, and such that on every block D ∈ D it has the
same integral (volume below its profile) as the original variable X.

The following are the most important properties of conditional expectation:

Lemma 4.14.b Let (Ω,F ,P) be a probability triple, and let G ⊂ F a σ-field.
Then for all random variables X, X1, X2 and constants a1, a2, the following
properties hold:

a) If Z = E
(
X | G

)
then EZ = EX;

b) If X is G-measurable, then E
(
X | G

)
= X;

c) E
(
a1X1 + a2X2 | G

)
= a1E

(
X1 | G

)
+ a2E

(
X2 | G

)
;

d) If X ≥ 0, then E
(
X | G

)
≥ 0;

e) If H and G are two σ-fields in Ω such that H ⊆ G, then

E
[
E
(
X | G

)
|H
]

= E
[
E
(
X |H

)
| G
]

= E
(
X |H

)
;

f) If Z is G-measurable, then E
[
ZX | G

]
= Z E(X | G).

If (Xk)k≥1 is a sequence of random variables, we can define the generated
σ-fields FX1 , FX2 , . . . , via

FXk
def
= σ(X1, X2, . . . , Xk) ; (4.3)

here, the σ-field FXk stores all information about the process (Xn)n≥1 up to
time k. Observe that these σ-fields form a filtration

(
FXn
)
n≥1 in the sense that

FX1 ⊆ FX2 ⊆ . . . ⊆ FXk ⊆ . . . . (4.4)

The notion of filtration is very useful when working with martingales.Z Indeed,
a process (Mn)n≥0 is a martingale w.r.t. (Xn)n≥0 if for all n ≥ 0 the variable Mn

is FXn -measurable, with E|Mn| < ∞ and E
(
Mn+1 | FXn ) = Mn. Here, one says

that Mn isZ FXn -measurable if for every real y, the event {Mn ≤ y} belongs to

FXn , recall footnote 35 on page 27.
We also notice that by repeatedly applying the tower property in claim e)

of Lemma 4.14 above to the sequence (4.4), we get the following result:

Lemma 4.15.b If (Mn)n≥0 is a submartingale w.r.t. (Xn)n≥0, then for all integer
n ≥ k ≥ 0, we have EMn ≥ EMk.

Remark 4.15.1.Z Changing signs, we get the inequality EMn ≤ EMk for super-
martingales, and therefore the equality EMn = EMk for martingales.

36 If X is not a discrete variable with finite number of values, one has to additionally assume
that E(|X|) <∞.
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4.3 Martingales and stopping times

Martingales are extremely useful in studying stopping times:

Example 4.16. Let (Xk)k≥1 be a sequence of i.i.d. Bernoulli random variables
with common distribution P(X1 = 1) = p, P(X1 = −1) = q = 1 − p, where
p ∈ (0, 1), p 6= 1/2. For fixed k ∈ {0, 1, . . . , N}, define the random walk (Sn)n≥0
defined via Sn = k +

∑n
j=1Xj , n ≥ 0, and consider the process (Yn)n≥0, where

Yn
def
=
(
q/p
)Sn

. It is straightforward to check that Yn is an F-martingale (where
Fn ≡ FXn ). In particular, the martingale property implies that E(Yn) = E(Y0) =
(q/p)k for all n ≥ 0, recall Lemma 4.15.

Let T be the absorption time for Sn, ie., the hitting time of {0, N}. If an
Z analogue of the above equality holds at (random) time T , we could find the

probability pk = P(S absorbed at 0 |S0 = k) from

E
(
YT
)

= (q/p)0pk + (q/p)N
(
1− pk

)
,

and thus obtaining (as long as p 6= q) pk =
(
(q/p)k − (q/p)N

)
/
(
1− (q/p)N

)
.

Remark 4.16.1.Z The method used in the previous example is very attractive,

and relies on the assumption E
(
YT
)

= E
(
Y0
)

and on the formula for E
(
YT
)

for
a certain random variable T . An important part of the theory of martingales
is to determine conditions on such random variables T which ensure that the
above statements are true. 37

Example 4.17.Z We now apply the idea from the previous example to the
simple symmetric random walk on {−K, . . . ,K}, ie., the sequence of partial
sums Sn =

∑n
k=1Xk, generated by a sequence of i.i.d. Bernoulli r.v. Xk with

P(X1 = ±1) = 1/2. Indeed, if T is the stopping time

T = inf
{
n ≥ 0 : |Sn| = K

}
,

then 38

E
(
(ST )2

)
= K2P(ST = K) +K2P(ST = −K) = K2 ,

and the same heuristics applied to the martingale (Yn)n≥0, Yn
def
=
(
Sn
)2 − n,

results in 0 = E(Y0) = E(YT ) = E
(
(ST )2

)
− E(T ); equivalently, it suggests that

E(T ) = K2 .

