Weakly commensurable arithmetic groups and locally symmetric spaces

Andrei S. Rapinchuk

University of Virginia

Durham July 2011
Outline

1. Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2. Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3. Proofs
 - “Special” elements in Zariski-dense subgroups

Survey:

Outline

1 Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3 Proofs
 - “Special” elements in Zariski-dense subgroups
Definition

Let G_1 and G_2 be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_i \in G_i(F)$ ($i = 1, 2$) are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \bar{F}) we have
 $$\chi_1(g_1) = \chi_2(g_2) \neq 1.$$

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
Definition

Let G_1 and G_2 be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_i \in G_i(F)$ ($i = 1, 2$) are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \bar{F}) we have
 \[\chi_1(g_1) = \chi_2(g_2) \neq 1. \]

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
Let G_1 and G_2 be two semi-simple groups defined over a field F (of characteristic zero).

- Semi-simple $g_i \in G_i(F)$ ($i = 1, 2$) are weakly commensurable if there exist maximal F-tori $T_i \subset G_i$ such that $g_i \in T_i(F)$ and for some $\chi_i \in X(T_i)$ (defined over \overline{F}) we have
 \[\chi_1(g_1) = \chi_2(g_2) \neq 1. \]

- (Zariski-dense) subgroups $\Gamma_i \subset G_i(F)$ are weakly commensurable if every semi-simple $\gamma_1 \in \Gamma_1$ of infinite order is weakly commensurable to some semi-simple $\gamma_2 \in \Gamma_2$ of infinite order, and vice versa.
If $T \subset \text{GL}_n$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of g and $a_1, \ldots, a_n \in \mathbb{Z}$.

- Semi-simple $g_1 \in G_1(F)$ and $g_2 \in G_2(F)$ with eigenvalues

$$\lambda_1, \ldots, \lambda_{n_1} \quad \text{and} \quad \mu_1, \ldots, \mu_{n_2}$$

are weakly commensurable if

$$\lambda_1^{a_1} \cdots \lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1} \cdots \mu_{n_2}^{b_{n_2}} \neq 1$$

for some a_1, \ldots, a_{n_1} and $b_1, \ldots, b_{n_2} \in \mathbb{Z}$.
If $T \subset \GL_n$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of g and $a_1, \ldots, a_n \in \mathbb{Z}$.

Pick matrix realizations $G_i \subset \GL_{n_i}$ for $i = 1, 2$.

- Semi-simple $g_1 \in G_1(F)$ and $g_2 \in G_2(F)$ with eigenvalues
 $$\lambda_1, \ldots, \lambda_{n_1} \quad \text{and} \quad \mu_1, \ldots, \mu_{n_2}$$

 are weakly commensurable if

 $$\lambda_1^{a_1} \cdots \lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1} \cdots \mu_{n_2}^{b_{n_2}} \neq 1$$

 for some a_1, \ldots, a_{n_1} and $b_1, \ldots, b_{n_2} \in \mathbb{Z}$.
If $T \subset \text{GL}_n$ is an F-torus, then given $g \in T(F)$ and $\chi \in X(T)$ we have

$$\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}$$

where $\lambda_1, \ldots, \lambda_n$ are eigenvalues of g and $a_1, \ldots, a_n \in \mathbb{Z}$.

Pick matrix realizations $G_i \subset \text{GL}_{n_i}$ for $i = 1, 2$.

- Semi-simple $g_1 \in G_1(F)$ and $g_2 \in G_2(F)$ with eigenvalues

 $$\lambda_1, \ldots, \lambda_{n_1} \text{ and } \mu_1, \ldots, \mu_{n_2}$$

 are weakly commensurable if

 $$\lambda_1^{a_1} \cdots \lambda_{n_1}^{a_{n_1}} = \mu_1^{b_1} \cdots \mu_{n_2}^{b_{n_2}} \neq 1$$

 for some $a_1, \ldots a_{n_1}$ and $b_1, \ldots b_{n_2} \in \mathbb{Z}$.
Main Question: What can one say about Zariski-dense subgroups \(\Gamma_i \subset G_i(F) \) \((i = 1, 2)\) given that they are weakly commensurable?
MAIN QUESTION: *What can one say about Zariski-dense subgroups* $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) *given that they are weakly commensurable*?

More specifically, *under what conditions are Γ_1 and Γ_2 necessarily commensurable*?
Main Question: What can one say about Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) given that they are weakly commensurable?

More specifically, under what conditions are Γ_1 and Γ_2 necessarily commensurable?

Recall: subgroups \mathcal{H}_1 and \mathcal{H}_2 of a group G are commensurable if

$$[\mathcal{H}_i : \mathcal{H}_1 \cap \mathcal{H}_2] < \infty \quad \text{for} \quad i = 1, 2.$$
Main question: What can one say about Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) given that they are weakly commensurable?

More specifically, under what conditions are Γ_1 and Γ_2 necessarily commensurable?

Recall: subgroups \mathcal{H}_1 and \mathcal{H}_2 of a group \mathcal{G} are commensurable if

$$[\mathcal{H}_i : \mathcal{H}_i \cap \mathcal{H}_2] < \infty \quad \text{for } i = 1, 2.$$

Γ_1 and Γ_2 are commensurable up to an F-isomorphism between G_1 and G_2 if there exists an F-isomorphism

$$\sigma : G_1 \to G_2$$

such that $\sigma(\Gamma_1)$ and Γ_2 are commensurable in usual sense.
General framework: Characterization of linear groups in terms of spectra of its elements.
General framework: Characterization of linear groups in terms of spectra of its elements.

Complex representations of finite groups:

Let Γ be a finite group,

$$\rho_i : \Gamma \rightarrow GL_{n_i}(\mathbb{C}) \quad (i = 1, 2)$$

be representations. Then

$$\rho_1 \simeq \rho_2 \iff \chi_{\rho_1}(g) = \chi_{\rho_2}(g) \quad \forall g \in \Gamma,$$

where $\chi_{\rho_i}(g) = \text{tr} \rho_i(g) = \sum \lambda_j \quad (\lambda_1, \ldots, \lambda_{n_i} \text{ eigenvalues of } \rho_i(g))$
Weak commensurability

Definition and motivations

Algebraic perspective

- Data afforded by weak commensurability is much more convoluted than data afforded by character of a group representation:

 when computing

 \[\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n} \]

 one can use arbitrary integer weights \(a_1, \ldots, a_n \). So weak commensurability appears to be difficult to analyze.

- **Example.** Let \(\Gamma \subset SL_n(\mathbb{C}) \) be a neat Zariski-dense subgroup. For \(d > 0 \), let

 \[\Gamma^{(d)} = \langle \gamma^d \mid \gamma \in \Gamma \rangle. \]

 Then any \(\Gamma^{(d)} \subset \Delta \subset \Gamma \) is weakly commensurable to \(\Gamma \).

 So, one needs to limit attention to some special subgroups in order to generate meaningful results.
Data afforded by weak commensurability is much more convoluted than data afforded by character of a group representation:

when computing

$$\chi(g) = \lambda_1^{a_1} \cdots \lambda_n^{a_n}$$

one can use arbitrary integer weights a_1, \ldots, a_n. So weak commensurability appears to be difficult to analyze.

Example. Let $\Gamma \subset SL_n(\mathbb{C})$ be a neat Zariski-dense subgroup. For $d > 0$, let

$$\Gamma^{(d)} = \langle \gamma^d \mid \gamma \in \Gamma \rangle.$$

Then any $\Gamma^{(d)} \subset \Delta \subset \Gamma$ is weakly commensurable to Γ.

So, one needs to limit attention to some special subgroups in order to generate meaningful results.
Geometric perspective

Let M be a Riemannian manifold.

$L(M)$ - (weak) length spectrum (collection of lengths of closed geodesics w/o multiplicities)

- Weak commensurability (of fundamental groups) adequately reflects length-commensurability of locally symmetric space.
Geometric perspective

Let M be a Riemannian manifold.

$L(M)$ - (weak) **length spectrum** (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_1 and M_2 are **length-commensurable** if

$$Q \cdot L(M_1) = Q \cdot L(M_2).$$

- Weak commensurability (of fundamental groups) **adequately reflects** length-commensurability of locally symmetric space.
Weak commensurability

Definition and motivations

Geometric perspective

Let M be a Riemannian manifold.

$L(M)$ - (weak) **length spectrum** (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_1 and M_2 are **length-commensurable** if

$$Q \cdot L(M_1) = Q \cdot L(M_2).$$

- Weak commensurability (of fundamental groups) **adequately** reflects length-commensurability of locally symmetric space.

Let M be a Riemannian manifold.

$L(M)$ - (weak) **length spectrum** (collection of lengths of closed geodesics w/o multiplicities)

Definition. M_1 and M_2 are **length-commensurable** if

$$\mathbb{Q} \cdot L(M_1) = \mathbb{Q} \cdot L(M_2).$$

- Weak commensurability (of fundamental groups) **adequately reflects** length-commensurability of locally symmetric space.

We will demonstrate this for **Riemann surfaces** - for now.
Let $G = SL_2$. Corresponding symmetric space:

$$SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \text{ (upper half-plane)}$$

- Any Riemann (compact) surface of genus > 1 is of the form
 $$M = \mathbb{H}/\Gamma$$

 where $\Gamma \subset SL_2(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $PSL_2(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c = c_\gamma$, and has length
 $$\ell(c_\gamma) = (1/n_\gamma) \cdot \log t_\gamma$$

 where t_γ is the eigenvalue of $\pm \gamma$ which is > 1, n_γ is an integer ≥ 1.

 NOTE that $\pm \gamma$ is conjugate to

$$\begin{pmatrix} t_\gamma & 0 \\ 0 & t_\gamma^{-1} \end{pmatrix}.$$
Geometric perspective

- Let $G = SL_2$. Corresponding symmetric space:
 $$SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \text{ (upper half-plane)}$$

- Any Riemann (compact) surface of genus > 1 is of the form
 $$M = \mathbb{H}/\Gamma$$
 where $\Gamma \subset SL_2(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $PSL_2(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c = c_\gamma$, and has length
 $$\ell(c_\gamma) = (1/n_\gamma) \cdot \log t_\gamma$$
 where t_γ is the eigenvalue of $\pm \gamma$ which is > 1,
 n_γ is an integer ≥ 1.

