
M15 Probability II Problems Sheet Markov Chains

Markov chains

MC 1. Show that the usual Markov property

P(Future | Present,Past) = P(Future | Present)

is equivalent to

P(Future,Past | Present) = P(Future | Present) P(Past | Present) .

MC 2. Suppose that X0, X1, . . . are independent, identically distributed random vari-
ables such that P(Xk = 1) = p and P(Xk = 0) = 1−p. Set S0 = 0, Sn = X1 + · · ·+Xn,
n ≥ 1. In each of the following cases determine whether (Yn)n≥0 is a Markov chain:

a) Yn = Xn ; b) Yn = Sn ; c) Yn = S0 + S1 + · · ·+ Sn ;

d) Yn = (Sn, S0 + S1 + · · ·+ Sn) .

In the cases where Yn is a Markov chain find its state space and transition matrix, and in
the cases where it is not a Markov chain give an example where the Markov property is
violated, ie., when P(Yn+1 = k |Yn = l, Yn−1 = m) is not independent of m.

MC 3. Let (Xn)n≥1 be a sequence of independent identically distributed non-negative
random variables taking values in {0, 1, 2, . . . }. Define:

i) Sn = X1 +X2 + · · ·+Xn , ii) Tn = max
{
X1, X2, . . . , Xn} ,

iii) Un = min
{
X1, X2, . . . , Xn} , iv) Vn = Xn +Xn−1 .

Which of these sequences are Markov chains? For those that are, find the transition
probabilities; otherwise, give an example where the Markov property is violated.

MC 4. Let Xn, n ≥ 0, be a Markov chain. Show that Yn
def
= X2n and Zn

def
= (Xn, Xn+1),

n ≥ 0, are Markov chains and find the corresponding transition probabilities. Is Un
def
= |Xn|

a Markov chain? Justify your answer.

MC 5. Let a Markov chain X have state space S and suppose S = ∪kAk, where
Ak ∩Al = ∅ for k 6= l. Let Y be a process that takes value yk whenever the chain X lies
in Ak. Show that Y is also a Markov chain provided pj1m = pj2m for all m ∈ S and all
j1 and j2 in the same set Ak.

MC 6. Let (Xn)n≥0 and (Yn)n≥0 be two independent Markov chains, each with the same
discrete state space A and same transition probabilities. Define the process Zn = (Xn, Yn)
with state space S×S. Show that (Zn)n≥0 is a Markov chain and find its transition matrix.

MC 7. Suppose that Zn are iid representing outcomes of successive throws of a die.
Define Xn = max{Z1, . . . , Zn}. Show that Xn is a Markov chain and find its transition
matrix P. Calculate from structure of Xn higher powers of P.

MC 8. Let Zn, −∞ < n <∞, be a sequence of iid random variables with P(Z = 0) =
P(Z = 1) = 1/2. Define the stochastic process Xn with state space {0, 1, . . . , 6} by
Xn = Zn−1 + 2Zn + 3Zn+1, −∞ < n <∞. Determine P(X0 = 1, X1 = 3, X2 = 2) and
P(X1 = 3, X2 = 2). Is Xn Markov? Why or why not?

MC 9. Show that if (Xn)n≥0 is a Markov chain with transition matrix P and Yn = Xkn,
then (Yn)n≥0 is a Markov chain with transition matrix Pk.
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MC 10. Let X be a Markov chain with state space S and transition probabilities pjk.
For any n ≥ 1 and A0, . . . , An−1 ⊂ S, show that

P
(
Xn+1 = k | X0 ∈ A0, . . . , Xn−1 ∈ An−1, Xn = j

)
= pjk .

By giving an example, show that the following statement is incorrect: For subsets A0,
. . . , An ⊂ S, where An is not a singleton, we have

P
(
Xn+1 = k | X0 ∈ A0, . . . , Xn ∈ An

)
= P

(
Xn+1 = k | Xn ∈ An

)
.

MC 11. In a sequence of Bernoulli trials with outcomes S or F, at time n the state 1 is
observed if the trials n− 1 and n resulted in SS. Similarly, states 2, 3, and 4 stand for the
patterns SF, FS, and FF. Find the transition matrix P and all of its powers.

MC 12. Find Pn for the transition matrix

P =




1 0 0
q r p
0 0 1


 ,

where p, q, r are positive numbers satisfying p+ q + r = 1.

MC 13. For 0 < a < 1 and 0 < b < 1, consider the stochastic matrix

P =

(
1− a a
b 1− b

)
.

Show that for every n ≥ 0,

Pn =
1

a+ b

(
b a
b a

)
+

(1− a− b)n
a+ b

(
a −a
−b b

)
.

