Logarithmic conformal field theory - an attempt at a status report

Christoph Schweigert

Mathematics Department
Hamburg University

based on work with Jürgen Fuchs Terry Gannon, Simon Lentner, Svea Mierach, Gregor Schaumann and Yorck Sommerhäuser.

August 17, 2018
Overview

1. Introduction

2. A Lego-Teichmüller game with coends
 - The groupoid of extended surfaces
 - A Lego-Teichmüller game

3. Bulk correlators
 - Pinned block functors
 - Consistent systems of correlators
 - Main theorem

4. Boundary states

5. Towards derived modular functors

6. Open questions
Introduction: why logarithmic? – Ordinary primary fields

Chiral primary field $\phi(z)$ of conformal weight h: $L_0|\phi\rangle = h|\phi\rangle$

Virasoro modes act as

$$[L_{-1}, \phi(w)] = \partial \phi(w), \quad [L_0, \phi(w)] = h\phi(w) + w\partial \phi(w),$$

$$[L_1, \phi(w)] = 2hw\phi(w) + w^2 \partial \phi(w)$$
Introduction: why logarithmic? – Ordinary primary fields

Chiral primary field $\phi(z)$ of conformal weight h: $L_0|\phi\rangle = h|\phi\rangle$

Virasoro modes act as

$$[L_{-1}, \phi(w)] = \partial \phi(w), \quad [L_0, \phi(w)] = h\phi(w) + w\partial \phi(w),$$

$$[L_1, \phi(w)] = 2hw\phi(w) + w^2 \partial \phi(w)$$

Differential equations for the two-point blocks:

$$(\partial_z + \partial_w) \langle \phi(z) \phi(w) \rangle = 0, \quad (z\partial_z + w\partial_w + 2h) \langle \phi(z) \phi(w) \rangle = 0,$$

$$(z^2\partial_z + w^2\partial_w + 2h(z + w)) \langle \phi(z) \phi(w) \rangle = 0.$$
Introduction: why logarithmic? – Ordinary primary fields

Chiral primary field $\phi(z)$ of conformal weight h: $L_0 |\phi\rangle = h |\phi\rangle$

Virasoro modes act as

$$
[L_{-1}, \phi(w)] = \partial \phi(w), \quad [L_0, \phi(w)] = h \phi(w) + w \partial \phi(w),
$$

$$
[L_1, \phi(w)] = 2hw \phi(w) + w^2 \partial \phi(w)
$$

Differential equations for the two-point blocks:

$$(\partial_z + \partial_w) \langle \phi(z) \phi(w) \rangle = 0, \quad (z \partial_z + w \partial_w + 2h) \langle \phi(z) \phi(w) \rangle = 0,$$

$$(z^2 \partial_z + w^2 \partial_w + 2h(z + w)) \langle \phi(z) \phi(w) \rangle = 0.$$

General solution: scaling

$$
\langle \phi(z) \phi(w) \rangle = \frac{A}{(z - w)^{2h}},
$$
Introduction: why logarithmic? – Logarithms

Jordan partner: \(L_0 |\Phi\rangle = h |\Phi\rangle + |\phi\rangle \) leads to OPE

\[
T(z) \Phi(w) \sim \frac{h\Phi(w) + \phi(w)}{(z-w)^2} + \frac{\partial \Phi(w)}{z-w},
\]
Jordan partner: $L_0|\Phi\rangle = h|\Phi\rangle + |\phi\rangle$ leads to OPE

$$T(z)\Phi(w) \sim \frac{h\Phi(w) + \phi(w)}{(z-w)^2} + \frac{\partial\Phi(w)}{z-w},$$

Virasoro modes act as

$$[L_{-1}, \Phi(w)] = \partial\Phi(w), \quad [L_0, \Phi(w)] = h\Phi(w) + w\partial\Phi(w) + \phi(w),$$

$$[L_1, \Phi(w)] = 2hw\Phi(w) + w^2\partial\Phi(w) + 2w\phi(w).$$
Introduction: why logarithmic? – Logarithms

Jordan partner: $L_0|\Phi\rangle = h|\Phi\rangle + |\phi\rangle$ leads to OPE

$$T(z)\Phi(w) \sim \frac{h\Phi(w) + \phi(w)}{(z-w)^2} + \frac{\partial \Phi(w)}{z-w},$$