 NOTE that $\pm \gamma$ is conjugate to
 $$\begin{pmatrix}
t_\gamma & 0 \\
0 & t_\gamma^{-1}
\end{pmatrix}.$$
Geometric perspective

- Let $G = SL_2$. Corresponding symmetric space:

 $$SO_2(\mathbb{R}) \backslash SL_2(\mathbb{R}) = \mathbb{H} \text{ (upper half-plane)}$$

- Any Riemann (compact) surface of genus > 1 is of the form

 $$M = \mathbb{H} / \Gamma$$

where $\Gamma \subset SL_2(\mathbb{R})$ is a discrete subgroup (with torsion-free image in $PSL_2(\mathbb{R})$).

- Any closed geodesic c in M corresponds to a semi-simple $\gamma \in \Gamma$, i.e. $c = c_\gamma$, and has length

 $$\ell(c_\gamma) = (1/n_\gamma) \cdot \log t_\gamma$$

where t_γ is the eigenvalue of $\pm \gamma$ which is > 1, n_γ is an integer ≥ 1.

 NOTE that $\pm \gamma$ is conjugate to $\begin{pmatrix} t_\gamma & 0 \\ 0 & t_\gamma^{-1} \end{pmatrix}$.
If $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) are length-commensurable then:

- for any nontrivial semi-simple $\gamma_1 \in \Gamma_1$ there exists a nontrivial semi-simple $\gamma_2 \in \Gamma_2$ such that

$$n_1 \cdot \log t_{\gamma_1} = n_2 \cdot \log t_{\gamma_2}$$

for some integers $n_1, n_2 \geq 1$, and vice versa.

So,

$$\chi_1(\gamma_1) = \chi_2(\gamma_2) \neq 1$$

where χ_i is the character of the maximal \mathbb{R}-torus $T_i \subset SL_2$

corresponding to $\begin{pmatrix} t & 0 \\ 0 & t^{-1} \end{pmatrix} \mapsto t^{n_i}$.

Thus, Γ_1 and Γ_2 are weakly commensurable.
Outline

1 Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3 Proofs
 - “Special” elements in Zariski-dense subgroups
In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.
In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability “almost” retains information about the type of the ambient algebraic group.
In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability “almost” retains information about the type of the ambient algebraic group.

Theorem 1. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero. If there exist finitely generated Zariski-dense subgroups $\Gamma_i \subset G_i(F) \ (i = 1, 2)$ that are weakly commensurable then either G_1 and G_2 have the same Killing-Cartan type, or one of them is of type B_n and the other is of type C_n for some $n \geq 3$.
In this section, we will discuss two results dealing with weak commensurability of arbitrary finitely generated Zariski-dense subgroups.

The first result shows that weak commensurability “almost” retains information about the type of the ambient algebraic group.

Theorem 1. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero. If there exist finitely generated Zariski-dense subgroups $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) that are weakly commensurable then either G_1 and G_2 have the same Killing-Cartan type, or one of them is of type B_n and the other is of type C_n for some $n \geq 3$.

Note that groups of types B_n and C_n can indeed contain Zariski-dense weakly commensurable subgroups - more later.
Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Then K^Γ is the (minimal) field of definition of $\text{Ad} \Gamma$ (E.B. Vinberg).

Theorem 2. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) be finitely generated Zariski-dense subgroups. If Γ_1 and Γ_2 are weakly commensurable then $K^\Gamma_1 = K^\Gamma_2$.
Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_{Γ} denote the subfield of F generated by $\text{Tr} \ Ad \ \gamma$ for all $\gamma \in \Gamma$.
Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_Γ denote the subfield of F generated by $\text{Tr Ad} \, \gamma$ for all $\gamma \in \Gamma$.

Then K_Γ is the (minimal) field of definition of $\text{Ad} \, \Gamma$ (E.B. Vinberg).
Field of definition

Let

- G be a connected almost simple algebraic group defined over a field F of characteristic zero,
- $\Gamma \subset G(F)$ be a Zariski-dense subgroup.

Let K_Γ denote the subfield of F generated by $\text{Tr} \, \text{Ad} \, \gamma$ for all $\gamma \in \Gamma$.

Then K_Γ is the (minimal) field of definition of $\text{Ad} \, \Gamma$ (E.B. Vinberg).

Theorem 2. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ ($i = 1, 2$) be finitely generated Zariski-dense subgroups. If Γ_1 and Γ_2 are weakly commensurable then $K_{\Gamma_1} = K_{\Gamma_2}$.
Notion of arithmeticity

For a \mathbb{Q}-defined algebraic group $G \subset \text{GL}_n$, we set

$$G(\mathbb{Z}) = G \cap \text{GL}_n(\mathbb{Z}).$$

The subgroups of $G(F)$ (where F/\mathbb{Q}) commensurable with $G(\mathbb{Z})$, are called arithmetic.
Notion of arithmeticity

For a \mathbb{Q}-defined algebraic group $G \subset \text{GL}_n$, we set

$$G(\mathbb{Z}) = G \cap \text{GL}_n(\mathbb{Z}).$$

The subgroups of $G(F)$ (where F/\mathbb{Q}) commensurable with $G(\mathbb{Z})$, are called arithmetic.

Replace \mathbb{Z} with $\mathbb{Z}[1/2]$ (= ring of S-integers $\mathbb{Z}_S \subset \mathbb{Q}$ for $S = \{v_\infty, v_2\}$). The subgroups of $G(F)$ commensurable with

$$G(\mathbb{Z}_S) = G \cap \text{GL}_n(\mathbb{Z}_S)$$

are called S-arithmetic.
Notion of arithmeticity

For a \(\mathbb{Q} \)-defined algebraic group \(G \subset GL_n \), we set

\[
G(\mathbb{Z}) = G \cap GL_n(\mathbb{Z}).
\]

The subgroups of \(G(F) \) (where \(F/\mathbb{Q} \)) commensurable with \(G(\mathbb{Z}) \), are called arithmetic.

Replace \(\mathbb{Z} \) with \(\mathbb{Z}[1/2] \) (= ring of \(S \)-integers \(\mathbb{Z}_S \subset \mathbb{Q} \) for \(S = \{v_\infty, v_2\} \)).

The subgroups of \(G(F) \) commensurable with

\[
G(\mathbb{Z}_S) = G \cap GL_n(\mathbb{Z}_S)
\]

are called \(S \)-arithmetic.

More generally, given a number field \(K \) and a (finite) \(S \subset V^K \) containing \(V^K_\infty \) (archimedean places), one defined the ring of \(S \)-integers

\[
\mathcal{O}_K(S) = \{a \in K^\times | v(a) \geq 0 \text{ for all } v \in V^K \setminus S\} \cup \{0\}.
\]
Given a K-defined algebraic group $G \subset \text{GL}_n$, we set

$$G(\mathcal{O}_K(S)) = G \cap \text{GL}_n(\mathcal{O}_K(S)).$$

The subgroups of $G(F)$ (where F/K commensurable with $G(\mathcal{O}_K(S))$ are called S-arithmetic or (K,S)-arithmetic.
Given a K-defined algebraic group $G \subset \text{GL}_n$, we set

$$G(\mathcal{O}_K(S)) = G \cap \text{GL}_n(\mathcal{O}_K(S)).$$

The subgroups of $G(F)$ (where F/K commensurable with $G(\mathcal{O}_K(S))$ are called S-arithmetic or (K,S)-arithmetic.

What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?
Weak commensurability

Arithmetic Groups

Notion of arithmeticity

Given a K-defined algebraic group $G \subset GL_n$, we set

$$G(\mathcal{O}_K(S)) = G \cap GL_n(\mathcal{O}_K(S)).$$

The subgroups of $G(F)$ (where F/K) commensurable with $G(\mathcal{O}_K(S))$ are called S-arithmetic or (K, S)-arithmetic.

What is an arithmetic subgroup of an algebraic group which is NOT defined over a number field?

E.g.: What is an arithmetic subgroup of $G(\mathbb{R})$ where

$$G = SO_3(f) \quad \text{and} \quad f = x^2 + e \cdot y^2 - \pi \cdot z^2?$$
Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.
Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$f_1 = x^2 + y^2 - 3z^2 \text{ or } f_2 = x^2 + 2y^2 - 7z^2.$$
Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$f_1 = x^2 + y^2 - 3z^2 \text{ or } f_2 = x^2 + 2y^2 - 7z^2.$$

Then $SO_3(f_i) \simeq SO_3(f)$ over \mathbb{R}, and

$$\Gamma_i := SO_3(f_i) \cap GL_3(\mathbb{Z})$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i = 1, 2$.

One can also consider $\mathbb{K} = \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_3 = x^2 + y^2 - \sqrt{2}z^2$. Then $\Gamma_3 := SO_3(f_3) \cap GL_3(\mathbb{Z}[\sqrt{2}])$ is an arithmetic subgroup of $G(\mathbb{R})$ over \mathbb{K}.

One can further replace integers by S-integers, etc.
Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

\[f_1 = x^2 + y^2 - 3z^2 \text{ or } f_2 = x^2 + 2y^2 - 7z^2. \]

Then $SO_3(f_i) \cong SO_3(f)$ over \mathbb{R}, and

\[\Gamma_i := SO_3(f_i) \cap GL_3(\mathbb{Z}) \]

are arithmetic subgroups of $G(\mathbb{R})$ for $i = 1, 2$.

One can also consider $K = \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_3 = x^2 + y^2 - \sqrt{2}z^2$. Then

\[\Gamma_3 = SO_3(f_3) \cap GL_3(\mathbb{Z}[\sqrt{2}]) \]

is an arithmetic subgroup of $G(\mathbb{R})$ over K.
Notion of arithmeticity

We define arithmetic subgroups of $G(F)$ in terms of all possible forms of G over subfields of F that are number fields.

In our example, we can consider rational quadratic forms that are \mathbb{R}-equivalent to f, e.g.:

$$f_1 = x^2 + y^2 - 3z^2 \text{ or } f_2 = x^2 + 2y^2 - 7z^2.$$

Then $SO_3(f_i) \simeq SO_3(f)$ over \mathbb{R}, and

$$\Gamma_i := SO_3(f_i) \cap GL_3(\mathbb{Z})$$

are arithmetic subgroups of $G(\mathbb{R})$ for $i = 1, 2$.

One can also consider $K = \mathbb{Q}(\sqrt{2}) \subset \mathbb{R}$ and $f_3 = x^2 + y^2 - \sqrt{2}z^2$. Then

$$\Gamma_3 = SO_3(f_3) \cap GL_3(\mathbb{Z}[\sqrt{2}])$$

is an arithmetic subgroup of $G(\mathbb{R})$ over K.

One can further replace integers by S-integers, etc.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \rightarrow \widetilde{G}$ be isogeny onto adjoint group.