One of our aims is to discuss general results that justify the above heuristics.
To this end, we need to carefully define what we mean by a “stopping time”.

Definition 4.18.b A variable T is a stopping time for a process (Xn)n≥0, if the
occurrence/non-occurrence of the event “we stop at time n” can be determined by
looking at the values X0, X1, . . . , Xn of the process up to time n. Equivalently,
for every n ≥ 0, we have {T ≤ n} ∈ FXn ≡ σ(X0, . . . , Xn).

37 Notice that the gambler’s ruin problem can be solved by using the methods of finite
Markov chains, so we indeed know that the result above is correct.

38 the equality is correct, because P(T <∞) = 1 here!
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Example 4.19. Let (Xn)n≥0 be a stochastic process with values in S, and let
T be the hitting time of a set A ⊂ S, namely, T = min

{
n ≥ 0 : Xn ∈ A

}
. Then

T is a stopping time for (Xn)n≥0.

Solution. For every fixed n ≥ 0, we have {T > n} ≡ {X0 /∈ A,X1 /∈ A, . . . ,Xn /∈ A};
therefore, the event {T > n} and its complement {T ≤ n} both belong to FXn .

Exercise 4.20.Z Let k ∈ N be fixed, and let S and T be stopping times for a
process (Xn)n≥0. Show that the following are stopping times:

a) T ≡ k, b) S ∧ T ≡ min(S, T ), c) S ∨ T ≡ max(S, T ) .

d) Let A be a set of states, and let T = TA be the moment of the first visit to A,
ie., T = min{n ≥ 0 : Xn ∈ A}. Consider S = SA = min{n > TA : Xn ∈ A}, the
moment of the second visit to A. Show that SA is a stopping time for (Xn)n≥0.
e) Is the variable L = max

{
n ≥ 0 : Xn ∈ A

}
a stopping time for (Xn)n≥0?

Exercise 4.21. Let (Mn)n≥0 be a submartingale w.r.t. (Xn)n≥0, and let T be a
stopping time for (Xn)n≥0. Show carefully that the process (LTn )n≥0,

LTn
def
= Mn∧T ≡

{
Mn , n ≤ T ,
MT , n > T ,

is a submartingale w.r.t. (Xn)n≥0. Deduce that if (Mn)n≥0 is a martingale w.r.t.
(Xn)n≥0, then the stopped process (LTn )n≥0 is also a martingale w.r.t. (Xn)n≥0.

4.4 Optional stopping theorem

The optional stopping (or sampling) theorem (OST) tells us that, under quite
general assumptions, whenever Xn is a martingale, then XT∧n is a martingale
for a stopping time T . Such results are very useful in deriving inequalities and
probabilities of various events associated with such stochastic processes.

Theorem 4.22 (Optional Stopping Theorem).b Let (Mn)n≥0 be a martingale
w.r.t. (Xn)n≥0, and let T be a stopping time for (Xn)n≥0. Then the equality

E
[
MT

]
= E[M0] (4.5)

holds whenever one of the following conditions holds:

(OST-1) the stopping time T is bounded;

(OST-2) the martingale (Mn)n≥0 has bounded increments, |Mn+1 −Mn| ≤ K
for all n and some constant K, whereas ET <∞;

(OST-3) the martingale (Mn)n≥0 is bounded, |Mn| ≤ K for all n and some
constant K, whereas T is a finite stopping time, P(T <∞) = 1.

Remark 4.22.1. IfMn records gambler’s fortune, by (OST-3), one cannot make
money from a fair game, unless an unlimited amount of credit is available.
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Remark 4.22.2.Z One can generalize (OST-3) by replacing the condition of
boundedness, |Mn| ≤ K, by that of uniform integrability for the martingale
(Mn)n≥0: a sequence of random variables (Yn)n≥0 is uniformly integrable if

lim
K→∞

sup
n≥0

E
(
|Yn|1{|Yn|>K}

)
= 0 . (4.6)

Example 4.23. Let the SSRW (Sn)n≥0 be generated as in Example 4.17. Put

H
def
= inf{n ≥ 0 : Sn = 1} .

Since this RW is recurrent, 39 we deduce that P(H < ∞) = 1. However, the
(OST) does not apply, as 0 = E(S0) 6= E(SH) ≡ 1. It is an instructiveZ Exercise
to check which conditions in each of the above (OST) are violated.