Virasoro modes act as

$$[L_{-1}, \Phi(w)] = \partial \Phi(w), \quad [L_0, \Phi(w)] = h\Phi(w) + w\partial \Phi(w) + \phi(w),$$
$$[L_1, \Phi(w)] = 2hw\Phi(w) + w^2\partial \Phi(w) + 2w\phi(w).$$

Inhomogeneous differential equations for the two-point blocks:

$$(\partial_z + \partial_w) \langle \phi(z)\Phi(w) \rangle = 0, \quad (z\partial_z + w\partial_w + 2h) \langle \phi(z)\Phi(w) \rangle = -\langle \phi(z)\phi(w) \rangle,$$
$$\ldots$$
Introduction: why logarithmic? – Logarithms

Jordan partner: $L_0|\Phi\rangle = h|\Phi\rangle + |\phi\rangle$ leads to OPE

\[
T(z)\Phi(w) \sim \frac{h\Phi(w) + \phi(w)}{(z-w)^2} + \frac{\partial \Phi(w)}{z-w},
\]

Virasoro modes act as

\[
[L_{-1}, \Phi(w)] = \partial \Phi(w), \quad [L_0, \Phi(w)] = h\Phi(w) + w\partial \Phi(w) + \phi(w),
\]

\[
[L_1, \Phi(w)] = 2hw\Phi(w) + w^2 \partial \Phi(w) + 2w\phi(w).
\]

Inhomogeneous differential equations for the two-point blocks:

\[
(\partial_z + \partial_w) \langle \phi(z) \Phi(w) \rangle = 0, \quad (z\partial_z + w\partial_w + 2h) \langle \phi(z) \Phi(w) \rangle = -\langle \phi(z) \phi(w) \rangle,
\]

Assume $\phi(z)$ and $\Phi(z)$ mutually bosonic \Rightarrow two-point blocks are of the form

\[
\langle \phi(z) \phi(w) \rangle = 0, \quad \langle \phi(z) \Phi(w) \rangle = \frac{B}{(z-w)^{2h}},
\]

\[
\langle \Phi(z) \Phi(w) \rangle = \frac{C - 2B \log(z-w)}{(z-w)^{2h}},
\]

Global conformal invariance + non-diagonalisable L_0-action \Rightarrow Logarithmic singularities in conformal blocks.
Introduction: why logarithmic?

Fact: much recent progress concerning classes of examples of chiral LCFTs
e.g. Feigin-Lentner-Semikhatov: screening charges \rightarrow Lie theoretic structures

This talk: full local LCFT from chiral CFT

Applications of local LCFT: critical dense polymers, percolation, string(?)

Strategy:

- Conformal blocks: Vector bundle \mathcal{V} of invariants over moduli space $\mathcal{M}_{g,n}$ of complex curves, genus g and n discs, with projectively flat connection

\[
\mathcal{M}_{g,n} \times (\mathcal{H}_{\lambda_1} \otimes \ldots \otimes \mathcal{H}_{\lambda_n})^* \leftarrow \mathcal{V}_{\lambda_1,\ldots,\lambda_n}
\]
Introduction: why logarithmic?

Fact: much recent progress concerning classes of examples of chiral LCFTs
e.g. Feigin-Lentner-Semikhatov: screening charges \rightarrow Lie theoretic structures

This talk: full local LCFT from chiral CFT

Applications of local LCFT: critical dense polymers, percolation, string(?)

Strategy:

- Conformal blocks: Vector bundle \mathcal{V} of invariants over moduli space $\mathcal{M}_{g,n}$ of complex curves, genus g and n discs, with projectively flat connection

$$\mathcal{M}_{g,n} \times (\mathcal{H}_{\lambda_1} \otimes \ldots \otimes \mathcal{H}_{\lambda_n})^* \leftarrow \mathcal{V}_{\lambda_1,\ldots,\lambda_n}$$

- Horizontal sections multivalued, hence cannot be correlators
 Correlators are specific conformal blocks

- Monodromies encoded in representations of mapping class groups
 $\pi_1(\mathcal{M}_{g,n}) = \text{Map}_{g,n}$

