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3 Lebesgue integral

In the simplest case, the (Riemann) integral of a non-negative function can be re-
garded as the area between the graph of that function and the x-axis. Lebesgue
integration is a mathematical construction that extends the notion of the inte-
gral to a larger class of functions; it also extends the domains on which these
functions can be defined. As such, the Lebesgue integral plays an important
role in real analysis, probability, and many other areas of mathematics.

3.1 Integration: Riemann vs. Lebesgue

As part of the general movement towards rigour in mathematics in the nine-
teenth century, attempts were made to put the integral calculus on a firm foun-
dation. The Riemann integral 16 is one of the most widely known examples; its
definition starts with the construction of a sequence of easily-calculated integrals
which converge to the integral of a given function. This definition is successful
in the sense that it gives the expected answer for many already-solved problems,
and gives useful results for many other problems.

However, despite the Riemann integral is naturally linear and monotone,17

it does not interact well with taking limits of sequences of functions, making
such limiting functions difficult to analyse (and integrate).18 The Lebesgue
integral is easier to deal with when taking limits under the integral sign; it also
allows to calculate integrals for a broader class of functions. For example, the
Dirichlet function, which is 0 where its argument is irrational and 1 otherwise,
is Lebesgue-integrable, but not Riemann-integrable.

3.1.1 Riemann integral

Recall that a partition of an interval [a, b] is a finite sequence

a = x0 < x1 < x2 < . . . < xn = b .

Each [xi, xi+1] is called a sub-interval of the partition. The mesh of a partition
is defined to be the length of the longest sub-interval [xi, xi+1], that is, it is
max(xi+1 − xi) where 0 ≤ i ≤ n− 1.

Let f be a real-valued function defined on the interval [a, b]. The Riemann
sum of f with respect to the partition x0, . . . , xn is

n−1∑

i=0

f(ti)(xi+1 − xi) ,

where each ti is a fixed point in the sub-interval [xi, xi+1]. Notice that the
last expression is the sum of areas of rectangles with heights f(ti) and lengths
xi+1 − xi.

16proposed by Bernhard Riemann (1826-1866);
17see the slides!
18 This is of prime importance, for instance, in the study of Fourier series, Fourier transforms

and other topics.
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Loosely speaking, the Riemann integral of f is the limit of the Riemann sums
of f as the partitions get finer and finer (ie. the mesh goes to zero), and every
function f for which this limit does not depend on the approximating sequence
is called integrable.

3.1.2 Lebesgue integral: sketch of the construction

The modern approach to the theory of Lebesgue integration has two distinct
parts:

a) a theory of measurable sets and measures on these sets;
b) a theory of measurable functions and integrals on these functions.

Measure theory initially was created to provide a detailed analysis of the
notion of length of subsets of the real line and more generally area and volume
of subsets of Euclidean spaces. In particular, it provided a systematic answer to
the question of which subsets of R have a length. As was shown by later devel-
opments in set theory, it is actually impossible to assign a length to all subsets
of R in a way which preserves some natural additivity and translation invariance
properties. This suggests that picking out a suitable class of measurable subsets
is an essential prerequisite.

The modern approach to measure and integration is axiomatic. One defines
a measure as a mapping µ from a σ-field A of subsets of a set E, which satisfies
a certain list of properties.19 These properties can be shown to hold in many
different cases.

Integration. In the Lebesgue theory, integrals are limited to a class of
functions called measurable functions. Let E be a set and let A be a σ-field
of subsets 20 of E. A function f : E → R is measurable if the pre-image of
any closed interval [a, b] ⊂ R is in A, f−1([a, b]) ∈ A. The set of measurable
functions is naturally closed under algebraic operations; in addition (and more
importantly) this class is closed under various kinds of point-wise sequential
limits, eg., if the sequence {fk}k∈N consists of measurable functions, then both

lim inf
k∈N

fk and lim sup
k∈N

fk

are measurable functions.

Let a measure space (E,A, µ) be fixed. The Lebesgue integral
∫
E
f dµ for mea-

surable functions f : E → R is constructed in stages:
Indicator functions: If S ∈ A, ie., the set S is measurable, we define the

integral of its indicator function 21
1S via

∫
1S dµ = µ(S) .