MC 14. A flea hops randomly on vertices of a triangle, hopping to each of the other
vertices with equal probability. Find the probability that after n hops the flea is back where
it started.

MC 15. A flea hops randomly on vertices of a triangle. It is twice as likely to jump
clockwise as anticlockwise. What is the probability that after n hops the flea is back
where it started?
[Hint: 1

2
± i

2
√
3

= 1√
3
e±iπ/6.]

MC 16. Suppose a virus can exist in N different strains and in each generation either
stays the same, or with probability α mutates to another strain, which is chosen (uniformly)

at random. Find the probability p
(n)
ii that the strain in the nth generation is the same as

that in the 0th. Compute lim
n→∞

p
(n)
ii .

MC 17. Let (Xn)n≥0 be a Markov chain with transition matrix




2/3 1/3 0
1− p 0 p

1 0 0


 .

Calculate P(Xn = 3 | X0 = 3) when

a) p = 1/(16) , b) p = 1/6 , c) p = 1/(12) .
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MC 18. In the Land of Oz, they never have two nice days in a row. If they have a nice
day, they are just as likely to have snow as rain the next day. If they have snow or rain,
they have an even chance to having the same the next day. If there is change from snow or
rain, only half of the time this is a change to a nice day. In other words, the corresponding
Markov chain on the state space S = {R,N, S} has the following transition matrix:

P =




1/2 1/4 1/4
1/2 0 1/2
1/4 1/4 1/2


 .

Find the transition probabilities p
(n)
RN , p

(n)
NN , and p

(n)
SN . Comment on what happens as

n→∞.

MC 19. A die is ‘fixed’ so that each time it is rolled the score cannot be the same as the
preceding score, all other scores having probability 1/5. If the first score is 6, what is the
probability that the (n+ 1)st score is 6? What is the probability that the (n+ 1)st score
is 1?

MC 20. Give an example to show that for a Markov chain to be irreducible, it is sufficient
but not necessary that for some n ≥ 1, p

(n)
jk > 0 for all states j, k.

MC 21. The birth and death chain is a Markov chain on the state space S = {0, 1, 2, . . . }
whose transition probabilities are defined by the restriction pij = 0 when |i− j| > 1 and

pk,k+1 = pk , pk,k−1 = qk , pkk = rk (k ≥ 0)

with q0 = 0. Assuming that all pk and all qk are strictly positive, show that every state
i ∈ S is aperiodic if and only if for some k ∈ S one has rk > 0. If the chain is periodic,
find d(i) for i ∈ S.

MC 22. Let a Markov chain have m states. Prove that if j → k then state k can be
reached from j with positive probability in m steps or less.
This observation can be used to teach computers to classify states of a Markov chain:
replace every positive entry in P with one and compute P + P2 + · · ·+ Pm, where m
is the number of states.

MC 23. Show carefully that if i and j are communicating states of a Markov chain, then
the period d(i) of i is a multiple of d(j). Deduce that i and j have the same period.

MC 24. Show that every transition matrix on a finite state space has at least one closed
communicating class. Find an example of a transition matrix with no closed communicating
classes.

MC 25. For a Markov chain on {1, 2, 3} with the transition matrix

P =




1 0 0
1/2 0 1/2
1/4 1/4 1/2




a) describe the class decomposition and find the period of every state;

b) compute the hitting probabilities h
{1}
2 and h

{1}
3 ; explain your findings.
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MC 26.~ Let P =
(
pij
)m
i,j=1

be an irreducible aperiodic stochastic matrix. Show

that there exists an integer l ≥ 1 such that Pl is γ-positive with some γ ∈ (0, 1), ie.,

mini,j p
(l)
i,j ≥ γ > 0.

Hint: show first that if state k is aperiodic, then the set Ak
def
= {n > 0 : p

(n)
kk > 0}

contains all large enough natural numbers, ie., for some natural n0 ≥ 0, Ak contains
{n0, n0 + 1, . . . }.

MC 27. A gambler has £2 and needs to increase it to £10 in a hurry. He can play a
game with the following rules: a fair coin is tossed; if the player bets on the right side, he
wins a sum equal to his stake, and his stake is returned; otherwise he loses his stake. The
gambler decides to use the bold strategy, in which he stakes all his money if he has £5
or less, and otherwise stakes just enough to increase his capital, if he wins, to £10. Let
X0 = 2 and let Xn be his capital after n throws.

a) Show that the gambler will achieve his aim with probability 1/5.

b) What is the expected number of tosses until the gambler achieves his aim or loses his
capital?