- Modular functor (based on non-semisimple categories) keeps track of these representations
Remarks:
– work at a categorical level, using modular functors
– impose finiteness conditions (tractability)
– structural results that hopefully extend to more general situations (e.g. Liouville theory)
Remarks:
– work at a categorical level, using modular functors
– impose finiteness conditions (tractability)
– structural results that hopefully extend to more general situations (e.g. Liouville theory)

Plan

2. A Lego-Teichmüller game ("chiral CFT", modular functor) for a factorizable ribbon category \mathcal{D} beyond semisimplicty ("[L]+[BK]"
For applications to CFT: $\mathcal{D} = \mathcal{C} \boxtimes \mathcal{C}^{rev} \cong \mathcal{Z}(\mathcal{C})$
("combining left and right movers")

3. Bulk correlators:
 – Definition of consistent set of correlators
 – Theorem: are in bijection to modular Frobenius algebras in \mathcal{D}

4. Boundary states

5. Towards derived modular functors

6. Open questions
Section 2

A Lego-Teichmüller game with coends

Chiral CFT for logarithmic CFTs
Extended surfaces

Definition

Extended surface: $(E, \partial_{in}E, \partial_{out}E, \{p_\alpha\})$

- E smooth oriented surface with boundaries
- $\partial_{in}E, \partial_{out}E$ oriented boundaries (to incorporate punctures)
- A marked point $\{p_\alpha\}$ on each boundary component

Mapping class group $\text{Map}(E)$: (classes of) orientation preserving diffeomorphisms, restricting to maps $\partial_{in}E \to \partial_{in}E$ and $\partial_{out}E \to \partial_{out}E$ and mapping marked points to marked points.
Extended surfaces

Definition

- **Extended surface**: \((E, \partial_{in}E, \partial_{out}E, \{p_\alpha\})\)
 - \(E\) smooth oriented surface with boundaries
 - \(\partial_{in}E, \partial_{out}E\) oriented boundaries (to incorporate punctures)
 - A marked point \(\{p_\alpha\}\) on each boundary component

- **Mapping class group** \(\text{Map}(E)\): (classes of) orientation preserving diffeomorphisms, restricting to maps \(\partial_{in}E \rightarrow \partial_{in}E\) and \(\partial_{out}E \rightarrow \partial_{out}E\) and mapping marked points to marked points.

- **Sewing**:
 - \((\alpha, \beta)\) ingoing and outoing boundary component
 - \(\sim\) new surface \(\cup_{\alpha,\beta}E\)
Extended surfaces

Definition

Extended surface: \((E, \partial_{in} E, \partial_{out} E, \{p_\alpha\})\)

- \(E\) smooth oriented surface with boundaries
- \(\partial_{in} E, \partial_{out} E\) oriented boundaries (to incorporate punctures)
- A marked point \(\{p_\alpha\}\) on each boundary component

Mapping class group \(\text{Map}(E)\): (classes of) orientation preserving diffeomorphisms, restricting to maps \(\partial_{in} E \to \partial_{in} E\) and \(\partial_{out} E \to \partial_{out} E\) and mapping marked points to marked points.

Sewing:

\((\alpha, \beta)\) ingoing and outgoing boundary component
\(\leadsto\) new surface \(\bigcup_{\alpha, \beta} E\)

Cut systems and (fine) markings

- Pair of pants decomposition
- All components genus zero, \(\leq 3\) holes
- Graph with distinguished edge
Groupoid of fine markings [B-K]

\(E\) extended surface \(\sim\) groupoid \(\mathcal{F}M(E)\) of fine markings:
- Objects are fine markings of \(E\)
- Morphisms are sequences of moves, modulo relations

Moves:

(M1) \(Z\)-move
(M2) \(B\)-move
(M3) \(F\)-move
(M4) \(A\)-move
(M5) \(S\)-move (genus 1)

modulo 13 types of relations.
E extended surface \rightsquigarrow groupoid $\mathcal{FM}(E)$ of fine markings:
- Objects are fine markings of E
- Morphisms are sequences of moves, modulo relations

Moves:

(M1) Z-move

(M2) B-move

(M3) F-move

(M4) A-move

(M5) S-move (genus 1)

modulo 13 types of relations.
Groupoid of fine markings [B-K]

E extended surface \rightsquigarrow groupoid $\mathcal{FM}(E)$ of fine markings:
– Objects are fine markings of E
– Morphisms are sequences of moves, modulo relations

Moves:
(M1) Z-move
(M2) B-move
(M3) F-move
(M4) A-move

![Diagram of moves](image)

Figure 20. A-move (“associativity constraint”).

