2 Branching processes

2.1 Classification and extinction

Informally, a branching process\(^{10}\) is described as follows: let \(\{p_k\}_{k \geq 0}\) be a fixed probability mass function. A population starts with a single ancestor who forms generation number 0. This initial individual splits into \(k\) offspring with probability \(p_k\). These offspring constitute the first generation. Each of the offspring in the first generation splits independently into a random number of offspring according to the pmf \(p_k\). This process continues until extinction, which occurs when all the members of a generation fail to produce offspring.

This model has a number of applications in biology (e.g., it can be thought as a model of population growth), physics (chain reaction in nuclear fission), queueing theory etc. Originally it arose from a study of the likelihood of survival of family names (“how fertile must a family be to insure that in no future generation will the family name die out?”).

Formally, let \(\{Z_{n,k}\}, n \geq 1, k \geq 1\), be a family of i.i.d. random variables in \(\mathbb{Z}^+ \equiv \{0, 1, 2, \ldots\}\), each having a common distribution \(\{p_k\}_{k \geq 0}\). Then the branching process \((Z_n)_{n \geq 0}\) (generated by \(\{p_k\}_{k \geq 0}\)) is defined via \(Z_0 = 1\), and, for \(n \geq 1\),

\[
Z_n \stackrel{\text{def}}{=} Z_{n,1} + Z_{n,2} + \cdots + Z_{n,Z_{n-1}},
\]

where the empty sum is interpreted as zero. Notice that \(Z_n\) is a Markov chain in \(\mathbb{Z}^+\). We shall use \(P(\cdot) \equiv P_1(\cdot)\) and \(E(\cdot) \equiv E_1(\cdot)\) to denote the corresponding probability measure and the expectation operator.\(^{11}\)

If \(\varphi_n(s) \equiv \mathbb{E}s^{Z_n}\) is the generating function of \(Z_n\), a straightforward induction based on (2.1) and (1.3) implies

\[
\varphi_0(s) \equiv s, \quad \varphi(s) \equiv \varphi_1(s) \equiv \mathbb{E}s^1, \quad \varphi_k(s) \equiv \varphi_{k-1}(\varphi(s)), \quad k > 1. \tag{2.2}
\]

Usually explicit calculations are hard, but at least in principle, equations (2.2) determine the distribution of \(Z_n\) for any \(n \geq 0\).

Example 2.1. Let \(\varphi_1(s) \equiv \varphi(s) = q + ps\) for some \(0 < p = 1 - q < 1\). Then

\[
\varphi_n(s) \equiv q(1 + p + \cdots + p^{n-1}) + p^n s = 1 + p^n(s - 1).
\]

Notice that here we have \(\varphi_n(s) \to 1\) as \(n \to \infty\) for all \(s \in [0, 1]\), i.e., the distribution of \(Z_n\) converges to that of \(Z_\infty \equiv 0\).

The following result is a straightforward corollary of (1.3).

Exercise 2.2. In a branching process \((Z_n)_{n \geq 0}\) with \(Z_0 = 1\), let the offspring distribution have mean \(m\), variance \(\sigma^2\), and generating function \(\varphi(s)\). Write \(\varphi_n(s)\) for the generating function of the \(n\)th generation size \(Z_n\).

a) Using \(\varphi_n(s) \equiv \varphi_{n-1}(\varphi(s))\) or otherwise, show that \(\mathbb{E}Z_n = m^n;\)

\(^{10}\)sometimes called Galton-Watson-Bienaymé process

\(^{11}\)If \(Z_0 = k\), we shall explicitly write \(P_k(\cdot)\) and \(E_k(\cdot)\).
b) Using \(\varphi_n(s) \equiv \varphi(\varphi_{n-1}(s)) \) or otherwise, show that
\[
\text{Var}(Z_n) = \begin{cases}
\sigma^2 m^{n-1} \frac{m^n - 1}{m - 1}, & m \neq 1, \\
\sigma^2 n, & m = 1.
\end{cases}
\]

c) Deduce that \(\mathbb{E}[(Z_n/m^n)^2] \) is uniformly bounded.

This result suggests that if \(m \equiv \mathbb{E}Z \neq 1 \), the branching process might explode (for \(m > 1 \)) or die out (for \(m < 1 \)). One classifies branching process into critical (if \(m = 1 \)), subcritical (\(m < 1 \)), and supercritical (\(m > 1 \)).

Remark 2.2.1. It is straightforward to describe the case \(m < 1 \). Indeed, the Markov inequality implies that
\[
P(Z_n > 0) = P(Z_n > 1) \leq \mathbb{E}(Z_n) = m^n,
\]
so that \(P(Z_n > 0) \to 0 \) as \(n \to \infty \) (ie., \(Z_n \to 0 \) in probability). Moreover, since \(\sum_{n \geq 0} P(Z_n > 0) < \infty \), the Borel-Cantelli lemma implies that \(P(Z_n \to 0) = 1 \) (ie., \(Z_n \to 0 \) almost surely). We also notice that the average total population in this case is finite, \(\mathbb{E}(\sum_{n \geq 0} Z_n) = \sum_{n \geq 0} m^n = (1 - m)^{-1} < \infty \).