We now sketch the proof of Theorem 4.22.

Exercise 4.24.Z Let T in (OST-1) satisfy 0 ≤ T ≤ N . Decompose

MT =

N∑

n=0

MT1{T=n} =

N∑

n=0

Mn1{T=n} = M0 +

N−1∑

n=0

(
Mn+1 −Mn

)
1{T>n}

and use the properties of conditional expectations in Lemma 4.14 to derive (4.5)
under (OST-1).
[Hint: Check that E

(
(Mn+1 −Mn)1{T>n}| FXn

)
= 1{T>n}E

(
Mn+1 −Mn| FXn

)
= 0.]

Exercise 4.25.Z Derive (OST-2) from (OST-1) in the following way: first, notice
that T ∧ n is a bounded stopping time, so that (OST-1) implies EMT∧n = EM0

for all n ≥ 0. Next, using the decomposition from Exercise 4.24, rewrite

MT −MT∧n =
∑

k>n

MT1{T=k} = Mn+11{T≥n+1} +
∑

k>n+1

(
Mk −Mk−1

)
1{T≥k}

and deduce (OST-2) from the estimate

∣∣EMT − EM0

∣∣ ≤
∣∣EM0

∣∣P(T ≥ n+ 1) +K
∑

k>n+1

P(T ≥ k)→ 0 as n→∞ .

Remark 4.25.1. Notice that the previous argument can be generalized to the
case when

∣∣E
(
Mk −Mk−1|FXk−1

)∣∣ ≤ K for all k ≥ 1; indeed, one then has
∣∣∣E
((
Mk −Mk−1

)
1{T≥k}

)∣∣∣ ≤ E
(
1{T≥k}

∣∣E
(
Mk −Mk−1|FXk−1

)∣∣) ,

where the last expression is bounded above by KP(T ≥ k).

Exercise 4.26.Z Derive (OST-3) from (OST-1) in the following way: first, notice
that T ∧ n is a bounded stopping time, so that (OST-1) implies EMT∧n = EM0

for all n ≥ 0. Then deduce the result from
∣∣EMT − EM0

∣∣ =
∣∣EMT − EMT∧n

∣∣ ≤ 2KP(T > n)→ 0 as n→∞ .

39 alternatively, recall the result in Example 1.14.
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Remark 4.26.1. In (OST-3) it is sufficient to assume that
∣∣Mn∧T

∣∣ ≤ K for all

n ≥ 0 and P(T < ∞) = 1. Indeed, by (DOM) we deduce that then
∣∣MT

∣∣ ≤ K,
so that the argument in Exercise 4.26 applies.

With suitable martingales (OST) gives very powerful results:

Example 4.27.b In the setup of Example 4.17, put

Un ≡ exp
{
−αSn − βn

}

with some α, β ≥ 0. Fix real α and find β ≥ 0 so that (Un)n≥0 is a martingale.
Use this martingale to study the stopping time T = inf{n ≥ 0 : |Sn| = K}.
Solution. By a straightforward computation,

E
(
Un+1 | Fn

)
= e−β

eα + e−α

2
Un ,

so that Un is a martingale iff (check the remaining conditions!) eβ = cosh(α), equiv-
alently, iff β = log cosh(α) ≥ 0. Next, observe 40 that E(T ) < ∞. Notice how-
ever that despite Sn has bounded increments (|Sn+1 − Sn| ≤ 1), the increments
of Un are not uniformly bounded. We overcome this difficulty by considering the
stopped 41 process Un∧T . Since n∧T is bounded, any of the (OST) above implies that
1 = E(U0) = E(Un∧T ); taking n→∞ we deduce 42

E(Un∧T )→ E(UT ) ≡
(eαK

2
+
e−αK

2

)
Ee−βT , as n→∞ ,

so that the Laplace transform Ee−βT of T satisfis

Ee−βT =
(
cosh(αK)

)−1
, where β = log cosh(α) .

Notice that the Laplace transform Ee−βT is essentially the moment generating func-
tion of the stopping time T , and as such completely describes its distribution. In
particular, (right) differentiating Ee−βT w.r.t. β at β = 0 one can compute ETm for
all m ≥ 1.