(M5) S-move (genus 1)

modulo 13 types of relations.
Groupoid of fine markings [B-K]

E extended surface \rightsquigarrow groupoid $\mathcal{FM}(E)$ of fine markings:
- Objects are fine markings of E
- Morphisms are sequences of moves, modulo relations

Moves:

(M1) Z-move
(M2) B-move
(M3) F-move
(M4) A-move
(M5) S-move (genus 1)

modulo 13 types of relations.

Facts

- Groupoid of fine markings $\mathcal{FM}(E)$ is a connected tree
- Unmarking functor
 \[U : \mathcal{FM}(E) \sim \rightarrow E/\!\!/\!\!\text{Map}(E) \]
 determined by effect of mapping class on marking is equivalence of groupoids.
A specific coend and modularity

For \mathcal{D} a finite ribbon category (in particular braided and pivotal), the coend

$$K := \int_{X \in \mathcal{D}} X^\vee \otimes X$$

is a Hopf algebra in \mathcal{D} with Hopf pairing $\omega : K \otimes K \to 1$. [Lyubashenko, Majid 1995]
A specific coend and modularity

Facts

For \mathcal{D} a finite ribbon category (in particular braided and pivotal), the coend

$$K := \int^{X \in \mathcal{D}} X^\vee \otimes X$$

is a Hopf algebra in \mathcal{D} with Hopf pairing $\omega : K \otimes K \to 1$. [Lyubashenko, Majid 1995]

$$\mathcal{D} \boxtimes \mathcal{D}^{rev} \longrightarrow \mathcal{Z}(\mathcal{D})$$
For \mathcal{D} a finite ribbon category (in particular braided and pivotal), the coend

$$K := \int_{X \in \mathcal{D}} X^\vee \otimes X$$

is a Hopf algebra in \mathcal{D} with Hopf pairing $\omega : K \otimes K \to 1$. [Lyubashenko, Majid 1995]

$\mathcal{D} \boxtimes \mathcal{D}^{rev} \sim \mathcal{Z}(\mathcal{D})$

\iff Hopf pairing ω non-degenerate [Shimizu 2016]

Call then a finite ribbon category \mathcal{D} modular
Facts

- For \mathcal{D} a finite ribbon category (in particular braided and pivotal), the coend
 \[K := \int_{X \in \mathcal{D}} X^\vee \otimes X \]
 is a Hopf algebra in \mathcal{D} with Hopf pairing $\omega : K \otimes K \to 1$. [Lyubashenko, Majid 1995]

- $\mathcal{D} \boxtimes \mathcal{D}^{\text{rev}} \xrightarrow{\sim} \mathcal{Z}(\mathcal{D})$ if Hopf pairing ω non-degenerate [Shimizu 2016]

 Call then a finite ribbon category \mathcal{D} modular

- Coends in categories of left exact functors on finite tensor category are representable
 \[\int_{X \in \mathcal{D}} \text{Hom}_\mathcal{D}(-, - \otimes X \otimes X^\vee) = \text{Hom}(-, - \otimes K) \]
A modular functor for non-semisimple categories:

1. Step: Construct for a given extended surface E with fine marking

$$\tilde{Bl} : \mathcal{F}M(E) \rightarrow \mathcal{L}ex(D^{\boxtimes(p+q)}, \text{vect})$$
A modular functor for non-semisimple categories:

1. **Step**: Construct for a given extended surface E with fine marking

 $\tilde{\mathcal{B}}l : \mathcal{F}M(E) \rightarrow \mathcal{L}ex(D^{\boxtimes(p+q)}, \text{vect})$

 - Given by invariants on spheres with less than 3 holes, e.g. $E = S_{3|0}$:

 $U_1 \boxtimes U_2 \boxtimes U_3 \mapsto \text{Hom}(1, U_1 \otimes U_2 \otimes U_3)$