Definition 2.3. The extinction event \(\mathcal{E} \) is the event \(\mathcal{E} = \bigcup_{n=1}^{\infty} \{ Z_n = 0 \} \). Since \(\{ Z_n = 0 \} \subset \{ Z_{n+1} = 0 \} \) for all \(n \geq 0 \), the extinction probability \(\rho \) is
\[
\rho = P(\mathcal{E}) = \lim_{n \to \infty} P(Z_n = 0)
\]
with \(P(Z_n = 0) \equiv \varphi_n(0) \) being the extinction probability before \(n+1 \)st generation.

The following result helps to derive the extinction probability \(\rho \) without need to compute iterates \(\varphi_n(\cdot) \). To avoid trivialities we shall assume that \(p_0 = P(Z = 0) \) satisfies\(^{12} 0 < p_0 < 1 \); notice that under this assumption \(\varphi(s) \) is a strictly increasing function of \(s \in [0, 1] \).

Theorem 2.4. If \(0 < p_0 < 1 \), then the extinction probability \(\rho \) is given by the smallest positive solution to the equation
\[
s = \varphi(s).
\] (2.3)

In particular, if \(m = \mathbb{E}Z \leq 1 \), then \(\rho = 1 \); otherwise, we have \(0 < \rho < 1 \).

Remark 2.4.1. The relation \(\rho = \varphi(\rho) \) has a clear probabilistic sense. Indeed, if \(\rho = P_1(\mathcal{E}) \) is the extinction probability starting from a single individual, \(Z_0 = 1 \), then by independence we get \(P_k(\mathcal{E}) = P(\mathcal{E} \mid Z_0 = k) = \rho^k \), and thus the first step decomposition for the Markov chain \(Z_n \) gives
\[
\rho = P(\mathcal{E}) = \sum_{k \geq 0} P(\mathcal{E}, Z_1 = k) = \sum_{k \geq 0} P(\mathcal{E} \mid Z_1 = k)P(Z_1 = k)
\]
\[
= \sum_{k \geq 0} \rho^k P(Z_1 = k) \equiv E(\rho^{Z_1}) \equiv \varphi(\rho),
\]
in agreement with (2.3).

\(^{12}\) otherwise the model is degenerated: if \(p_0 = 0 \), then \(Z_n \geq 1 \) for all \(n \geq 0 \) so that \(\rho = 0 \); if \(p_0 = 1 \), then \(P(Z_1 = 0) = \rho = 1 \).
Proof of Theorem 2.4. [Draw the picture!]

Denote \(\rho_n = P(Z_n = 0) \equiv \varphi_n(0) \).
By continuity and strict monotonicity of the generating function \(\varphi(\cdot) \) we have (recall (2.2))
\[
0 < \rho_1 = \varphi(0) < \rho_2 = \varphi(\rho_1) < \cdots < 1,
\]
so that \(\rho_1 \neq \rho \in (0, 1] \) with \(\rho = \varphi(\rho) \).

Now if \(\rho \) is another fixed point of \(\varphi(\cdot) \) in \([0, 1]\), ie., \(\rho = \varphi(\rho) \), then
\[
0 < \rho_1 = \varphi(0) < \rho_2 < \cdots < \varphi(\rho) = \rho
\]
so that \(\rho = \lim_{n \to \infty} \rho_n \leq \rho \), ie., \(\rho \) is the smallest positive solution to (2.3).

We finally observe that in view of convexity of \(\varphi(\cdot) \), the condition \(m = \varphi'(1) < 1 \) implies \(\rho = 1 \) and the condition \(m = \varphi'(1) > 1 \) implies that \(\rho \) is the unique solution to the fixed point equation (2.3) in \((0, 1)\).

A similar argument gives the following result.

\[\textbf{Corollary 2.5.} \text{ If } s \in [0, 1), \text{ we have } \varphi_n(s) \equiv E[s^{Z_n}] \to \rho \in (0, 1] \text{ as } n \to \infty.\]

\[\textbf{Remark 2.5.1.} \text{ Consequently, the distribution of } Z_n \text{ converges to that of the limiting random variable } Z_{\infty}, \text{ where } P(Z_{\infty} = 0) = \rho \text{ and } P(Z_{\infty} = \infty) = 1 - \rho.\]

\[\textbf{Exercise 2.6.} \text{ For a branching process with generating function } \varphi(s) = a + bs + cs, \text{ where } a > 0, b > 0, c > 0, \varphi(1) = 1, \text{ compute the extinction probability } \rho \text{ and give the condition for sure extinction. Can you interpret your results?}\]

\[\textbf{Exercise 2.7.} \text{ Let } (Z_n)_{n \geq 0} \text{ be a branching process with generating function } \varphi(s) \equiv E_s Z_1^n \text{ satisfying } 0 < \varphi(0) < 1. \text{ Let } \tilde{\varphi}_n(u) \overset{\text{def}}{=} E u Z_n \text{ be the generating function of } \tilde{Z}_n = \sum_{k=0}^{n} Z_k, \text{ the total population size up to time } n. \text{ Show that } \tilde{\varphi}_{n+1}(u) = u \varphi(\tilde{\varphi}_n(u)) \text{ for all } n \geq 0 \text{ and } u \geq 0. \text{ Deduce that } E(u^{\tilde{Z}} \mathbb{1}_{\tilde{Z}_{\infty} < \infty}), \text{ } u \geq 0, \text{ where } \tilde{Z} = \sum_{k \geq 0} Z_k \text{ is the total population size of }(Z_n)_{n \geq 0}, \text{ is given by the smallest solution } s \geq 0 \text{ to the equation } s = u \varphi(s), \text{ when it exists.}\]