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \widetilde{G}, i.e. $F\mathcal{G} \simeq \widetilde{G}$ over F.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_{∞};
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.

Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.

We do NOT fix an F-isomorphism $F\mathcal{G} \simeq \mathcal{G}$ in $\circ \circ \circ$, and by varying it we obtain a class of groups invariant under F-automorphisms.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_{∞};
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F = 0$, and $\pi : G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a number field K with a fixed embedding $K \hookrightarrow F$;
2. a finite set $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $\mathcal{F}\mathcal{G} \simeq \overline{G}$ over F.

Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.

We do NOT fix an F-isomorphism $F\mathcal{G} \simeq \mathcal{G}$ in $\circ \circ$, and by varying it we obtain a class of groups invariant under F-automorphisms.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K_∞;
3. an F/K-**form** \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.

Convention: S does not contain nonarchimedean v such that G is K_v-anisotropic.

We do **NOT** fix an F-isomorphism $F\mathcal{G} \simeq G$ in $\circledast F\circledast 3$, and by varying it we obtain a class of groups invariant under F-automorphisms.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, char $F = 0$, and $\pi : G \rightarrow \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}(O_K(S))$ are called (\mathcal{G}, K, S)-arithmetic.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \to \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K_{∞};
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}(\mathcal{O}_K(S))$ are called (\mathcal{G}, K, S)-arithmetic.

Convention: S does not contain nonarchimedean v such that \mathcal{G} is K_v-anisotropic.
Definition of arithmeticity

Definition. Let G be an absolutely almost simple algebraic group over a field F, $\text{char } F = 0$, and $\pi : G \rightarrow \overline{G}$ be isogeny onto adjoint group.

Suppose we are given:

1. a **number field** K with a **fixed** embedding $K \hookrightarrow F$;
2. a **finite set** $S \subset V^K$ containing V^K_∞;
3. an F/K-form \mathcal{G} of \overline{G}, i.e. $F\mathcal{G} \simeq \overline{G}$ over F.

Then subgroups $\Gamma \subset G(F)$ such that $\pi(\Gamma)$ is commensurable with $\mathcal{G}(\mathcal{O}_K(S))$ are called (\mathcal{G}, K, S)-arithmetic.

Convention: S does not contain nonarchimedean v such that \mathcal{G} is K_v-anisotropic.

We do **NOT** fix an F-isomorphism $F\mathcal{G} \simeq G$ in n° 3, and by varying it we obtain a class of groups invariant under F-automorphisms.
Proposition. Let G_1 and G_2 be connected absolutely almost simple algebraic groups defined over a field F, $\text{char } F = 0$, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic group ($i = 1, 2$).

Then Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2 if and only if

- $K_1 = K_2 =: K$;
- $S_1 = S_2$;
- G_1 and G_2 are K-isomorphic.
Proposition. Let G_1 and G_2 be connected absolutely almost simple algebraic groups defined over a field F, $\text{char } F = 0$, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic group $(i = 1, 2)$.

Then Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2 if and only if

- $K_1 = K_2 =: K$;
- $S_1 = S_2$;
- G_1 and G_2 are K-isomorphic.

In the above example, Γ_1, Γ_2 and Γ_3 are pairwise noncommensurable.
Proposition. Let G_1 and G_2 be connected absolutely almost simple algebraic groups defined over a field F, char $F = 0$, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic group ($i = 1, 2$).

Then Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2 if and only if

- $K_1 = K_2 =: K$;
- $S_1 = S_2$;
- G_1 and G_2 are K-isomorphic.

In the above example, Γ_1, Γ_2 and Γ_3 are *pairwise* noncommensurable.

- Γ_1 and Γ_2 are *NOT* commensurable b/c the corresponding \mathbb{Q}-forms $G_1 = \text{SO}_3(f_1)$ and $G_2 = \text{SO}_3(f_2)$ are *NOT* isomorphic over \mathbb{Q}.
Proposition. Let G_1 and G_2 be connected absolutely almost simple algebraic groups defined over a field F, char $F = 0$, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K_i, S_i)-arithmetic group ($i = 1, 2$).

Then Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2 if and only if

- $K_1 = K_2 =: K$;
- $S_1 = S_2$;
- G_1 and G_2 are K-isomorphic.

In the above example, Γ_1, Γ_2 and Γ_3 are pairwise noncommensurable.

- Γ_1 and Γ_2 are NOT commensurable b/c the corresponding \mathbb{Q}-forms $G_1 = \text{SO}_3(f_1)$ and $G_2 = \text{SO}_3(f_2)$ are NOT isomorphic over \mathbb{Q}.

- Γ_3 is NOT commensurable with either Γ_1 or Γ_2 b/c they have different fields of definition: $\mathbb{Q}(\sqrt{2})$ for Γ_3, and \mathbb{Q} for Γ_1 and Γ_2.
Theorem 3. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If Zariski-dense (G_i, K_i, S_i)-arithmetic $\Gamma_i \subset G_i(F)$ are weakly commensurable for $i = 1, 2$, then $K_1 = K_2$ and $S_1 = S_2$.
Theorem 3. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If Zariski-dense (G_i, K_i, S_i)-arithmetic $\Gamma_i \subset G_i(F)$ are weakly commensurable for $i = 1, 2$, then $K_1 = K_2$ and $S_1 = S_2$.

The forms G_1 and G_2 may NOT be K-isomorphic in general, but we have the following.

Theorem 4. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, of the same type different from A_n, D_{2n+1} with $n > 1$, and E_6, and let $\Gamma_i \subset G_i(F)$ be a (G_i, K, S)-arithmetic subgroup.

If Γ_1 and Γ_2 are weakly commensurable then $G_1 \simeq G_2$ over K, and hence Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2.
Theorem 3. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero.

If Zariski-dense (G_i, K_i, S_i)-arithmetic $\Gamma_i \subset G_i(F)$ are weakly commensurable for $i = 1, 2$, then $K_1 = K_2$ and $S_1 = S_2$.

The forms G_1 and G_2 may NOT be K-isomorphic in general, but we have the following.

Theorem 4. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, of the same type different from A_n, D_{2n+1} with $n > 1$, and E_6, and let $\Gamma_i \subset G_i(F)$ be a (G_i, K, S)-arithmetic subgroup.

If Γ_1 and Γ_2 are weakly commensurable then $G_1 \simeq G_2$ over K, and hence Γ_1 and Γ_2 are commensurable up to an F-isomorphism between \overline{G}_1 and \overline{G}_2.

[1] - groups of type $\neq D_{2n}$; [2] - groups of type D_{2n} other than D_4;
Skip Garibaldi - type D_4 and alternative proof for all D_{2n}.
Theorem 5. (Garibaldi-R.) Let G_1 and G_2 be connected absolutely almost simple groups of types B_n and C_n ($n \geq 3$) respectively, defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup.

Then Γ_1 and Γ_2 are weakly commensurable if and only if

- $\text{rk}_{K_v} G_1 = \text{rk}_{K_v} G_2 = 0$ or n for all $v \in V^K$;
- $\text{rk}_{K_v} G_1 = \text{rk}_{K_v} G_2 = n$ for all $v \in V^K \setminus V^K$.

Theorem 5. (Garibaldi-R.) Let G_1 and G_2 be connected absolutely almost simple groups of types B_n and C_n ($n \geq 3$) respectively, defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup.

Then Γ_1 and Γ_2 are weakly commensurable if and only if

- $\text{rk}_{K_v} G_1 = \text{rk}_{K_v} G_2 = 0$ or n for all $v \in V^K_{\infty}$;
- $\text{rk}_{K_v} G_1 = \text{rk}_{K_v} G_2 = n$ for all $v \in V^K \setminus V^K_{\infty}$.

Theorem 6. Let G_1 and G_2 be two connected absolutely almost simple groups defined over a field F of characteristic zero, and let $\Gamma_1 \subset G_1(F)$ be a Zariski-dense (K, S)-arithmetic subgroup.

Then the set of Zariski-dense (K, S)-arithmetic subgroups $\Gamma_2 \subset G_2(F)$ which are weakly commensurable to Γ_1, is a union of finitely many commensurability classes.
Theorem 7. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup for $i = 1, 2$. If Γ_1 and Γ_2 are weakly commensurable then $rk_K G_1 = rk_K G_2$; in particular, if G_1 is K-isotropic then so is G_2.
Theorem 7. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense (G_i, K, S)-arithmetic subgroup for $i = 1, 2$.

If Γ_1 and Γ_2 are weakly commensurable then $\text{rk}_K G_1 = \text{rk}_K G_2$; in particular, if G_1 is K-isotropic then so is G_2.

Theorem 8. Let G_1 and G_2 be two connected absolutely almost simple algebraic groups defined over a nondiscrete locally compact field F of characteristic zero, and let $\Gamma_i \subset G_i(F)$ be a Zariski-dense lattice for $i = 1, 2$.

Assume that Γ_1 is a (K, S)-arithmetic subgroup of $G_1(F)$.

If Γ_1 and Γ_2 are weakly commensurable, then Γ_2 is a (K, S)-arithmetic subgroup of $G_2(F)$.
Outline

1. Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2. Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3. Proofs
 - “Special” elements in Zariski-dense subgroups
Two aspects:

1. Given a Zariski-dense subgroup $\Gamma_1 \subset G_1(F)$ with $K_{\Gamma_1} = K$, determine possible K-groups G_2 for which there exists a Zariski-dense subgroup $\Gamma_2 \subset G_2(K)$ which is weakly commensurable to Γ_1;

2. For a given K-group G_2, determine possible $\Gamma_2 \subset G_2(K)$ which are weakly commensurable to Γ_1.
Two aspects:

1. Given a Zariski-dense subgroup $\Gamma_1 \subset G_1(F)$ with $K_{\Gamma_1} =: K$, determine possible K-groups G_2 for which there exists a Zariski-dense subgroup $\Gamma_2 \subset G_2(K)$ which is weakly commensurable to Γ_1;

2. For a given K-group G_2, determine possible $\Gamma_2 \subset G_2(K)$ which are weakly commensurable to Γ_1.
Two aspects:

1. Given a Zariski-dense subgroup $\Gamma_1 \subset G_1(F)$ with $K_{\Gamma_1} =: K$, determine possible K-groups G_2 for which there exists a Zariski-dense subgroup $\Gamma_2 \subset G_2(K)$ which is weakly commensurable to Γ_1;

2. For a given K-group G_2, determine possible $\Gamma_2 \subset G_2(K)$ which are weakly commensurable to Γ_1.
Two aspects:

1. Given a Zariski-dense subgroup $\Gamma_1 \subset G_1(F)$ with $K_{\Gamma_1} =: K$, determine possible K-groups G_2 for which there exists a Zariski-dense subgroup $\Gamma_2 \subset G_2(K)$ which is weakly commensurable to Γ_1;

2. For a given K-group G_2, determine possible $\Gamma_2 \subset G_2(K)$ which are weakly commensurable to Γ_1.

Item 1° is closely related to the following classical question:

To what extent is an absolutely almost simple algebraic K-group G determined by the set of isomorphism classes of its maximal K-tori?
Two aspects:

1. Given a Zariski-dense subgroup $\Gamma_1 \subset G_1(F)$ with $K_{\Gamma_1} =: K$, determine possible K-groups G_2 for which there exists a Zariski-dense subgroup $\Gamma_2 \subset G_2(K)$ which is weakly commensurable to Γ_1;

2. For a given K-group G_2, determine possible $\Gamma_2 \subset G_2(K)$ which are weakly commensurable to Γ_1.

Item 1° is closely related to the following classical question:

To what extent is an absolutely almost simple algebraic K-group G is determined by the set of isomorphism classes of its maximal K-tori?