 (order of tensor factors from graph on E, duals involved)
A modular functor for non-semisimple categories:

1. **Step**: Construct for a given extended surface E with fine marking

$$\tilde{\mathcal{B}}l : \mathcal{FM}(E) \to \mathcal{Lex}(D^{\boxtimes(p+q)}, \text{vect})$$

- Given by invariants on spheres with less than 3 holes, e.g. $E = \mathbb{S}_{3|0}$:
 $$U_1 \boxtimes U_2 \boxtimes U_3 \mapsto \text{Hom}(1, U_1 \otimes U_2 \otimes U_3)$$
 (order of tensor factors from graph on E, duals involved)

- Combine with sewing:
 - coend implements summing over all intermediate states from cut system:
 $$\tilde{\mathcal{B}}l_{E,\Gamma}(X_1, \ldots, X_n) = \bigotimes_i \tilde{\mathcal{B}}l_{E_i,\gamma_i}(\ldots)$$

 Rules for coend $\implies \tilde{\mathcal{B}}l_{E,\Gamma}(-) \cong \text{Hom}_D(1, - \otimes K^{\otimes g})$
2. Step: Kan extension

\[
\begin{array}{c}
\mathcal{F}M(E) \xrightarrow{\tilde{B}l} \mathcal{L}ex(D \boxtimes (p+q), \text{vect}) \\
\downarrow U \\
E//\text{Map}(E)
\end{array}
\]

\[R_U \tilde{B}l =: Bl\]
2. Step: Kan extension

\[
\begin{align*}
\mathcal{F} M(E) & \xrightarrow{\mathcal{B}l} \mathcal{L}ex(\mathcal{D} \boxtimes (p+q), \text{vect}) \\
\downarrow U & \quad \rightleftharpoons \\
E \sqcup \text{Map}(E) & \xrightarrow{\bar{R}U \mathcal{B}l} \mathcal{B}l
\end{align*}
\]

Theorem (FS 2017)

The right Kan extension \(\mathcal{B}l \) exists and has a natural monoidal structure.
Chapter 3

Bulk correlators for (non-)semisimple conformal field theories
We are now ready to describe bulk fields and their correlators.

Idea

Ingredient: bulk object. Recall RCFT, \mathcal{C} modular and semisimple.

$$F := \bigoplus_{i,j \in \pi_0(\mathcal{C})} Z_{ij} \, S_i \boxtimes \overline{S}_j \in \mathcal{C} \boxtimes \mathcal{C}^{rev} =: \mathcal{D} \quad \text{with} \quad Z_{ij} \in \mathbb{Z}_{\geq 0}$$

Now $F \in \mathcal{D}$ bulk object, in general not \boxtimes-factorizable.
Bulk objects

We are now ready to describe bulk fields and their correlators.

Idea

Ingredient: bulk object. Recall RCFT, \mathcal{C} modular and semisimple.

$$F := \bigoplus_{i,j \in \pi_0(\mathcal{C})} Z_{ij} S_i \boxtimes \overline{S}_j \in \mathcal{C} \boxtimes \mathcal{C}^{rev} =: \mathcal{D} \quad \text{with} \quad Z_{ij} \in \mathbb{Z}_{\geq 0}$$

Now $F \in \mathcal{D}$ bulk object, in general not \boxtimes-factorizable.

Fix external objects to be $F \in \mathcal{D}$ and define the following monoidal categories:
The pinned block functor

For a given bulk object F, construct monoidal functor, the pinned block functor, by inserting F into \mathcal{B}_1.
First consider

$$\tilde{\mathcal{B}}_1^{(F)} : mSurf \rightarrow \text{vect}$$

with $mSurf$: objects marked surfaces
morphisms: admissible moves, sewings non-invertible morphisms
(central extensions suppressed)
– on objects $\tilde{\mathcal{B}}_1, \Gamma(F, \ldots, F)$
– on moves: e.g. on Z-move

For sewing: use coend morphism $\iota_F : F \otimes F^\vee \rightarrow K$, e.g.

$$\text{Hom}_D(1, K^g \otimes F \otimes F^\vee) \xrightarrow{(\iota_F)_*} \text{Hom}_D(1, K^\otimes(g+1))$$
Proposition

This assignment of morphisms in \mathcal{D} respects all 13 relations of moves and thus defines a functor $\tilde{\text{Bl}}^{(F)} : m\text{Surf} \to \text{vect}$.