We now turn to classification of states for the Markov chain \(Z_n \) in \(\mathbb{Z}^+ \). Of course, since 0 is an absorbing state, it is recurrent.

\[\textbf{Lemma 2.8.} \text{ If } p_1 = P(Z = 1) \neq 1, \text{ then every } k \in \mathbb{N} \text{ is transient. As a result, } \]
\[
P(Z_n \to \infty) = 1 - P(Z_n \to 0) = 1 - \rho.
\]

\[\textbf{Proof.} \text{ We first show that every } k \in \mathbb{N} \text{ is transient:}\]

If \(p_0 = 0 \), then \(Z_n \) is a non-decreasing Markov chain (ie., \(Z_{n+1} \geq Z_n \)), so that for every \(k \in \mathbb{N} \) the first passage probability \(f_k \) satisfies
\[
f_{kk} = P(Z_{n+1} = k \mid Z_n = k) = P_k(Z_1 = k) = (p_1)^k < 1.
\]

If \(p_0 \in (0, 1] \), we have
\[
f_{kk} \leq P(Z_{n+1} \neq 0 \mid Z_n = k) = P_k(Z_1 \neq 0) = 1 - P_k(Z_1 = 0) = 1 - (p_0)^k < 1.
\]

We now turn to the explosion event \(\{Z_n \to \infty\} \). Fix \(K > 0 \); since the states 1, 2, \ldots, \(K \) are transient, we eventually have \(\{Z_n \to 0\} \cup \{Z_n > K\} \) and therefore
\[
P(Z_n \to 0 \text{ or } Z_n \to \infty) = 1.
\]
As the LHS above equals \(P(Z_n \to 0) + P(Z_n \to \infty) \), the result follows from the observation \(P(Z_n \to 0) \equiv P(E) = \rho \).
Remark 2.8.1. In the case \(p_0 \in (0,1] \) the transience result above is well known in the general theory of Markov chains: since state 0 is absorbing and for every \(k \in \mathbb{N} \) the event

\[
\{ k \text{ leads to } 0 \} \equiv \{ Z_n = 0 \text{ for some } n \text{ given } Z_0 = k \}
\]

has probability at least \(p_0^k > 0 \), state \(k \) is transient.

Remark 2.8.2. A formal justification of the final step of the argument above can be derived as follows. Let \(A = \bigcup_{n \geq 0} \{ Z_n = 0 \} \equiv \{ Z_n \to 0 \} \) be the absorption event. With \(C_m = \{1,2,\ldots,m\} \), by the above,

\[
\mathbb{P}(Z_n \in C_m \text{ f.o.}) = \mathbb{P}(Z_n \notin C_m \text{ eventually}) = 1
\]

for all \(m \geq 1 \). Further, denote \(A_m^c = \{ Z_n > m \text{ eventually} \} \). Since

\[
A_m^c \setminus A_m^{c-1} \subseteq \{ Z_n = m \text{ i.o.} \} \subseteq \{ Z_n \in C_m \text{ i.o.} \}
\]

has probability 0, we deduce that

\[
\mathbb{P}(A_m^c) = \mathbb{P}(A_m^c) = \mathbb{P}(A^c) = 1 - \mathbb{P}(A)
\]

for all \(m \geq 1 \). By monotonicity of \(A_m \) in \(m \), the event \(\{ Z_n \to \infty \} = \bigcap_{n \geq 1} A^c_m \) has probability \(\mathbb{P}(A^c) \), i.e.,

\[
\mathbb{P}(Z_n \to 0) + \mathbb{P}(Z_n \to \infty) = 1.
\]

Exercise 2.9. Let \((Z_n)_{n \geq 0}\) be a supercritical branching process with offspring distribution \(\text{Poi}(\lambda) \), \(\lambda > 1 \). Let \(T_0 = \min\{n \geq 0 : Z_n = 0\} \) be its extinction time, and let \(\rho = \mathbb{P}(T_0 < \infty) > 0 \) be its extinction probability. Define \((\bar{Z}_n)_{n \geq 0}\) as \(Z_n \) conditioned on extinction, i.e., \(\bar{Z}_n = (Z_n \mid T_0 < \infty) \).

a) Show that the transition probabilities \(\bar{p}_{xy} \) of \((\bar{Z}_n)_{n \geq 0}\) and the transition probabilities \(p_{xy} \) of the original process \((Z_n)_{n \geq 0}\) are related via \(\bar{p}_{xy} = p_{xy}\rho^{-x} \), \(x, y \geq 0 \);

b) Deduce that the generating functions \(\hat{\varphi}(s) \equiv \mathbb{E}_1[s^{\bar{Z}_1}] \) and \(\varphi(s) \equiv \mathbb{E}_1[s^{Z_1}] \) are related via \(\hat{\varphi}(s) = \frac{1}{\rho}\varphi(\rho s) \), \(0 \leq s \leq 1 \);

c) Use the fixed point equation \(\rho = e^{\lambda(\rho-1)} \) to show that \(\hat{\varphi}(s) = e^{\lambda \rho(s-1)} \), i.e., that the offspring distribution for \((\bar{Z}_n)_{n \geq 0}\) is just \(\text{Poi}(\lambda \rho) \).