19see the slides!
20 one often calls (E,A) a measurable space, and (E,A, µ) a measure space;
21recall that 1S(x) = 1 if x ∈ S and 1S(x) = 0 otherwise
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Simple functions: for non-negative simple functions, ie., linear combina-
tions of indicator functions f =

∑
k ak1Sk (where the sum is finite and all

ak ≥ 0), we use linearity to define 22

µ(f) ≡
∫ (∑

k

ak1Sk

)
dµ =

∑

k

ak

∫
1Skdµ =

∑

k

akµ(Sk) ,

This construction is obviously linear and monotone.23 Moreover, even if a simple
function can be written as

∑
k ak1Sk in many ways, the integral will always be

the same.24

Non-negative functions: Let f : E → [0,+∞] be measurable. We put
∫

E

f dµ := sup
{∫

E

h dµ : h ≤ f, 0 ≤ h simple
}

We need to check whether this construction is consistent, ie., if 0 ≤ f is simple we
need to verify whether this definition coincides with the preceding one. Another
question is: if f as above is Riemann-integrable, does this definition give the
same value of the integral? It is not hard to prove that the answer to both
questions is yes.

Clearly, if f : E → [0,+∞] is any measurable function, its integral
∫
f dµ

may be infinite.
Signed functions: If f : E → [−∞,+∞] is measurable,25 we decompose it

into the positive and negative parts, f = f+ − f−, where

f+(x) =

{
f(x) if f(x) > 0 ,

0 otherwise ,
f−(x) =

{
−f(x) if f(x) < 0 ,

0 otherwise ,

Note that the functions f+ ≥ 0 and f− ≥ 0 satisfy |f | = f+ + f−. If
∫
|f | dµ is

finite, then f is called Lebesgue integrable. In this case, both integrals
∫
f+ dµ

and
∫
f− dµ converge, and it makes sense to define

∫
f dµ =

∫
f+ dµ−

∫
f−dµ .

It turns out that this definition gives the desirable properties of the inte-
gral, namely, linearity, monotonicity and regularity when taking limits. The
functions, which can be obtained from the above construction, are called Borel
functions. 26 The class of Borel functions is very big and sufficient for most
practical considerations.27

22here we always assume that 0 · ∞ =∞ · 0 = 0;
23see the slides!
24Also, if any two functions f1 and f2 coincide almost everywhere, ie., they differ on a set of

measure zero, µ(x : f1(x) 6= f2(x)) = 0, their integrals are equal, µ(f1) = µ(f2).
25 Complex valued functions can be similarly integrated, by considering the real part and

the imaginary part separately.
26by definition f : E → [−∞,+∞] is Borel, if for every a ∈ R, {x ∈ E : f(x) ≤ a} ∈ A, ie.,

is measurable.
27 it is not easy to construct a non-Borel real-valued function; get in touch, if interested!
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3.2 Lebesgue integral: limiting results

The construction described above implies the following limiting property, which
is one of the most central in the area:

Theorem 3.1 (Monotone Convergence Theorem; (MON)). Let f and (fn)n≥1b
be Borel functions on (E,A, µ) such that 0 ≤ fn ↗ f . Then, as n→∞,

µ
(
fn
)
↗ µ

(
f
)
≤ ∞ .

The “random variables” version of the result is:

Theorem 3.2 (Monotone Convergence Theorem; (MON)). If random variablesb
Xn ≥ 0 are such that Xn ↗ X as n→∞, then E(Xn)↗ E(X) ≤ ∞ as n→∞.

In view of the footnote 24 above, the following result is rather natural:

Corollary 3.3. Let f and (fn)n≥1 be non-negative Borel functions on (E,A, µ)
such that, except on a µ-null set N , 0 ≤ fn ↗ f , i.e.,

∀x ∈ E \N, fn(x)↗ f(x) and µ(N) = 0 .

Then µ
(
fn
)
↗ µ

(
f
)
≤ ∞ as n→∞.

Exercise 3.4. State an analogue of the previous corollary for random variables
(using almost sure convergence).

Another important result is

Theorem 3.5 (Dominated-Convergence Theorem; (DOM)). Let (fn)n≥1 and fb
be Borel functions on (E,A, µ) such that fn(x) converges to f(x) for all x ∈ E
as n → ∞ and such that the sequence fn(x) is dominated by a non-negative
integrable function g, i.e., for all x ∈ E and n ∈ N,

fn(x)→ f(x) and
∣∣fn(x)

∣∣ ≤ g(x) with µ(g) <∞ . (3.1)

Then µ(fn)→ µ(f) as n→∞.

Theorem 3.6 (Dominated-Convergence Theorem; (DOM)). Let (Xn)n≥1 andb
X be random variables such that for all ω ∈ Ω, we have Xn(ω) → X(ω) as
n → ∞. If there is a random variable Y ≥ 0 such that E(Y ) < ∞, and for all
ω ∈ Ω,

∣∣Xn(ω)
∣∣ ≤ Y (ω), then E(Xn)→ E(X) as n→∞.

Of course, similarly to the corollary above, one can allow the conditions (3.1)
to be violated on a set N of measure zero.

Exercise 3.7. State the versions of the last two theorems in the case convergence
is violated on a set of measure zero (ie., convergence takes place almost surely).

Various examples of application of these results were discussed in the lectures
and tutorials.
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