The argument in footnote 40 can be easily generalized:

40 To this end, notice that 2K consecutive jumps in the same direction force Sn to exit
the segment [−K,K] irrespectively of the initial state; therefore, P(T > 2K + m |T > m) ≤
P(|S2K+m| < K | |Sm| < K) ≤ 1− 2−2K , so that by induction, P(T > 2Kn) ≤ rn for n ≥ 0,
where r = 1− 2−2K < 1. We finally observe that

ET ≡
∑

n≥0

P(T > n) ≤ 2K
∑

n≥0

P(T > 2Kn) ≤ 2K

1− r <∞ . (4.7)

Alternatively, notice that (S(2Km)∧T )m≥0 is a finite Markov chain in {−K, . . . ,K} with uni-
formly positive transition probabilities, and deduce the bound E(T ) <∞ in a usual way.

41 ie., we assume that the boundary {−K,K} is absorbing and the process (Sn)n≥0 (and
thus (Un)n≥0) does not move after hitting it;

42 think (DOM): for all n ≥ 0 we have |Sn∧T | ≤ K so that |Un∧T | ≤ e|α|K−β(n∧T ) ≤ e|α|K
with integrable upper bound, and since P(T <∞) = 1, we have Un∧T → UT as n→∞.
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Lemma 4.28.b Let
(
FXn
)
n≥0 be the filtration 43 generated by a process (Xn)n≥0,

and let T be a stopping time for (Xn)n≥0. Assume that there exist positive ε
and K such that for all n ≥ 0 and all events A ∈ FXn ,

P
(
T ≤ n+K |A

)
≥ ε . (4.8)

Then E(T ) <∞.

Remark 4.28.1. In other words, ‘whatever always stands a reasonable chance of
happening, will almost surely happen — sooner rather than later’.

Proof. A straightforward induction based upon (4.8) implies P(T > mK) ≤ (1− ε)m
for all m ≥ 0. The result now follows as in (4.7).

Exercise 4.29. Use an appropriate (OST) to carefully derive the probability pk in
Example 4.16.

Exercise 4.30. Use an appropriate (OST) to carefully derive the expectation E(T )
in Example 4.17.
[Hint: Notice that the martingale (Yn)n≥0 has unbounded jumps, so that none of the

(OST) applies without truncation. ]

Exercise 4.31. Consider the simple symmetric random walk (Sn)n≥0, generated
by a sequence of i.i.d. Bernoulli r.v. Xk with P(X1 = ±1) = 1/2, ie., Sn =∑n
k=1Xk. For integer a < 0 < b, let T be the stopping time T = inf

{
n ≥ 0 :

Sn /∈ (a, b)
}

.

a) Show that (Sn)n≥0 is a martingale and use an appropriate (OST) to find
P(ST = a) and P(ST = b).

b) Show that (Mn)n≥0 defined via Mn = (Sn)2 − n is a martingale w.r.t. the
process (Sn)n≥0.

c) For fixed integer K > 0, carefully apply an appropriate (OST) to Mn and
prove that E(T ∧K) = E

[
(ST∧K)2

]
.

d) Deduce that E(T ) = −ab.
Example 4.32. (ABRACADABRA)Z A monkey types symbols at random, one
per unit time, on a typewriter having 26 keys. How long on average will it take
him to produce the sequence ‘ABRACADABRA’?

Solution. To compute the expected time, imagine a sequence of gamblers, each initially
having £1, playing at a fair gambling casino. Gambler arriving just before time n
(n ≥ 1) bets £1 on the event {nth letter will be A}. If he loses, he leaves. If he
wins, he receives £26 all of which he bets on the event {n + 1 st letter will be B}. If
he loses, he leaves. If he wins, he receives £262 all of which he bets on the event
{n+ 2 nd letter will be R} and so on through the whole ABRACADABRA sequence.

Let Xn denote the total winnings of the casino after the nth day. Since all bets
are fair the process (Xn)n≥0 is a martingale with mean zero. Let N denote the time

43ie., FXn ≡ σ
(
X0, . . . , Xn

)
, recall the definition in (4.4) above
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until the sequence ABRACADABRA appears. At time N , gambler N − 11 would have
won £2611 − 1, gambler N − 4 would have won £264 − 1, gambler N would have won
£26− 1 and all other N − 3 gamblers would have lost their initial fortune. Therefore,

XN = N − 3− (2611 − 1)− (264 − 1)− (26− 1) = N − 2611 − 264 − 26

and since (OST-2) can be applied (check this!), we deduce the E(XN ) = E(X0) = 0,
that is

E(N) = 26 + 264 + 2611 .

Remark 4.32.1. Notice that the answer could also be obtained by considering a
finite state Markov chain Xn on the state space of 12 strings representing the longest
possible intersection of the tail of the typed text with the target word ABRACADABRA,
ie.,

{
ABRACADABRA,ABRACADABR, . . . ,ABRA,ABR,AB,A,∅

}
, as there N is just

the hitting time of the state ABRACADABRA from the initial condition X0 = ∅.