MC 28. Consider a Markov chain on {1, 2, 3, 4, 5} with transition matrix




1− r r 0 0 0
1/2 0 1/2 0 0
0 1/2 0 1/2 0
0 0 1/2 0 1/2
0 0 0 0 1




where r ∈ [0, 1]. Find the hitting probability h
{5}
i and the mean hitting time k

{5}
i as a

function of r. Explain your findings.

MC 29. Consider a Markov chain on {0, 1, 2, . . . } with transition probabilities p0,1 =
1− p0,0 = r and pk,k+1 = pk,k−1 = 1

2
for k ≥ 1. Find the expected number of moves to

reach n starting from the initial position i.

MC 30. Assume that the experiment has m equally probable outcomes. Show that
the expected number of independent trials before the first occurrence of k consecutive
occurrences of one of these outcomes is (mk − 1)/(m− 1).
It has been found that, in the decimal expansion of π, starting with 24, 658, 601st digit,
there is a run of nine 7’s. What would your result say about the expected number of
digits necessary to find such a run if the digits are produced randomly?

MC 31.~ A transition matrix P is positive, if all its entries are strictly positive. A
transition matrix is called regular, if for some n ≥ 1 the n-step transitions matrix Pn is
positive. Let X be a regular Markov chain with finite state space S. For states j, k ∈ S
and a subset D ⊆ S consider the first passage times

Tjk
def
= min{n : Xn = k | X0 = j} , TjD

def
= min{n : Xn ∈ D | X0 = j} .

Show that there exist positive constants c and ρ < 1 such that P(Tjk > n) < cρn; thus
deduce that Tjk is finite with probability one and has a finite expectation. Derive similar
properties for TjD.
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MC 32. A particle performs a random walk on the vertices of a cube in such a way that
from every vertex it moves to any of its neighbours with equal probabilities. Find the mean
recurrence time of each vertex and the mean passage time from a vertex to its diagonal
opposite.

MC 33.~ A unit cube is placed such that one of its vertices, i, is at the origin (0, 0, 0),
and the opposite vertex o is at (1, 1, 1). A particle performs a random walk on the vertices
of the cube, starting from i and moving along the x, y, and z directions with probabilities
p, q, and r respectively. Let Tio be the first passage time from i to o. Find the generating
function of Tio and compute its mean. Do the same for the first passage time Tii.

Hint: Fio(s) is the generating function of Tio.

MC 34. A process moves on integers 1, 2, 3, 4, and 5. It starts at 1 and, on each
successive step, moves to an integer greater that its present position, selecting each of the
available jumps with equal probabilities. State 5 is an absorbing state. Find the expected
number of steps to reach state 5.

MC 35. Let X and X ′ be Markov chains on {1, 2, 3} with transition matrices

P =




1 0 0
1
2

1
4

1
4

1
2

1
4

1
4


 and P′ =




0 0 1
1
2

1
4

1
4

1
2

1
4

1
4




respectively. Which of these Markov chains are irreducible? Which are periodic? In both
cases compute the expected return time to state 1.

MC 36. A biased coin is tossed repeatedly. If Xn denotes the total number of ‘heads’ in
the first n throws, consider T0 = min

{
n > 0 : Xn is a multiple of 11

}
. Find ET0 quoting

carefully any general result that you use.

MC 37. Consider a Markov chain on {1, 2, . . . } with transition probabilities pk,1 =

1 − pk,k+1 = 1
k+1

, k ≥ 1. Find the first passage probabilities f
(n)
11 and the mean return

time to state 1.

MC 38. For a Markov chain on {1, 2, 3, 4, 5} with transition matrix

P =




0 1 0 0 0
0 0 1 0 0
1 0 0 0 0
0 1/6 0 1/3 1/2
0 0 0 0 1




a) find the period d(i) for every i = 1, 2, . . . , 5 and identify classes of communicating
states; explain which classes are closed and which are not;

b) use the the n-step transition probabilities p
(n)
ii to determine which states are recurrent

and which are transient;

c) find P4(H{5} = k), k ≥ 1, and deduce that h
{5}
4 ≡ P(H{5} <∞|X0 = 4) equals 3/4;

d) show that h
{1,2,3}
4 = 1/4.

e) find the following first passage probabilities: f11, f44, f55, f43, and f45;

f) use these values to check which states are transient and which are recurrent.
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MC 39. For a Markov chain on {1, 2, 3, 4, 5, 6} with transition matrix

P =




0 0 0 0 0 1
0 0 1 0 0 0
0 0 0 1 0 0
0 1 0 0 0 0

1/3 0 1/6 0 1/3 1/6
1 0 0 0 0 0




a) identify classes of communicating states; explain which classes are closed and which are
not;

b) find the period d(i) for every i = 1, 2, . . . , 6;

c) find the following first passage probabilities: f11, f33, f55, f66, f54, and f56; use these
values to check which states are transient and which are recurrent.

d) use the the n-step transition probabilities p
(n)
ii to check which states are transient and

which are recurrent.

e) find P5(H{2,3,4} = k), k ≥ 1, and deduce the value of the hitting probability h
{2,3,4}
5 ≡

P(H{2,3,4} <∞|X0 = 5);

f) find the probability h
{1,6}
5 and the expected hitting times k

{1,6}
5 and k

{2,3,4}
5 ;

g) find all stationary distributions.