Exercise 2.10. Let \((Z_n)_{n \geq 0}\) be a supercritical branching process with offspring distribution \(\{p_k\}_{k \geq 0} \), offspring generating function \(\varphi(s) \) and extinction probability \(\rho \in (0,1) \).

a) If \(Z_0 = 1 \), let \(\bar{p}_k \) be the probability that conditioned on survival the first generation has exactly \(k \) individuals with an infinite line of descent. Show that

\[
\bar{p}_k = \frac{1}{1-\rho} \sum_{n=k}^{\infty} p_n \binom{n}{k} (1-\rho)^k \rho^{n-k}.
\]

\[\text{geometrically, the graph of } \hat{\varphi}(\cdot) \text{ is a rescaled version of that of } \varphi(\cdot);\]
b) Let \((\tilde{Z}_n)_{n \geq 0}\) count only those individuals in \((Z_n)_{n \geq 0}\), who conditioned on survival have an infinite line of descent. Show that \((\tilde{Z}_n)_{n \geq 0}\) is a branching process with offspring generating function\(^{13}\)

\[\tilde{\varphi}(s) = \frac{1}{1-\rho} \left(\varphi((1-\rho)s + \rho) - \rho \right). \]

Exercise 2.11. Let \((Z_n)_{n \geq 0}\) be a subcritical branching process whose generating function \(\varphi(s) = E(s^{Z_1})\) is finite for some \(s > 1\), i.e., the offspring distribution has finite exponential moments in a neighbourhood of the origin.

a) Using the result of Exercise 2.7 or otherwise, show that the total population size \(Z = \sum_{k \geq 0} Z_k\) satisfies \(E(u^Z) < \infty\) for some \(u > 1\).

b) Suppose that for each \(1 \leq i \leq \tilde{Z}\), individual \(i\) produces wealth of size \(W_i\), where \(W_i\) are independent random variables with common distribution satisfying \(E(s^{W}) < \infty\) for some \(s > 1\). Show that for some \(u > 1\) we have \(E(u^{\tilde{W}}) < \infty\), where \(\tilde{W} = W_1 + \cdots + W_{\tilde{Z}}\) is the total wealth generated by \((Z_n)_{n \geq 0}\).

Exercise 2.12. Let \((Z_n)_{n \geq 0}\) be a supercritical branching process whose generating function \(\varphi(s) = E(s^{Z_1})\) is finite for some \(s > 1\).

a) Using the result of Exercise 2.7 or otherwise, show that the total population size \(Z = \sum_{k \geq 0} Z_k\) satisfies \(E(u^Z 1_{\tilde{Z} < \infty}) < \infty\) for some \(u > 1\).

b) Define \((\hat{Z}_n)_{n \geq 0}\) as \(Z_n\) conditioned on extinction, i.e., \(\hat{Z}_n = (Z_n \mid \tilde{Z} < \infty)\). Deduce that \((\hat{Z}_n)_{n \geq 0}\) is a subcritical branching process such that \(E(u^{\hat{Z}_1}) < \infty\) for some \(u > 1\).

Remark 2.12.1. The fact that a probability generating function is finite at \(u = 1\) (or has a finite (left) derivative there) does not, in general, imply any regularity beyond the unit disk:

Let \(X\) be a random variable such that

\[P(X = k) = \frac{1}{k(k+1)} \quad \text{for all } k \geq 1, \]

and let \(\varphi_X(u)\) be its generating function. It is easy to check that \(\varphi_X(1) = 1\) while \(E(X) = \varphi_X'(1-) = \infty\), and thus \(|\varphi_X(u)| \leq \varphi_X(1) = 1\) if \(|u| \leq 1\) but \(\varphi_X(u) = \infty\) for all \(|u| > 1\).

Now suppose that

\[P(X = k) = \frac{4}{k(k+1)(k+2)} \quad \text{for } k \geq 1. \]

It is easy to see that the generating function \(\varphi_X(u)\) of \(X\) satisfies \(\varphi_X(1) = 1\), \(\varphi_X'(1-) = 2 < \infty\), but \(\varphi_X''(1-) = \infty\). Notice that in this case \(\varphi_X'(u) \leq 2\) uniformly in \(|u| < 1\) while still \(\varphi_X(u) = \infty\) for all \(|u| > 1\).

Following a similar pattern, for every \(m \in \mathbb{N}\), one can construct a function \(\varphi(u)\), which is continuous and bounded on the closed unit disk \(|u| \leq 1\) together with derivatives up to order \(m\), while \(\varphi(u) = \infty\) for all \(|u| > 1\).
2.2 Critical case \(m = 1 \)

The following example is among very few, for which the computation in the critical case \(m = EZ = 1 \) can be done explicitly.

