Probability & Statistics III (Term 2) - Tutorial 4

Frank Coolen

Problem 1.

- (a) For $X \sim N(0, 1)$, find:
 - 1. P(X < 0)
 - 2. $P(X \le 0)$
 - 3. P(X < 1.63)
 - 4. P(X > 0.57)
 - 5. P(X < -8.32)
 - 6. P(X > -1.96)
 - 7. P(X < 1.96)
 - 8. P(-1.96 < X < 1.96)
 - 9. P(-2.10 < X < 0.50)
 - 10. u such that P(X < u) = 0.95
 - 11. v such that P(-v < X < v) = 0.90
 - 12. w such that P(X > w) = 0.99
- (b) For $Y \sim N(128, 4)$, find:
 - 1. P(Y > 128)
 - 2. P(Y > 215)
 - 3. P(Y < 130)
 - 4. P(Y < 124)
 - 5. P(124 < Y < 132)
 - 6. P(125 < Y < 134)
 - 7. s such that P(Y > s) = 0.95
 - 8. t such that P(128 t < Y < 128 + t) = 0.99

Problem 2.

A method for weighing extremely light objects gives results (in micrograms) for nine weighings of a particular specimen with sample mean of 124. Suppose the specimen's actually weight is μ micrograms, that the known accuracy of the measurement method can be described by the model $N(\mu, 10)$ for measurements of an actual weight μ , and that your prior knowledge about μ is taken into account via prior distribution $\mu \sim N(125, 5)$.

- (a) Derive the posterior distribution for μ , and the corresponding posterior predictive distribution for a future measurement X_{10} of the same specimen, using the same measurement method.
- (b) Calculate the posterior probability for the event $\mu > 125$.
- (c) Calculate the posterior probability for the event $\mu < 123$.
- (d) Find u such that the posterior probability for the event $122 < \mu < u$ is 0.90.
- (e) Find the interval of minimal length which contains μ with probability 0.90, according to the posterior distribution.
- (f) Calculate the posterior predictive probability for the event $X_{10} > 125$.
- (g) Find the interval of minimal length which contains X_{10} with probability 0.95, according to the posterior predictive distribution.
- (h) Suppose we wish to determine μ very accurately by taking further measurements of the same specimen, using the same measuring method. Assume that one wants to achieve an interval which contains μ with posterior probability 0.95, and with a length of at most 1. How many further measurements must we made?