MC 40. For a Markov chain on S = {1, 2, 3, 4, 5, 6} with transition matrix



0 0 0 0 1 0
0 0 0 1 0 0
1 0 0 0 0 0
0 1 0 0 0 0
0 0 1 0 0 0

1/6 1/6 1/6 1/6 1/6 1/6




a) find the period d(i) for every i = 1, 2, . . . , 5 and identify classes of communicating
states; explain which classes are closed and which are not;

b) use the the n-step transition probabilities p
(n)
ii to determine which states are recurrent

and which are transient;

c) find the probability P6(H{5} = k), k ≥ 1, and deduce the value of h
{5}
6 ;

d) find the value of h
{1}
6 ;

e) find the following first passage probabilities: f11, f44, f55, f63, and f65;

f) use these values to check which states are transient and which are recurrent.

g) find all stationary distributions for this chain.

MC 41. Let X be a Markov chain with state space S and transition probabilities pjk. If
X0 = j and pjj > 0, find the distribution of the exit time

ηj = min
{
n ≥ 1 : Xn 6= j

}
.

MC 42. Consider a Markov chain on {0, 1, 2, . . . } with transition probabilities p0,1 = 1
and pk,k+1 = 1− pk,k−1 = p for k ≥ 1. Show that:

a) if p < 1/2, each state is positive recurrent;

b) if p = 1/2, each state is null recurrent;

c) if p > 1/2, each state is transient.

O.H. http://maths.dur.ac.uk/stats/courses/ProbMC2H/Probability2H.html MC26



M15 Probability II Problems Sheet Markov Chains

MC 43. Let X be a Markov chain on S = {0, 1, 2, . . . } with transition probabilities

pj,j+1 = 1 − pj,0 = pj ∈ (0, 1). Use the first passage probabilities f
(n)
jj to derive a

criterion of recurrence of X in terms of the probabilities pj .

MC 44. If the state space S of a Markov chain X is finite, show that not all states can
be transient.

MC 45.~ A lazy random walk (Xn)n≥0 on Km = {1, 2, . . . ,m} jumps to each other
state with probability 1

m
(and thus stays at the current state with probability 1

m
). Let

(Yn)n≥0 be another lazy random walk on Km. We define a Markov chain Zn = (Xn, Yn)
on Km ×Km using the following jump probabilities:

p̃(x,y)(x′,y′) =





1
m2 , if x 6= y ,
1
m
, if x = y and x′ = y′ ,

0 , if x = y and x′ 6= y′ .

a) Show that the marginal distributions of Zn coincide with those of Xn and Yn respec-
tively, ie., show that

∑

y′
p̃(x,y)(x′,y′) = px,x′ ,

∑

y′
p̃(x,x)(x′,y′) = p̃(x,x)(x′,x′) = px,x′ .

b) For X0 = x 6= y = Y0, let T
def
= min{n ≥ 1 : Xn = Yn} be the time when both Markov

chains (Xn)n≥0 and (Yn)n≥0 meet together; find the distribution of T and deduce that
P(T <∞) = 1, ie., these Markov chains meet with probability one.
c) Show that for all n ≥ 0, we have P(Xn = j, T ≤ n) = P(Yn = j, T ≤ n) for all vertices
j in Km.
d) Deduce that

∑

j∈Km

∣∣P(Xn = j)− P(Yn = j)
∣∣ ≤ 2P(T > n)→ 0 as n→∞ .

e) If P(Y0 = j) = 1
m

, ie., chain (Yn)n≥0 starts from equilibrium, deduce that
∣∣P(Xn =

j) − 1
m

∣∣ → 0 as n → ∞. In other words, the Markov chain (Xn)n≥0 approaches its
stationary distribution as n→∞.
f) Show that P(T > n) ≤ e−n/m, and deduce that the convergence towards the equilibrium
in part e) is at least exponentially fast. Can you find the true speed of this convergence?

MC 46.~ Generalize the argument in Problem MC48 to any aperiodic irreducible Markov
chain with finite state space.
[Hint: Recall MC26.]

MC 47. In a finite Markov chain, state j is transient iff there exists some state k such
that j → k but k 6→ j. Give an example to show that this is false if the Markov chain has
an infinite number of states.