Example 2.13. Consider the so-called linear-fractional case, where the offspring distribution is given by

\[
p_j = \frac{1}{2j+1}, \quad j \geq 0.
\]

We then have \(\varphi(s) = \sum_{j \geq 0} s^j/2^{j+1} = (2-s)^{-1} \) and a straightforward induction gives (check this!)

\[
\varphi_k(s) = \frac{k-(k-1)s}{(k+1) - ks} = \frac{k}{k+1} + \frac{1}{k(k+1)} \sum_{m \geq 1} \left(\frac{ks}{k+1} \right)^m,
\]

so that

\[
P(Z_k = 0) = \varphi_k(0) = \frac{k}{k+1}, \quad P(Z_k > 0) = \frac{1}{k+1},
\]

and

\[
P(Z_k = m \mid Z_k > 0) = \frac{1}{k+1} \left(\frac{k}{k+1} \right)^{m-1},
\]

ie., \((Z_k \mid Z_k > 0)\) has geometric distribution with success probability \(1/(k+1)\).

Remark 2.13.1. By the partition theorem,

\[
1 = E(Z_k) = E(Z_k \mid Z_k > 0) P(Z_k > 0) + E(Z_k \mid Z_k = 0) P(Z_k = 0),
\]

so that in the previous example we have

\[
E(Z_k \mid Z_k > 0) = \frac{1}{P(Z_k > 0)} = k+1,
\]

ie., conditional on survival, the average generation size grows linearly with time.

The following example is known as the general linear-fractional case:

Exercise 2.14. For fixed \(b > 0 \) and \(p \in (0,1) \), consider a branching process with the offspring distribution

\[
p_j = bp^{j-1}, \quad j \geq 1, \quad p_0 = 1 - \sum_{j \geq 1} p_j.
\]

a) Show that for \(b \in (0,1-p) \) the distribution above is well defined; find the corresponding \(p_0 \), and show that

\[
\varphi(s) = \frac{1-b-p}{1-p} + \frac{bs}{1-ps};
\]

b) Find \(b \) for which the branching process is critical and show that then

\[
\varphi_k(s) = E(s^{Z_k}) = \frac{kp - (kp+p-1)s}{(1-p+kp) - kps};
\]

c) Deduce that \((Z_k \mid Z_k > 0)\) is geometrically distributed with parameter \(1/(kp+1-p)\).
Straightforward computer experiments (see the R script on the webpage!) show that a similar linear growth of \(\mathbb{E}(Z_k \mid Z_k > 0) \) takes place for other critical offspring distributions, e.g., the one with \(\varphi(s) = (1 + s^2)/2 \).

Theorem 2.15. If the offspring distribution of the branching process \((Z_k)_{k \geq 0}\) has mean \(m = 1 \) and finite variance \(\sigma^2 > 0 \), then

\[
k \mathbb{P}(Z_k > 0) \to \frac{2}{\sigma^2} \quad \text{as } k \to \infty;
\]
equivalently,

\[
\frac{1}{k} \mathbb{E}(Z_k \mid Z_k > 0) \to \frac{\sigma^2}{2} \quad \text{as } k \to \infty. \tag{2.4}
\]

Remark 2.15.1. This general result suggests that, conditional on survival, a general critical branching process exhibits linear intermittent behaviour;\(^{14}\) namely, with small probability (of order \(2/(k\sigma^2) \)) the values of \(Z_k \) are of order \(k \).

Our argument is based on the following general fact:\(^{15}\)

Lemma 2.16. Let \((y_n)_{n \geq 0}\) be a real-valued sequence. If for some constant \(a \) we have \(y_{n+1} - y_n \to a \) as \(n \to \infty \), then \(n^{-1}y_n \to a \) as \(n \to \infty \).

Proof. By changing the variables \(y_n \mapsto y'_n = y_n - na \) if necessary, we can and shall assume that \(a = 0 \). Fix arbitrary \(\delta > 0 \) and find \(K > 0 \) such that for \(n \geq K \) we have \(|y_{n+1} - y_n| \leq \delta \). Decomposing, for \(n > K \),

\[y_n - y_K = \sum_{j=K}^{n-1} (y_{j+1} - y_j) \]

we deduce that \(|y_n - y_K| \leq \delta(n - K) \) so that the claim follows from the estimate

\[
\left| \frac{y_n}{n} \right| \leq \left| \frac{y_n - y_K}{n} \right| + \left| \frac{y_K}{n} \right| \leq \delta + \left| \frac{y_K}{n} \right| \leq 2\delta,
\]

provided \(n \) is chosen sufficiently large. \(\square \)

Proof of Theorem 2.15. We only derive the second claim of the theorem, Eq. (2.4). By assumptions, the offspring generating function is \(\varphi(s) = s + f(s - 1) \), where \(f(\cdot) \) satisfies

\[f(0) = f'(0) = 0, \quad f''(0) = \sigma^2; \]
in other words, \(\varphi(s) \) is well approximated by \(s + \sigma^2(s - 1)^2/2 \) in a small enough neighbourhood of \(s = 1 \). Denote \(x_k = \mathbb{P}(Z_k = 0) = \varphi_k(0) \); recall that by criticality \(x_k \to 1 \) as \(k \to \infty \). We now have

\[
\frac{1}{1 - x_{k+1}} = \frac{1}{1 - \varphi(x_k)} = \frac{1}{1 - x_k} \left(1 - \frac{f(x_k) - 1}{1 - x_k} \right)^{-1}
\]

\(^{14}\) Intermittency follows from the criticality condition, \(1 = \mathbb{E}(Z_k \mid Z_k > 0)\mathbb{P}(Z_k > 0) \); it is the linearity which is surprising here!