Exercise 4.33. A coin showing heads with probability p is tossed repeatedly. Let
w be a fixed sequence of outcomes such as ‘HTH’, and let N denote the number of
(independent) tosses until the word w is observed. Using an appropriate martingale,
find the expectation EN for each of the following sequences: ‘HH’, ‘HT’, ‘TH’, ‘TT’,
‘HTH’, ‘HHTTHH’.

Exercise 4.34. A standard symmetric dice is tossed repeatedly. Let N be the
number of (independent) tosses until a fixed pattern is observed. Using an appro-
priate martingale, find EN for the sequences ‘123456’ and ‘666666’.

Lemma 4.35.Z Let (Yn)n≥0 be a supermartingale w.r.t. a sequence (Xn)n≥0
and let Hn ∈ FXn−1 = σ(X0, . . . , Xn−1) satisfy 0 ≤ Hn ≤ cn, where the constant
cn might depend on n. Then the process (Wn)n≥0 with

Wn = W0 +

n∑

m=1

Hm

(
Ym − Ym−1

)

is a supermartingale w.r.t. (Xn)n≥0.

Proof. Following the hint in Exercise 4.24, we observe that since (Yn)n≥0 is a super-
martingale w.r.t. (Xn)n≥0,

E
(
Hm(Ym − Ym−1)

)
= E

[
Hm E(Ym − Ym−1 | Fm−1)

]
≤ 0 .

Example 4.36. If (Yn)n≥0 describes the stock price process, and Hm is the
number of stocks held during the time (m−1,m] (decided when the price Ym−1
is known), then Wn describes the fortune of an investor at time n. As (Wn)n≥0
is a supermartingale w.r.t. (Xn)n≥0, we have EWn ≤ EW0 for all n ≥ 0.

Remark 4.36.1. The famous “doubling martingale” corresponds to doubling the
bet size until one wins, ie., to taking Hm = 2m−11{T>m}, where T is the first
moment when the price goes up, ie., T = min{m > 0 : Ym − Ym−1 = 1}. Since
the stopped process (Wn∧T )n≥0 is a supermartingale, for all n ≥ 0 we have
E(Wn∧T ) ≤ E(W0), ie., on average, the doubling strategy does not produce
money if one bets against a (super)martingale.
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Example 4.37. [Wald’s equation]b Let (Sn)n≥0 be a random walk generated by
a sequence (Xn)n≥0 of i.i.d. steps with E|X| < ∞ and E(X) = m. If T is a
stopping time for (Xn)n≥0 with E(T ) <∞, then E(ST − S0) = mE(T ).

Solution. Notice that Sn − nEX = Sn −mn is a martingale and for every n ≥ 0 the
variable T ∧ n is a bounded stopping time. By (OST-1), we have

E(S0) = E
(
Sn∧T −m(n ∧ T )

)
; (4.9)

now rearrange to E
(
Sn∧T − S0

)
= mE(n ∧ T ) and let n→∞ to get the result. 44

Exercise 4.38. Let (Xn)n≥0 be a sequence of i.i.d. Bernoulli random variables
with P(X = 1) = p and P(X = −1) = 1 − p = q. Let (Sn)n≥0 be the generated
random walk with S0 = x > 0, and let T = min{n ≥ 0 : Sn = 0} be the hitting
time of the origin. Example 1.14 suggests that E(T ) = x/(q − p) <∞ for q > p.

a) Use (4.9) to deduce that

−mE(n ∧ T ) = E
(
S0 − Sn∧T

)
≤ E(S0) = x ;

and take n→∞ to show that E(T ) <∞;

b) Use the Wald equation to deduce that indeed E(T ) = x/(q − p). Can you
give a heuristic explanation of this result?

c) Argue, without using the Wald equation, that E(T ) = cx for some constant c.

d) Use the Wald equation and an argument by contradiction to show that if
p ≥ q, then E(T ) =∞ for all x > 0.

Exercise 4.39. [Wright-Fischer model] Thinking of a population of N haploid
individuals who have one copy of each of their chromosomes, consider a fixed pop-
ulation of N genes that can be of two types A or a. In the simplest version of this
model the population at time n+ 1 is obtained by sampling with replacement from
the population at time n. If we let Xn to be the number of A alleles at time n,
then Xn is a Markov chain with transition probability

pij =

(
N

j

)( i
N

)j(
1− i

N

)N−j
.