(Our results solve this problem for a number field K.)
(*) Let D_1 and D_2 be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_1 and D_2 have same maximal subfields. Are D_1 and D_2 necessarily isomorphic?
Let D_1 and D_2 be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_1 and D_2 have same maximal subfields. Are D_1 and D_2 necessarily isomorphic?

Geometric connection:

Let

$$M = \mathbb{H}/\Gamma$$

be a (compact) **Riemann surface**, $\Gamma \subset SL_2(\mathbb{R})$ a discrete subgroup.
Let D_1 and D_2 be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_1 and D_2 have same maximal subfields. Are D_1 and D_2 necessarily isomorphic?

Geometric connection:

Let

$$M = \mathbb{H}/\Gamma$$

be a (compact) Riemann surface, $\Gamma \subset SL_2(\mathbb{R})$ a discrete subgroup.

Associated \mathbb{Q}-subalgebra

$$D = \mathbb{Q}[\Gamma] \subset M_2(\mathbb{R})$$

is a quaternion algebra with center

$$K = \mathbb{Q}(\text{tr } \gamma \mid \gamma \in \Gamma) \quad \text{(trace field)}.$$
Let D_1 and D_2 be quaternion division algebras over a field K (char $K \neq 2$). Assume that D_1 and D_2 have same maximal subfields.

Are D_1 and D_2 necessarily isomorphic?

GEOMETRIC CONNECTION:

Let

$$M = \mathbb{H}/\Gamma$$

be a (compact) **Riemann surface**, $\Gamma \subset SL_2(\mathbb{R})$ a discrete subgroup.

Associated \mathbb{Q}-subalgebra

$$D = \mathbb{Q}[\Gamma] \subset M_2(\mathbb{R})$$

is a quaternion algebra with center

$$K = \mathbb{Q}(\text{tr } \gamma \mid \gamma \in \Gamma) \quad (\text{trace field}).$$

(\text{.. well, one usually considers } \mathbb{Q}[\Gamma^{(2)}] \text{ where } \Gamma^{(2)} \subset \Gamma \text{ is generated by squares ...})
Let $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) be Riemann surfaces, and let D_i be the quaternion algebra associated with Γ_i.
Let $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) be Riemann surfaces, and let D_i be the quaternion algebra associated with Γ_i.

Suppose that M_1 and M_2 are length-commensurable.
Let $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) be Riemann surfaces, and let D_i be the quaternion algebra associated with Γ_i.

Suppose that M_1 and M_2 are length-commensurable.

Then

$$Z(D_1) = Z(D_2) =: K,$$

and for any semi-simple $\gamma_1 \in \Gamma_1$ there exists a semi-simple $\gamma_2 \in \Gamma_2$ s. t.

$$\gamma_1^m \text{ and } \gamma_2^n \text{ are conjugate in } SL_2(\mathbb{R}) \text{ for some } m, n \geq 1.$$

$$\Rightarrow \quad K[\gamma_1^m] \subset D_1 \text{ and } K[\gamma_2^n] \subset D_2 \text{ are isomorphic.}$$
Let $M_i = \mathbb{H}/\Gamma_i$ ($i = 1, 2$) be Riemann surfaces, and let D_i be the quaternion algebra associated with Γ_i.

Suppose that M_1 and M_2 are length-commensurable.

Then

$$Z(D_1) = Z(D_2) =: K,$$

and for any semi-simple $\gamma_1 \in \Gamma_1$ there exists a semi-simple $\gamma_2 \in \Gamma_2$ s. t.

$$\gamma_1^m \text{ and } \gamma_2^n \text{ are conjugate in } SL_2(\mathbb{R}) \text{ for some } m, n \geq 1.$$

\Rightarrow $K[\gamma_1^m] \subset D_1$ and $K[\gamma_2^n] \subset D_2$ are isomorphic.

Thus, length-commensurability of M_1 and M_2 implies that D_1 and D_2 have the same isomorphism classes of étale subalgebras that intersect Γ_1 and Γ_2, respectively.
On the other hand,

\[\Gamma_1 \ & \Gamma_2 \text{ commensurable} \implies D_1 \simeq D_2. \]
On the other hand,

\[\Gamma_1 \ & \ Gamma_2 \ \text{commensurable} \ \Rightarrow \ D_1 \sim D_2. \]

So, analysis of length-commensurability for Riemann surfaces leads to questions like (\ast) for quaternion algebras.
On the other hand,

\[\Gamma_1 \ & \ \Gamma_2 \ \text{commensurable} \ \Rightarrow \ D_1 \simeq D_2. \]

So, analysis of length-commensurability for Riemann surfaces leads to questions like (\(\ast\)) for quaternion algebras.

\(\ast\) has affirmative answer over number fields \(\Rightarrow\)

\[L(M_1) = L(M_2) \] for arithmetically defined Riemann surfaces \(M_1 \ & \ M_2\) implies that \(M_1\) and \(M_2\) are commensurable (A. Reid).
On the other hand,

\[\Gamma_1 \ & \ \Gamma_2 \ \text{commensurable} \ \Rightarrow \ \mathcal{D}_1 \simeq \mathcal{D}_2. \]

So, analysis of length-commensurability for Riemann surfaces leads to questions like \((\ast)\) for quaternion algebras.

\((\ast)\) has affirmative answer over number fields \(\Rightarrow\)

\[L(M_1) = L(M_2) \] for arithmetically defined Riemann surfaces \(M_1 \ & \ M_2\)
implies that \(M_1\) and \(M_2\) are commensurable (A. Reid).

\((\ast)\) can have negative answer over “large” fields (Rost, Wadsworth, Schacher ...), but remains widely open over finitely generated fields.
In [1], we asked (⋆) for $K = \mathbb{Q}(x)$.
In [1], we asked (*) for $K = \mathbb{Q}(x)$.

D. Saltman gave affirmative answer.
In [1], we asked \((*)\) for \(K = \mathbb{Q}(x)\).

D. Saltman gave affirmative answer.

Garibaldi-Saltman proved \((*)\) for \(K = k(x)\) where \(k\) is any number field (and also in some other cases).
In [1], we asked \((*)\) for \(K = \mathbb{Q}(x)\).

D. Saltman gave affirmative answer.

Garibaldi-Saltman proved \((*)\) for \(K = k(x)\) where \(k\) is any number field (and also in some other cases).

Theorem 9. (A.R., I.R.) If \((*)\) holds over \(K\) then it also holds over the field of rational functions \(K(x)\).
In [1], we asked \((*)\) for \(K = \mathbb{Q}(x)\).

D. Saltman gave affirmative answer.

Garibaldi-Saltman proved \((*)\) for \(K = k(x)\) where \(k\) is any number field (and also in some other cases).

Theorem 9. (A.R., I.R.) If \((*)\) holds over \(K\) then it also holds over the field of rational functions \(K(x)\).

Definition. Let \(D\) be a finite-dimensional central division algebra /\(K\). The \textbf{genus} of \(D\) is

\[\text{gen}(D) = \{ [D'] \in \text{Br}(K) \mid D' \text{ division algebra with same maximal subfields as } D \}. \]
Question A: When does $\text{gen}(D)$ consist of a single class? Is this the case for quaternions?
Question A: When does $\text{gen}(D)$ consist of a single class? Is this the case for quaternions?

Question B: When is $\text{gen}(D)$ finite?
Question A: *When does $\text{gen}(D)$ consist of a single class? Is this the case for quaternions?*

Question B: *When is $\text{gen}(D)$ finite?*

Question A is meaningful only for algebras D of exponent 2. Indeed, D^{op} has the same maximal subfields as D. But if $D \simeq D^{\text{op}}$, then $[D] \in \text{Br}(K)$ has exponent 2.
Question A: *When does* \(\text{gen}(D) \) *consist of a single class? Is this the case for quaternions?*

Question B: *When is* \(\text{gen}(D) \) *finite?*

Question A is meaningful *only* for algebras \(D \) of exponent 2. Indeed, \(D^{\text{op}} \) has the *same* maximal subfields as \(D \). But if \(D \simeq D^{\text{op}} \) then \([D] \in \text{Br}(K)\) *has exponent* 2.

Question B makes sense for division algebras of *any* degree.
Question A: When does $\text{gen}(D)$ consist of a single class? Is this the case for quaternions?

Question B: When is $\text{gen}(D)$ finite?

Question A is meaningful only for algebras D of exponent 2. Indeed, D^{op} has the same maximal subfields as D. But if $D \cong D^{\text{op}}$ then $[D] \in \text{Br}(K)$ has exponent 2.

Question B makes sense for division algebras of any degree.

Both questions have the affirmative answer over number fields.
Theorem 10. (Chernousov + R²) Let K be a field of characteristic $\neq 2$. If K satisfies the following property

(●) Any two finite-dimensional central division K-algebras D_1 and D_2 of exponent two that have the same maximal subfields are necessarily isomorphic,

then the field of rational functions $K(x)$ also has (●).
Theorem 10. (Chernousov + \(R^2 \)) Let \(K \) be a field of characteristic \(\neq 2 \).

If \(K \) satisfies the following property

(●) Any two finite-dimensional central division \(K \)-algebras \(D_1 \) and \(D_2 \) of exponent two that have the same maximal subfields are necessarily isomorphic,

then the field of rational functions \(K(x) \) also has (●).