\(^{15}\) Compare the result to Cesàro limits of real sequences: if \((a_k)_{k \geq 1}\) is a real-valued sequence, and \(s_n = a_1 + \cdots + a_n \) is its \(n \)th partial sum, then \(\frac{1}{n} s_n \) are called the Cesàro averages for the sequence \((a_k)_{k \geq 1}\). Lemma 2.16 claims that if \(a_k \to a \) as \(k \to \infty \), then the sequence of its Cesàro averages also converges to \(a \). The converse is, of course, false. (Find a counterexample!)
so that
\[\frac{1}{1 - x_{k+1}} - \frac{1}{1 - x_k} = \frac{f(x_k - 1)}{(1 - x_k)^2} \left(1 - \frac{f(x_k - 1)}{1 - x_k} \right) ^{-1} \rightarrow \frac{\sigma^2}{2} \]
(2.5)
as \(k \rightarrow \infty \). Noticing that the LHS above is just
\[\mathbb{E}(Z_{k+1} \mid Z_{k+1} > 0) - \mathbb{E}(Z_k \mid Z_k > 0), \]
we deduce the claim of the theorem from Lemma 2.16. \(\square \)

Remark 2.16.1. With a bit of extra work\(^\text{16}\) one can generalize (2.5) to
\[\lim_{n \rightarrow \infty} n^{-1} \left(\frac{1}{1 - \varphi_n(s)} - \frac{1}{1 - s} \right) = \frac{\sigma^2}{2} \]
and use this relation to derive the convergence in distribution:

Theorem 2.17. If \(\mathbb{E}Z_1 = 1 \) and \(\text{Var}(Z_1) = \sigma^2 \in (0, \infty) \), then for every \(z \geq 0 \) we have
\[\lim_{k \rightarrow \infty} \mathbb{P} \left(\frac{Z_k}{k} > z \mid Z_k > 0 \right) = \exp \left\{ \frac{-2z}{\sigma^2} \right\}, \]
IE., the distribution of \((k^{-1}Z_k \mid Z_k > 0) \) is approximately exponential with parameter \(2/\sigma^2 \).

Remark 2.17.1. In the setup of Example 2.13, we have
\[\mathbb{P}(Z_k > m \mid Z_k > 0) = \left(\frac{k}{k+1} \right)^m = \left(1 - \frac{1}{k+1} \right)^m, \]
so that \(\mathbb{P}(Z_k > kz \mid Z_k > 0) \rightarrow e^{-z} \) as \(k \rightarrow \infty \); in other words, for large \(k \) the distribution of \((k^{-1}Z_k \mid Z_k > 0) \) is approximately \(\text{Exp}(1) \).

Exercise 2.18. Check carefully that the result of the last theorem holds for the critical branching process from Exercise 2.14.

2.3 Non-homogeneous case

If the offspring distribution changes with time, the previous approach must be modified. Let \(\psi_n(u) \) be the generating function of the offspring distribution of a single ancestor in the \((n-1) \)st generation,
\[\psi_n(u) = \mathbb{E}(u^{Z_n} \mid Z_{n-1} = 1); \]
then the generating function \(\varphi_n(u) = \mathbb{E}(u^{Z_n} \mid Z_0 = 1) \) of the population size at time \(n \) given a single ancestor at time 0, can be defined recursively as follows:
\[\varphi_0(u) \equiv u, \quad \varphi_k(u) = \varphi_{k-1}(\psi_n(u)), \quad \forall k \geq 1. \]
If \(\mu_n = \mathbb{E}(Z_n \mid Z_{n-1} = 1) = \psi_n(1) \) denotes the average offspring size in the \(n \)th generation given a single ancestor in the previous generation, then
\[m_n \equiv \mathbb{E}(Z_n \mid Z_0 = 1) = \mu_1\mu_2 \cdots \mu_{n-1}\mu_n. \]
It is natural to call the process \((Z_n)_{n \geq 0} \) supercritical if \(m_n \rightarrow \infty \) and subcritical if \(m_n \rightarrow 0 \) as \(n \rightarrow \infty \).

\(^{16}\)using the fact that every \(s \in (0, 1) \) satisfies \(0 < s < \varphi_k(0) < 1 \) for some \(k \geq 1 \);
Exercise 2.19. A strain of phototrophic bacteria uses light as the main source of energy. As a result individual organisms reproduce with probability mass function
\[p_0 = 1/4, \quad p_1 = 1/4 \quad \text{and} \quad p_2 = 1/2 \] per unit of time in light environment, and with probability mass function \(p_0 = 1 - p, \quad p_1 = p \) (with some \(p > 0 \)) per unit of time in dark environment. A colony of such bacteria is grown in a laboratory, with alternating light and dark unit time intervals.

a) Model this experiment as a time non-homogeneous branching process \((Z_n)_{n \geq 0}\) and describe the generating function of the population size at the end of the \(n \)th interval.