The right Kan extension along unmarking functor $U : m\text{Surf} \to \text{Surf}$ with Surf: objects: extended surfaces
morphisms: $\varphi \in \text{Map}(E)$, sewings non-invertible morphisms

exists and is monoidal.
Consistent systems of correlators

Definition

Let \(\mathcal{D} \) be a modular finite ribbon category, \(F \in \mathcal{D} \) and \(\Delta_k \) trivial blocks.

A consistent system of bulk field correlators is a monoidal natural transformation s.t.

\[
\nu_F(E^{a}_{b|c}) = \nu_F(E^0_{1|1}) \in \text{End}_{\mathcal{D}}(F)
\]

is invertible.

(Normalization on cylinder.)
Consistent systems of correlators

Definition

Let \mathcal{D} be a modular finite ribbon category, $F \in \mathcal{D}$ and Δ_k trivial blocks. A consistent system of bulk field correlators is a monoidal natural transformation ν_F s.t.

$$\nu_F(E^0_1|_1) = \in \text{End}_\mathcal{D}(F)$$

is invertible. (Normalization on cylinder.)

Remark

Definition implies covariance of correlators under sewing and invariance under the mapping class group:

where the lower arrow is the action of any element of $\text{Map}(E)$ or any sewing.
Idea of construction

Construct first precorrelators: \[m_{\text{Surf}} \xrightarrow{\tilde{B}_1(F)} \text{vect} \]

and then use universal property of Kan extension

\[m_{\text{Surf}} \xrightarrow{\tilde{B}_1(F)} \text{vect} \]

\[\Delta_k \]

\[U \]

\[\tilde{\nu}_F \]

\[\text{Surf} \]

\[\frac{}{} \]
Idea of construction

Construct first precorrelators:

and then use universal property of Kan extension

Idea

Use the three morphisms
Main theorem

Theorem (FS 2017)

\[\Delta_F := \quad m_F := \]

\[\text{determine the natural transformation } \nu_F : \Delta_k \Rightarrow \text{Bl}^{(F)}. \]
\[\nu_F \text{ is consistent at all genera } \iff (F, m_F, \Delta_F, \epsilon_F, \eta_F) \text{ (co-)commutative} \]
\[\text{symmetric Frobenius algebra and } \text{modular}: \]

Note: Categories with dualities are Frobenius pseudo-monoids in the bicategory of categories (microcosm principle)
Remarks

- Existence of modular Frobenius algebras:
 \(H \) factorizable ribbon Hopf algebra, \(\omega : H \to H \) ribbon automorphism

\[
\int_{m \in H\text{-mod}} \omega(m) \boxtimes m \in H\text{-bimod}
\]

(Fuchs-S-Stigner 2014)

- In particular \(H^* \) (coadjoint bimodule) is a modular Frobenius algebra. ("Cardy case")

- A simple formula for bulk correlators
The Cardy-Cartan invariant

A algebra in a pivotal category \mathcal{C}, M an A-module. Partial trace \Rightarrow **character** $\chi_M^A \in \text{Hom}_C(A, 1)$
The Cardy-Cartan invariant

A algebra in a pivotal category \(\mathcal{C} \), \(M \) an \(A \)-module.
Partial trace \(\Rightarrow \) character \(\chi_A^M \in \text{Hom}_\mathcal{C}(A, 1) \)

Recall \(K = H^* \) with coadjoint action
Relation to algebraic characters \(\chi_H^M \in \text{Hom}(H, k) \)

\[\chi^K_M = \chi_H^M \circ m(f_Q \otimes uv^{-1}) \]

with \(f_Q : H^* \to H \) Drinfeld map, \(u \) Drinfeld element and \(v \) ribbon element.
The Cardy-Cartan invariant

A algebra in a pivotal category C, M an A-module.
Partial trace \Rightarrow character $\chi^A_M \in \text{Hom}_C(A,1)$

Recall $K = H^*$ with coadjoint action
Relation to algebraic characters $\chi^H_M \in \text{Hom}(H,k)$

$$\chi^K_M = \chi^H_M \circ m(f_Q \otimes uv^{-1})$$

with $f_Q : H^* \to H$ Drinfeld map, u Drinfeld element and v ribbon element.