Starting from i of the A alleles and N − i of a alleles, what is the probability that
the population fixates in the all A state?
[Hint: You can use the heuristics of Example 4.16 but need to justify your computation!]

44The the RHS converges by (MON), and, since ST =
∞∑
n=0

Sn1T=n =
∞∑
n=0

Xn1T≥n, the

LHS being absolutely bounded above by an integrable function
∞∑
n=0
|Xn|1T≥n (notice that

{T ≥ n} ∈ Fn−1 and thus is independent of Xn) converges by (DOM); alternatively, apply
(OST-2) as generalized in Remark 4.25.1.
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Example 4.40. Let (ξk)k≥1 be i.i.d.r.v. with ϕ(ρ)
def
= Eeρξ < ∞ for all real ρ.

If (Sn)n≥0 is the generated random walk, Sn = ξ1 + · · · + ξn, then the process
(Mn)n≥0, where Mn = eρSn/ϕ(ρ)n, is a martingale w.r.t. (Sn)n≥0.

In addition, let ξ take integer values with P(ξ ≤ 1) = 1, P(ξ = 1) > 0, and
negative expectation Eξ < 0. Let, further, Ta be the hitting time of state a > 0,
ie., Ta = min{n ≥ 0 : Sn = a}. If α > 0 is defined from the condition ϕ(α) = 1,
show that P(Ta <∞) = e−αa for all a > 0.

Solution. It is immediate to check that (Mn)n≥0 is a martingale w.r.t. (Sn)n≥0.

Let now α > 0 be such that ϕ(α) = 1 and consider T = T1, ie., a = 1. Then (OST-3)
applied to the martingale Mn = eαSn gives

1 = E
(
eαSn∧Ta

)
= eα P(T ≤ n) + E

(
eαSn

1{T>n}
)

and since, by the strong law of large numbers Sn/n → Eξ < 0 as n → ∞, the second
term 45 goes to 0, we get 1 = eα P(T < ∞), ie., P(T < ∞) = e−α < 1. Now, by the
strong Markov property, P(Ta <∞) =

(
P(T1 <∞)

)a ≡ e−αa for all a > 0.

It remains to show existence of such α > 0. To this end we notice that ϕ(x) is convex
and satisfies the following properties: ϕ(0) = 1, ϕ′(0) = Eξ < 0, and for every ρ > 0
we have ϕ(ρ) ≥ eρP(ξ = 1), so that ϕ(ρ)→∞ as ρ→∞.

Exercise 4.41.Z Let (Xn)n≥0 be a birth-and-death process in S = {0, 1, . . . }, ie.,
a Markov chain in S with transition probabilities p00 = r0, p01 = p0, and

pn,n−1 = qn , pn,n = rn , pn,n+1 = pn , n > 0 ,

while pn,m = 0 for all other pairs (n,m) ∈ S2. Let X0 = x, and for every y ≥ 0

denote Ty
def
= min{n ≥ 0 : Xn = y}.

a) Show that the process
(
ϕ(Xn)

)
n≥0 with ϕ(z)

def
=

z∑
y=1

y−1∏
x=1

qx
px

is a martingale.

b) Show that for all 0 ≤ a < X0 = x < b we have 46

P
(
Tb < Ta

)
=
ϕ(x)− ϕ(a)

ϕ(b)− ϕ(a)
. (4.10)

c) Deduce that state 0 is recurrent iff ϕ(b)→∞ as b→∞.

d) Now suppose that pn ≡ p, qn ≡ q = 1 − p, and rn = 0 for n > 0, whereas
p0 = p and r0 = q. Show that in this case (4.10) becomes (cf. Example 4.16)

P
(
Tb < Ta

)
=

(
q/p
)a −

(
q/p
)x

(
q/p
)a −

(
q/p
)b .

e) Find P
(
Tb < Ta

)
if in the setup of part d) one has p = q = 1/2.

45notice that E
(
eαSn1{T>n}

)
≤ P(T > n) here!

46Recall the argument in Example 4.16.
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Exercise 4.42. Let (ξk)k≥1 be i.i.d.r.v. with P(ξ = 1) = p, P(ξ = −1) = q =
1−p, and Eξ > 0. Let (Sn)n≥0 be the generated random walk, Sn = x+ξ1+· · ·+ξn,
and let T0 = min{n ≥ 0 : Sn = 0} be the hitting time of 0. Deduce that for all
x > 0, P(T0 <∞) = (q/p)x. Compare this to the result of Example 1.14.

Exercise 4.43. Let (Xn)n≥0 be an irreducible Markov chain in S = {0, 1, . . . }
with bounded jumps, and let a function ϕ : S → R+ satisfy ϕ(x)→∞ as x→∞.