MC 48. Find an example of a Markov chain with a transient closed communicating class.

MC 49. Recall that for a Markov chain, fjk =
∑
n f

(n)
jk . Show that

sup
n≥1

{
p
(n)
jk

}
≤ fjk ≤

∞∑

n=1

p
(n)
jk .

Deduce that: i) j → k iff fjk > 0; ii) j ↔ k iff fjkfkj > 0.
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MC 50. A Markov chain Xn on {0, 1, 2 . . . } has transition probabilities

P
(
Xn+1 = k + 1 | Xn = k

)
= 1− P

(
Xn+1 = k − 2 | Xn = k

)
= p , k ≥ 2 ,

P
(
Xn+1 = k + 1 | Xn = k

)
= 1− P

(
Xn+1 = 0 | Xn = k

)
= p , k = 0, 1 ,

where p ∈ (0, 1). Establish a necessary and sufficient condition in terms of p for positive
recurrence of Xn, and find the stationary distribution when it exists. Show that the process
is null recurrent when p = 2/3.

MC 51. A Markov chain has state space {0, 1, 2, . . . } and transition probabilities

pk,k+1 = 1− pk,0 =
λ

k + ν + 1
,

where λ > 0 and ν ≥ 0 are constants. State any other necessary restrictions on the values
of λ and ν. Show that the chain is irreducible, aperiodic and positive recurrent. Find
explicitly the stationary distribution for ν = 0 and ν = 1.

MC 52. The rooted binary tree is an infinite graph T with one distinguished vertex R
from which comes a single edge; at every other vertex there are three edges and there are
no closed loops. The random walk on T jumps from a vertex along each available edge
with equal probability. Show that the random walk is transient.

MC 53. Find all stationary distributions for a Markov chain with transition matrix



0 1 0
0 1− a a
b 0 1− b


 .

MC 54.~ Let (Xn)n≥0 be a Markov chain on {0, 1, 2, . . . } with transition probabilities
given by

p0,1 = 1 , pk,k+1 + pk,k−1 = 1 , pk,k+1 =
(k + 1

k

)2
pk,k−1 , k ≥ 1 .

a) Show that if X0 = 0, the probability that Xn ≥ 1 for all n ≥ 1 is 6/π2.

b) Show that P(Xn →∞ as n→∞) = 1.

c) Suppose that the transition probabilities satisfy instead

pk,k+1 =
(k + 1

k

)α
pk,k−1

for some α ∈ (0,∞). What is then the value of P(Xn →∞ as n→∞)?

MC 55. A knight confined to a 5×5 chessboard instantaneously makes standard knight’s
moves each second in such a way that it is equally likely to move to any of the squares one
move away from it. What long-run fraction of the time does it occupy the centre square?

MC 56. a) A random knight moves on the standard chessboard and makes each permis-
sible move with equal probability. If it starts in a corner, how long on average will it take
to return?

b) Suppose that the same knight, being in a melancholic mood, flips a fair coin before
each attempt and moves only if the coin shows tails. Find the expected duration for the
same journey.

c) Now assume that the coin in b) is biased, and find the averaged return time to the
initial corner. Explain your findings.
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MC 57. A random walker on the standard chessboard makes each permissible move with
equal probability. If it starts in a corner, how long on average will it take to return, if:

a) only horizontal and vertical moves are allowed (ie, in the middle of the chessboard there
are four permissible moves)?

b) the diagonal moves are also allowed (ie, in the middle of the chessboard there are eight
permissible moves)?

MC 58. Suppose that each box of cereal contains one of n different coupons. If the
coupon in each box is chosen independently and uniformly at random from the n possibil-
ities, how many boxes of cereal must you buy before you obtain at least one of every type
of coupon?
[Hint: if Xk is the number of different coupons found in the first k boxes, describe
(Xk)k≥0 as a Markov chain, and find the corresponding expected hitting time.]

MC 59. a) Suppose that a Markov chain has m states and is doubly stochastic, if all
its column sums equal one, that is, for every state j we have

∑
i pij = 1. Show that the

vector π = (1/m, . . . , 1/m) is a stationary distribution for this chain.
b) A fair dice is thrown repeatedly. Let Xn denote the sum of the first n throws. Find
limn→∞ P(Xn is a multiple of 9) quoting carefully any general theorem that you use.

[Hint: You may think of Xn as a finite state Markov chain on the set {0, 1, . . . , 8} of
residuals modulo 9. Guess the answer and prove the result.]

MC 60. Find all stationary distributions for a Markov chain on {1, 2, 3, 4, 5} with the
transition matrix (where 0 < p = 1− q < 1 and 0 ≤ r ≤ 1)




1− r r 0 0 0
q 0 p 0 0
0 q 0 p 0
0 0 q 0 p
0 0 0 0 1




a) by solving the standard equations π = πP; b) by solving the detailed balance equa-
tions. Explain your findings.