Theorem 11. (C + \(R^2 \)) Let \(K \) be a finitely generated field, and let \(D \) be a central division algebra \(/K \) of degree \(n \) which is prime to \(\text{char} \, K \).

Then \(\text{gen}(D) \) is finite.
Conjecture. Let G_1, G_2 be absolutely simple algebraic groups over a field F, $\text{char } F = 0$, let $\Gamma_1 \subset G_1(F)$ be a *finitely generated* Zariski-dense subgroup.

Set $K = K_{\Gamma_1}$.

Then there exist a *finite collection* $G_2^{(1)}, \ldots, G_2^{(r)}$ of F/K-forms of G_2 such that if $\Gamma_2 \subset G_2(F)$ is a Zariski-dense subgroup weakly commensurable to Γ_1 then Γ_2 is contained (up to an F-automorphism of G_2) in one of the $G_2^{(i)}(K)$’s.
Conjecture. Let G_1, G_2 be absolutely simple algebraic groups over a field F, char $F = 0$, let $\Gamma_1 \subset G_1(F)$ be a finitely generated Zariski-dense subgroup. Set $K = K_{\Gamma_1}$.

Then there exist a finite collection $G_2^{(1)}, \ldots, G_2^{(r)}$ of F/K-forms of G_2 such that if $\Gamma_2 \subset G_2(F)$ is a Zariski-dense subgroup weakly commensurable to Γ_1 then Γ_2 is contained (up to an F-automorphism of G_2) in one of the $G_2^{(i)}(K)$’s.

Question: When can one take $r = 1$?
Outline

1 Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on non-arithmetic case

2 Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3 Proofs
 - “Special” elements in Zariski-dense subgroups
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $\mathcal{G} = G(\mathbb{R})$
- \mathcal{K} a maximal compact subgroup of \mathcal{G}; $\mathcal{X} = \mathcal{K}\backslash\mathcal{G}$ associated symmetric space, $\text{rk} \mathcal{X} = \text{rk}_{\mathbb{R}} \mathcal{G}$
- Γ a discrete torsion-free subgroup of \mathcal{G}; $\mathcal{X}_\Gamma = \mathcal{X}/\mathcal{\Gamma}$
- \mathcal{X}_Γ is \textbf{arithmetically defined} if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier
Notations

- \(G \) a connected absolutely (almost) simple algebraic group \(/ \mathbb{R} \);
 \(\mathcal{G} = G(\mathbb{R}) \)
- \(\mathcal{K} \) a maximal compact subgroup of \(\mathcal{G} \);
 \(\mathcal{X} = \mathcal{K}/\mathcal{G} \) associated symmetric space, \(\text{rk} \mathcal{X} = \text{rk} \mathcal{G} \)
- \(\Gamma \) a discrete torsion-free subgroup of \(\mathcal{G} \), \(\mathcal{X}_\Gamma = \mathcal{X}/\Gamma \)
- \(\mathcal{X}_\Gamma \) is **arithmetically defined** if \(\Gamma \) is arithmetic (for \(S = V^K_\infty \)) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R}; $G = G(\mathbb{R})$
- K a maximal compact subgroup of G; $\mathfrak{X} = K \backslash G$ associated symmetric space, $\text{rk} \mathfrak{X} = \text{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of G, $\mathfrak{X}_\Gamma = \mathfrak{X}/\Gamma$
- \mathfrak{X}_Γ is arithmetically defined if Γ is arithmetic (for $S = V^K_\infty$) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group / \mathbb{R}; $G = G(\mathbb{R})$
- K a maximal compact subgroup of G; $\mathcal{X} = K \backslash G$ associated symmetric space, $\text{rk } \mathcal{X} = \text{rk}_{\mathbb{R}} G$
- Γ a discrete torsion-free subgroup of G, $\mathcal{X}_\Gamma = \mathcal{X} / \Gamma$
- \mathcal{X}_Γ is arithmetically defined if Γ is arithmetic (for $S = V^K_{\infty}$) as defined earlier
Notations

- G a connected absolutely (almost) simple algebraic group over \mathbb{R};
 $G = G(\mathbb{R})$

- \mathcal{K} a maximal compact subgroup of G;
 $\mathcal{X} = \mathcal{K}\backslash G$ associated symmetric space,
 $\text{rk} \, \mathcal{X} = \text{rk}_{\mathbb{R}} G$

- Γ a discrete torsion-free subgroup of G,
 $\mathcal{X}_\Gamma = \mathcal{X}/\Gamma$

- \mathcal{X}_Γ is **arithmetically defined** if Γ is arithmetic (for $S = V^K$) as defined earlier

Given $G_1, G_2, \Gamma_i \subset G_i := G_i(\mathbb{R})$ etc. as above, we will denote the corresponding **locally symmetric spaces** by \mathcal{X}_{Γ_i}.
Two Riemannian manifolds M_1 and M_2 are:
- **commensurable** if they have a common finite-sheeted cover;
- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.

Question: When does length-commensurability imply commensurability?

X_{Γ_1} and X_{Γ_2} are commensurable $\iff \Gamma_1$ and Γ_2 are commensurable up to an isomorphism between G_1 and G_2.

Fact. Assume that X_{Γ_1} and X_{Γ_2} are of finite volume. If X_{Γ_1} and X_{Γ_2} are length-commensurable then (under minor technical assumptions) Γ_1 and Γ_2 are weakly commensurable.
Two Riemannian manifolds M_1 and M_2 are:

- **commensurable** if they have a common finite-sheeted cover;
- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.
Two Riemannian manifolds M_1 and M_2 are:

- **commensurable** if they have a common finite-sheeted cover;
- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.

Question:

When does length-commensurability imply commensurability?

Γ_1 and Γ_2 are commensurable $\iff \Gamma_1$ and Γ_2 are commensurable up to an isomorphism between G_1 and G_2.

Fact. Assume that X_{Γ_1} and X_{Γ_2} are of finite volume. If X_{Γ_1} and X_{Γ_2} are length-commensurable then (under minor technical assumptions) Γ_1 and Γ_2 are weakly commensurable.
Two Riemannian manifolds M_1 and M_2 are:

- **commensurable** if they have a common finite-sheeted cover;
- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.

Question: *When does length-commensurability imply commensurability?*
Two Riemannian manifolds M_1 and M_2 are:

- **commensurable** if they have a common finite-sheeted cover;

- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.

Question: When does length-commensurability imply commensurability?

X_{Γ_1} and X_{Γ_2} are commensurable \iff Γ_1 and Γ_2 are commensurable up to an isomorphism between \overline{G}_1 and \overline{G}_2.
Two Riemannian manifolds M_1 and M_2 are:

- **commensurable** if they have a common finite-sheeted cover;

- **length-commensurable** if $Q \cdot L(M_1) = Q \cdot L(M_2)$, where $L(M_i)$ is the set of lengths of all closed geodesics in M_i.

Question: When does length-commensurability imply commensurability?

\mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are commensurable \iff Γ_1 and Γ_2 are commensurable up to an isomorphism between \bar{G}_1 and \bar{G}_2.

Fact. Assume that \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are of **finite volume**.

If \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} are length-commensurable then (under minor technical assumptions) Γ_1 and Γ_2 are weakly commensurable.
The proof relies:

- **in rank one case** - on the result of Gel’fond and Schneider (1934):
 \[\text{if } \alpha \text{ and } \beta \text{ are algebraic numbers } \neq 0, 1 \text{ then } \frac{\log \alpha}{\log \beta} \text{ is either rational or transcendental.} \]

- **in higher rank case** - on the following **Conjecture** (Shanuel)
 \[\text{If } z_1, \ldots, z_n \in \mathbb{C} \text{ are linearly independent over } \mathbb{Q}, \text{ then the transcendence degree of the field generated by } \]
 \[z_1, \ldots, z_n; \ e^{z_1}, \ldots, e^{z_n} \]
 \[\text{is } \geq n. \]
The proof relies:

- **in rank one case** - on the result of Gel’fond and Schneider (1934):

 \[
 \text{if } \alpha \text{ and } \beta \text{ are algebraic numbers } \neq 0, 1 \text{ then } \frac{\log \alpha}{\log \beta} \text{ is either rational or transcendental.}
 \]

- **in higher rank case** - on the following

Conjecture (Shanuel) *If* \(z_1, \ldots, z_n \in \mathbb{C} \) *are linearly independent over* \(\mathbb{Q} \), *then the transcendence degree of the field generated by*

\[
z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}
\]

is \(\geq n \).
The proof relies:

- in rank one case - on the result of Gel’fond and Schneider (1934): if α and β are algebraic numbers $\neq 0, 1$ then $\frac{\log \alpha}{\log \beta}$ is either rational or transcendental.

- in higher rank case - on the following

Conjecture (Shanuel) If $z_1, \ldots, z_n \in \mathbb{C}$ are linearly independent over \mathbb{Q}, then the transcendence degree of the field generated by

$$z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n}$$

is $\geq n$.
The proof relies:

- in rank one case - on the result of Gel’fond and Schneider (1934):

 \[\text{if } \alpha \text{ and } \beta \text{ are algebraic numbers } \neq 0, 1 \text{ then } \frac{\log \alpha}{\log \beta} \text{ is either rational or transcendental.} \]

- in higher rank case - on the following

 Conjecture (Shanuel) *If* \(z_1, \ldots, z_n \in \mathbb{C} \) *are linearly independent over* \(\mathbb{Q} \), *then the transcendence degree of the field generated by*\[z_1, \ldots, z_n; \ e^{z_1}, \ldots, e^{z_n} \]

 is \(\geq n \).

 (We mostly need that for nonzero algebraic numbers \(z_1, \ldots, z_n \), the logarithms \(\log z_1, \ldots, \log z_n \)

 are algebraically independent over \(\mathbb{Q} \) once they are linearly independent.)
The proof relies:

- in rank one case - on the result of Gel’fond and Schneider (1934):
 \[\frac{\log \alpha}{\log \beta} \]
 is either rational or transcendental.

- in higher rank case - on the following

Conjecture (Shanuel) *If \(z_1, \ldots, z_n \in \mathbb{C} \) are linearly independent over \(\mathbb{Q} \), then the transcendence degree of the field generated by \(z_1, \ldots, z_n; e^{z_1}, \ldots, e^{z_n} \) is \(\geq n \).*

(We mostly need that for nonzero algebraic numbers \(z_1, \ldots, z_n \), the logarithms \(\log z_1, \ldots, \log z_n \) are algebraically independent over \(\mathbb{Q} \) once they are linearly independent.)