[Hint: Notice that the behaviour of your system differs for odd and even time intervals!]

b) Characterise all values of \(p \) for which the branching process \(Z_n \) is subcritical and for which it is supercritical.

c) Let \((D_k)_{k \geq 0}\) be the original process observed at the end of each even interval, \(D_k \overset{\text{def}}{=} Z_{2k} \). Find the generating function of \((D_k)_{k \geq 0}\) and derive the condition for sure extinction. Compare your result with that of part b).

2.4 Two-type branching processes

Consider a process in which a single type I individual gives birth to \(\xi^1 \) individuals of type I and \(\eta^1 \) individuals of type II, while a single type II individual gives birth to \(\xi^2 \) individuals of type I and \(\eta^2 \) individuals of type II. Let
\[P(\xi^1 = k, \eta^1 = l) = p_1(k,l), \quad P(\xi^2 = k, \eta^2 = l) = p_2(k,l), \quad k, l \geq 0, \]
be the offspring distributions for type I and type II ancestors.

Assuming, as before, that each individual reproduces independently of all other individuals, and writing \(U_n \) and \(V_n \) for the respective numbers of type I and type II individuals, we get
\[U_{n+1} = \sum_{j=1}^{U_n} \xi_j^1 + \sum_{j=1}^{V_n} \xi_j^2, \quad V_{n+1} = \sum_{j=1}^{U_n} \eta_j^1 + \sum_{j=1}^{V_n} \eta_j^2, \]
where \((\xi_j^i, \eta_j^i)_{j \geq 1} \) are i.i.d. random vectors with probability mass functions \(p_i(k,l) \) as above. The simplest situation arises for initial conditions
\[(U_0, V_0) = (1,0) \quad \text{or} \quad (U_0, V_0) = (0,1). \]

Consider the single step generating functions (starting from a single type \(i \) individual at time \(n = 0 \))
\[\varphi^{(i)}(s,t) = E[\sum_{k,l \geq 0} p_i(k,l)s^kt^l], \quad i \in \{1,2\}, \]
and their multiple step generalisations
\[\varphi^{(1)}(s,t) = \sum_{k,l \geq 0} P(U_n = k, V_n = l \mid U_0 = 1, V_0 = 0)s^kt^l, \]
\[\varphi^{(2)}(s,t) = \sum_{k,l \geq 0} P(U_n = k, V_n = l \mid U_0 = 0, V_0 = 1)s^kt^l \]

http://maths.dur.ac.uk/stats/courses/StochProc34/
with \(n \geq 0 \). Clearly,
\[
\varphi_0^{(1)}(s,t) \equiv s, \quad \varphi_0^{(2)}(s,t) \equiv t,
\]
\[
\varphi_1^{(1)}(s,t) \equiv \varphi^{(1)}(s,t), \quad \varphi_1^{(2)}(s,t) \equiv \varphi^{(2)}(s,t),
\]
and the key observation is that
\[
\varphi_{n+m}^{(i)}(s,t) = \varphi_m^{(i)}(\varphi_n^{(1)}(s,t), \varphi_n^{(2)}(s,t))
\]
for \(i \in \{1, 2\} \) and \(n, m \geq 0 \). Indeed, it follows by induction from
\[
\varphi_{k+1}^{(i)}(s,t) \equiv \mathbb{E}^i(s^{U_{k+1}}t^{V_{k+1}}) = \mathbb{E}^i\left(\mathbb{E}^i(s^{U_{k+1}}t^{V_{k+1}} \mid U_k, V_k)\right)
\]
\[
= \mathbb{E}^i\left((\varphi^{(1)}(s,t))^{U_k}(\varphi^{(2)}(s,t))^{V_k}\right) = \varphi_k^{(i)}(\varphi^{(1)}(s,t), \varphi^{(2)}(s,t)).
\]

Write \(X_n = (U_n, V_n) \) for the population composition of the \(n \)th generation and consider the expectations
\[
m_{11} = \mathbb{E}(U_1 \mid X_0 = (1, 0)) = \mathbb{E}\xi^1 = \frac{\partial}{\partial s}\varphi^{(1)}(s,t) \bigg|_{(1,1)},
\]
\[
m_{12} = \mathbb{E}(V_1 \mid X_0 = (1, 0)) = \mathbb{E}\eta^1 = \frac{\partial}{\partial t}\varphi^{(1)}(s,t) \bigg|_{(1,1)},
\]
\[
m_{21} = \mathbb{E}(U_1 \mid X_0 = (0, 1)) = \mathbb{E}\xi^2 = \frac{\partial}{\partial s}\varphi^{(2)}(s,t) \bigg|_{(1,1)},
\]
\[
m_{22} = \mathbb{E}(V_1 \mid X_0 = (0, 1)) = \mathbb{E}\eta^2 = \frac{\partial}{\partial t}\varphi^{(2)}(s,t) \bigg|_{(1,1)},
\]

ie., \(m_{i1i2} \) is the expected number of type \(i_2 \) individuals starting from a single type \(i_1 \) ancestor. Write
\[
M = \begin{pmatrix} m_{11} & m_{12} \\ m_{21} & m_{22} \end{pmatrix}.
\]