Partition function $Z = \chi^K_F^{\mathcal{K}} \in \text{Hom}_{\mathcal{C} \otimes \mathcal{C}}(K,1)$ obeys

$$Z = \sum_{i,j \in \mathcal{I}} c_{i,j} \chi^K_i \otimes \chi^K_j$$

c the Cartan matrix of the category H-mod:

$$c_{ij} = [P_j, S_i] = \dim_k \text{Hom}_H(P_i, P_j)$$
Chapter 4

Boundary states
Results on boundary states

Three postulates:

BC Boundary conditions are objects of a category.
Cardy case: take C itself.

BS The “boundary state” is an element in the center of C:

$$\text{End}(\text{id}_C) = \int_{c \in C} \text{Hom}_C(c, c) \cong \int_{c \in C} \text{Hom}(c^\vee \otimes c, 1) \cong \text{Hom}_C(L, 1)$$

F Bulk states for Cardy case are given by

$$F = \int_{c \in C} c^\vee \boxtimes c \in \overline{C} \boxtimes C$$
Results on boundary states

Three postulates:

BC Boundary conditions are objects of a category.
 Cardy case: take \mathcal{C} itself.

BS The “boundary state” is an element in the center of \mathcal{C}:

$$\text{End}(\text{id}_\mathcal{C}) = \int_{c \in \mathcal{C}} \text{Hom}_\mathcal{C}(c, c) \cong \int_{c \in \mathcal{C}} \text{Hom}(c^\vee \otimes c, 1) \cong \text{Hom}_\mathcal{C}(L, 1)$$

F Bulk states for Cardy case are given by

$$F = \int_{c \in \mathcal{C}} c^\vee \boxtimes c \in \overline{\mathcal{C}} \boxtimes \mathcal{C}$$

Boundary state is a map $\mathcal{C} \rightarrow \text{End}(\text{id}_\mathcal{C})$, thus a decategorification.
Factors through (co-)characters of L:

$$\chi^L_m \in \text{Hom}_\mathcal{C}(L, 1) \quad \hat{\chi}^L \in \text{Hom}_\mathcal{C}(1, L)$$
Introduction

A Lego-Teichmüller game with coends

Bulk correlators

Boundary states

Towards derived modular functors

Open questions

Results on boundary states

Three postulates:

BC Boundary conditions are objects of a category.
Cardy case: take \mathcal{C} itself.

BS The “boundary state” is an element in the center of \mathcal{C}:

$$\text{End}(\text{id}_\mathcal{C}) = \int_{c \in \mathcal{C}} \text{Hom}_\mathcal{C}(c, c) \cong \int_{c \in \mathcal{C}} \text{Hom}(c^\vee \otimes c, 1) \cong \text{Hom}_\mathcal{C}(L, 1)$$

F Bulk states for Cardy case are given by

$$F = \int_{c \in \mathcal{C}} c^\vee \boxtimes c \in \overline{\mathcal{C}} \boxtimes \mathcal{C}$$

Boundary state is a map $\mathcal{C} \to \text{End}(\text{id}_\mathcal{C})$, thus a decategorification.
Factors through (co-)characters of L:

$$\chi^L_m \in \text{Hom}_\mathcal{C}(L, 1) \quad \hat{\chi}^L \in \text{Hom}_\mathcal{C}(1, L)$$

Theorem (Gannon, Fuchs, Schaumann, CS, 2018)

Factorization gives annuli $A_{mn} = \sum N^k_{mn} \hat{\chi}^L_k$, as befits the Cardy case.
Chapter 5

Towards derived modular functors
Towards a derived modular functor

C modular, not necessarily semisimple

Modular functor: to surface $\Sigma_{g,n}$ associate left exact functor

$$\text{Bl} : \quad \nu_1 \boxtimes \ldots \boxtimes \nu_n \mapsto \text{Hom}_C(\nu_1 \otimes \ldots \otimes \nu_n, K^\otimes g)$$

Actions of the mapping class group $\text{Map}_{g,n}$ on these functors.
Towards a derived modular functor

\(\mathcal{C} \) modular, not necessarily semisimple

Modular functor: to surface \(\Sigma_{g,n} \) associate left exact functor

\[
\text{Bl} : \quad \nu_1 \boxtimes \ldots \boxtimes \nu_n \mapsto \text{Hom}_\mathcal{C}(\nu_1 \otimes \ldots \otimes \nu_n, K^{\otimes g})
\]

Actions of the mapping class group \(\text{Map}_{g,n} \) on these functors.