So, our results for higher rank spaces are *conditional.*
Outline

1. Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2. Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3. Proofs
 - “Special” elements in Zariski-dense subgroups
Theorem 12. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume. If they are length-commensurable then

1. either G_1 and G_2 are of the same Killing-Cartan type, or one of them is of type B_n and the other is of type C_n;
2. $K_{\Gamma_1} = K_{\Gamma_2}$.
Theorem 12. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume. If they are length-commensurable then

- either G_1 and G_2 are of the same Killing-Cartan type, or one of them is of type B_n and the other is of type C_n;
- $K_{\Gamma_1} = K_{\Gamma_2}$.

Theorem 13. Let \mathcal{X}_{Γ_1} be an arithmetically defined locally symmetric space. The set of arithmetically defined locally symmetric spaces \mathcal{X}_{Γ_2} which are length-commensurable to \mathcal{X}_{Γ_1}, is a union of finitely many commensurability classes. It consists of a single commensurability class if G_1 and G_2 have the same type different from A_n, D_{2n+1} with $n > 1$ and E_6.
Corollary.

1. Let d be even or $\equiv 3 \pmod{4}$, and let M_1 and M_2 be arithmetic quotients of the d-dimensional real hyperbolic space. If M_1 and M_2 are not commensurable, then (after a possible interchange of M_1 and M_2) there exists $\lambda_1 \in L(M_1)$ such that for any $\lambda_2 \in L(M_2)$, the ratio λ_1 / λ_2 is transcendental over \mathbb{Q} (in particular, M_1 and M_2 are not length-commensurable.)

2. For any $d \equiv 1 \pmod{4}$ there exist length-commensurable, but not commensurable, arithmetic quotients of the real hyperbolic d-space.
Corollary.

1. Let d be even or $\equiv 3 \pmod{4}$, and let M_1 and M_2 be arithmetic quotients of the d-dimensional real hyperbolic space.

 If M_1 and M_2 are not commensurable, then (after a possible interchange of M_1 and M_2) there exists $\lambda_1 \in L(M_1)$ such that for any $\lambda_2 \in L(M_2)$, the ratio λ_1 / λ_2 is transcendental over \mathbb{Q} (in particular, M_1 and M_2 are not length-commensurable.)

2. For any $d \equiv 1 \pmod{4}$ there exist length-commensurable, but not commensurable, arithmetic quotients of the real hyperbolic d-space.
Theorem 14. Let X_{Γ_1} and X_{Γ_2} be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then

1. the other space is also arithmetically defined;
2. compactness of one of the spaces implies compactness of the other.
Theorem 14. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is **arithmetically defined**. Then

1. the other space is also **arithmetically defined**;
2. **compactness** of one of the spaces implies compactness of the other.

- It would be interesting to find a **geometric** explanation of item 2°.
Theorem 14. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then

1. the other space is also arithmetically defined;
2. compactness of one of the spaces implies compactness of the other.

- It would be interesting to find a geometric explanation of item 2°.
- Is 2° remains valid without any assumptions on arithmeticaly?
Theorem 14. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be locally symmetric spaces of finite volume which are length-commensurable. Assume that one of the spaces is arithmetically defined. Then

1. the other space is also arithmetically defined;
2. compactness of one of the spaces implies compactness of the other.

• It would be interesting to find a geometric explanation of item 2°.

• Is 2° remains valid without any assumptions on arithmeticity?

RECALL that for any lattice Γ, compactness of \mathcal{X}_Γ is equivalent to the existence of nontrivial unipotents in Γ. So, one can ask: Suppose two lattices are weakly commensurable. Does the existence of nontrivial unipotents in one of them implies their existence in the other? This question makes sense for arbitrary Zariski-dense subgroups.
Outline

1 Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2 Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3 Proofs
 - “Special” elements in Zariski-dense subgroups
Two compact Riemannian manifolds are **isospectral** if they have the **same spectra** of the Laplace-Beltrami operator (same **eigenvalues** and **same multiplicities**).
Two compact Riemannian manifolds are isospectral if they have the same spectra of the Laplace-Beltrami operator (same eigenvalues and same multiplicities).

Fact. Let M_1 and M_2 be two compact locally symmetric spaces. If M_1 and M_2 are isospectral then $L(M_1) = L(M_2)$.
Two compact Riemannian manifolds are \textit{isospectral} if they have the same spectra of the Laplace-Beltrami operator (same \textit{eigenvalues} and same \textit{multiplicities}).

\textbf{Fact.} Let M_1 and M_2 be two compact locally symmetric spaces. If M_1 and M_2 are isospectral then $L(M_1) = L(M_2)$.

\implies if \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_1} are compact and isospectral then Γ_1 and Γ_2 are weakly commensurable.
Two compact Riemannian manifolds are **isospectral** if they have the **same spectra** of the Laplace-Beltrami operator (same *eigenvalues* and same *multiplicities*).

Fact. Let M_1 and M_2 be two compact locally symmetric spaces.

If M_1 and M_2 are isospectral then $L(M_1) = L(M_2)$.

\Rightarrow if \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_1} are **compact** and **isospectral** then Γ_1 and Γ_2 are weakly commensurable.

Theorem 15. Let \mathcal{X}_{Γ_1} and \mathcal{X}_{Γ_2} be isospectral compact locally symmetric spaces. If Γ_1 is **arithmetic** then Γ_2 is also **arithmetic**.
Theorem 16. Assume that \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are isospectral compact locally symmetric spaces, and at least one of the subgroups Γ_1 or Γ_2 is arithmetic. Then $G_1 = G_2 =: G$. Moreover, unless G is type A_n, D_{2n+1} ($n > 1$) or E_6, the spaces \mathfrak{X}_{Γ_1} and \mathfrak{X}_{Γ_2} are commensurable.
Theorem 16. Assume that X_{Γ_1} and X_{Γ_2} are isospectral compact locally symmetric spaces, and at least one of the subgroups Γ_1 or Γ_2 is arithmetic. Then $G_1 = G_2 = G$. Moreover, unless G is type A_n, D_{2n+1} ($n > 1$) or E_6, the spaces X_{Γ_1} and X_{Γ_2} are commensurable.

It would be interesting to determine if Theorem 16 remains valid without any assumptions of arithmeticity.
Outline

1. Weak commensurability
 - Definition and motivations
 - Basic results
 - Arithmetic Groups
 - Remarks on nonarithmetic case

2. Length-commensurable locally symmetric spaces
 - Links between length-commensurability and weak commensurability
 - Main results
 - Applications to isospectral locally symmetric spaces

3. Proofs
 - “Special” elements in Zariski-dense subgroups
Proofs rely on the existence of “special” elements in Zariski-dense subgroups.
Proofs rely on the existence of “special” elements in Zariski-dense subgroups.

Question 1: Let G be a compact Lie group, and let $\Gamma \subset G$ be a dense subgroup. Does there exist $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is a maximal torus of G?

Question 2: Let G be a reductive algebraic group over a field K (of characteristic zero), and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Does there exist a semi-simple $\gamma \in \Gamma$ such that the Zariski closure $\langle \gamma \rangle$ is a maximal torus of G? Elements of this kind will be called generic (this notion will be specialized further later on).
Proofs rely on the existence of “special” elements in Zariski-dense subgroups.

Question 1: Let G be a compact Lie group, and let $\Gamma \subset G$ be a dense subgroup. Does there exist $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is a maximal torus of G?

Question 2: Let G be a reductive algebraic group over a field K (of characteristic zero), and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Does there exist a semi-simple $\gamma \in \Gamma$ such that the Zariski closure $\langle \gamma \rangle$ is a maximal torus of G?
Proofs rely on the existence of “special” elements in Zariski-dense subgroups.

Question 1: Let G be a compact Lie group, and let $\Gamma \subset G$ be a dense subgroup. Does there exist $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is a maximal torus of G?

Question 2: Let G be a reductive algebraic group over a field K (of characteristic zero), and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Does there exist a semi-simple $\gamma \in \Gamma$ such that the Zariski closure $\langle \gamma \rangle$ is a maximal torus of G?

Elements of this kind will be called **generic** (this notion will be specialized further later on).
The answer is **No** to both questions if G (resp., G) is a **torus**.
The answer is **No** to both questions if G (resp., G) is a **torus**.

Example 1: Let $G = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z}$, and let

$$
\Gamma = (\sqrt{2}\mathbb{Z} + \mathbb{Z})/\mathbb{Z} \times (\sqrt{2}\mathbb{Z} + \mathbb{Z})/\mathbb{Z}.
$$

Then Γ is dense in G, but for any

$$
\gamma = \left(\sqrt{2}m(\text{mod } \mathbb{Z}), \sqrt{2}n(\text{mod } \mathbb{Z}) \right) \in \Gamma
$$

we have $\langle \gamma \rangle \subset \{ (a(\text{mod } \mathbb{Z}), b(\text{mod } \mathbb{Z})) \mid na - mb \equiv 0(\text{mod } \mathbb{Z}) \}$, so $\langle \gamma \rangle \neq G$.

Example 2: Let $G = C \times C \times C \times C$, and let $\varepsilon \in C \times C$ be **not** a root of unity.

Then $\Gamma = \langle \varepsilon \rangle \times \langle \varepsilon \rangle$ is Zariski-dense in G, but for any $\gamma = (\varepsilon^m, \varepsilon^n) \in \Gamma$, we have $\langle \gamma \rangle \subset \{ (x, y) \in G \mid x^n = y^m \}$, so $\langle \gamma \rangle \neq G$.

Andrei S. Rapinchuk (UVA)
Durham July 2011 47 / 57
The answer is **No** to both questions if \(\mathcal{G} \) (resp., \(G \)) is a **torus**.

Example 1: Let \(\mathcal{G} = \mathbb{R}/\mathbb{Z} \times \mathbb{R}/\mathbb{Z} \), and let

\[
\Gamma = (\sqrt{2}\mathbb{Z} + \mathbb{Z})/\mathbb{Z} \times (\sqrt{2}\mathbb{Z} + \mathbb{Z})/\mathbb{Z}.
\]

Then \(\Gamma \) is dense in \(\mathcal{G} \), but for any

\[
\gamma = \left(\sqrt{2}m \mod \mathbb{Z} , \sqrt{2}n \mod \mathbb{Z} \right) \in \Gamma
\]

we have \(\langle \gamma \rangle \subset \{ (a \mod \mathbb{Z} , b \mod \mathbb{Z}) \mid na - mb \equiv 0 \mod \mathbb{Z} \} \), so \(\langle \gamma \rangle \neq \mathcal{G} \).