Lemma 2.20. For \(n, k \geq 0 \),
\[
\mathbb{E}(X_{n+k} \mid X_n) = X_n \cdot M^k.
\]

Proof. This follows easily by induction in \(k \) using
\[
F_n(s,t) \equiv \mathbb{E}(s^{U_{n+1}}t^{V_{n+1}} \mid U_n, V_n) = (\varphi^{(1)}(s,t))^{U_n}(\varphi^{(2)}(s,t))^{V_n}
\]
so that
\[
\mathbb{E}(U_{n+1} \mid U_n, V_n) = \frac{\partial}{\partial s} F_n(s,t) \bigg|_{(1,1)} = U_n \cdot \mathbb{E}\xi^1 + V_n \cdot \mathbb{E}\xi^2 = (X_n \cdot M)_1.
\]
Similarly, \(\mathbb{E}(V_{n+1} \mid U_n, V_n) = (X_n \cdot M)_2. \)
As in the classical case of branching processes with individuals of single type, write \(E_2 \) for the extinction event \(\{ X_n = (0,0) \text{ for some } n \} \) and introduce the extinction probabilities
\[
\rho^1 = P(E_2 \mid X_0 = (1,0)) , \quad \rho^2 = P(E_2 \mid X_0 = (0,1)) .
\]

Then the following analogue of Theorem 2.4 holds.

Theorem 2.21. Let the offspring generating functions \(\varphi^{(i)}(s,t) \), \(i \in \{1,2\} \), be monotone in each of the variables \(s,t \) and let all expectations \(m_{ij} \) be positive. Then the extinction probabilities \((\rho^1,\rho^2) \) are given by the smallest non-negative solution of the fixed point system
\[
\rho^1 = \varphi^{(1)}(\rho^1,\rho^2), \quad \rho^2 = \varphi^{(2)}(\rho^1,\rho^2) .
\]

Further, let \(r \geq 0 \) be the maximal eigenvalue of the matrix \(M \) of averages \(m_{i1,i2} \). Then for \(r \leq 1 \) we have \(\rho^1 = \rho^2 = 1 \), while for \(r > 1 \) we have \(\rho^1, \rho^2 < 1 \).

Remark 2.21.1. The proof of this result can be obtained in full analogy with the one-dimensional case, by studying the sequence \(q^i_n = \varphi^{(i)}(0,0) \), \(n \geq 0 \), of approximates. By monotonicity of \(\varphi^{(i)}(s,t) \), \(i \in \{1,2\} \), each \((q^i_n)_{n \geq 0} \), is a monotone sequence of real numbers in \([0,1]\), and hence converges to a limit. By continuity, the limit must solve the system (2.6), and a suitable generalisation of the single type argument shows that \((\rho^1,\rho^2) \) is given by its smallest non-negative solution.

Notice that the strict monotonicity of \(\varphi^{(i)}(s,t) \), \(i \in \{1,2\} \), implies that a fixed point of (2.6) with \((\rho^1,\rho^2) \neq (1,1) \) must satisfy \(\rho^1, \rho^2 < 1 \). The explicit characterisation of these cases in terms of the maximal eigenvalue of the matrix \(M \) can be achieved using the famous Perron-Frobenius theorem describing the limiting behaviour of powers of matrices with non-negative entries.\(^{17}\)

Remark 2.21.2. If all entries \(m_{ij} \) are positive, it is easy to see that the maximal eigenvalue \(r \) is positive. Indeed, then the quadratic polynomial
\[
f(\lambda) = \det (M - \lambda I) = (m_{11} - \lambda)(m_{22} - \lambda) - m_{12}m_{21}
\]
satisfies \(f(m_{11}) = f(m_{22}) = -m_{12}m_{21} < 0 \) and thus must have a positive root.

Alternatively, notice that the trace of \(M \) is positive, \(m_{11} + m_{22} > 0 \); since it equals the sum of the eigenvalues, at least one of them must be positive.

Exercise 2.22. Consider a branching process with two particle types, type I and type II. Let \(\varphi^{(i)}(s,t) = E(s^{U_1} t^{V_1}) \) be the generating function of the offspring distribution of a single individual of type \(i \). Suppose that
\[
\varphi^{(1)}(s,t) = \frac{1}{2} + \frac{1}{8} s + \frac{1}{8} t + \frac{1}{8} st + \frac{1}{8} st^2 , \\
\varphi^{(2)}(s,t) = \frac{1}{4} + \frac{1}{4} t + \frac{1}{8} st + \frac{1}{8} st^2 + \frac{1}{4} s^2 t .
\]

Find the maximal eigenvalue of the matrix \(M \) of averages and determine whether this process become extinct with probability one or not.

\(^{17}\)we will not do this here; get in touch if interested!