MC 61.~ Show that the simple symmetric random walk in Z4 is transient.

MC 62. a) An electric light that has survived for n seconds fails during the (n + 1)st
second with probability q (0 < q < 1). Let Xn = 1 if the light is functioning at time n
seconds, otherwise let Xn = 0. Let T be the time to failure (in seconds) of the light, ie.,
T = min{n > 0 : Xn = 0}. Find ET .

b) A building contains m lights of the type described above, which behave independently.
At time 0 they all are functioning. Let Yn denote the number of lights functioning at
time n. Specify the transition matrix of Yn. Find the generating function ϕn(s) ≡ EsYn

of Yn and use it to find P(Yn = 0) and EYn.

Hint: Show that ϕn(s) = ϕn−1(q + ps).

MC 63. A professor has m umbrellas, which he keeps either at home or in his office. He
walks to and from his office each day, and takes an umbrella with him if and only if it is
raining. Throughout each journey, it either rains, with probability p, or remains fine, with
probability 1 − p, independently of the past weather. What is the long run proportion of
journeys on which he gets wet?
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MC 64.~ A queue is a line where the customers wait for service. We consider a model
for a bounded queue where time is divided into steps of equal length. At each step exactly
one of the following occurs:

• if the queue has fewer than n customers, a new customer joins the queue
with probability α;
• if the queue is not empty, the head of the queue is served (and leaves the
queue) with probability β;
• with the remaining probability the queue is unchanged.

This queue can be described by a Markov chain on {0, 1, . . . , n} with transition probabilities

p0,1 = 1− p0,0 = α , pn,n−1 = 1− pn,n = β

pk,k+1 = α , pk,k−1 = β , pk,k = 1− α− β , k = 1, . . . , n− 1 .

Find the stationary distribution of this Markov chain. What happens when n → ∞?
Justify your answer.

MC 65. Let Pij(s) be the generating function of the sequence p
(n)
ij .

a) Show that for every fixed state l ∈ S, and all |s| < 1,

Plj(s) = δlj + s
∑

i∈S
Pli(s)pij .

b) Let an irreducible recurrent Markov chain Xn with transition matrix P have the property
EjTj < ∞ for all j ∈ S. Deduce that ρ = (ρi, i ∈ S) defined via ρi = 1/EjTj is an
invariant measure for P, ie., ρ = ρP.

Hint: Show that (1− s)Plj(s)→ 1/F ′jj(1) ≡ 1/EjTj as s→ 1, for every state j ∈ S.

MC 66. At each time n = 0, 1, 2, . . . a number Yn of particles is injected into a chamber,
where (Yn)n≥0 are independent Poisson random variables with parameter λ. The lifetimes
of particles are independent and geometric with parameter p. Let Xn be the number of
particles in the chamber at time n. Show that Xn is a Markov chain; find its transition
probabilities and the stationary distribution.

MC 67.~ Let Sn be a random walk such that P(Sn+1−Sn = 2) = p and P(Sn+1−Sn =
−1) = q, where p+q = 1. If the origin is a retaining barrier (that is to say, we assume that
sN ≥ 0 and the negative jump out of the origin is suppressed, P(Sn+1 = 0 | Sn = 0) = q),
show that the equilibrium is possible if p < 1/3; also show that in this case the stationary
distribution has probability generating function

Gπ(s) =
1− 3p

q − ps(1 + s)
.

MC 68. Consider a Markov chain on {0, 1, . . . , n}, with transition probabilities pn,n =
pn,0 = 1

2
and pk,k+1 = pk,0 = 1

2
for k < n. Find the stationary distribution of this chain.

MC 69. Suppose an irreducible Markov chain with a not necessarily finite state space
has a transition matrix with the property that P2 = P.

a) Prove that the chain is aperiodic;

b) Prove that pjk = pkk for all j, k in the state space. Find a stationary distribution in
terms of P.
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MC 70. If Xn is a Markov chain with stationary distribution π, show that the process
(Xn, Xn+1)n≥0 is also a Markov chain and find its stationary distribution.

MC 71. Consider a Markov chain on S = {1, 2, 3} and transition matrix

P =




1 0 0
0 1

4
3
4

0 3
4

1
4


 .

Find its stationary distribution, its expected return times mj = Ejτj for all j ∈ S, and
compute lim

n→∞
Pn.

MC 72. Suppose a virus can exist in N different strains and in each generation either
stays the same, or with probability α mutates to another strain, which is chosen (uniformly)
at random.

a) Find the stationary distribution of this chain.
[Hint: you may first guess the result and then justify it rigorously.]

b) Use your answer to find p
(n)
11 and p

(n)
12 .