Let K ≥ 0 be such that Exϕ(X1)
def
= E

[
ϕ(X1)|X0 = x

]
≤ ϕ(x) for all x ≥ K.

a) If the function ϕ(x) is monotone, show that the set of states {0, 1, . . . ,K}, and
thus the whole space S is recurrent for (Xn)n≥0.
[Hint: If HK = min

{
n ≥ 0 : 0 ≤ Xn ≤ K}, show that ϕ(Xn∧HK ) is a supermartingale.

Deduce that if TM = min
{
n ≥ 0 : Xn ≥M}, then ϕ(x) ≥ ϕ(M)P(TM < HK).]

b) Argue that the result holds for ϕ(x) ≥ 0 not necessarily monotone, but only
satisfying ϕ(x)→∞ as x→∞.

[Hint: With TM as above, show that ϕ∗M
def
= min{ϕ(x) : x ≥M} → ∞ as M →∞.]

4.5 Long time behaviour of martingales

4.5.1 Pólya’s urn martingale

The following example has a number of important applications.

Example 4.44 (Pólya’s urn). An urns contains one green and one red ball. At
every step a ball is selected at random, and then replaced together with another
ball of the same colour. Let Xn be the number of green balls after nth draw,
X0 = 1. Then the fraction Mn = Xn/(n+2) of green balls is a martingale w.r.t.
the filtration (FXn )n≥0.

Solution. As |Mn| ≤ 1 we have E|Mn| ≤ 1 for all n ≥ 0, and since

P(Xn+1 = k + 1 | Xn = k) =
k

n+ 2
, P(Xn+1 = k | Xn = k) = 1− k

n+ 2
,

we get E
(
Xn+1 | FXn

)
= n+3

n+2
Xn, equivalently, E(Mn+1 | FXn ) = Mn.

Exercise 4.45. Show that the distribution of Mn is uniform, P(Mn = k
n+2 ) = 1

n+1
for n ≥ 0 and k = 1, . . . , n+ 1.

Exercise 4.46. Suppose that the process in Example 4.44 is modified as follows:
for a fixed integer c > 1, every time a random ball is selected, it is replaced together
with other c balls of the same colour. If, as before, Xn denotes the total number
of green balls after n draws, show that the the fraction Mn = Xn

2+nc of green balls

forms a martingale w.r.t. (FXn )n≥0.

Exercise 4.45 suggests that in the limit n → ∞ the distribution of Mn is
asymptotically uniform:47

47see also the R-script available from the course webpage!
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Exercise 4.47. Let (Mn)n≥0 be the process from Example 4.44. Show that for
every x ∈ (0, 1) we have lim

n→∞
P
(
Mn < x

)
= x.

Exercise 4.48.~ Find the large-n limit of the distribution of the martingale
(Mn)n≥0 from Exercise 4.46.

In view of Exercise 4.45, a natural question is: does the proportion Mn of
green balls fluctuate between 0 and 1 infinitely often or does it eventually settle
down to a particular value? The following example shows that the latter is true.
Our argument is based upon the following observation: if a real sequence yn does
not converge, for some real a, b with −∞ < a < b <∞ the sequence yn must go
from the region below a to the region above b (and back) infinitely often.

Example 4.49. For fixed n ≥ 0 let Mn < a ∈ (0, 1), and let N = min{k > n :
Mn > b} for some b ∈ (a, 1). Since Nm = N ∧m is a bounded stopping time,
by (OST-1) we have EMNm

= EMn < a if only m > n. On the other hand,

EMNm
≥ E

(
MNm

1N≤m
)
≡ E

(
MN1N≤m

)
> bP(N ≤ m) .

In other words, P(N ≤ m) < a
b and consequently P(N < ∞) ≤ a

b < 1, ie., the
fraction Mn of green balls ever gets above level b with probability at most a

b .
Suppose that at certain moment N ∈ (n,∞) the fraction of green balls became
bigger than b. Then a similar argument shows that with probability at most
(1− b)/(1− a) the value Mn becomes smaller than a at a later moment.