Fact: \(\text{Hom} \) is only left exact and can be derived.
(Conformal blocks are invariants, and taking invariants is not exact)
Towards a derived modular functor

\[\mathcal{C} \text{ modular, not necessarily semisimple} \]

Modular functor: to surface \(\Sigma_{g,n} \) associate left exact functor

\[
\text{Bl} : \quad v_1 \boxtimes \ldots \boxtimes v_n \mapsto \text{Hom}_\mathcal{C}(v_1 \otimes \ldots \otimes v_n, K^{\boxtimes g})
\]

Actions of the mapping class group \(\text{Map}_{g,n} \) on these functors.

Fact: \(\text{Hom} \) is only left exact and can be derived.
(Conformal blocks are invariants, and taking invariants is not exact)

Derive \(\text{Hom}_\mathcal{C} \) to obtain \(\text{Ext}^n_\mathcal{C} \)

Theorem (Lentner, Mierach, CS, Sommerhäuser, 2018)

- The mapping class group \(\text{Map}_{g,n} \) naturally acts on \(\text{Ext}^n_\mathcal{C}(v_1 \otimes \ldots \otimes v_n, K^{\boxtimes g}) \).
- In particular, the modular group \(SL(2, \mathbb{Z}) \)
 acts on the Hochschild complex of a factorizable ribbon Hopf algebra.

Subtle interplay of monoidal structure (including duality) and homological algebra
Idea of construction

- Fix surface $\Sigma_{g,n}$, genus g and n disjoint discs.
- Fix a projective resolution $P_* \to 1$ of the monoidal unit
 insert it at auxiliary point of $\Sigma_{g,n}$
- Functoriality of $(n + 1)$-point blocks

 $$F(\Sigma_{g,n+1}) : C^{n+1} \to \text{vect}$$

 gives a complex of left exact functors $C^n \to \text{vect}$
 with (projective) action of $\text{Map}_{g,n+1}$
- Short exact sequence

 $$1 \to K \to \text{Map}_{g,n+1} \to \text{Map}_{g,n} \to 1$$

 with explicit description of the kernel \Rightarrow Action of $\text{Map}_{g,n}$ on Ext-groups.
Idea of construction

Fix surface $\Sigma_{g,n}$, genus g and n disjoint discs.

Fix a projective resolution $P_\bullet \to 1$ of the monoidal unit
insert it at auxiliary point of $\Sigma_{g,n}$

Functoriality of $(n + 1)$-point blocks

$$F(\Sigma_{g,n+1}) : \quad C^{n+1} \to \text{vect}$$

gives a complex of left exact functors $C^n \to \text{vect}$
with (projective) action of $\text{Map}_{g,n+1}$

Short exact sequence

$$1 \to K \to \text{Map}_{g,n+1} \to \text{Map}_{g,n} \to 1$$

with explicit description of the kernel \Rightarrow Action of $\text{Map}_{g,n}$ on Ext-groups.

Examples

$\mathcal{C} = H - \text{mod}$ with H commutative factorizable Hopf algebra:
- tensor product of Hochschild-cohomologies with $K \otimes g$
- mapping class group actions and homological algebra decouple

Group algebra of S_3 in characteristic 2,3: permutation representations
Chapter 6

Open questions
Open problems

Constructions, challenges

- Correlators involving boundary fields and defect fields
- Holographic construction from a \((2+\epsilon)\)-dimensional TFT

Conceptual questions

- How stable are the results conceptually, i.e. do they apply to more general (categorical) frameworks?
- In particular, how crucial is duality?
- Non-semisimplicity / LCFT in string theory?
- Do “derived conformal blocks” have physical applications, e.g. in string theory or statistical mechanics?