MC 73. Can a reversible Markov chain be periodic?

MC 74. A flea hops randomly on vertices of a triangle. It is twice as likely to jump
clockwise as anticlockwise.

a) Find the stationary distribution of the chain by solving the system π = πP.

b) Explain how you could have guessed the stationary distribution of this chain, justify
its uniqueness.

c) Use the knowledge about the stationary distribution to deduce the value of the
probability that after n hops the flea is back where it started.
[Hint: recall that 1

2
± i

2
√
3

= 1√
3
e±iπ/6.]

MC 75. Each morning a student takes one of the three books she owns from her shelf.
The probability that she chooses book k is αk, 0 < αk < 1, k = 1, 2, 3, and choices on
successive days are independent. In the evening she replaces the book at the left-hand
end of the shelf. If pn denotes the probability that on day n the student finds the books
in the order 1, 2, 3 from left to right, show that, irrespective of the initial arrangement of
the books, pn converges as n→∞, and determine the limit.

MC 76.~ Let Y1, Y2, . . . be independent identically distributed random variables with
values in {1, 2, . . . }. Suppose that the set of integers {n : P(Y = n) > 0} has greatest
common divisor 1. Set µ = EY1. Show that the following process is a Markov chain:

Xn = inf
{
m ≥ n : m = Y1 + Y2 + · · ·+ Yk for some k ≥ 0

}
− n .

Determine lim
n→∞

P(Xn = 0) and hence show that

lim
n→∞

P
({
n = Y1 + Y2 + · · ·+ Yk for some k ≥ 0

})
=

1

µ
.

[Hint: This solves the general renewal problem, cf. GF-14.]
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MC 77.~ An opera singer is due to perform a long series of concerts. Having a fine
artistic temperament, she is liable to pull out each night with probability 1/2. Once this
has happened she will not sing again until the promoter convinces her of his high regard.
This he does by sending flowers every day until she returns. Flowers costing x thousand
pounds, 0 ≤ x ≤ 1, bring about a reconciliation with probability

√
x. The promoter stands

to make £750 from each successful concert. How much should he spend on flowers?

MC 78. In each of the following cases determine whether the stochastic matrix P = (pjk),
which you may assume is irreducible, is reversible:

a)




0 1− p 0 p
p 0 1− p 0
0 p 0 1− p

1− p 0 p 0


;

b) S = {0, 1, . . . , N} and pjk = 0 if |j − k| ≥ 2;
c) S = {0, 1, . . . } and p01 = 1, pj,j+1 = p, pj,j−1 = 1− p for j ≥ 1;
d) pjk = pkj for all j, k ∈ S.

In the reversible cases, find the corresponding reversible measures and stationary distribu-
tions.

MC 79. Let (Xn)n≥0 and (Yn)n≥0 be independent irreducible Markov chains, and set
Zn = (Xn, Yn), n ≥ 0. Is Zn irreducible? If X and Y are reversible and also aperiodic,
show that Z is reversible.

MC 80. Let Xn be a Markov chain on {0, 1, 2, . . . } with transition probabilities

p01 = 1 , pi,i+1 + pi,i−1 = 1 , pi,i+1 =
( i+ 1

i

)α
pi,i−1 , i ≥ 1 ,

for some α > 0. Is this chain irreducible? Is it reversible? Whenever they exist, find the
corresponding reversible measures and stationary distributions. Explain which states are
transient and which are recurrent.

MC 81.~ A lollipop graph L2n on 2n vertices is a clique on n vertices (ie, a complete
graph Kn) connected to a path on n vertices, see a picture of L12 below. The node u is
a part of both the clique and the path; we use v to denote the other end of the path.

VU

If s and t are vertices of a graph, and k
{t}
s is the

expected hitting time of the set {t} starting from
s, the expected covering time θs of the graph
(starting from s) is maxt k

{t}
s .

a) Show that for L2n as described above, θv is
of order n2 and θu is of order n3.

b) Evaluate the expected covering times θv and θu for a lollipop graph Lk,m consisting of
a k-clique and an m-path attached to it at the vertex u.

MC 82.~ Let (XN )n≥0 be an irreducible Markov chain with state space S, transition
probabilities pjk, and stationary distribution π = (πj)j∈S . Let A be some subset of S,
and suppose that a new chain Y is formed by banning transitions out of A. That is to
say, Y has transition probabilities qjk, where

qjk = pjk if j 6= k satisfy j, k ∈ A , and qjj = pjj +
∑

k/∈A
pjk .