Example 2: Let \(G = \mathbb{C}^\times \times \mathbb{C}^\times \), and let \(\varepsilon \in \mathbb{C}^\times \) be **NOT** a root of unity. Then \(\Gamma = \langle \varepsilon \rangle \times \langle \varepsilon \rangle \) is Zariski-dense in \(G \), but for any \(\gamma = \left(\varepsilon^m , \varepsilon^n \right) \in \Gamma \), we have \(\langle \gamma \rangle \subset \{ (x, y) \in G \mid x^n = y^m \} \neq G \).
The answer to both questions is **YES** if G (resp., G) is semi-simple.
The answer to both questions is **Yes** if G (resp., G) is **semi-simple**. Proofs use p-adic techniques.
The answer to both questions is **Yes** if \mathcal{G} (resp., G) is **semi-simple**.

Proofs use p-adic techniques.

Question 1 reducing to **Question 2** (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will focus on **Question 2**.
The answer to both questions is **YES** if G (resp., G) is **semi-simple**.

Proofs use p-adic techniques.

Question 1 **reduces** to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will **focus on Question 2**.

Example 3: Let G be a simple \mathbb{Q}-group with $\text{rk}_\mathbb{R} G = 1$. Then $\Gamma = G(\mathbb{Z})$ is Zariski-dense. Let $T \subset G$ be a maximal \mathbb{Q}-torus.
The answer to both questions is **YES** if \(\mathcal{G} \) (resp., \(G \)) is **semi-simple**.

Proofs use \(p \)-adic techniques.

Question 1 reduces to **Question 2** (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will **focus on Question 2**.

Example 3: Let \(G \) be a simple \(\mathbb{Q} \)-group with \(\text{rk}_\mathbb{R} \ G = 1 \). Then \(\Gamma = G(\mathbb{Z}) \) is Zariski-dense. Let \(T \subset G \) be a maximal \(\mathbb{Q} \)-torus. If \(T \) has a **proper** \(\mathbb{Q} \)-subtorus \(T' \), then

\[
T = T' \cdot T''
\]

(almost direct product), so \(T(\mathbb{Z}) \) is commensurable with \(T'(\mathbb{Z}) \cdot T''(\mathbb{Z}) \).
The answer to both questions is **YES** if G (resp., G) is **semi-simple**.

Proofs use **p-adic** techniques.

Question 1 **reduces** to Question 2 (b/c in compact groups, Zariski-dense subgroups are also dense in the usual topology), so we will **focus on Question 2**.

Example 3: Let G be a simple \mathbb{Q}-group with $\text{rk}_\mathbb{R} G = 1$. Then $\Gamma = G(\mathbb{Z})$ is Zariski-dense. Let $T \subset G$ be a maximal \mathbb{Q}-torus. If T has a **proper** \mathbb{Q}-subtorus T', then

$$T = T' \cdot T''$$

(almost direct product), so $T(\mathbb{Z})$ is commensurable with $T'(\mathbb{Z}) \cdot T''(\mathbb{Z})$.

Thus, for any $\gamma \in T \cap \Gamma$, we have $\gamma^n \in T'$ or T'', and therefore $T \neq \langle \gamma \rangle$.
In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper \mathbb{Q}-subtori.
In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper \mathbb{Q}-subtori.

Conversely, if T is a \mathbb{Q}-torus without proper \mathbb{Q}-subtori then any $\gamma \in T(\mathbb{Q})$ of infinite order generates a Zariski-dense subgroup of T.

\textbf{Definition.} Let T be an algebraic torus defined over a field K. Then T is \mathbb{K}-irreducible if it does not any proper K-defined subtori.

\textbf{Lemma 1.} If T is irreducible over K then for any $\gamma \in T(\mathbb{K})$ of infinite order, $\langle \gamma \rangle = T$. Thus, a regular semi-simple $\gamma \in \Gamma \subset G(\mathbb{K})$ is "generic" if $T = C_G(\gamma)$ is \mathbb{K}-irreducible.
In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper \mathbb{Q}-subtori.

Conversely, if T is a \mathbb{Q}-torus without proper \mathbb{Q}-subtori then any $\gamma \in T(\mathbb{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is (K)-irreducible if it does not any proper K-defined subtori.
In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper \mathbb{Q}-subtori.

Conversely, if T is a \mathbb{Q}-torus without proper \mathbb{Q}-subtori then any $\gamma \in T(\mathbb{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is **(K)-irreducible** if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any $\gamma \in T(K)$ of infinite order, $\langle \gamma \rangle = T$.

Andrei S. Rapinchuk (UVA)
Durham July 2011 49 / 57
In this example, T can only be generated by a single element $\gamma \in T \cap \Gamma$ if it contains NO proper \mathbb{Q}-subtori.

Conversely, if T is a \mathbb{Q}-torus without proper \mathbb{Q}-subtori then any $\gamma \in T(\mathbb{Q})$ of infinite order generates a Zariski-dense subgroup of T.

Definition. Let T be an algebraic torus defined over a field K. Then T is (K)-irreducible if it does not any proper K-defined subtori.

Lemma 1. If T is irreducible over K then for any $\gamma \in T(K)$ of infinite order, $\langle \gamma \rangle = T$.

Thus, a regular semi-simple $\gamma \in \Gamma \subset G(K)$ is “generic” if $T = C_G(\gamma)^\circ$ is K-irreducible.
Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_T - minimal splitting field of T
- $G_T = \text{Gal}(K_T/K)$
- $\theta_T : G_T \to \text{GL}(X(T) \otimes \mathbb{Z} \mathbb{Q})$
Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_T - minimal splitting field of T
- $\mathfrak{g}_T = \text{Gal}(K_T/K)$
- $\theta_T: \mathfrak{g}_T \to \text{GL}(X(T) \otimes_{\mathbb{Z}} \mathbb{Q})$

Lemma 2. T is K-irreducible $\iff \theta_T$ is irreducible.
Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_T - minimal splitting field of T
- $\mathcal{G}_T = \text{Gal}(K_T/K)$
- $\theta_T: \mathcal{G}_T \to \text{GL}(X(T) \otimes \mathbb{Z} \mathbb{Q})$

Lemma 2. T is K-irreducible \iff θ_T is irreducible.

Let T be a maximal K-torus of an absolutely almost simple K-group G. If $\Phi = \Phi(G, T)$ is the root system then $\theta(\mathcal{G}_T) \subset \text{Aut}(\Phi)$.
Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_T - minimal splitting field of T
- $\mathcal{G}_T = \text{Gal}(K_T/K)$
- $\theta_T: \mathcal{G}_T \to \text{GL}(X(T) \otimes_{\mathbb{Z}} \mathbb{Q})$

Lemma 2. T is K-irreducible $\iff \theta_T$ is irreducible.

Let T be a maximal K-torus of an absolutely almost simple K-group G.

If $\Phi = \Phi(G,T)$ is the root system then $\theta(\mathcal{G}_T) \subset \text{Aut}(\Phi)$.

If $\theta_T(\mathcal{G}_T) \supset \mathcal{W}(\Phi) = \mathcal{W}(G,T)$ then T is irreducible

(such tori are called **generic**).
Let T be a K-torus.

- $X(T)$ - group of characters of T
- K_T - minimal splitting field of T
- $\mathcal{G}_T = \text{Gal}(K_T/K)$
- $\theta_T: \mathcal{G}_T \to \text{GL}(X(T) \otimes \mathbb{Z} \mathbb{Q})$

Lemma 2. T is K-irreducible $\iff \theta_T$ is irreducible.

Let T be a maximal K-torus of an absolutely almost simple K-group G.

If $\Phi = \Phi(G, T)$ is the root system then $\theta(\mathcal{G}_T) \subset \text{Aut}(\Phi)$.

If $\theta_T(\mathcal{G}_T) \supset W(\Phi) = W(G, T)$ then T is irreducible

(such tori are called **generic**).

Thus, an element of infinite order $\gamma \in T(K)$, where T is generic over K, is generic (as previously defined).
How to construct generic maximal tori?
How to construct generic maximal tori?

Let $G = \text{SL}_n / K$. Any maximal K-torus $T \subset G$ is of the form

$$T = R_{E/K}(\text{GL}_1),$$

where E is an n-dimensional étale K-algebra.
How to construct generic maximal tori?

Let $G = \text{SL}_n / K$. Any maximal K-torus $T \subset G$ is of the form

$$T = R_{E/K}(GL_1),$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\iff E/K$ is a field extension & $\text{Gal}(F/K) \simeq S_n$
How to construct generic maximal tori?

Let $G = \text{SL}_n / K$. Any maximal K-torus $T \subset G$ is of the form

$$T = R_{E/K}(\text{GL}_1),$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\iff E/K$ is a field extension & $\text{Gal}(F/K) \simeq S_n$

Construction of extensions with Galois group S_n is well-known

when K is a number field

$\Rightarrow G$ has plenty of generic tori in this case.
How to construct generic maximal tori?

Let $G = \text{SL}_n/K$. Any maximal K-torus $T \subset G$ is of the form

$$T = R_{E/K}(\text{GL}_1),$$

where E is an n-dimensional étale K-algebra.

Such T is generic $\iff E/K$ is a field extension & $\text{Gal}(F/K) \simeq S_n$

Construction of extensions with Galois group S_n is well-known

when K is a number field

$\Rightarrow G$ has plenty of generic tori in this case.

Explicit construction can be implemented for other classical types.

Additional problem: embed resulting generic tori into a given group.
General Case:

Fact (Voskresenskii) There exists a purely transcendental extension $\mathcal{K} = K(x_1, \ldots, x_r)$ and a \mathcal{K}-defined maximal torus $T \subset G$ such that

$$\theta_T(\text{Gal}(\mathcal{K}_T/\mathcal{K})) \supset W(G, T).$$
General case:

Fact (Voskresenskii) There exists a purely transcendental extension $\mathcal{K} = K(x_1, \ldots, x_r)$ and a \mathcal{K}-defined maximal torus $T \subset G$ such that

$$\theta_T(\text{Gal}(\mathcal{K}_T / \mathcal{K})) \supset W(G, T).$$

If K is a number field (or, more generally, a finitely generated field) then one can use Hilbert’s Irreducibility Theorem to specialize parameters and get “many” maximal K-tori $T \subset G$ such that

$$\theta_T(\text{Gal}(K_T / K)) \supset W(G, T).$$
GENERAL CASE:

Fact (Voskresenskii) There exists a *purely transcendental extension* \(K = K(x_1, \ldots, x_r) \) and a \(K \)-defined maximal torus \(T \subset G \) such that

\[
\theta_T(\text{Gal}(K_T/K)) \supset W(G, T).
\]

If \(K \) is a *number field* (or, more generally, a *finitely generated field*) then one can use Hilbert’s Irreducibility Theorem to *specialize parameters* and get “many” maximal \(K \)-tori \(T \subset G \) such that

\[
\theta_T(\text{Gal}(K_T/K)) \supset W(G, T).
\]

For \(K \) a number field, one can construct such generic tori with *prescribed local behavior* at finitely many places.