Put S0 = min{n ≥ 0 : Mn < a}, and then, inductively, for k ≥ 0,

Tk = min
{
n > Sk : Mn > b

}
, Sk+1 = min

{
n > Tk : Mn < a} . (4.11)

The argument above implies that

P(Sk <∞) ≤
k∏

j=1

(
P(Tj−1 <∞ | Sj−1 <∞)P(Sj <∞ | Tj−1 <∞)

)

with the RHS bounded above by
(
a
b

)k( 1−b
1−a
)k → 0 as k → ∞. As a result, the

probability of infinitely many crossing (ie., Sk <∞ for all k ≥ 0) vanishes.
Clearly, the argument above applies to all strips (a, b) ⊂ (0, 1) with rational

endpoints. Thus, with probability one,48 trajectories of Mn eventually converge
to a particular value.49

Remark 4.49.1. Let U(a,b) be the total number of upcrossings of the strip (a, b)

for the process (Mn)n≥0. We clearly have
{
U(a,b) ≥ m

}
≡
{
Tm < ∞

}
. Notice

that the argument in Example 4.49 implies that EU(a,b) <∞.

Exercise 4.50. By noticing that
{
U(a,b) ≥ m

}
⊂
{
Sm−1 < ∞

}
or otherwise,

show that EU(a,b) <∞.

48If Mn does not converge, it must cross at least one of countably many strips (a, b) with
rational points infinitely many times.

49which is random and depends on the trajectory, see the R-script on the course webpage!
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4.5.2 Martingale convergence theorem

The argument in Example 4.49 also works in general. Let (Mn)n≥0 be a mar-
tingale w.r.t. filtration (FXn )n≥0. For real a, b with −∞ < a < b <∞ let U(a,b)

be the total number of upcrossings of the strip (a, b). The following result (or
some of its variants) is often referred to as Doob’s Upcrossing Lemma:

Lemma 4.51. Let the martingale (Mn)n≥0 have uniformly bounded expecta-
tions, ie., for some constant K and all n ≥ 0, E|Mn| < K < ∞. If U(a,b) is the
number of upcrossings of a strip (a, b), then EU(a,b) <∞.

Proof. With stopping times as in (4.11), put Hn = 1 if Sm < n ≤ Tm and put
Hn = 0 otherwise. Then the process

Wn =
n∑

k=1

Hk(Mk −Mk−1)

is a martingale w.r.t. (Mn)n≥0, cf. Lemma 4.35. It is easy to check that Wn ≥
(b− a)Un − |Mn − a| (draw the picture!), where Un = max{m ≥ 0 : Tm ≤ n} is
the number of upcrossings of the strip (a, b) up to time n. As a result

0 = EW0 = EWn ≥ (b− a) EUn − E|Mn − a| ≥ (b− a) EUn − (K + |a|) ,
so that EUn ≤ (K + |a|)/(b− a) for all n ≥ 0, and thus EU(a,b) <∞.

Theorem 4.52. Let (Mn)n≥0 be a martingale as in Lemma 4.51. Then there
exists a random variable M∞ such that Mn →M∞ with probability one.

Proof. If Mn does not converge, for some rational a, b with −∞ < a < b < ∞
we must have U(a,b) =∞. However, by Lemma 4.51, EU(a,b) <∞ implying that
P(U(a,b) = ∞) = 0. As the number of such pairs (a, b) is countable, the result
follows.

In applications of the convergence theorem, the following fact is often useful:

Exercise 4.53. Let a variable Y satisfy E(Y 2) <∞. Show that E|Y | <∞.
[Hint: Notice that Var(|Y |) ≥ 0.]

Exercise 4.54. Let (Zn)n≥0 be a homogeneous branching process with Z0 = 1,
m = EZ1 > 0 and σ2 = Var(Z1) <∞. Show that Mn = Zn/m

n is a martingale.

a) Let m > 1. By using Exercise 2.2 or otherwise show that E(Mn) is uniformly
bounded. Deduce that Mn →M∞ almost surely. What can you say about EM∞?

b) What happens if m ≤ 1? Compute E(M∞). [Hint: Recall Exercise 4.53.]

Exercise 4.55. Let (Xk)k≥1 be independent variables with

P
(
X =

3

2

)
= P

(
X =

1

2

)
=

1

2
.

Put Mn = X1 · . . . ·Xn with M0 = 1. Show that Mn is an (FXn )n≥0 martingale.
Deduce that Mn →M∞ with probability one. Can you compute E(M∞)?

[Hint: Consider Ln
def
= ln(Mn).]
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Exercise 4.56. Let (Xk)k≥1 be independent variables with P(X = ±1) = 1
2 .

Show that the process

Mn =
n∑

k=1

1

k
Xk

is a martingale w.r.t. (FXn )n≥0 and that E
[
(Mn)2

]
< K < ∞ for some constant

K and all n ≥ 0. By using Exercise 4.53 or otherwise, deduce that with probability
one, Mn →M∞ for some random variable M∞.
In other words, the random sign harmonic series converges with probability one.
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