Show that if X is reversible in equilibrium, then so is Y , and write down the stationary
distribution of Y .
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MC 83.~ Let (Xn)n≥0 be an irreducible Markov chain with state space S, transition
probabilities pjk, and stationary distribution π = (πj)j∈S . Let A be some subset of S,
and suppose that (Zn)n≥0 is a Markov chain with state space A and transition probabilities

qjk =
pjk
pjA

, j, k ∈ A , where pjA =
∑

k∈A
pjk .

If X is reversible, show that Z is reversible with stationary distribution ρ given by

ρj =
πjpjA∑
j∈A πjpjA

.

MC 84.~ The following is a variation of a simple children’s board game. A player starts
at position 0, and on every turn, she rolls a standard six-sided die. If her position was
x ≥ 0 and her roll is y, then her new position is x+ y, except in two cases:
• if x+ y is divisible by 6 and less than 36, her new position is x+ y − 6;
• if x+ y is greater than 36, the player remains at x.

The game ends when a player reaches the goal position 36.
a) Let Xi be the (random) number of rolls needed to get to 36 from position i, where
0 ≤ i ≤ 35. Give a set of equations that characterize EXi.
b) Solve this system numerically.

MC 85. We model the DNA sequence by a Markov chain. The state space S is a four-
element set, built up with four base nucleotides A, C, G, T that form DNA. Let pjk be
the probability that base j mutates to become base k. We assume that all possible nu-
cleotides substitutions are equally likely. Let α be the rate of substitution. The transition
probabilities thus become 3pjk = α = 1− pjj , where j, k ∈ {1, 2, 3, 4} and j 6= k.

a) Show that the n-step transition probabilities satisfy p
(n)
jj = an, p

(n)
jk = bn with

an + 3bn = 1, and find the values an and bn.

b) Find the long-term frequency of each of the base nucleotides. What is the invariant
measure of this chain?

c) Let Xk and Yk be two independent sequences of a single base mutation process with a
common ancestor X0 = Y0 = s0 ∈ S. Show that the probability

p = pn = P
(
Xn 6= Yn | X0 = Y0 = s0

)

that they disagree at time n satisfies p = 3
4

(
1−

(
1− 4α

3

)2n)
.

d) Consider two DNA sequences having the same ancestor, whose nucleotides indepen-
dently evolve as described above. The time n since this ancestor existed is unknown. Let
p be the fraction of sites that differ between the two sequences. Justify the following
estimate of n: n̂ = 1

2
log(1− 4p/3)/ log(1− 4α/3).

This model is know as the Jukes-Cantor model of DNA mutation.

MC 86.~ A cat and a mouse each independently take a random walk of a connected,
undirected, non-bipartite graph G. They start at the same time on different nodes, and
each makes one transition at each time step. Let n and m denote, respectively, the number
of vertices and edges of G. Show an upper bound of order m2n on the expected time
before the cat eats the mouse.
[Hint: Consider a Markov chain whose states are ordered pairs (a, b), where a is the
position of the cat and b is the position of the mouse.]
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MC 87.~ Let n equidistant points (labelled clockwise from 0 to n− 1) be marked on a
circle. Initially, a wolf is at 0 and there is one sheep at each of the remaining n− 1 points.
The wolf takes a random walk on the circle. For each step, it moves to one of its two
neighbouring points with the same probability 1/2. At the first visit to a point, the wolf
eats a sheep if there is still one there. Which sheep is most likely to be the last eaten?

MC 88.~ Let (un)n≥0 be a sequence defined by u0 = 1 and, for n > 0, by un =∑n
k=1 fkun−k, where fk > 0 and

∑∞
k=1 fk ≤ 1.

a) Show that if
∑∞
k=1 ρ

kfk = 1, then vn = ρnun, n ≥ 0, is a renewal sequence.

b) Show that as n→∞, we have ρnun → c, for some constant c > 0.
[Hint: This is a more general version of the renewal problem, cf. Problem MC76 and
GF-14.]

MC 89.~ A colouring of a graph is an assignment of a colour to each of its vertices. A
graph is k-colourable if there is a colouring of the graph with k colours such that no two
adjacent vertices have the same colour. Let G be a 3-colourable graph.

a) Show that there exists a colouring of the graph with two colours such that no triangle
is monochromatic. (A triangle of a graph G is a subgraph of G with three vertices, which
are all adjacent to each other.)

b) Consider the following algorithm for colouring the vertices of G with two colours so
that no triangle is monochromatic. The algorithm begins with an arbitrary 2-colouring of
G. While there are any monochromatic triangles in G, the algorithm chooses one such
triangle and changes the colour of a randomly chosen vertex of that triangle. Derive an
upper bound on the expected number of such recolouring steps before the algorithm finds
a 2-colouring with the desired property.
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