Then, if \(\Gamma \) is \(S \)-arithmetic, one can find generic tori containing \(\gamma \in \Gamma \) of infinite order.
Generic tori **constructed by this method** may not contain elements \(\gamma \in \Gamma \) of infinite order if \(\Gamma \) is not \(S \)-arithmetic.

(Our work was motivated by a question asked by Abels-Margulis-Soifer in connection with the Auslander conjecture, in the context of **nonarithmetic** groups.)
Generic tori **constructed by this method** may not contain elements \(\gamma \in \Gamma \) of infinite order if \(\Gamma \) is not \(S \)-arithmetic.

(Our work was motivated by a question asked by Abels-Margulis-Soifer in connection with the Auslander conjecture, in the context of nonarithmetic groups.)

Definition. Let \(G \) be a semi-simple real algebraic group. An element \(\gamma \in G(\mathbb{R}) \) is **\(\mathbb{R} \)-regular** if the number of eigenvalues of \(\text{Ad} \gamma \), counted with multiplicities, of modulus 1, is minimal possible.
Generic tori constructed by this method may not contain elements \(\gamma \in \Gamma \) of infinite order if \(\Gamma \) is not \(S \)-arithmetic.

(Our work was motivated by a question asked by Abels-Margulis-Soifer in connection with the Auslander conjecture, in the context of nonarithmetic groups.)

Definition. Let \(G \) be a semi-simple real algebraic group. An element \(\gamma \in G(\mathbb{R}) \) is \textbf{\(R \)-regular} if the number of eigenvalues of \(\text{Ad} \, \gamma \), counted with multiplicities, of modulus 1, is minimal possible.

Theorem 17. Let \(G \) be a connected semi-simple real algebraic group. Then any Zariski-dense subsemigroup \(\Gamma \subset G(\mathbb{R}) \) contain a regular \(\mathbb{R} \)-regular \(\gamma \) such that \(\langle \gamma \rangle \) is Zariski-dense in \(T = C_G(\gamma) \).
Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is Zariski-dense in $T = C_G(\gamma)^\circ$.
Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is Zariski-dense in $T = C_G(\gamma)^\circ$.

Sketch of Proof for G almost absolutely simple simply connected.
Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is Zariski-dense in $T = C_G(\gamma)^\circ$.

Sketch of proof for G almost absolutely simple simply connected.

Can assume

1. Γ is finitely generated;
2. $\Gamma \subset G(R)$ where R is a finitely generated subring of K;
3. K is finitely generated.
Theorem 18. Let G be a semi-simple algebraic group over a field K of characteristic zero, and let $\Gamma \subset G(K)$ be a Zariski-dense subgroup. Then there exists a regular semi-simple $\gamma \in \Gamma$ such that $\langle \gamma \rangle$ is Zariski-dense in $T = C_G(\gamma)^\circ$.

SKETCH OF PROOF for G almost absolutely simple simply connected. Can assume

1. Γ is finitely generated;
2. $\Gamma \subset G(R)$ where R is a finitely generated subring of K;
3. K is finitely generated.

We want to construct a regular semi-simple $\gamma \in \Gamma$ of infinite order such that $T = C_G(\gamma)^\circ$ is *generic* over K.
Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon: K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$.

- Pick a maximal K-torus $T_0 \subset G$ and fix a conjugacy class C in $W(G, T_0)$.
- Pick an embedding $\varepsilon_p: K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$, and T_0 is split over \mathbb{Q}_p.
Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$.

Observe that given maximal tori T_1, T_2 of G, the Weyl groups $W(G, T_1)$ and $W(G, T_2)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

- Pick a maximal K-torus $T_0 \subset G$ and fix a conjugacy class C in $W(G, T_0)$.
- Pick an embedding $\varepsilon_p : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$, and T_0 is split over \mathbb{Q}_p.
Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$.

Observe that given maximal tori T_1, T_2 of G, the Weyl groups $W(G, T_1)$ and $W(G, T_2)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

- Pick a maximal K-torus $T_0 \subset G$ and fix a conjugacy class C in $W(G, T_0)$.
- Pick an embedding $\varepsilon_p : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$, and T_0 is split over \mathbb{Q}_p.
Proposition. Let K be a finitely generated field, and $R \subset K$ be a finitely generated ring. There exists an infinite set of primes Π such that for each $p \in \Pi$ there exists an embedding $\varepsilon : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$.

Observe that given maximal tori T_1, T_2 of G, the Weyl groups $W(G, T_1)$ and $W(G, T_2)$ are identified canonically, up to an inner automorphism; in particular, the conjugacy classes are identified canonically.

- Pick a maximal K-torus $T_0 \subset G$ and fix a conjugacy class C in $W(G, T_0)$.
- Pick an embedding $\varepsilon_p : K \hookrightarrow \mathbb{Q}_p$ such that $\varepsilon_p(R) \subset \mathbb{Z}_p$, and T_0 is split over \mathbb{Q}_p.
Using Galois cohomology, we find an open $\Omega_p(C) \subset G(\mathbb{Q}_p)$ satisfying

- $\Omega_p(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G(\mathbb{Q}_p)$;
- for $\omega \in \Omega_p(C)$ and $T_\omega = C_G(\omega)^{\circ}$, we have
 $$\theta_{T_\omega}(\text{Gal}(K_{T_\omega}/\mathbb{Q}_p)) \cap C \neq \emptyset$$
 (in terms of the canonical identification $W(G, T_\omega) \simeq W(G, T_0)$)
Using Galois cohomology, we find an open $\Omega_p(C) \subset G(\mathbb{Q}_p)$ satisfying

- $\Omega_p(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G(\mathbb{Q}_p)$;
- for $\omega \in \Omega_p(C)$ and $T_\omega = C_G(\omega)^\circ$, we have

$$\theta_{T_\omega}(\text{Gal}(K_{T_\omega}/\mathbb{Q}_p)) \cap C \neq \emptyset$$

(in terms of the canonical identification $W(G, T_\omega) \simeq W(G, T_0)$)

Let C_1, \ldots, C_r be all conjugacy classes of $W(G, T_0)$.
Using Galois cohomology, we find an open $\Omega_p(C) \subset G(Q_p)$ satisfying

- $\Omega_p(C)$ consists of regular semi-simple elements and intersects every open subgroup of $G(Q_p)$;
- for $\omega \in \Omega_p(C)$ and $T_\omega = C_G(\omega)^\circ$, we have
 \[\theta_{T_\omega}(\text{Gal}(K_{T_\omega}/Q_p)) \cap C \neq \emptyset \]
 (in terms of the canonical identification $W(G, T_\omega) \simeq W(G, T_0)$)

Let C_1, \ldots, C_r be all conjugacy classes of $W(G, T_0)$.

Pick r primes $p_1, \ldots, p_r \in \Pi$, and consider $\Omega_{p_i}(C_i) \subset G(Q_{p_i})$.

One shows that
\[\Omega := \bigcap_{i=1}^{r} (\Gamma \cap \Omega_{p_i}(C_i)) \neq \emptyset, \]
and any $\gamma \in \Omega$ is generic.
Some other applications of p-adic embeddings:

- **(Platonov)** Let $\pi : \tilde{G} \to G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.

- **(R.)** Let Γ be a group with bounded generation, i.e.

 \[\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle \quad \text{for some} \quad \gamma_1, \ldots, \gamma_d \in \Gamma. \]

 Assume that any subgroup of finite index $\Gamma_1 \subset \Gamma$ has finite abelianization $\Gamma_1^{ab} = \Gamma_1 / [\Gamma_1, \Gamma_1]$. Then there are only finitely many inequivalent irreducible representations $\rho : \Gamma \to \text{GL}_n(\mathbb{C})$.

- **(Prasad-R.)** Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.

 If $N \subset G(K)$ is a noncentral subnormal subgroup then N is not finitely generated.
Some other applications of p-adic embeddings:

- (Platonov) Let $\pi : \tilde{G} \to G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.

- (R.) Let Γ be a group with bounded generation, i.e.

 $$\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle$$

 for some $\gamma_1, \ldots, \gamma_d \in \Gamma$.

 Assume that any subgroup of finite index $\Gamma_1 \subset \Gamma$ has finite abelianization $\Gamma_1^{ab} = \Gamma_1 / [\Gamma_1, \Gamma_1]$. Then there are only finitely many inequivalent irreducible representations $\rho : \Gamma \to GL_n(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.

 If $N \subset G(K)$ is a noncentral subnormal subgroup then N is not finitely generated.
Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \to G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.

- (R.) Let Γ be a group with bounded generation, i.e.

$$\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle$$

for some $\gamma_1, \ldots, \gamma_d \in \Gamma$.

Assume that any subgroup of finite index $\Gamma_1 \subset \Gamma$ has finite abelianization $\Gamma_1^{ab} = \Gamma_1 / [\Gamma_1, \Gamma_1]$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \to \text{GL}_n(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.

If $N \subset G(K)$ is a noncentral subnormal subgroup then N is not finitely generated.
Some other applications of p-adic embeddings:

- (Platonov) Let $\pi: \tilde{G} \to G$ be a nontrivial isogeny of semi-simple groups over a finitely generated field K. Then $\pi(\tilde{G}(K)) \neq G(K)$.

- (R.) Let Γ be a group with bounded generation, i.e.

 $$\Gamma = \langle \gamma_1 \rangle \cdots \langle \gamma_d \rangle \text{ for some } \gamma_1, \ldots, \gamma_d \in \Gamma.$$

 Assume that any subgroup of finite index $\Gamma_1 \subset \Gamma$ has finite abelianization $\Gamma_1^{ab} = \Gamma_1 / [\Gamma_1, \Gamma_1]$. Then there are only finitely many inequivalent irreducible representations $\rho: \Gamma \to \text{GL}_n(\mathbb{C})$.

- (Prasad-R.) Let G be an absolutely almost simple algebraic group over a field K of characteristic zero.

 If $N \subset G(K)$ is a noncentral subnormal subgroup then N is not finitely generated.